N
N

N

HAL

open science

Generating Reusable, Searchable and Executable
” Architecture Constraints as Services”

Sahar Kallel, Bastien Tramoni, Chouki Tibermacine, Christophe Dony,
Ahmed Hadj Kacem

» To cite this version:

Sahar Kallel, Bastien Tramoni, Chouki Tibermacine, Christophe Dony, Ahmed Hadj Kacem. Gener-
ating Reusable, Searchable and Executable ”Architecture Constraints as Services”. Journal of Systems

and Software, 2017, 127, pp.91-108. 10.1016/j.j55.2017.01.032 . lirmm-01706634

HAL Id: lirmm-01706634
https://hal-lirmm.ccsd.cnrs.fr /lirmm-01706634
Submitted on 12 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01706634
https://hal.archives-ouvertes.fr

Generating Reusable, Searchable and Executable
“Architecture Constraints as Services”

Sahar Kallel®?, Bastien Tramoni®, Chouki Tibermacine®, Christophe Dony?,
Ahmed Hadj KacemP

% Lirmm, CNRS and University of Montpellier, France
YReDCAD, University of Sfax, Tunisia

Abstract

Architecture constraints are components of design documentation. They enable
designers to enforce rules that architecture descriptions should respect. Many
systems make it possible to associate constraints to models at design stage
but very few enable their association to code at implementation stage. When
possible, this is done manually, which is a tedious, error prone and time con-
suming task. Therefore, we propose in this work a process to automatically
generate executable constraints associated to programs’ code from model-based
constraints. First, the process translates the constraints specified at design-time
into constraint-components described with an ADL, called CLACS. Then, it cre-
ates constraint-services which can be registered and later invoked to check their
embedded constraints on component- and service-based applications. We chose
to target components and services in order to make architecture constraints
reusable, searchable in registries, customizable and checkable at the implementa-
tion stage. The generated constraint-services use the standard reflective (meta)
layer provided by the programming language to introspect elements of the ar-
chitecture. We experimented our work on a set of 15 architecture constraints
and on a real-world system in order to evaluate the effectiveness of the process.
Keywords: Architecture Constraint, OCL, Constraint-component,

Constraint-service, Automatic Translation, Introspection, OSGi

Email address: sahar.kallel@lirmm.fr (Sahar Kallel)

Preprint submitted to Journal of Systems and Software December 4, 2016

1. Introduction: Context and Problem Statement

Software architectures play an important role in the software development
process. They are specified or reconstructed and maintained throughout the life
cycle in order to make persistent user requirements and to ease development.
Documenting architectures provides a preliminary comprehensive view of the
software structure and behavior of the software. This documentation may in-
clude various kinds of constraints, such as: i) functional constraints, which are
predicates on the states of the running components constituting the architec-
ture, and ii) architecture constraints, which are specifications of invariants on
the structure of these components.

For example, if we consider a UML model (an architecture description) con-
taining a class Employee (a component in that architecture) which defines an
integer attribute age, a functional constraint representing an invariant in this
class could impose that the values of this attribute be included in the range
[16-70] for all instances. Such a constraint is said to be dynamic, it can only be
verified at runtime. Architecture constraints deal with architecture descriptions
and not with component states. As an example, a constraint representing the
layered architecture style [I], states that “components in non-adjacent layers
must not be directly connected together”.

Both kinds of constraints can be specified using standard languages, like OCL
(Object Constraint Language), which is an OMG’s (Object Management Group)
standardﬂ In this case, functional constraints can be written as predicates that
navigate at the model level (M1) in the OMG’s modeling stackﬂ Architecture
constraints navigate however at the metamodel level (M2).

Many existing works [2, 3] [4] propose solutions to express at design time
constraints representing architectural patterns. But unfortunately, these con-
straints are generally ignored at the implementation stage. They are statically

checked on design artifacts (models). The question of translating architecture

LOCL specification: http://www.omg.org/spec/0CL/2.4/
2MDA (Model-Driven Architecture) Website: http://www.omg.org/mda/

http://www.omg.org/spec/ OCL/2.4/
http://www.omg.org/mda/

constraints to become checkable at runtime is globally open. Architecture con-
straints should be associated with the architectures’ representation available in
programs codes and at runtime. Any modification of an architecture on the
code or at runtime entails that the constraints should be checked again.

Furthermore, in a previous work [5], we have demonstrated that certain
quality attributes may be weakened due to architecture constraint violation
during software evolution. In other works [6] [7], the authors exemplify how
structural constraints or design rules are violated in source code level. They
also detail the consequent effects of these violations like technical dept, quality
attribute losing, etc. It is thus important to be able to check them at that
(implementation) level of the software’s life-cycle.

Manually writing all the constraints defined at design time into executable
programs is a tedious and error prone task. Besides, implementing a new in-
terpreter for the architecture constraint language (like OCL), making it able to
analyze (source code) programs, is obviously not a natural solution since it is a
time-consuming task. In addition, this solution would require programmers to
learn another language (the one used to specify constraints in the design phase)
to specify new architecture constraints, in the implementation phase. For these
reasons, we propose in this paper a process to automatically generate executable
programs from architecture constraint specifications.

Instead of generating monolithic blocks of code that do not offer any reuse or
customization possibilities, the proposed process transforms architecture con-
straint specifications, before code generation, into more structured assets in
order to facilitate their reuse. Our process decomposes therefore architecture
constraints into entities embedded in a special kind of software components.
These components can be reused, assembled, composed into higher-level ones
and customized using standard component-based techniques. These “constraint-
components” are defined using an ADL (Architecture Description Language),
called CLACS that we have developed in the past [8]. This ADL allows specify-
ing the constraints in this new kind of components in order to reinforce reuse and

composition. After that, the process translates automatically these components

into “executable programs” at the implementation stage. These programs take
the form of components defined using the OSGi frameworkﬂ The generated
“bundles” (components) provide services, “constraint-services”, that can be in-
voked to check architecture constraints. In this way, architecture constraints
become not only reusable, but also searchable in a service registry. Constraint-
services publish operations that are able to check architecture constraints. These
operations are implemented using the reflective (introspection) mechanism pro-
vided by the programming language (Java, in the current implementation) and
the OSGi runtime, in order to analyze architecture descriptions and to examine
the structure of “business” (functional) bundles at runtime. Architecture con-
straints can thus be checked after a dynamic reconfiguration of the architecture.
We used this reflective capabilities, in order to exploit a standard mechanism
provided by the programming language and the framework runtime, without
having to use external libraries or tools.

An alternative solution to our method can be designed without transforming
constraints: models of the analyzed application should be recovered or recon-
structed and an OCL compiler is simply used to check architecture constraints.
There are many drawbacks to this solution. First, each time the constraints
should be checked, models have to be recovered, which is a costly task. Second,
these models have to be always compliant with what the OCL compiler requests
for the evaluation of constraints. Third, the OCL checking should be upgraded
with the challenging task of dynamically evaluating constraints on the running
system. At last, reuse and search of architecture constraints become difficult
without the additional support provided by the solution that we propose in this
paper.

This paper is an extension of a previous communication [9] at ECSA (the
European Conference on Software Architecture) 2015. In this paper, we have

particularly :

308Gi Alliance Website: https://www.osgi.org/

https://www.osgi.org/

e added a new step to the process, for generating executable programs,
making thus possible the checking of architecture constraints on programs

and at runtime
e extended the process by generating constraint-services
e illustrated the process with other richer examples
e conducted a new experiment and made additional measurements

e applied our process in a real-world system and showed the usability of our

approach

e largely extended the related works

This paper is accompanied by appendices EL In Section [2, we give an illus-
trative example of the inputs and the outputs of the proposed process. This will
serve as a running example throughout the paper. In Section |3| we expose our
approach in a nutshell. Sections [to [7] describe the steps of the approach in de-
tail. In Section [8] we present an evaluation of the approach. Before concluding

and presenting the future work, we discuss the related work in Section [9]

2. Illustrative Example

To better understand the context of this work, we introduce an example of
an architecture constraint (Listing 1) enabling to check the topological condi-
tions imposed by the “Service Bus Pattern”. The constraint is originally written
by an architect according to her/his architecture description. The architecture
imposes the existence of three kinds of components: the customers (custl, cust2,
cust3), the producers (prodl, prod2, prod3) and the bus. This later is defined as
an adapter that establishes the communication between customers and produc-
ers which may have mismatching interfaces. The architecture constraint which
specifies the conditions imposed by this pattern is expressed in OCL using the
UML metamodel (Figure|l]) in Listing

4These appendices are available here https://seafile.lirmm.fr/f/2faaa66069/

https://seafile.lirmm.fr/f/2faaa66069/

+/role «enumeration»

* [] ConnectorKind
= assembly
+role |1 = delegation
* J +/end | »
[=] EncapsulatedClassifier [StructuredClassifier ‘ +part| [Property | 0.1 + | [connectorEnd ‘ ‘ (] Feature
| - -
| ’ | 0.1 | - 1 } }
0.1 AN AN e —
‘ TendJ2F)
J_;T I - —
: ‘ | +ownedConnector, |, * 1
. Emt : | [5 ctass ‘ I@w [=] Association ‘o._1 . £ Connector
(5 isBehavior: Boolean A . D: =h)
icg issenice: Boolean : | [Abstraction | ‘ ype | £ Kind: Connectorking
(5 isConjugated: Boolean | A —
| Gputntin |
—

[Classifier

+Jorovided)+ + s Jrequired
[D inerface |2/reauired_| He +abstraction + | [componentRealization | * 1
on |

e *| - - -
: | icg isindirectlyinstantiated: Boolean ?1 N | "+ realizingClassifie

+/provided
Figure 1: An Excerpt from the UML metamodel
The UML metamodel in which the constraint navigates is depicted in Fig-

ure [1} In UML, a component is a specialization of a class. It inherits all class

capabilities, it can own attributes (properties), declare operations, participate

in associations or inheritance relations, etc. In addition, it can have ports, with

required and provided interfaces, and can define connectors. For more details,

see the UML specification: http://www.omg.org/spec/UML/2.5/.

context Component inv
let bus:Component
self.realization.realizingClassifier

—>select (c: Classifier |c.oclAsType(Component) .name="esbImpl)

1
2
3
4
5|—>collect (oclAsType (Component))—>asOrderedSet ()—>first ()in
6] let customers: Set (Component)

7|= self.realization.realizingClassifier

8| —>select (c: Classifier |c.oclAsType(Component) .name="custl’
9 or c.oclAsType(Component).name="cust2’

10 or c.oclAsType(Component).name="cust3)

11 —>collect (oclAsType (Component))—>asSet () in

12| let producers: Set(Component)

13|= self.realization.realizingClassifier

14| —> select (c: Classifier |c.oclAsType (Component) .name="prodl’
15| or c.oclAsType(Component) .name="prod2’

16| or c.oclAsType(Component) .name="prod3’)

17| —>collect (oclAsType (Component))—>asSet ()

18| in
19| — The bus should have at least one input port
20| — and one output port

http://www.omg.org/spec/UML/2.5/

bus.ownedPort—>exists (pl,p2:Port |

22 pl.provided —>notEmpty () and p2.required —>notEmpty ())

23| and

24| —Customers should have only output ports

25| customers—>forAll (c¢: Component |

26 c.ownedPort—>forAll (required —>notEmpty () and provided—>isEmpty()))
27| and

28| ——Customers should be connected to the bus only

29| customers—>forAll (com: Component | com.ownedPort

30 —>forAll(p:Port|p.end—>forAll (con:ConnectorEnd |bus.ownedPort

31 —>exists (pb:Port|con.role—>includes(pb)))))

32| and

33| —Producers should have only input ports

34| producers—>forAll (c¢:Component |

35 c.ownedPort—>forAll (provided—>notEmpty () and required —>isEmpty()))
36| and

37| —Producers should be connected to the bus only

38| producers—>forAll (com: Component | com.ownedPort

39| —>forAll(p:Port|p.end—>forAll (con:ConnectorEnd |bus.ownedPort

40 —>exists (pb:Port|con.role—>includes (pb)))))

Listing 1: Service Bus Pattern Constraint in OCL/UML

This constraint searches first for components representing the bus, the cus-
tomers and the producers (let expressions, in Lines [2| to [17] in Listing [1). This
search is performed by analyzing the architecture description of their encom-
passing component, which is the context of the constraint. This analysis is per-
formed by navigating in the metamodel of Figure [1] (by following the relations
between meta-classes, using the "." OCL operator for example). The topologi-
cal conditions of the pattern are presented as comments in Listing [I] The same
OCL navigation mechanism is used here to analyze the architecture description.
It is obvious that this is a simple variant of the Service Bus Pattern (where
customers and providers should be connected to the bus only, and not to other
components). We can choose other more complex (potentially more realistic)
variants to illustrate our work, but we used this example for simplicity reasons,
to focus more on our contributions.

The result of the transformation of this constraint using the proposed pro-

cess are two OSGi bundles. The first is a query-bundle. It provides services

generated from the let expressions. The second one is a constraint-bundle.
It provides services to check the 5 sub-constraints that compose the OCL con-

straint. Two of these services are presented in Listings 2] and [3}

1| public class BusldentificationImpl implements IBuslIdentification {
2| public Bundle getBus(String busName) {

3 Bundle [] bundles=Activator.bc.getBundles();

4 for (Bundle aBundle: bundles) {

5 if (aBundle.getSymbolicName () .equals (busName))

6 return aBundle; }

7 return null; }

8|}

Listing 2: A sample of OSGi code generated for the Service Bus Pattern Constraint (query-
bundle)

1| public class BusStructureImpl implements IBusStructure{
2| private IBusldentification bij

3| public boolean isBusStructure(String busName) {

4 Bundle b= bi.getBus(busName) ;

5 ServiceReference [|] refsl=b.getRegisteredServices();
6 ServiceReference [] refs2=b.getServicesInUse () ;

7 if(refsl!=null && refs2!=null) return true;

8 return false;

9| 3

10| public setService(IBusldentification b){ bi=b; }
11}

Listing 3: A sample of OSGi code generated for the Service Bus Pattern Constraint

(constraint-bundle)

Listing [2| presents the implementation of a service provided, among oth-
ers, by the query-bundle component. This service implementation is defined
as a class which implements the interface IBusIdentification. The method
getBus (operation of the service and whose signature is part of the aforemen-
tioned interface) returns a Bundle object representing the bus (an OSGi reifi-
cation of the Bus component). In this code generation, we rely on the intro-
spection mechanism provided by the OSGi runtime by using getBunldes () and
getSymbolicName () to introspect the architecture of the business bundles, on
which the constraint is checked, and to select the Bundle whose name corre-

sponds to the value of busName parameter.

Listing 1 Listing 4
Figure 1 Figure 3

L}

A Gross Specification with 1 A Gross Specification with 2 OCL sub-constraints in
OCL in UML metamodel OCL in CLACS metamodel CLACS metamodel
Listing 8 3
ng Figures 5 and 6
Figure 7
A Service-based Executable 5 A Constraint Structure 4 A CLACS Architecture
Architecture Description in generated from the OSGi Description
0SGi metamodel
1 : Metamodel Migration 3: Architecture Description Generation
2: Constraint Transformation 4: Metamodel Migration (CLACS-0SGi)

5: Generation of Constraints as Services
Figure 2: The Generation Process

Listing [3] shows an example of a service provided, among others, by
the constraint-bundle component. This service provides an operation
(isBusStructure) which checks if the bus has input and output ports. It uses
getServiceInUse() and getRegisteredServices() methods from the OSGi
runtime to analyze the architecture of the bus component. The Bundle ob-
ject representing the bus component is obtained using the getBus operation
invoked on an object, of type IBusIdentification, whose reference (assigned
to bi field) is injected (via the setService method) by the declarative services
mechanism of the OSGi runtime.

In the following section, we describe the process that we propose for gener-

ating these OSGi bundles from OCL architecture constraints.

3. The Process in a Nutshell

Figure [2| depicts the main steps of this generation process. The input of the
process is an architecture constraint specified with standard languages: OCL
and UML (the constraint is written with OCL, and navigates in the UML meta-
model to analyze architecture descriptions defined with UML components). In
the first step, we transform the input constraint into another constraint which

navigates in the CLACS metamodel. This transformation is needed to make the

constraint checkable at design-time. In the second step, the constraint is decom-
posed from a textual “gross” speciﬁcationﬂ (see Listing |1 into sub-constraints
in order to make them parameterized and reusable. The third step consists in
changing the format of these sub-constraints into an architecture description
made of “constraint-components”. In the fourth step the constraints embedded
in CLACS components are transformed into constraints specified on the OSGi
metamodel. This transformation facilitates code generation. Finally, we obtain
a service-based executable architecture description made of OSGi components.
All these steps are detailed in Sections [to [7]}

We did not perform a direct translation from OCL/UML to OSGi since
this translation includes several transformations at the same time: changing
the syntax of constraints, decomposing them, shifting to a new metamodel,
introducing a structure around the constraints, among others.

In our approach, we use two main languages: CLACS, an architecture de-
scription language, and Java together with its component-oriented program-
ming framework, OSGi. In the literature, there are many languages enabling
the specification of architecture constraints (see [10] for a survey). Each one has
its advantages and its particular application context. However, CLACS is the
only language that provides a component model for software architecture con-
straint specification. The architecture constraints modeled with this language
are constraint-components in which the checked invariants are still specified us-
ing OCL and navigate in CLACS metamodel. The choice of UML is motivated
by the fact that it is an industrial standard EL and that OCL is its original
constraint language. We consider here a repository of architecture constraints
that can be fed by the software architecture community, by using these general

modeling languages (easy to learn, as was experimented in [12]), which are UML

5By “gross” specification, we mean a specification that does not offer enough structure,

reusability and parameterization.
SEven if a recent empirical study [L1] found out that UML is not fully (but selectively)

used by developers in industry, and that it is used informally, there is a general agreement

that UML is the de facto standard modeling language known by a large number of developers.

10

and OCL.

OCL (we used version 2.4) has a simple and intuitive concrete syntax which
enables to write expressions using first order logic, and set operations. Even
if the transformations presented in this paper apply on OCL, the proposed
work can be generalized to any equivalent predicate logic language. This is
not demonstrated experimentally in our work, but as the reader can notice, the
syntactic tokens handled in our transformations are general to predicate logic.

The choice of OSGi is motivated by the fact that it provides a concrete
component-oriented programming framework with a support for service-oriented
architectures. It includes a service registry and a simple way of publishing and
consuming services, with the declarative services mechanism. It is nowadays
a specification adopted by a large number of industrials, and there are many

implementations of this specification which are widely used in practice.

4. Metamodel Migration

The first step in our process consists in transforming constraints written
in OCL/UML into OCL/CLACS. This is performed using a set of declarative
mappings that we have specified between the two metamodels (UML — Figure
and CLACS — Figure [3). This mapping is shown in Appendix A.1. A CLACS
component is an instance of a component descriptor (a dichotomy like in object-
oriented development, where an object is an instance of a class). A component
declares ports, which are characterized by a direction and a visibility. Each
port has an interface which specifies a set of service signatures. Ports are linked
via connectors. A connector receives service invocations through its source port
and transmits them through its target port.

OCL transformation is based on the Abstract Syntax Tree (AST) generated
from the initial constraint. The transformation of the OCL constraint (meta-
model migration) is automatically performed with an ad-hoc manner. This
means that we “programmatically” analyze the OCL’s AST in depth and for

each matched node (the meta-class to map) we transform the corresponding

11

£ Body
3 language : String

E rarameter
Eg name : String

*

+ parameter

El componentinstance 1 + body Cetype : String
sinstance | o name : String . -
0.1 I3 description : String " «enumeration» «enumeration»
Honsmtion Direction = Visibility
) | * 4 +instance | Céname : String) = required = internal
+internalComponent 5 returnedType : String | | — provided = external
+compositeDescriptor *+ operation
P ptoy +descriptor P] connector
] ComponentDescriptor kind :
Interface 5 i
53 hame : String =) : InterfaceKind
i3 description : String Egname : String
5 kind : ComponentKind Egkind : InterfaceKind 0.1
t + out@onnector | + inConnector
? + descriptor + inteyface
- L= + fromPort
«enumeration» + PUJL 0.1 [+ toport 0.1 ti
= InterfaceKind «enumeration>»
- EPort [= Comp Kind
= business £8 name : String = busi
= constraintChecking i : : : usiness
. - g direction : Direction = constraint
= constraintEvaluation 5 visibility : Visibility = query

+port i

Figure 3: CLACS metamodel

part of constraint into the appropriate part based on the predefined mapping
between the two meta-models. We start with the navigation patterns, then the
roles and finally the meta-classes. We modify step-by-step the AST and then
we generate from it the new constraint that navigates in the target metamodel.
After each modification, we evaluate the constraint with an OCL compiler that
validates it according to the two metamodels (UML and CLACS).

We have used XML to implement the mappings, and we have written a pro-
gram for implementing the transformation instead of using an existing model
transformation language like Kermeta El or ATL [I3]. In fact, architecture con-
straints are not models. We might have generated models from constraints,
but this process is complex to implement. It requires to transform the text of
the constraint in models, to use a transformation language to transform these
models and then generate again the text of the new constraint from the newly
generated model. We opted for a simple solution that consists in exploiting an
OCL compiler.

After applying the mappings, the resulting constraint of our example is pre-

Twww.kermeta. org

12

www.kermeta.org

sented in Listing [4}

10
11
12
13
14
15

context ComponentDescriptor inv
let bus:ComponentInstance
= context.internalComponent
—>select (c: ComponentInstance |
and c.oclAsType(ComponentInstance).name="esbImpl ")
—>collect (oclAsType (ComponentInstance))—>asOrderedSet ()—>first ()in
let customers : Set(ComponentInstance)
= context.internalComponent
—>select (c: ComponentInstance |
and c.oclAsType(ComponentInstance).name="custl’
or...)—>collect (oclAsType(ComponentInstance))—>asSet () in

let producers : Set(ComponentInstance)

in

—— The bus should have at least one input port and one output port

bus.port—>exists (pl,p2:Port|
pl.direction=Direction :: provided and
p2.direction=Direction :: required)

and

—Customers should have only output ports

customers—>forAll (ci:ComponentInstance |
ci.port—>forAll(p:Port|p.direction=Direction:: required
and not(p.direction=Direction:: provided)))

and

—Customers should be connected to the bus only

customers. port.inConnector—>union (outConnector)

.toPort—>union (fromPort).instance—>asSet ()=Set{bus}

Listing 4: Service Bus Pattern Constraint in OCL/CLACS

5. Constraint Transformation

At this level, our process is composed of three steps. The first step consists
in extracting variable declarations from the constraint. The second one consists
in decomposing the invariant of the constraint into sub-constraints. In the third

step, these sub-constraints are specified as parameterized OCL definitions.

13

14} inv:

5.1. Variable declaration extraction

In our process we extract let expressions from our textual constraint specifi-
cation and define them as definitions (constraints stereotyped with def). In our
case, these OCL definition constraints return a value whose type is different
from Boolean. At the same time, we modify the textual constraint, i.e, the
constraint undergoes changes to call these generated OCL definitions in the
appropriate places. An excerpt of the result of the transformation is presented

in Listing B}

context ComponentDescriptor
——1let expressions extraction

def: getBus(): ComponentInstance = context.internalComponent

=~ W N

—>select (c: ComponentInstance | c.oclAsType(ComponentInstance)
.name="esbImpl ’)—>collect (oclAsType (ComponentInstance))
—>asOrderedSet ()—>first ()

def: getCustomers(): Set(Componentlnstance) =

0 3 O Ut

context.internalComponent—>select (c: ComponentInstance
9] c.oclAsType(ComponentInstance) .name=’custl’

10 or c.oclAsType(ComponentInstance) .name="cust2’

11 or c.oclAsType(ComponentInstance).name=’cust3 ’)

12 —>collect (oclAsType(ComponentInstance))—>asSet ()

13| def: getProducers():

Listing 5: Constraint after extracting let expressions

5.2. Decomposition and Refactoring

In this step, we first extract the sub-constraints as OCL definitions and
then we identify potential parameters for them to obtain at the end an invariant
which uses these definitions. These definitions are parametrizable and will
be registered in a repository to be used by other constraints. This step uses as
input the abstract syntax tree of the initial constraint.

We decompose automatically the obtained constraint into a set of sub-
constraints. This decomposition is primarily based on logical operators used
at the top level. Operands of these operators are considered here as sub-

constraints. This set of sub-constraints is refined recursively into a tree of sub-

14

constraints if these sub-constraints can be decomposed again. The recursive pro-
cess will stop when no logical operator is found in the sub-constraint. All these
sub-constraints are represented as OCL definition constraints. The refactor-
ing of the constraint is performed every time we generate a new definition.
At this level, we obtain a bag (multi-set) of OCL definition constraints that
return a Boolean value. Listing[6]represents an excerpt of our constraint during

the decomposition stage.

context ComponentDescriptor

def: getBus():

def: defl(p:Port):Boolean= p.direction=Direction :: provided

T W N

def: def2(p:Port):Boolean= p.direction=Direction :: required
def: partl(): Boolean = getBus().ownedPort

—>includes (pl, p2 : Port | defl(pl) and def2(p2))

def: def3(p:Port):Boolean= p.direction=Direction :: provided

~N O

9| def: def4 (p:Port):Boolean=not(p.direction=Direction :: required)

10| def: part2(): getCustomers()—>forAll(ci:Componentlnstance|

11 ci.port—>forAll(p:Port|def3(p) and defd(p)))
12| def: part3():

13

14| inv:

15| partl1 () and part2() and part3 () and part4() and parth()

Listing 6: Service Bus Pattern constraint during the decomposition stage

In Listing[6] the constraint is composed of five “main” OCL sub-constraints
(partl(), part2(), part3(), partd() and part5()). These sub-constraints can be
decomposed again into other sub-constraints with this recursive process EL For
instance getCustomers()(see Listing |5) contains the operator or, so it will be
decomposed again. All these sub-constraints are defined as OCL definitions
presented before the inv: stereotype (Line . We can observe that there
are some OCL definitions that have parameters. The reason to declare these
parameters at this stage (of decomposition) is to have the possibility to define all

the generated OCL definitions with the same context as that of the constraint

(Line .

8In Listing@ the decomposition is stopped in part3().

15

After the constraint decomposition, we obtain a bag of OCL definitions. We
remove then all redundant definitions and we update the constraint. For

instance, in Listing [6| def1() and def3() are syntactically identical.

5.8. Constraint Parameterization

When creating the signature of the operation that wraps a constraint, we
add a parameter in this signature everywhere we find a literal value of a given
data type. The type of these parameters is obtained from the abstract syntax

tree of the constraint. For instance, we obtain the following getBus () definition:

context ComponentDescriptor

def: getBus(name: String): Componentlnstance =

1
2
3| context.internalComponent—>select (¢c: ComponentInstance |
4| c.oclAsType(ComponentInstance) . name=name)

5

—>collect (oclAsType (ComponentInstance))—>asOrderedSet ()—>first ()

Listing 7: Parameterized OCL definition constraint

In this stage, we need to measure the similarity between the OCL definitions.
This measure enables us to optimize the process, i,e. remove some redundant
OCL definitions (obtained in the parameterization stage). An example is
presented in Appendix B.1.

Concerning how we measured the similarity between OCL definitions, we
implemented a simple solution which consists in analyzing the abstract syntax
trees of definitions body. Each pair of trees is compared. These should share
a common root and a minimal sub-tree (obtained in a breadth-first traversal).
This ensures, to some extent, that constraints define predicates on the same
kind of architectural elements, which are obtained through navigations in the
OCL definition (reflected by these sub-trees). For the sub-tree, an edit dis-
tance [I4] is measured between each pair of sub-trees. If this measure is less
than a thresholcﬂ we consider that the two definitions are similar.

At the end of this step, our invariant is completely decomposed in OCL

definition constraints that can be reused to create other invariants (a first

9The value of this threshold is fixed empirically.

16

step towards reuse).

6. Generation of CLACS components

After constraint transformation, we generate our CLACS architecture de-
scription that corresponds to the initial constraint. We generate the component
operations that wrap the extracted OCL definitions and then we create the

component descriptors and their connected instances.

6.1. Operation grouping

First, we describe the transformation of OCL definitions generated in the
first step into CLACS components. Each CLACS query-component descriptor
will embed an OCL definition which returns a value whose type is differ-
ent from Boolean and each CLACS constraint-component will embed an OCL
definition which returns a Boolean value. In addition, among the generated
OCL definitions, each one that corresponds to a let in the constraint will
be embedded in a query-component descriptor and the others will be embed-
ded in a constraint-component. In this case, we can obtain a large number of
components. Therefore, we put together OCL definitions that check simi-
lar “aspects” in the same component descriptors. By checking similar aspects,
we mean checking the connection, testing the kind, or some other property of
a given architectural element (a port or a connector for example). For that,
we use the same technique of similarity measurement than previously. For ex-
ample, the OCL definitions part2() and part4() check the same aspect
which is the kind of an architectural element (a Port). The two trees of these
two sub-constraints have a common root which is a componentInstance and
a common sub-tree generated from the expression .port->forAll(p:Port|).
For the remaining sub-trees generated from the remaining expressions of the
two sub-constraints, we can observe that there is a similarity between them
(only two edit operations (node substitutions): required and provided tokens
are inverted). So these are grouped as two operations in the same component

descriptor.

17

6.2. CLACS architecture description generation

Starting from the tree obtained in the first step, a component-based archi-
tecture description in CLACS is generated. This architecture description con-
tains all the necessary constraint-components and query-components (instances)
connected together. These components embed the refactored E architecture
constraints that navigate henceforth in CLACS metamodel. These generated
components will be instantiated and then connected to the business components

in order to be checked.

wconskraints

= IserviceBusPattern
wconstraint» wconstraints
=] BusConstraint — O— =] PortDirection
wquery»
aconskrainkts O— =1 Busldentificatioon
=] ConnectToBusConstraint ¢
wquery»
o— | =] Participantidentification
wconstraint» ']‘

= | ParticipantPortConstraint . —— .
«constraints

o =] ComponentName

Figure 4: Sample of CLACS architecture description generation

Figure [4] shows the CLACS architecture description generated from Service
Bus Pattern constraint. The query-components BusIdentification and
ParticipantsIdentification encompass the let expressions. Besides, there
are two constraint-components on the right of the figure. These components
represent the OCL definitions that are extracted from our initial constraint
and then parameterized. These definitions are called throughout the con-
straint and will potentially serve other constraints.

There are in total five sub-constraints in the architecture constraint. Each

10A constraint is refactored when the different steps described above have been applied on

it.

18

one is supposed to be defined basically in a separate component descriptor. But
in this example, sub-constraints 2 and 4 (part 2() and part4() in Listing[6)) can be
grouped in the same component descriptor (ParticipantsPortConstraint) be-
cause they check similar “aspects” (Port kind). ParticipantsPortConstraint
descriptor provides two operations which enable the checking of these two sub-
constraints. On the other side, sub-constraints 3 and 5 check exactly the same
invariant, except that they apply on different sets of components. Thus, there is
a single component descriptor (ConnectToBusConstraint) which is generated
for these two sub-constraints. This constraint-component provides a single oper-
ation which is parameterized with the set of components on which the constraint
should be checked. (See Appendix B.2 for constraints’ bodies)

Through this “componentization”, constraint and query components can be
reusable (instantiated many times in different contexts), composable (instances
of them can be connected together or connected within a composite compo-
nent to build complex constraint-components), parameterizable and checkable
at design time.

To make these constraints checkable at the implementation stage, we trans-
late them into constraint-services. Section [7] presents how we generate auto-
matically services provided by OSGi bundles from CLACS constraint and query

components.

7. Generation of Constraint-services

We translate the result of the previous step into a set of services published
in an OSGi registry. The business bundles (that constitute the components on
which the constraint is checked) can lookup for these services in order to verify
the constraint after customizing it (i.e. passing the appropriate arguments). At

this level, we have a multi-step micro-process to build constraint-services.

7.1. Generation of Constraint-service Structure

In this step, we generate the configuration of the bundles which correspond to

the constraint-service structure. Indeed, we prepare all the necessary elements

19

for the implementation of a bundle (packages, Java interfaces and classes, bundle
configuration (XML and Manifest) documents, among other elements). Figure[5]
shows the outputs of this step.

{2 PackageEx %2 % Plugins = 8

(=8 -3 ¥

il constraint.xml 52
1<?xml version="1.0" encoding="UTF-8"?>

v (= constraint-bundle
P =\ JRE System Library [JavaSE-1.7]
b =i Plug-in Dependencies
v @ src
W § annotations
¥ [1) Servicelnterface java
w f constraint_bundle
» [1] Activator.java
b [1] Constraintimpl.java
w i constraint_bundle.service
¥ [3] 1BusStructure.java
» 1] IComponentName.java
¥ [1] IConnectToBus.java
¥ [3] IParticipantsPort.java
P [1] IPortDirection.java
¥ = META-INF
Ik MANIFEST.MF
¥ (= OSGINF
&) constraint.xml
i build.properties
v (= query-bundle
P =\ JRE System Library [JavaSE-1.7]
b =i Plug-in Dependencies

2<scr:component xmlns:scr="http://www.0sgi.org/xmlns/scr/v1.1.6" name="constraint-bundle">
3 <implementation class="constraint_bundle.ConstraintImpl"/>

4 <service>

5 <provide interface="constraint bundle.service.IBusStructure"/>

6 <provide interface="constraint_bundle.service.IComponentName" />

7 <provide interfac onstraint_bundle.service.IConnectToBus"/>

<provide interfac onstraint _bundle.service.IParticipantsPort"/>

9 <provide interface="constraint bundle.service.IPortDirection"/>

10 </service>

11 <reference bind="setService" cardinality="1..1"

@

12 interface="query_bundle.service.1BusIdentification"

13 name="IBusIdentification" policy="static" unbind="unSetService"/>

14 <reference bind="setServicePart" cardinality="1..1"

15 interface="query bundle.service.IParticipantsIdentification”

16 name="IParticipantsIdentification” policy="static" unbind="unSetServicePart"/>

17 </scr:component>
18

Overview |Services Source

4} constraintbundle

1Manifest-Version: 1.0

2 Bundle-ManifestVersion: 2

3Bundle-Name: Constraint-bundle
4Bundle-SymbolicName: censtraint-bundle
5Bundle-Version: 1.0.0.qualifier

6Bundle-Activator: constraint bundle.Activator

7 Bundle-RequiredExecutionEnvironment: JavaSE-1.7

& Import-Package: org.osgi.framework;version="1.3.0",
9 guery bundle.service

10 Export-Package: constraint bundle.service

P @ src
P = META-INF

F115ervice-Component: 0SGI-INF/constraint.xml
12

Figure 5: Structure Generation

Two packages are generated in the constraint-bundle . The package “con-
straint_bundle.service” which contains all the generated interfaces provided by
all the constraint-components (Input). The parent package contains the imple-
mentation of these interfaces, which is hidden (not exported) to the other com-
ponents. The constraint-bundle requires the interfaces of the query-bundle.
In addition, configuration files are generated for each bundle. The Manifest file
includes the imported and the exported packages (on the bottom right of the
Figure) and the file constraint.xml (top right) as a component definition in the
OSGi’s Declarative Services mechanism. In this definition we specify the
provided and required interfaces.

We have used a parser to implement this structure generation. All the needed
information is extracted from the obtained CLACS architecture description as

an XMI document. We parse this document and we generate automatically the

20

necessary configuration documents that compose the structure of our bundles.
After the structural translation, we generate Java code from the component

operations that wrap the constraints.

7.2. Generation of Constraint-service Implementation

As done previously, we begin by translate the constraints from the CLACS

metamodel into the OSGi one. Then, we generate the corresponding code.

7.2.1. Metamodel Migration
In order to make a smooth transition towards OSGi, OCL definitions ob-
tained from the previous steps are first transformed into constraints that navi-

gate in the OSGi metamodel. This metamodel is shown in Figure [0}

+bundleContext | 1 = - e
+ registeredServi ServiceReference
] BundleContext 1 esiemdRe
+ bundleContext
+servicelnllse
+hundle | 1 |+ serviceReference
Jy T +bunde [1 * | +usingBundle
. \/
+bundieConrig | 1 1 £ Bundle 1| +serce
- : I3 symbolicName : String . .
+ bundieConfio] BundleConfiguration +ressedtunde | £ version: String] JavaObject E S:r\fln:
1 A - - ¥ 5 registrationKey
+importingBundieConfig | * | +exportingBundieConfig | * | +imstance °C
+ bundle
1| +bundle
+importedPackage | * | + exportedPackage
E * | +javallass 1| +javaClass * | +javalnterface
Package
‘tpakage pmaCls|] JavaClass | - . = Javalnterface
1 - | [hame . e+ | @ Name
1 | + package
T LY

+ bundieactator | — BundleActivator

Figure 6: OSGi metamodel

A bundle is the main element in the OSGi metamodel. It represents a com-
ponent in an OSGi application. One bundle can publish a set of services (its
registered services). A bundle which requires services holds ServiceReference

objects of its services in use (the two roles between Bundle and ServiceReference

21

metaclasses in Figure @ Using a BundleContext, one can obtain all the run-
ning bundles and can also register a service and get a reference to an existing
one. A service is an object, which is instantiated from an existing class which is
hidden (whose package is not exported) in the bundle. It can be identified using
aregistrationKey, which is the (fully qualified) name of the main interface im-
plemented by the class of the object. Besides, each bundle has a configuration,
in which are declared a set of (imported and exported) packages that contain
Java interfaces and classes.

We have implemented this translation using the same process as explained
in Section [4] (UML to CLACS migration) and we have defined mappings be-
tween the two metamodel elements. Appendix A.2 details this mapping and an

example is shown in Appendix B.3.

7.2.2. Code generation

For constraint-service code generation, we have implemented an auto-
matic process which relies on String Templates E The generated code makes
invocations to introspection methods offered by the OSGi runtime. We used
String Templates because of their flexibility (easy evolution), simplicity and the
existence of a good tool support.

Figure [7] presents the mechanism used for the generation of the constraint
services’ code.

The starting point to generate the code is the Abstract Syntax Tree (AST)
of the OCL definitions (which navigate in the OSGi metamodel).

The CodeGenerator is the central element in this mechanism. Environment
and CodeStacker are simple elements, which are used to save information (re-
spectively, variables and filled templates). The CodeGenerator reacts only to
the node that it must process. For every type of node (ex. Arrowrightlter-
atorPostfixExp, FormalParameter, DotPropertyCallPostfixExp, etc.) we have

defined a common default processing. There is a small set of nodes (compara-

Uhttp://www.stringtemplate.org/

22

http://www.stringtemplate.org/

Register the Templates

-
-—

Receive the position of
the chosen template (i) toz 3
il 2

AST Parse

&
&
&

Template .st

vl v2 v3

Figure 7: Code Generation Process

tively to the large set of OCL node types) for which we have defined a different
processing. These are the leaves in the AST.

The CodeGenerator reads the type of the node from the AST. According to
its type, it obtains the template associated to this node. It saves it in a list in the
CodeStacker and receives its position. Then, it launches the same procedure
for its descendant nodes. This procedure is stopped when leaves are found.
After the generation of its descendants, it can use every template positioned
after it in the CodeStacker. The templates obtained are used to fill its own
template. In the fulfillment of the template, it uses the introspection methods
according to the AST node. After that it removes all the templates that it has
used. The CodeGenerator has also a map that contains for each used template
the associated result. This serves for the complex or the repetitive expressions.
When it fills each template, the CodeGenerator checks if it has an existing result
(a variable) for the template which it uses. If yes, it uses the existing variable, if
not, it creates one and uses it. An excerpt of the CodeGenerator implementation
when it processes the node whose type is InitializedVariable is detailed in
Appendix C.1. This mechanism is based on the DepthFirstAdapter pattern
proposed in the DresdenOCL parser. The OCL parser 2.0 and the graphical
user interface we have used are from Dresden OCL. The templates created have
been created using StringTemplate 4.0.8.

One of the limitations of our approach is the fact that it does not consider

23

all OCL expressions such as OCLIsNew, OclAny, OclVoid and Ocllnvalid. From
the one hand, these operations are mainly used in OCL post conditions and not
in OCL invariants adopted by our approach. From the other hand, our approach
currently covers the mostly used OCL expressions in invariants. Besides, our
tool is flexible, in order to integrate a new OCL expression. We just need to
write a specific String Template and to implement a Java method that initializes
the String template.

Listing |8 shows an excerpt of the generated code for the implementation of
the service IBusStructure. The remaining of the code is illustrated in Ap-
pendix C.2. Note that this service has references to IBusIdentification
and IPortConstraint to invoke respectively getBus(), isProvided() and

isRequired() operations.

1| public class BusStruturelmpl implements IBusStructure{

2| // Reference to IBusldentification

3| IBusldentification ibi;

4] // Reference to IPortDirection

5| IPortDirection ipd;

6| public void synchronized setService(IBusIdentification bi){
7 ibi=bi; }

8| public void synchronized bindService(IPortDirection pd){
9 ipd=pd; }

10| public boolean isBusStructure(String name){

11 Bundle bus=ibi.getBus(name);

12 boolean booll=ipd.isProvided (bus);

13 boolean bool2=ipd.isRequired (bus);

14 boolean bool3=booll && bool2;

15 return bool3; }

16| }

17| public class BusldentificationImpl implements IBuslIdentification {
18 public Bundle getBus(String name){

19 Bundle bus=null;

20 Bundle [] bndl = Activator.bc.getBundles();

21 ArrayList<Bundle> bndls = new ArrayList<Bundle>();

22 for (Bundle b : bndl) {

23 boolean bool = b.getSymbolicName () .equals (name) ;

24 if(bool) bndls.add(b); }

25 Bundle [] bndls2 = new Bundle[bndls.size ()];

26 int selectiterator = 0;

27 for (Bundle b : bndls) {

28 bndls2 [selectiterator] = b;

24

29 selectiterator++; }
30 bus = bndls2[0];

31 return bus;
32 }
33|}

Listing 8: Example of a generated code

It is worth noting that this code is syntactically different from the optimal
code presented at the beginning of the paper (see Listings [2]and [3) but they are
semantically equivalent. It is obvious that the automatic translation does not
allow to obtain a code having an optimal complexity. However, it is a valuable
tool for developers who will rather focus on implementing the business logic of

their application.

7.8. Registering and Looking-up Constraint-Services

We have added a set of properties for each service to be published in the
registry. These properties contain all the OCL constraints that are embedded
in the CLACS component operations which correspond to this service. This
is done by generating a set of “property” tags in the component definition file.
Besides, when we generate the OSGi code associated to this CLACS component,
we annotate each operation, in each interface, with the corresponding OCL
constraint as a string value, in order to know what is the operation that should
be invoked by the business bundle.

To illustrate these modifications, we present an example of an architecture
description and the associated architecture constraints of the layered architec-
ture style [I]. An architecture constraint, among others, of this architecture style
is that, “components in non-adjacent layers should not be directly connected
together”.

We would like to check this architecture constraint, embedded in the constraint-
component, at the implementation stage of an OSGi component/service-based
application. Therefore, we follow the proposed process of constraint-service gen-

eration. But before generating code as described previously, our process checks

25

if there is a service, registered in the service registry, which checks the same lay-
ered architecture constraint or a part of it. For that, it searches all the services
that are registered in the OSGi service registry. It looks for the properties of
these services and it compares the layered architecture constraint with the OCL
constraints that exist in the properties. If it finds one which is equivalent to the
constraint, then it is not necessary to generate the corresponding service. The
name of the interface of the service and the signature of the operation which
is annotated with the searched OCL constraint are retrieved. If not, then the
process follows the previous steps of constraint-service generation.

The layered architecture constraint above is the same as the one which is
embedded in the ConnectToBusConstraint component-constraint. In order
to lookup the registered service (generated from IConnectToBus interface),
the process adds automatically a reference tag in the Component Defini-
tion file in the constraint-bundle which corresponds to the layered architecture
pattern. This tag needs the name of the service interface (IConnectToBus)
and also two operation names to bind and unbind the service. The bind op-
eration has as a parameter IConnectToBus ictb. Then we are able to in-
voke ictb.areConnectToBus(...) in the implementation of the newly generated

constraint-bundle for the layered architecture pattern.

8. Process Evaluation

The experimentation presented in this paper complements the one we ex-
posed in our previous work [9]. In the latter experimentation, we evaluated the
reuse brought by the decomposition of constraints and their parameterization.
We focused on measuring reusability in the generated CLACS components, us-
ing a well-know metric [15].

In this paper, the experimentation’s goal is to answer the following research
question: What is the performance of the generation process and to what extent
the output of this process (the concept of “reusable, searchable and executable

constraint as a service”) is useful in a real-world scenario?

26

We decompose this research question in two sub-questions:

e RQ1: What is the performance of our constraint-component and constraint-
service generation process, compared to a manual design and coding of

these artifacts?

¢ RQ2: How can we use our approach in a real-life scenario and what is the

overhead when applying it in such a scenario?

8.1. Comparison of manual constraint specification and automatic generation:

To answer RQ1, we need to compare the automatic process presented in
this paper with a “traditional” manual specification of constraints. For this

purpose, we invited some external users.

Data Collection. We invited 8 Ph.D students to collect our experimentation
data and to evaluate the process. All of these students work on software archi-
tecture in their thesis.

From the literature [2 Bl 4] a set of architecture patterns and styles has
been collected. Only those related to the structural aspect of the architecture
have been selected. 15 patterns including their variants have been identified. We
choose architecture patterns as data, because they are widely used as a means to
characterize an architecture, and are considered as a suitable way to document
a part of design decisions. For each pattern, the group of students involved in
the evaluation specified their architecture constraints |E| as the topological con-
ditions that an application’s design and implementation should respect. These
constraints have been specified on the UML metamodel.

We have also used in this experimentation a set of CLACS constraint-
components which have been manually designed in [I6] by another Ph.D student,

who did not participate in this experimentation.

12These constraints are available in the following website: https://seafile.lirmm.fr/d/

2b7cf7c85¢c

27

https://seafile.lirmm.fr/d/2b7cf7c85c
https://seafile.lirmm.fr/d/2b7cf7c85c

Table[1|shows the description of the experimentation data. The first column
presents the architecture patterns while the second column shows the size (in
terms of number of tokens in the AST) of the architecture constraints that
formalize them. We have chosen constraints with different sizes, ranging from

434 tokens for the smallest to 2511 for the largest one.

Table 1: Size of pattern architecture constraints

Pattern Size (# tokens in AST)
Service Bus 1423
Layered Architecture 503
Client-Server 507
Broker 733
Layered Architecture - Hybrid 1426
Pipe-Filter 512
Pipe-Filter - Group not Layered 2511
Pipe Filter - Layered 834
Pipe Filter - Layered (2)C 1810
Pipeline 869
Pipeline (2) 955
MVC 434
Facade 650
Microkernel 826
Legacy Wrapper 518

Each Ph.D student was asked to write all the constraints with OCL and
give a difficulty coefficient in a scale ranging from 1 to 5. We measured the time
spent to write them.

Figure[§ depicts the average time in minutes spent to write OCL architecture
constraints by following the chronological order of the patterns appearance (from
left to right). We can observe a downward trend, the first constraint took
more time to be specified than the others (more than 3 hours), the overage
time decreases when specifying more constraints despite of their size variance
(For instance, Pipeline(2) and Microkernel). Indeed, the Ph.D students have

naturally acquired experience when specifying each time a new constraint. This

13 Another variant of the pattern.

28

300

\ —#—Time in minutes
250 \

200 y /\

150

50 ————
0 T T T T T T T T T T T T T T 1
. &

& & éﬁ JERR R &Q\ R @49 R &@e} &£
SHRCIIC R s & T
AT G o CHP & N .\‘z} @« &

c.,é o R PO A q’\Q RN
Q‘b‘é © & & L o & o
& a:\\ A \Qe' 4 \?h
a3 eﬁ"‘ q\Q@'
&

Figure 8: Average time spent to write OCL architecture constraints

—#— Difficulty degres

LI S R T A -]
}

@ & o & & 8 @ PO @ &
P o & FLIRORE U @& @
« o O N & & o
& & &S N &
& o T g o
N é@b‘s 4
5
\?

Figure 9: Average difficulty coefficient to specify OCL architecture constraints

natural acquisition of knowledge is explained also by the decrease of the average
of difficulty coefficient depicted in Figure[d] OCL is a language easy to learn and
to use [I2]. The students need only to know for each constraint the appropriate

navigation in the UML metamodel and use always the same OCL expressions

that are naturally clear like forAll, exists and select.

Protocol. The experimentation protocol consists of two steps. In the first step,

we measured precision and recall by comparing CLACS constraint-components

29

manually designed in [I6] with those generated using our process. This has
been performed on a subset of the catalog of constraint-components in [16]. The
selected constraint-components are those which formalize the patterns presented
in Table Il

In the second step of this experimentation, we defined manually for each
constraint its corresponding constraint-services, and then we generated them
using our process. In the manual coding of these constraint-services, we used
the same service interfaces (their qualified names and operation signatures)
than in the generated ones. The reason behind this choice is to focus on the
comparison of the generated code and not on the structure around it. At the
end, we compared the two source code artifacts (the manually written one and
the generated one). It is obvious that an exact matching of these two types of
code artifacts provides false results (it is impossible to produce exactly the same
code following the two procedures). Then, we decided to use “Clone Detection”
techniques. We relied in this evaluation on some metrics presented in [I7]. These
metrics measure the distance between two portions of source code and enable
us to calculate the recall and the precision (by considering the relevant code,

the one which was manually written).

Metric used in the First Step. Precision and recall metrics are calculated

as follows:

(1) Precision = tpfffp (2) Recall =

tp
tp+fn

where: tp (true positives): are the generated constraint-components which
are equivalent to the constraint-components which have been manually designed
in the catalog or which are reusable, fp (false positives): are the constraint-
components which do not exist in the catalog manually designed and which can
not be reusable and fn (false negatives): are the constraint-components designed
manually but which have not been generated by the proposed process.

We observed that all the generated constraint-components exist in the cat-

alog. This means that the false negatives are equal to 0. So, recall is always

30

equal to 1. (This will not be taken into consideration in the results later.)

Metric used in the Second Step. In this step, we use a metric for clone
detection defined in [I7]. We call each Java program in the OSGi source code
written manually, a reference R. Besides, we call the generated program a
candidate C. A pair of clones here is a couple formed by a candidate and
a reference, known a priori to be the programs that correspond to the same
constraint. To compare R and C, we decompose each program into fragments.
The size of a Java fragment do not exceed 6 1ineslzl During the analysis of
our data, we observed in some cases that we can not decompose programs into
fragments respecting the size condition because the “cutting” of constraints
did not occur at the right place. So, we decided to manually adjust the size of
fragments, case by case. Before comparison, C and R should be normalized [I7].

The metrics used in this evaluation process are:

. _ |lines (fR) Nlines (fC)
(3) Contained (fR, fC) = lines TR

(4) Ok (R, C) = min (Contained (f Ri, fCi) ,i < numberO f FragmentsIn(R, C))

where:
fR: a code fragment in a manually written program
fC: a code fragment in an automatically generated program

For the same OCL constraint, the size of a generated program is higher
than the size of the manual code. For this reason, we calculated the ratio
of code of each manual code fragment contained in the automatic one. We
evaluated Metric (3) above in calculating the number of common lines in each
code fragment in R and C and then we divided the result by the total number
of code fragments in R. These C and R belong to clones of type 2. Then,

we calculated the minimum of these values in the same pair of clones (R,C) to

14The choice of this size was taken after having analyzed the generated code of constraints.
Indeed, this size corresponds to the smallest generated code. The generated code have a size

which is roughly a multiple of 6.

31

obtain the Ok values (Metric (4)). In other words, the Ok(R, C) is the minimum
of the Contained values for the fragments which constitute R and C. After that,
we measured precision and recall as previously.

To calculate the precision and recall in this step, we have identified the true
positives, the false positives and the false negatives as follows:
tp: true positives are candidates that are correct and which have Ok >= O.?E
Candidates are correct when they return correct results in the test cases applied
on them. Each candidate is checked on several variants of applications we have
developed. In these applications, patterns are instantiated (in one variant) and
partially invalidated (in each other). By partial invalidation, we mean that the
evaluation of one of the sub-constraints returns false.
fp: false positives are candidates that are correct and which have Ok < 0.7

fn: false negatives are candidates that are not correct.

Results and Discussion. For the first part of our experimentation, we ob-

tained the results which are presented in Table [2]

Table 2: Precision values in the first step

Pattern tp fp Precision
Service Bus Pattern 9 0 1
Layered Architecture Style 5 0 1
Client-Server 5 1 0.83
Broker 6 3 0.66
Layered Architecture-Hybrid 4 1 0.8
Pipe-Filter 4 2 0.66
Pipe Filter- Group not Layered 11 10 | 0.52
Pipe Filter- Layered 7 3 0.7
Pipe Filter- Layered (2) 0 1
Pipeline 11 1 0.91
Pipeline (2) 15 | 5 0.75
MVC 3 0 1
Facade 4 0 1
Microkernel 6 2 0.75
Legacy Wrapper 8 5 0.61

15The choice of the threshold is explained in [17]

32

We observe that there are 5 patterns among 15 that have precision equal to 1
and 10 patterns that have precision > 0.7. The decrease of the precision value for
the Pipe Filter-Group not Layered pattern is due to the decomposition in
depth of this very large constraint, which provides a large number of low-level
constraint-components that are unexploited in terms of reuse. Pattern Pipe
Filter- Layered (2) has also a large size (1800 tokens) but it has precision
equal to 1. This is explained by the fact that all of the obtained OCL constraints
after decomposition are reusable in other constraints in our data set.

For the second step of our experimentation, we present in Table |3 the mea-
sures obtained after applying the evaluation protocol on the selected architecture
constraints. Note that the number of the interfaces is not included in the num-
ber of candidates. All the generated interfaces are identical to those written

manually.

Table 3: Experimentation values in the second step: Precision and Recall

Patterns #C tp fp fn Precision | Recall
Service Bus Pattern 9 6 3 0 0.66 1
Layered Architecture 5 3 2 0 0.6 1
Client-Server 5 4 1 0 0.8 1
Broker 9 4 3 2 0.57 0.66
Layered Architecture - Hybrid 5 3 2 0 0.6 1
Pipe Filter 8 4 2 2 0.66 0.66
Pipe Filter - Group not Layered 21 7 11 3 0.388 0.7
Pipe Filter - Layered 10 3 3 4 0.5 0.42
Pipe Filter - Layered (2) 7 2 2 3 0.5 0.4
Pipeline 12 7 4 1 0.63 0.87
Pipeline (2) 19 9 8 2 0.53 0.81
MVC 7 5 2 0 0.71 1
Facade 9 7 2 0 0.77 1
Microkernel 9 6 1 2 0.85 0.75
Legacy Wrapper 9 4 3 1 0.57 0.8

As we can observe in Table[3] the generated constraint-services are pertinent
(in half of the cases, Recall > 0.7) compared with the constraint-services man-
ually coded. We have 13 patterns with precision > 0.6 and 6 that have recall

=1. The high values of precision and recall for some patterns are explained

33

by the fact that the architecture constraints of these patterns are decomposed
into sub-constraints (OCL definitions in our approach) with a small size and
they are simple in terms of number of navigations and OCL quantifiers. The
pattern Pipe Filter Group not Layered has a low precision (/0.39) because
its generated constraint-services have many candidates and some of them are

very complex (with many nested quantifiers).

Table 4: Measures of time (in seconds) spent in process steps

Transformation Coding Execution
Patterns Tra Tr(a) Tomy | Tecay Tey | Tra)
Service Bus Pattern 2460 0.118 4205 0.531 0.450 0.583
Layered Architecture 1502 0.087 4380 0.501 0.380 0.433
Client-Server 2456 0.073 3960 0.430 0.200 0.290
Broker 2700 0.106 4380 0.456 0.307 0.468
Layered AH 3402 0.148 7298 0.691 0.506 0.601
Pipe Filter 2400 0.066 4385 0.511 0.248 0.354
Pipe Filter - GNL 3422 0.199 8580 0.861 0.640 0.823
Pipe Filter - Layered 3300 0.076 5526 0.583 0.327 0.478
Pipe Filter - Layered (2) 2400 0.253 8400 0.654 0.654 0.780
Pipeline 2400 0.093 5842 0.431 0.376 0.444
Pipeline (2) 3209 0.166 4231 0.743 0.870 0.996
MVC 1460 0.088 4688 0.467 0.487 0.482
Facade 1202 0.088 4390 0.497 0.621 0.762
Microkernel 1800 0.101 4980 0.670 0.675 0.777
Legacy Wrapper 1760 0.111 4354 0.501 0.544 0.564

Table [d] presents the measures of time of different steps of the process, manu-
ally operated (by the Ph.D students) and automatically performed. We present
the average of the measures for each step. Column 2 presents the time spent
in manually transforming CLACS constraints into constraints that navigate in
OSGi metamodel, while Column 3 presents the time spent in the automatic
transformation. The fourth column depicts the time in manually coding the
constraints into Java/OSGi while the fifth depicts the same step in automatic
manner. Finally, the two last columns present respectively the execution time

(in milliseconds) of the manually created and the generated source code.

34

As we can observe, it takes for a developer an average of 2.5 hours to code
manually a Java OSGi source code that allows to check an architecture con-
straint without considering the time spent to configure the OSGi bundles. It
is obvious that the manual tasks need more time than the automatic ones (au-
tomation reduces time to 98% in code generation, and thus in maintenance in
our case (constraint checking)), but the interesting aspect in these results is
when we compare the values in the two last columns. We can notice that the
execution time of the generated source code is higher than the execution time
of the manual one, in all cases. This is explained by the fact that the gener-
ated code is longer than the manual one and this latter is more optimal. The
average overhead of the generated code is +22,15% (in milliseconds). But this

is negligible and does not affect much the overall process.

8.2. Case study:

In this subsection, we present an example of a real system on which we ap-
plied our approach. We present first the application of the concept of “reusable,
searchable and executable constraint as a service” in this example and then
we measure the overhead of producing these constraints and the overall sys-
tem performance overhead in terms of execution time using these constraints as
services.

Our example is a dynamic and extensible ambient assistive living framework
called Ubiquitous Service Management ARchiTecture (UbiSMART) developed
by a research team in our research institute (LIRMM). This framework enables
to develop applications which allow to detect unusual behavior of senior persons
who live alone or in a nursing home E

UbiSMART is structured as a web application implemented as OSGi services,
on a cloud server connected to many assisted houses. It is composed of two

essential parts. The first part, Sensing part, is located in the patient residence

16UbiSMART is deployed in Saint Vincent De Paul Nursing home in Argentan, Normandie,

France and in a Peacehaven nursing home in Singapore since 2012 [18]

35

and is composed of multiple sensors, a gateway, and communication devices.
It is in charge of pre-processing the raw data from the sensors, converting it
into events that are sent to the server via Internet. The second part is a Web
platform, which handles the communication with the Sensing part through the
MQTT communication protocoﬂ It also manages the platform storage, rea-
soning and the service provisioning that will be explained later. The reasoning
part determines the activity and acts of senior persons as a trigger for the service

provisioning [18].

Component Diagram J
FunctionalParamCalculator

<<component>> $:] —@*
Sensor Gateway
O nventDecoder O ncertaintyCalculator
\\jensorcunlro\\er

<<component>>
Sensor Management g] 4(<<Comp0nepx>> g]
System Sensor_i

SensorEventReceiver

Sensor OSGi Container

<<component>> g]

<<component>> g]
SensApp_i

<<component>> g]
Uncertainty Measurement

Functional Param_i

OSGi Assistive Service Container
<<component>> g]
Configuration Tool

SensorConfiguration@

Device OSGi Container

Ve <<component>>
<<component>> g] @ Semantic Model Updater ‘
Device Management
System

SemanticUpdater
<<component>> g] Q

OeviceRegister Service Gateway Thoughtinterpreter Reasoning
<<component>> ‘

. <<component>>
<<component>> . g] @ ServiceRegister Thought Interpreter @O Reasoning Engine
InteractionDevice_i
<<component>> g] A\ A\
O erviceRender Assistive Service_i O
\\j ServiceProvision DecisionMaking Reasoning

J

DST Decsion Making Euler Reasoner

<<component>> ‘

<<component>> %:]‘

Figure 10: Component Diagram of the UbiSMART framework [1§]

The component diagram of UbiSMART depicted in Figure represents the
different modules of the framework that have been implemented and the interac-
tions between them. In the OSGi implementation, each module exports one or

more services (interfaces) which are imported and consumed by other modules.

http://mqtt.org/

36

http://mqtt.org/

The main parts of the UbiSMART components are the following:

e “Sensor i” is an abstraction of all the sensors’ modules. Each of them has
an exposed service ”SensorEventReceiver” used by the ”Sensor Manage-

ment System” (SMS) to send new sensors’ events.

e “Thought Interpreter” (TI) decodes the reasoning engine output. This
module updates the semantic model through the “SemanticUpdater” (SMU)
service and starts the selected service through the “serviceProvision” in-

terface.

e “Service Gateway” (SG) is responsible of registering the different assistive
services. It uses the “semanticUpdater” interface to register new assistive

services to the semantic model.

e “InteractionDevice i” is an abstraction of all the detected interaction de-

vices in the environment.

e “Device Management System” (DMS) uses the “SemanticUpdater” service

to update the semantic model with the newly detected devices description.

We have realized an interview with UbiSMART developers to give us the struc-
tural conditions which UbiSMART architecture should respect at runtime. Here

is the list of the main architecture constraints of the framework:

1. UbiSMART architecture should respect the Layered pattern; the Sensor part
should work the first, then the Reasoning part and finally the Device part
in order to get low uncertainty results.

2. (SG, SMS and Sensor-i) and (SG, Assistive Service-i and InteractionDevice-
i) should respect the Service Bus pattern. This constraint is necessary to
safely transmit for each sensor or each device the corresponding data or
events.

3. Sensor-i and SMU should be directly connected in order to notify the

reasoning engine of a new discovered sensor in the environment. The same

37

condition should be respected for DMS and SMU to notify the apparition
of a new device.

4. A unidirectional connection should be maintained between some UbiSMART

components such as (DST,TI), (TL,RE), etc

To apply our approach in this real system, we need to specify these textual
conditions with OCL on UML metamodel. We asked one of the framework
contributors to write the conditions 1 and 4 with OCL knowing that he is a
non-specialist in OCL but as a computer scientist he knows first order logic E
It took him approximately 230.66 minutes for the specification of the first con-
straint and 97.85 minutes for the second knowing that the later one is more
complex. It is trivial that a non specialist takes more time to specify an OCL
constraint (if we compare these values with those of Figure . The first value
has decreased to 113.97 minutes when we provided some architecture constraints
to the contributor.

UbiSMART is a dynamic framework allowing to present as a service any sensor
or device discovered at runtime in the environment. Even UbiSMART allows the
integration and representation of sensors and devices as services, they are still
not integrated in the reasoning process. Thus, it is not possible to use them
in the selection of the end-user service and the interaction device. To solve
this problem, the contributors introduce semantic Plug&Play to register these
bundles (2-6 in Figure 3.8 in [I8]). To ensure the integration of these generated
bundles in the system at runtime, the framework needs to respect Constraint
3 to guarantee the connection between each discovered sensor and SMU, and
between each discovered device and SMU at runtime. This constraint needs to
be executable at runtime to check the integration process. Here, we apply our
approach to generate the constraint 3 as a service. We choose to generate it as a
service to guarantee a loose coupling and easy connection and/or disconnection

with the business services (SMU, sensor-i bundles). In addition, Constraint 3

18The constraints are presented in Appendix B.4

38

should be applied for two pairs of bundles. First, we applied our approach’s steps
on the constraint starting with the decomposition, the generation of constraint-
components to reach constraints as services registered in the OSGi runtime.
Then, as the generated constraint has already been registered, we search the
appropriate service and we reuse it by passing the appropriate parameters during

its invocation (here, the names of the DMS and SMU bundles).

Constraint-services production time. The production of the constraint-bundle
that provides the constraint-services took 0.887 seconds, i,e the constraint-
services structure (the bundle, the configuration files, the interfaces, the classes,
...). Our approach produces 20 constraint-services, i,e the Java code elements
generated from the OCL definitions obtained after applying our approach on
the UbiSMART constraints. These code portions needed 4.943s to be generated.
The production of our constraint-services in terms of structure and code took in
overall 5.83s. Constraint-service production is statically performed and it does

not influence on the system reaction time.

Constraint-service execution time. In UbiSMART, in both the static and dynamic
configurations, an average time of 0.224s is needed for starting the real sensor
and for the communication required to detect the sensor presence in the environ-
ment by the framework. In addition, for the dynamic configuration, we observed
an additional average time of 0.373s needed to represent an ultrasound sensor
as a service in the framework. This is the time required for generating and
starting the bundle representing the ultrasound sensor on the gateway and for
updating the environment description with the sensor information. After that,
the system’s reaction time, calculated between the time a service is needed and
the time it is delivered in the environment, has an average of 2.713s, which has
been refined in 1.226s for the reasoning engine module’s processing itself, 0.735s
for the communication between modules and 0.752s for the processing due to
other miscellaneous bundles [19].

In the other hand, the 20 constraint-services took in overall 2.787s to execute.

The overhead is 50.15%. Indeed, using our approach, the UbiSMART reaction

39

time increases to 5.777s instead of 2.770s. But this high percentage is inherently
related to the nature of the system (UbiSMART), whose services execute in very
short times. In other kinds of systems (business applications with data access
layers, for instance), we are quite confident that the overhead of constraint

checking at execution time is marginal.

8.3. Threats to validity

We discuss two kinds of threats: to the internal validity and to the external

one.

8.3.1. Internal validity

In our evaluation process, we have used architecture patterns that are spec-
ified from several sources to mitigate the risk of forgetting some patterns condi-
tions. Besides, in our selected architecture patterns, we can find several variants
for a given pattern like the Pipe-Filter. This increases reuse of the decom-
posed constraints as well as their relevance. But, we have mitigated this threat
by choosing patterns of different sizes and by involving different persons in their
specification and transformation.

The constraints that formalize our patterns are specified by participants who
have experience with OCL. We have involved 8 persons to perform different
tasks in the evaluation. We have invited also a non expert participant in OCL

language to write architecture constraints and we have compared the results.

8.3.2. External validity

The architecture patterns used in our experimentation have been collected
from the literature. We can obviously think that the proposed process works
only for this kind of component-based architecture patterns or that only con-
straints written in OCL can be evaluated as input and Java/OSGi as output.
Any kind of architecture constraints can be considered, including GoF's object-
oriented design patterns or SOA patterns. It suffices to specify them in UML
metamodel. For any kind of predicates analyzing architecture descriptions, a

parser should exist for their specification language. Constraint transformation

40

step is applicable with any metamodels because it uses external mapping in
XML and the AST as output of the parser. The code generation step takes into
consideration each node of the AST and uses the corresponding String Tem-
plate. These String Templates can be written in any language that provides a
reflective API. The reflective methods provided by this language are mandatory
during the use of String Templates.

9. Related Works

Works related to our approach can be classified in different categories: 1) lan-
guages and tools for the specification of architecture constraints, ii) methods for
predicate/constraint transformations, iii) methods for OCL constraint refactor-
ing, iv) methods for constraint reuse, v) methods and tools for code generation
from OCL, and vi) works about architecture constraint checking for design pat-
terns/styles.

A state of the art on languages used for the specification of architecture
constraints at design and implementation stages is presented in [I0]. These
languages vary from embedded notations in existing ADLs, like Armani for
Acme, FScriptIE for Fractal ADL or REAL for AADL, to notations with a
logic programming style, like LogEn or Spine, or notations with an object-
oriented programming (OOP) style or for OOP languages, like CDL, DCL or
SCL. In practice there are several tools for static code quality analysis that
enable the specification of architecture constraints, like Sonar, Lattix, Architexa
and Macker, among others. All these languages and tools do not provide any
way for transforming or generating code starting from specifications in OCL or
any other predicate language. In addition, they provide either no or a limited
parameterization and reusability of architecture constraints.

Hassam et al. [20] proposed a method for transforming OCL constraints

during UML model refactoring, using model transformations. Their approach

19A tutorial for this language is available in the following SVN repository:

svn://forge.objectweb.org/svnroot/fractal/tags/fscript-2.0

41

uses first an annotation method for marking the initial UML model in order
to obtain an annotated target model. Then, a mapping table is created from
these two annotations in order to use it for transforming OCL constraints of
the initial model into OCL constraints of the target one. Their solution of
constraint transformation cannot be used straightforwardly because it needs
some knowledge about model transformation languages and tools. In our work,
constraint transformation is performed in a simple and ad-hoc way without
using additional modeling and transformation languages.

In [21], the authors propose an approach for generating (instantiating) per-
tinent models from metamodels taking into account OCL constraints. Their
approach is based on a CSP (Constraint Satisfaction Problem) solver. They
defined formal rules to transform models and constraints associated to them.
Cabot et al. [22] worked also on UML/OCL transformation into CSP in or-
der to check quality properties of models. These approaches are similar to our
transformation process since the transformed/handled artifacts are the same
(OCL specifications and metamodels). They use the same OCL compiler as us
(DresdenOCL [23]) to analyze constraints. In contrast to CSP, our work does
not require an external tool for the interpretation of constraints. In addition,
in our approach, we transform only constraints. In the other approaches, ev-
erything should be transformed into a CSP to be solved (the constraints + the
models/metamodels). Moreover, in [24], Cabot and Teniente proposed a trans-
formation technique of OCL constraints into other simpler OCL constraints se-
mantically equivalent using transformation rules. The paper addresses endoge-
nous transformations, it does not propose constraint transformations expressed
in different metamodels. Bajwa and Lee presented in [25] a two-step process
for transforming SBVR rules (Semantics of Business Vocabulary and Business
Rules) into OCL constraints. The first step consists in defining a mapping be-
tween SBVR rules elements and UML model elements. This step ensures that
the OCL constraint that will be generated is semantically checkable in a UMI
model. The second step consists in transforming into an OCL model instance

an SBVR model instance using a mapping between the two metamodels (OCL

42

and SBVR). This paper uses model transformation techniques. Their process is
troublesome when the constraints have a gross specification (very large models).
The generated constraints are complex, not reusable and parameterizable.

OCL refactoring consists in simplifying the constraints and making them
more optimized. In [26], the method proposed by Correa et al. has as a goal
to improve the readability and the comprehensibility of constraints. Therefore,
they prepared a catalog of smells. They proposed refactorings for removing a
given smell in a constraint. It is true that this refactoring improves comprehensi-
bility of the constraints (validation in the paper) but these do not consider reuse.
Besides, the authors consider in their approach only the functional constraints
and not architectural ones. In [27], Reimann et al. complete the previous work
of Correa et al.. They proposed new smells and new refactorings like a decom-
position of OCL constraints in atomic sub-constraints. These new refactorings
does not address the parameterization of the constraint which enables more
reuse.

In the practice of model-driven engineering, there exist several tools to trans-
late OCL constraints in Java source code, like Eclipse OCL m Octopus EI, and
DresdenOCL. They however transform constraints which are functional and not
architectural. These tools translate this kind of constraints into object-oriented
programs which do not use the introspection mechanism. Other works in the
literature deal with code generation for functional constraints too. Briand et al.
in [28] proposed an approach to transform functional constraints into Java using
aspect-oriented programming. Another work [29] proposed a method for trans-
lating functional constraints in JML (Java Modeling Language). In a previous
work [9], we developed a method for transforming OCL architecture constraints
into Java metaprograms. But in this work, the transformation result is not an
easily reusable and customizable architecture constraint, that is why we pro-

posed in this paper to translate constraints into constraint-components then

2Onttp://www.eclipse.org/modeling/mdt/?project=ocl
2Inttp://octopus.sourceforge.net

43

http://www.eclipse.org/modeling/mdt/?project=ocl
http://octopus.sourceforge.net

into services.

There are many works ([30] for a survey) that propose methods to validate
constraints on several kinds of applications. In most of cases, these constraints
are not architectural. We can find functional and reconfiguration constraints.
For the few works that consider structural constraints they discuss only depen-
dencies between components and not the conditions imposed by the application
architecture. In [3I], the authors insert skeleton code in user source code to
verify functional constraints. Besides, the user is involved in all the process
steps whereas our verification process is fully automatic and user source code is
not affected.

The authors in [7] introduced design rule spaces, a new form of architecture
representation that uniformly captures both architecture and evolution relations
using design structure matrices. They proposed that software architectures
should be viewed and analyzed as multi-layered overlapping DRSpaces, because
each DRSpace, formed using different types of primary and secondary relations,
exhibits meaningful and useful modular structures. They were able to identify
structural and evolutionary problems. This work has the same goal as us but
our approach focuses on the internal problems within a file, rather than the
structure among files.

In the same context of architecture constraints, Fowler [32] describes the
concept of a “bad smell” as a heuristic for identifying refactoring opportunities.
Others [33] have extended this notion to include architecture-level bad smells.
Automatic detection of bad smells has been widely studied. For example, Moha
et al. [34] presented the Decor tool and language to automate the construction
of design defect detection algorithms. There is a number of proposals for au-
tomatically detecting bad smells which may lead to refactorings. For example,
Tsantalis and Chatzigeorgious study [35] presented a static slicing approach
to detect and extract method refactoring opportunities. Our approach is dif-
ferent. First, it focuses on architecture constraints and not on “bad smells”.
Our constraints target the structure of the application and are related to the

architecture decisions taken on the design stage. Second, existing research on

44

bad smells has focused on analyzing a single version of the software, while our
approach examines the application’s evolution.

In [36], the authors propose a method for extracting models from the source
code of an application and check functional constraints by using an OCL inter-
preter. We can not apply this approach for our problem, because architecture
constraints use meta-level constructs and not model-level ones. Besides, in our
approach, we can check constraints at run-time using the reflective layer and
service registry access methods and we obtain reusable and customizable con-
straints contrary to their method.

PEC [37] is a pattern enforcing compiler for Java. Using interfaces to identify
the intended design pattern, the tool combines static testing, dynamic testing
(unit testing), and code generation to verify that the pattern is implemented
according to a specification. Since it obliges to add some interfaces and more
statements in client source code in order to enforce the implementation of design
patterns, the code will be difficult to understand and maintain. It is impossible
to apply PEC in service-based applications because it is difficult to manage
these injected interfaces throughout the code.

Experienced developers apply design patterns in software development to
solve design problems and reduce software maintenance cost. However, soft-
ware systems evolve over time, increasing the chance that the design patterns
in their original form will be broken. To verify the original intent of the design
patterns, Blewitt, Bundy and Stark [38] presented a pattern specification lan-
guage Spine that allowed design patterns to be defined in terms of constraints
on their implementation in Java. In our work, we have used the same language
for coding the application to express constraints at implementation stage. Our

goal is to use the standard mechanisms offered by Java, such as introspection.

10. Conclusion and Future Work

Architecture constraints are predicates that bring a valuable help for pre-

serving design rules, like the instantiation of architecture styles or patterns

45

in a given application, after having evolved its architecture description. We
have presented in this paper a process for generating code starting from archi-
tecture constraint specifications. Our process is composed of two main steps.
The first one consists in generating constraint-components from “gross” textual
constraint specifications. These components provide operations for checking
constraints. They are specified in an ADL named CLACS. The second step
generates services, which can be invoked: i) at the implementation stage to
check architecture constraints on source code, ii) at runtime to check these con-
straints after a dynamic evolution of the architecture, and iii) by any external
application to check constraints on its architecture, simply by making a lookup
in the service registry of the runtime environment in which the services have
been published.

In the near future, we plan to work on lightweight instrumentation of source
code, using annotations and aspects, to statically and dynamically check “ar-
chitecture constraints as services”. As a perspective to this work, we envision to
generalize this approach, i.e. to specify architecture constraints in a paradigm-
and language-independent way, by using predicates on graphs and operations
on them, and then to make automatic transformations towards object-oriented,
component-based or service-oriented architectures, using feature models that

specify the variability between these paradigms.

References

[1] M. Shaw, D. Garlan, Software Architecture: Perspectives on an Emerging

Discipline, Prentice Hall, 1996.

[2] U. Zdun, P. Avgeriou, A catalog of architectural primitives for modeling

architectural patterns, Information and Software Technology 50 (9).

[3] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design patterns: Elements
of Reusable Object-Oriented Software, Addison Wesley, 1994.

46

[4]

[10]

[11]

[13]

F. Buschmann, K. Henney, D. C. Schmidt, Pattern-Oriented Software Ar-

chitecture, Volume 5, On Patterns and Pattern Languages, Wiley, 2007.

C. Tibermacine, R. Fleurquin, S. Sadou, On-demand quality-oriented assis-
tance in component-based software evolution, in: Proceedings of CBSE’06,

Springer LNCS, 2006, pp. 294-309.

C. Y. Baldwin, K. B. Clark, Design rules: The power of modularity, Vol. 1,
MIT press, 2000.

L. Xjao, Y. Cai, R. Kazman, Design rule spaces: A new form of architecture
insight, in: Proceedings of the 36th International Conference on Software

Engineering, ACM, 2014, pp. 967-977.

C. Tibermacine, S. Sadou, M. T. Ton That, C. Dony, Software architecture
constraint reuse-by-composition, In Journal of Future Generation Com-

puter Systems 61 (2016) 37-53.

S. Kallel, B. Tramoni, C. Tibermacine, C. Dony, A. H. Kacem, Automatic
translation of architecture constraint specifications into components, in:

The 9th European Conference on Software Architecture, Springer, 2015,
pp. 322-338.

C. Tibermacine, Software Architecture 2, John Wiley and Sons, New York,
USA, 2014, Ch. Architecture Constraints, pp. 37-90.

M. Petre, Uml in practice, in: Proceedings of the 35th International Confer-

ence on Software Engineering (ICSE 2013), IEEE Press, 2013, pp. 722-731.

L. C. Briand, Y. Labiche, M. Di Penta, H. D. Yan-Bondoc, An experimental
investigation of formality in uml-based development, IEEE Transactions on

Software Engineering 31 (2005) 833-849.

F. Jouault, I. Kurtev, Transforming models with atl, in: Satellite Events

at the MoDELS 2005 Conference, Springer, 2006, pp. 128-138.

47

[14]

[15]

[16]

[17]

[18]

[20]

[21]

K.-C. Tai, The tree-to-tree correction problem, Journal of the ACM 26 (3)
(1997) 422-433.

J. Favaro, What price reusability?: a case study, in: ACM SIGAda Ada
Letters, Vol. 11, ACM, 1991, pp. 115-124.

T. M. Ton That, C. Tibermacine, S. Sadou, Catalogue of architectural
patterns characterized by constraint components, Version 1.0, Tech. rep.,

IRISA, 53 pages (Jul. 2013).

S. Bellon, R. Koschke, G. Antoniol, J. Krinke, E. Merlo, Comparison and
evaluation of clone detection tools, Software Engineering, IEEE Transac-

tions on 33 (9) (2007) 577-591.

H. Aloulou, Framework for ambient assistive living: handling dynamism
and uncertainty in real time semantic services provisioning, Ph.D. thesis,

Evry, Institut national des télécommunications (2013).

T. Tiberghien, M. Mokhtari, H. Aloulou, J. Biswas, Semantic reasoning in
context-aware assistive environments to support ageing with dementia, in:

International Semantic Web Conference, Springer, 2012, pp. 212-227.

K. Hassam, S. Sadou, R. Fleurquin, et al., Adapting ocl constraints after a
refactoring of their model using an mde process, in: BElgian-NEtherlands

software eVOLution seminar (BENEVOL 2010), 2010, pp. 16-27.

A. Ferdjoukh, A.-E. Baert, A. Chateau, R. Coletta, C. Nebut, A csp ap-
proach for metamodel instantiation, in: ICTAI 2013, IEEE Internationnal
Conference on Tools with Artificial Intelligence, 2013, pp. 1044,1051.

J. Cabot, R. Clarisé, D. Riera, Umltocsp: a tool for the formal verifi-
cation of uml/ocl models using constraint programming, in: Proceedings
of the 22nd TEEE/ACM international conference on Automated software
engineering, ACM, 2007, pp. 547-548.

48

[23]

[24]

[26]

[27]

[29]

[31]

B. Demuth, The dresden ocl toolkit and its role in information systems

development, in: ISD2004, 2004.

J. Cabot, E. Teniente, Transformation techniques for ocl constraints, Sci-

ence of Computer Programming (2007) 179-195.

I. S. Bajwa, M. G. Lee, Transformation rules for translating business rules
to ocl constraints, in: Modelling Foundations and Applications, Springer,

2011, pp. 132-143.

A. Correa, C. Werner, M. Barros, Refactoring to improve the understand-
ability of specifications written in object constraint language, Software,

IET 3 (2009) 69-90.

J. Reimann, C. Wilke, B. Demuth, M. Muck, U. Aimann, Tool supported
ocl refactoring catalogue, in: Proceedings of the 12th Workshop on OCL
and Textual Modelling, ACM, 2012, pp. 7-12.

L. C. Briand, W. Dzidek, Y. Labiche, Using aspect-oriented programming
to instrument ocl contracts in java, Technical Report, Carlton University,

Canada.

A. Hamie, Translating the object constraint language into the java mod-
elling language, in: Proceedings of the 2004 ACM symposium on Applied
computing, ACM, 2004, pp. 1531-1535.

L. Froihofer, G. Glos, J. Osrael, K. M. Goeschka, Overview and evaluation
of constraint validation approaches in java, in: Proceedings of the 29th
international conference on Software Engineering, IEEE Computer Society,

2007, pp. 313-322.

B. Verheecke, R. Van Der Straeten, Specifying and implementing the oper-
ational use of constraints in object-oriented applications, in: Proceedings

of the Fortieth International Conference on Tools Pacific, 2002, pp. 23-32.

49

[32]

[35]

M. Fowler, Refactoring: Improving the design of existing code, in: 11th
European Conference. Jyvéskyléd, Finland, 1997.

J. Garcia, D. Popescu, G. Edwards, N. Medvidovic, Identifying archi-
tectural bad smells, in: Software Maintenance and Reengineering, 2009.

CSMR’09. 13th European Conference on, IEEE, 2009, pp. 255-258.

N. Moha, Y.-G. Guéhéneuc, A.-F. Le Meur, L. Duchien, A domain analy-
sis to specify design defects and generate detection algorithms, in: Inter-
national Conference on Fundamental Approaches to Software Engineering,

Springer, 2008, pp. 276-291.

N. Tsantalis, A. Chatzigeorgiou, Identification of move method refactoring
opportunities, IEEE Transactions on Software Engineering 35 (3) (2009)
347-367.

M. Goldstein, I. Segall, Automatic and continuous software architecture
validation, in: 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, Vol. 2, IEEE, 2015, pp. 59-68.

H. C. Lovatt, A. M. Sloane, D. R. Verity, A pattern enforcing compiler
(pec) for java: using the compiler, in: Proceedings of the 2nd Asia-Pacific
conference on Conceptual modelling-Volume 43, Australian Computer So-

ciety, Inc., 2005, pp. 69-78.

A. Blewitt, A. Bundy, I. Stark, Automatic verification of java design pat-
terns, in: Automated Software Engineering, 2001.(ASE 2001). Proceedings.
16th Annual International Conference on, IEEE, 2001, pp. 324-327.

50

	Introduction: Context and Problem Statement
	Illustrative Example
	The Process in a Nutshell
	Metamodel Migration
	Constraint Transformation
	Variable declaration extraction
	Decomposition and Refactoring
	Constraint Parameterization

	Generation of CLACS components
	Operation grouping
	CLACS architecture description generation

	Generation of Constraint-services
	Generation of Constraint-service Structure
	Generation of Constraint-service Implementation
	Metamodel Migration
	Code generation

	Registering and Looking-up Constraint-Services

	Process Evaluation
	Comparison of manual constraint specification and automatic generation:
	Case study:
	Threats to validity
	Internal validity
	External validity

	Related Works
	Conclusion and Future Work

