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Abstract

Model transformations play a cornerstone role in Model-Driven Engineering (MDE) as they provide the essential mechanisms for
manipulating and transforming models. Checking whether the output of a model transformation is correct is a manual and error-
prone task, referred to as the oracle problem. Metamorphic testing alleviates the oracle problem by exploiting the relations among
different inputs and outputs of the program under test, so-called metamorphic relations (MRs). One of the main challenges in
metamorphic testing is the automated inference of likely MRs.

This paper proposes an approach to automatically infer likely MRs for ATL model transformations, where the tester does not
need to have any knowledge of the transformation. The inferred MRs aim at detecting faults in model transformations in three
application scenarios, namely regression testing, incremental transformations and migrations among transformation languages. In
the experiments performed, the inferred likely MRs have proved to be quite accurate, with a precision of 96.4% from a total of 4101
true positives out of 4254 MRs inferred. Furthermore, they have been useful for identifying mutants in regression testing scenarios,
with a mutation score of 93.3%. Finally, our approach can be used in conjunction with current approaches for the automatic

generation of test cases.
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1. Introduction

In Model-Driven Engineering (MDE), models are the cen-
tral artifacts that describe complex systems from various view-
points and at multiple levels of abstraction using appropriate
modeling formalisms. Model transformations are the corner-
stone of MDE [1, 2], as they provide the essential mechanisms
for manipulating and transforming models. Model transforma-
tions are an excellent compromise between strong theoretical
foundations and applicability to real-world problems [2].

The correctness of software built using MDE techniques typ-
ically relies on the correctness of the operations executed using
model transformations. For this reason, it is critical in MDE to
maintain and test them as it is done with source code in clas-
sical software engineering. However, checking whether the
output of a model transformation is correct is a manual and
error-prone task, what is referred to as the oracle problem in
the software testing literature. Although several approaches ad-
dress the testing of model transformations with different tech-
niques [3, 4, 5, 6, 7, 8, 9, 10, 11, 12], the oracle problem is
still challenging in this domain. One reason may be the lack of
formal semantics in transformation languages [8].

As any other software artifact, models are subject to constant
change. Therefore, dependent models, which have been derived
by the original models by means of transformations, have to be
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updated appropriately [13]. The most straight-forward way is
to re-execute the transformation entirely, i.e., in batch mode.
However, when we are dealing with very large models con-
sisting of thousands of elements and some minor changes take
place in them, the re-execution of a complete transformation is
not the best way to proceed. In fact, only those elements that
have been changed should be transformed, what is achieved by
the so-called incremental transformations [14, 15, 16, 17, 18].

The role of incremental model transformations is the follow-
ing. A potentially very big model is received as input by a
model transformation, which is executed and produces the out-
put model. Then, some small changes are performed in the
source model. An incremental transformation detects what the
changes have been and propagates only those changes to the
already existing output model. However, it cannot be trivially
checked that the changes have been properly propagated and
that the result of the incremental transformation is the same as
having executed the original transformation.

Model transformations are themselves also subject to change.
Having a model transformation in a state that is known to be
correct, it may be necessary to extend it in order to increase its
functionality, but the properties that were satisfied by the origi-
nal version must be still satisfied in the new version. Therefore,
it is important to count on regression testing techniques [19] in
model transformations. Furthermore, due to the wide variety
of model transformation languages available today (cf. Sec-
tion 2.1.2), it may be necessary to move from some languages
to others, i.e., to migrate a transformation program to a different

May 8, 2017



language [8, 20, 21, 22, 23]. In this scenario, it is also neces-
sary to count on mechanisms for checking the correctness of
the migrated transformation.

Metamorphic testing alleviates the oracle problem by pro-
viding an alternative when the expected output of a test execu-
tion is unknown [24, 25]. Rather than checking the output of
an individual program execution, metamorphic testing checks
whether multiple executions of the program under test fulfil cer-
tain necessary properties called metamorphic relations (MRs).
Unfortunately, the main limitation of metamorphic testing is the
identification of the MRs, which is a manual task that requires
a good knowledge of the problem domain. Indeed, the auto-
mated inference of likely MRs is recognized as one of the main
challenges of metamorphic testing [25]. A few works with pro-
posals for automatic inference of MRs exist, but mostly focused
on numerical programs [26, 27, 28].

The feasible application of metamorphic testing in model
transformations has been empirically demonstrated by Jiang et
al. [29]. In their work, metamorphic relations are manually
constructed for a specific model transformation, based on the
knowledge of the domain expert.

The context of metamorphic testing in model transformations
and the nomenclature we use in this paper are the following.
Let us consider we have any model transformation, m¢, and
SMs = {smy, smy,...,smy,} is a set of source test case inputs,
i.e., source models for mz. Based on the knowledge of the mod-
els’ domain, follow-up test case inputs, sm;, can be defined for
each source test case input. The way of constructing follow-up
test case inputs from source test case inputs is determined by
the metamorphic input relations (MRs;p). This means that a
MR;p indicates which changes must be done in sm; to obtain
sm;, but it does not impose any restriction on how sm; must
be. Therefore, the definition of pairs [sm;, sm’] is driven by the
MRs;p. For each metamorphic input relation and based on the
knowledge of mt, several metamorphic output relations (MRop)
that must hold can be defined. A pair [MR;p, MRop] constitutes
a metamorphic relation, and several metamorphic relations can
share the same MR;p. Metamorphic testing runs the source and
follow-up test case inputs constructed as defined by the MR;p
and checks whether the MRpp holds in the source and follow-
up test case outputs, regardless of the availability of an oracle
for each individual test case.

In this paper we propose the automatic inference of likely
metamorphic relations for any model transformation written in
ATL [30, 31] — metamorphic relations that are automatically
inferred are referred to as likely metamorphic relations because
we cannot formally demonstrate that they are valid under all
circumstances. To this end, a catalogue of 24 so-called domain-
independent metamorphic relations has been defined. The in-
ference of likely metamorphic relations' for a model transfor-
mation is possible by taking the trace model produced after the
transformation execution as input to our approach.

This approach is targeted at checking the correctness of

'From hereon, when we write (domain-independent) metamorphic rela-
tions, we will always be referring to likely (domain-independent) metamorphic
relations

model transformations in the three application scenarios de-
scribed before, namely incremental transformations, regression
testing and migration to other transformation languages. In fact,
we consider that the MRs are inferred from a well-tested ver-
sion of the model transformation with the intention of using
them to detect faults in (i) future versions of the transforma-
tion (regression testing), (ii) incremental versions of the origi-
nal transformation and (iii) the same transformation written in a
different language. Out of these three scenarios, the evaluation
of the approach performed in this paper focuses on regression
testing, although we hypothesize the approach would also be
applicable to the other two scenarios.

With our approach, the tester does not need to have any
knowledge of the model transformation nor its domain in order
to obtain the metamorphic relations for a particular transforma-
tion, but only needs to provide a source model for the transfor-
mation. This work is the first one that proposes automatic infer-
ence of MRs in the context of MDE and model transformations.
We have evaluated our approach with seven model transforma-
tions from different domains and that differ in their size and
complexity. Our initial results are quite promising, we have
obtained 4101 true positives out of 4254 inferred likely meta-
morphic relations, what means a precision of 96.4%. Besides,
when using the MRs to kill model transformation mutants, we
have obtained a mutation score of 93.3%. Furthermore, our
approach is scalable due to the way the catalogue of domain-
independent metamorphic relations has been defined, so it can
be further extended and improved.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the essentials for understanding our approach,
namely models, metamodels, model transformations and meta-
morphic testing. Section 3 follows with an in-depth explanation
of our approach, which is evaluated in Section 4. The related
work is reviewed in Section 5. Finally, we summarize our con-
clusions and present potential future work in Section 6.

2. Background

In this section we present the basics to understand our ap-
proach. We start with a general introduction to model-driven
engineering (MDE), where we focus on metamodels, models
and, specially, model transformations and the ATL language.
Then, we explain metamorphic testing and put it in the context
of model transformations.

2.1. Model-Driven Engineering

Model-Driven Engineering (MDE) [32] is a methodology that
advocates the use of models as first-class entities throughout
the software engineering life cycle. It is meant to increase pro-
ductivity by maximizing compatibility between systems, sim-
plifying the process of design and promoting communication
between individuals and teams working on the system. In this
section we describe the concepts of MDE necessary to under-
stand our approach.



2.1.1. Models and Metamodels

A model is an abstraction of a system often used to replace
the system under study [33, 34]. Thus, (part of) the complex-
ity of the system that is not necessary in a certain phase of the
system development is removed in the model, making it more
simple to manage, understand, study and analyze. Models are
also used to share a common vision and facilitate the commu-
nication among technical and non-technical stakeholders [32].

Every model must conform to a metamodel. Indeed, a meta-
model defines the structure, semantics and constraints for a
family of models [35]. Like everything in MDE, a metamodel
is itself a model, and it is written in the language defined by
its meta-metamodel. It specifies the concepts of a language,
the relationships between these concepts, the structural rules
that restrict the possible elements in the valid models and those
combinations between elements with respect to the domain se-
mantic rules.

2.1.2. Model Transformations

Model transformations play a cornerstone role in MDE since
they provide the essential mechanisms for manipulating and
transforming models [36, 37]. They allow querying, synthe-
sizing and transforming models into other models or into code,
so they are essential for building systems in MDE. A model
transformation is a program executed by a transformation en-
gine that takes one or more source models and produces one or
more target models, as illustrated by the model transformation
pattern [1] in Figure 1. Model transformations are developed
on the metamodel level, so they are reusable for all valid model
instances.

Source | refersTo»| Transformation |«refersToy|  Target
Metamodel Specification Metamodel
N ) )

! «conformsTo» | «executes» «conformsTo»:

1 1 1
Source | «reads» | Transformation | «writes» Target
Models Engine Models

Figure 1: Model transformation pattern (from [1])

Although there are several types of model transformations,
such as model-to-text (M2T), text-to-model (T2M) and model-
to-model (M2M) transformations, in this paper we focus on the
last one. In any case, it can be straightforwardly generalized to
consider the other two types of model transformations by using
approaches such as the one presented in [38], where a meta-
model for representing text is proposed. There are also spe-
cific categories within M2M transformations [1, 39]. A trans-
formation is considered out-place when it creates new mod-
els from scratch, e.g., reverse engineering code as models, or
in-place if it rewrites the input models until the output mod-
els are obtained, e.g., as it is the case in model refactoring.
There is a plethora of frameworks and languages to define M2M
transformations, such as Henshin [40], AGG [41], Maude [42],
AToM? [43], e-Motions [44], VIATRA [45], MOMOoT [46, 47],
QVT [48], Kermeta [49], JTL [50], and ATL [51]. Among
these, we focus in this paper on the ATL language due to its
importance in both the academic and the industrial arenas.

2.2. Atlas Transformation Language

This model transformation language (named ATL for short) has
come to prominence in the model-driven engineering commu-
nity due to is flexibility, support of the main meta-modeling
standards, usability that relies on strong tool integration with
the Eclipse world, and a supportive development commu-
nity [30, 31].

ATL is a textual rule-based model transformation language
that provides both declarative and imperative language con-
cepts. It is thus considered a hybrid model transformation lan-
guage. Both in-place and out-place model transformations can
be defined in ATL.

An ATL transformation is composed of a set of transforma-
tion rules and helpers. Each rule describes how certain target
model elements should be generated from certain source model
elements. Typically, ATL model transformations are composed
of declarative rules, namely matched rules. These rules are
automatically executed by the ATL execution engine for every
match in the source model according to the source patterns of
the matched rules. There exist also rules that have to be explic-
itly called from another rule, namely (unique) lazy rules and
called rules, which gives more control over the transformation
execution.

The Object Constraint Language (OCL) is used all through-
out ATL transformations as an expression language. A helper
can be seen as an auxiliary OCL function, which can be used to
avoid the duplication of the OCL code at different points in the
ATL transformation.

Rules are mainly composed of an input pattern and an out-
put pattern®. The input pattern is used to match input pattern
elements that are relevant for the rule. The output pattern spec-
ifies how the output pattern elements are created from the input
model elements matched by the input pattern. Each output pat-
tern element can have several bindings that are used to initialize
its attributes and references.

Listing 1: Excerpt of Class2Relational ATL Transformation.

1 module Class2Relation;
2 create OUT : RelationMM from IN : ClassMM:
3
4 helper def : objectIdType : Relational!Type =
5 Class!DataType.allInstances() -> select(e | e.name = ’Integer’) —> first():
6
7 rule ClassAttribute2Column (
from
a : Class!Attribute (a.type.oclIsKindOf(Class!Class) and not a.multiValued)
to
foreignKey : Relational!Column (
name <- a.name + ‘Id’,
type <- thisModule.objectIdType)
}

rule Class2Table {
from
c : Class!Class
to
out : Relational!Table (

21 name <- c.name,

22 col <- Sequence {key)->union(c.attr->select(e | not e.multiValued)).
23 key <- Set (key})).

24 key : Relational!Colum (

25 name <- objectld’,

26 type <- thisModule.objectIdType)

ZPlease note that the terms source/target and input/output are used synony-
mously throughout the paper when talking about model transformations and
their elements
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Figure 2: Metamodels of the Class2Relational transformation

2.2.1. ATL Transformation Example

An excerpt of the well-known Class2Relational model trans-
formation, taken from the ATL Zoo [52], is displayed in List-
ing 1. The input and output metamodels, necessary to under-
stand the transformation, are displayed in Figure 2.

In the excerpt, we have included two declarative rules
(so-called “matched rules” in ATL). The first rule, ClassAt-
tribute2Column, takes elements of type Attribute whose type
is a Class and whose multiValued attribute is false (cf. meta-
model in Fig. 2(a)), line 9. These elements are transformed into
elements of type Column (cf. metamodel in Figure 2(b)) in line
11. The value assigned to the name attribute is the same as the
name of the Attribute element concatenated with “Id” (line 12).
The element referenced by the type relationship is retrieved by a
helper function in line 13. The second rule, Class2Table, takes
an element of type Class as input and creates two elements, one
of type Table (line 20) and one of type Column (line 24). The
name given to the Column is “objectld”, and its type is also as-
signed with the helper. Regarding the Table, its key points to the
new Column created. As for its col reference, it also points to
the key Column and to other elements (line 22) of type Attribute.
Since Attributes are elements from the source model, ATL has
to resolve which elements are created from such Attributes, and
these will be the actual elements pointed by col.

2.2.2. ATL Internal Traces Mechanism

In order to resolve such elements, ATL uses an internal trac-
ing mechanism. Thereby, every time a rule is executed, it cre-
ates a new trace and stores it in the internal trace model. A
trace model can be automatically obtained from a transforma-
tion execution, e.g., by using Jouault’s TraceAdder [53], and is
composed of a set of traces, one for each rule execution. The
metamodel to which a trace model conforms is displayed in Fig-
ure 3. A trace captures the name of the applied rule and the ele-
ments conforming to those classes from the source metamodel
(sourceElems reference) that are used to create new elements
conforming to classes in the target metamodel (fargetElems ref-
erence). The classes in the source and target metamodels are
represented with EObject, since they can be any class of said
metamodels. When a trace model is created, its traces reference
actual elements of the source and target models. This means
that we have three models (the source model, the target model
and the trace model) linked by several inter-model references.
Therefore, by navigating the traces, we can obtain information
of which target element(s) have been created from which source
element(s) and by which rule. As we explain in Section 3, this
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Figure 3: Trace Metamodel.

is key in our approach.

An example of a trace model is shown in Figure 4. In this
example, the transformation has been executed taken as input
a source model composed of one Class that has one Attribute.
The model produced as output by the transformation contains
two Columns and one Table. As we see in the figure, two Trace
instances have been created, one for each of the two rules that
compose the transformation. We observe how the attributes and
references of the elements in the target model have been initial-
ized as specified in the model transformation of Listing 1.

2.3. Metamorphic Testing

A test oracle [54] determines whether a test execution reveals
a fault, typically comparing the observed program output to the
expected output. Test oracles are not always available or may
be too difficult to apply, this is known as the oracle problem
[55, 56, 54]. For instance, suppose an online search using the
keyword “testing” returning 65K results: Is this output correct?
Are there any pages containing the keyword not included in the
resultset? Do all the pages in the resultset contain the keyword?
Answering these questions is challenging and rarely feasible.
Metamorphic testing alleviates the oracle problem by provid-
ing an alternative when the expected output of a test execution
is unknown [24]. Rather than checking the output of an individ-
ual test, metamorphic testing checks whether multiple test ex-
ecutions fulfil certain metamorphic relations. A metamorphic
relation is a necessary property of the target program that re-
lates two or more input data and their expected outputs. For in-
stance, consider the program nsearch(k;) that returns the num-
ber of matches of the keyword k; in a database. Intuitively, the
number of results should be smaller when searching for items
including both k; and another keyword k,. This can be ex-
pressed as the following metamorphic relation: nsearch(ky) >
nsearch(k; A ky). A metamorphic relation comprises of a so-
called source test case (nsearch(ky)) and one or more follow-
up test cases (nsearch(k, A k)), derived from the source test

Source model Trace model Target model

col : Column

name : “ageld”

atl : Attribute Trace
name - “age | ruleName : “ClassAttribute2Column” |

7
multivalued : false |sourceElems targetElems

traces

attr
col

t1: Table

name : “Man”
key

TraceModel
¢

traces

sourceElems

Trace
ruleName : “Class2Table”

targetElems

col

co2 : Column

name : “objectld”

c1: Class
name : “Man”

Figure 4: Traces in a specific transformation scenario of Class2Relational.



case. A metamorphic relation can be instantiated into one or
more metamorphic tests by using specific input values, e.g.,
nsearch(metamorphic) > nsearch(metamorphic A testing). If
the outputs of a source test case and its follow-up test case(s)
violate the metamorphic relation, the program under test must
contain a bug.

Metamorphic testing is not only an effective technique to
alleviate the oracle problem but it can also be regarded as
a test data generation technique. For instance, in the previ-
ous example, metamorphic testing could be used together with
a random word generator to generate source test cases (e.g.,
nsearch(house)) and their corresponding follow-up test cases
(e.g., nsearch(house A car)), enabling full test automation, i.e.,
input generation and output checking.

Metamorphic testing was introduced as a technique to reuse
existing test cases back in 1998 by Chen et al. [24]. Since
then, researchers have realized of the potential of the technique
to address the oracle problem and research contributions have
proliferated. In a recent survey, Segura et al. [25] reviewed
about 120 papers on metamorphic testing and identified suc-
cessful applications of the technique in a variety of domains
including Web services and applications [57, 58, 59, 60], em-
bedded systems [61, 62], computer graphics [63, 64], compil-
ers [65, 66], simulation [67, 68], machine learning [69, 70] and
bioinformatics [71, 72].

This testing technique can also be applied to model trans-
formations [29], as exemplified in Figure 5. Now, the source
test case input corresponds to the source model (SM) of the
model transformation, and the follow-up test case input is called
follow-up source model (fuSM). A fuSM is derived from a SM,
by performing some modification in it, such as addition or dele-
tion of elements, modification of attributes, addition or deletion
of references, and so on. In this context, a metamorphic in-
put relation (MR;p) defines a change that is performed in SM
in order to produce fuSM. Therefore, the construction of pairs
[SM,fuSM] is driven by the available MRs;p. When the model
transformation is executed taking as input SM, we obtain the
source test case output, namely the target model (TM) in the
context of model transformations, while when we execute it
taking as input the fuSM, we obtain the follow-up test case out-

O
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SM: Source derivation (MR,,) fuSM: follow-up
Model Source Model
Model tfans,l ‘r T T MR : lMode/ trans.
execution i R(SM,fuSMTM,fuTM) | execution
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test case
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Figure 5: Metamorphic Testing in Model Transformations
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Figure 6: Application Example of Met. Testing in Model Transformations

put, referred to as follow-up target model (fuTM) in our con-
text. The comparison of a specific property in TM with respect
to fuTM represents the metamorphic output relation (MRop).
This means that the MRop specifies a condition that must hold
for the model transformation to be correct.

In this context, a metamorphic relation is defined as a rela-
tion among the four parts, those conforming the metamorphic
input relation and those of the metamorphic output relation:
MR = R(SM, fuSM,TM, fuT M). We have defined a cata-
logue of 24 likely domain-independent metamorphic relations
(DIMR), meaning that they are abstractly defined and are to be
instantiated in the context of any specific model transformation.
A DIMR can be instantiated as one or several MRs in a specific
model transformation.

An example of a metamorphic relation for the model trans-
formation described in Section 2.2.1 is graphically shown in
Figure 6. The metamorphic input relation applied dictates the
addition of two Attributes. We observe that SM contains two
Attributes and a Class, and therefore fuSM has four Attributes
and a Class. When we execute the model transformation shown
in Listing 1 over SM, we obtain TM, which contains one Table
and three Columns. When the input for the model transforma-
tion is fuSM, it produces a fuTM that contains one Table and
five Columns. In the metamorphic relation shown in the center
of the figure, |T,| indicates the number of elements of type T
that model m contains. Therefore, the MR in the figure can be
read as “If two elements of type Attribute are added in fuSM and
no element of type Class is added (what represents an instantia-
tion of the MR;p), then fuTM must contain two more elements
of type Column than TM and the same number of elements of
type Table (this second part must hold and is an instantiation of
the MRop)”.

3. Automatic Generation of Metamorphic Relationships

The goal of our approach is to automatically infer likely meta-
morphic relations for any model transformation, such as the
one depicted in Figure 6. We consider ATL model transfor-
mations [51], although our approach can be trivially extended
to any model transformation language able to store the execu-
tion in traces. Indeed, as most model transformation languages
are composed of model transformation rules, where each rule
deals with the construction of part of the target model from part
of the source model, it is straightforward to establish traces at
the level of transformation rules to store this information. The
use of traces storing the execution of a model transformation
has not only been applied for ATL [73], but also for other lan-
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represented as the third step in the figure. 53 name : PNML!Name (
54 labels <- label),
55 label : PNML!Label (
3.1. Running Example: PetriNet2PNML 56 ) text <- e.name)
57
This transformation has been taken from the ATL Zoo [52], a 58
repository containing a large set of ATL model transformations. 59 rule Arc {
60 from
61 e : PetriNet!Arc
62 to
63 n : PNML!Arc(
64 name <- name,
65 location <- e.location,
66 id <- e.name,
name: EString 67 source <- e."from",

68 target <- e."to"),
< 69 name : PNML!Name (
T T 70 labels <- label),
—L— - 71 label : PNML!Label(
[ itionToPlace | [ PlaceToTransiti I[D o < EOT] Place 72 text <- e.name)
L ] [ |5 -
[0..*] [1..*]incomingArc tof[1..1 73 }
incomingArc 10 I Fransition
[1.%] | [1.1] ‘ ‘ .
outgoingAre from |[1..1] The PetriNet metamodel is shown in Figure 8. Note that,
for readability purposes, abstract classes and inheritance rela-
Figure 8: PetriNet Metamodel. tionships are depicted in gray, while the rest is shown in black.
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PetriNet is the root element and represents a Petri net. It is com-
posed of elements and arcs, which are abstract classes. There
are two types of Elements, namely Place and Transition, and
two types of Arcs, which are PlaceToTransition and Transition-
ToPlace. Arcs represent the transition between two Elements, as
indicated by references from and fo. Likewise, Elements have
the references incomingArc and outgoingArc in order to indi-
cate the Arcs that connect them.

PNML stands for the Petri Net Markup Language [74]. It is
a proposal of an XML-based interchange format for Petri nets.
In fact, it has become a standard of the ISO/IEC [75]. Origi-
nally, it was intended to serve as a file format for the Java ver-
sion of the Petri Net Kernel. PNML is a concept for defining
the overall structure of a Petri net file. Its metamodel is de-
picted in Figure 9. PNMLDocument is the root element that
contains Petri nets, and it also contains a URI. NetElement rep-
resents the Petri net and contains a type, which is a URI. It is
also composed of contents, of abstract type NetContent that can
be instantiated as an Arc, Transition or Place. Arcs connect,
with the source and target references, NetContentElements be-
tween them. These can be, in turn, Transitions or Places. The
two kinds of Arcs in the PetriNet metamodel (Fig. 8: PlaceTo-
Transition and TransitionToPlace) are not differentiated in this
metamodel. NetElements and NetContents can have a name that
is a LabeledElement composed of Label.

The PetriNet2PNML ATL transformation is shown in List-
ing 2 and is explained in [76].

In order to extract the trace model for this case study, we have
created a small source model (a petri net model) as input for
executing the transformation. It is composed of three Elements
and two Arcs. This model is graphically depicted in the left-
hand side of Figure 10, with dark-gray background. The PNML
model resulting from executing the transformation is depicted
in the right-hand side of the same figure, also with dark-gray
background. Please note that there are several sets of elements
surrounded by dotted outlines. They represent elements that
have been created by the same rule, as it is indicated by the
trace element that points to the set. The only purpose of these
clusters in the figure is to avoid having too many references
from the traces to the target elements and, in this way, improve
the readability of the figure. As mentioned before, when exe-
cuting an ATL transformation, we can automatically extract a
trace model [53] that links the source elements with the target
elements. The trace model in this example is depicted in the
center of the figure, with a light-gray background.

3.2. Patterns in Traces

In this section we describe the Domain-Independent Trace
Patterns (cf. Figure 7) that we have identified after studying
the trace models resulting from the execution of several model
transformations. It is very important to highlight that the pat-
terns are not exclusive, i.e., more than one patterns may appear
in the same trace. In order to properly separate and identify
each one of them, we use different text formats and types of
lines for graphically representing them in the traces (cf. Fig-
ures 10 and 11). Furthermore, we will be referring to our run-
ning example for clarifying the explanation, so we will show
and describe some of the Trace Patterns instantiated. The com-
plete set of patterns in the catalogue as well as those inferred in
several model transformations are shown on our website [77].

As explained below, the five patterns identified are graphi-
cally depicted in Figure 11. There, SE stands for SourceEle-
ment, TE for TargetElement, sa for source attribute, sav for
source attribute value, ta for target attribute, tav for target at-
tribute value, tca for target constant attribute and tcav for target
constant attribute value. All these terms refer to abstract con-
cepts, in the sense that they need to be instantiated.

PatternTR _1: target elements creation from source element.
This is the most basic pattern. A certain number of ele-
ments (NE) of the same type, TargetElemet (TE), in the target
model are created from an element of the source model of type
SourceElement (SE). This is depicted graphically by the trace
of Figure 11(a). Having a look at Figure 10, we can see that
there are 17 instantiations of this pattern in our case study. We
show a subset of them in Listing 3. For instance, the first in-
stantiation of the listing indicates that for each PetriNet in the
source model, two URIs are created in the target model.

Listing 3: Some Trace Patterns instantiated for Pattern_TR1 in PetriNet2PNML

SE-PetriNet NE=2 TE-URI
SE-PetriNet NE=1 TE-Name
SE-Place NE=1 TE-Label

SE-Place NE=1 TE-Place

SE-Place NE=1 TE-Name
SE-Transition NE=1 TE-Transition
SE-Transition NE=1 TE-Label
SE-Transition NE=1 TE-Name

ONOUTTPWN -

PatternTR 2: target element creation from source element
and attribute initialization. In this pattern, a target element is
also created from a source element, so it includes PatternTR_1.
Besides, now, an attribute of the target element, 7a, is initialized
with a specific value, rav, which is derived from the specific
value, sav, of an attribute in the source element, sa. This pattern
is shown in Figure 11(b). The features that are specific for this
pattern, namely the attributes, are written in italics. There are
18 instantiations of this pattern in the execution of our running
example (cf. Figure 10), five of which are shown in Listing 4.
For instance, the first instantiation in the listing specifies that
a NetElement is created from a PetriNet. Furthermore, the id
attribute of the NetElement is initialized with the value of the
location attribute of the PetriNet. Specifically, the value Seville
has been copied.

Listing 4: Some Trace Patterns instantiated for Pattern_TR2 in PetriNet2PNML

1 SE-PetriNet TE-NetElement sa-location sav=Seville ta=id tav=Seville
2 SE-PetriNet TE-NetElement sa-location sav=Seville ta-location tav=Seville
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Figure 10: Source, trace and target models for the PetriNet2PNMML example and traces patterns instantiated

3 SE-PetrilNet TE-Label sa-name sav-Root ta-text tav-Root
4 SE-PlaceToTransition TE-Arc sa-name sav=p2tl ta=id tav=p2tl
5 SE-PlaceToTransition TE-Arc sa-location sav=Sev2 ta-location tav=Sev2

PatternTR 3: target element with constant value creation
from source element. This pattern is similar to the previous
one. A target element is created and the value of an attribute,
fca, is initialized. However, differently from before, now the
value acquired by the attribute does not depend on any attribute
from the source element, since the value is a constant value,
tcav. This pattern is shown in Figure 11(c), and the feature spe-
cific for this pattern, namely the attribute in the target element,
is underlined. The two instantiations of this pattern in the exe-
cution of our running example (cf. Figure 10) are shown in List-
ing 5. Thus, in the first one we see that a URI is created from a
PetriNet and acquires in its value attribute the string “htp...”.

Listing 5: Trace Patterns instantiated for Pattern_TR3 in PetriNet2PNML
1 SE-PetriNet TE-URI tca=value tcav=http://www.informatik hu-berlin.de/top/pnml/

Netb
2 SEgetriNet TE-URI tca=value tcav=http://www.informatik hu-berlin.de/top/pntd/
ptNetb

PatternTR 4: target element with outgoing references cre-
ation from source element. In this pattern, a target element is
also created from a source element, so it includes PatternTR_I.
Now, the new element created points to other elements in the

model, what reflects the creation of outgoing references (-
gRef). The target elements to which the new references point
may have been created by the same rule or by different rules.
The cardinalities of the reference can be of four types: [0..1],
[1..1], [0..%], [1..*]3. We consider the four types of cardinal-
ities in the pattern. Depending on the type, the likely DIMRs
created from this trace will vary (cf. Section 3.3). This pattern
is depicted in Figure 11(d), where the features specific for this
pattern, namely the outgoing references (trgRef), are depicted
with lines composed of small lines and dots. The names and
multiplicities of the references are underlined. Our approach
finds 38 occurrences of this pattern in our case study. In List-
ing 6 we show four of them, where trgRef indicates the outgo-
ing target references and where we also indicate the multiplicity
of the created reference. These multiplicities are defined in the
PNML metamodel (cf. Figure 9). For instance, the second in-
stantiation indicates that a Name is created from a PetriNet, and
that it may contain from none to many labels as output refer-
ence.

Listing 6: Some Trace Patterns instantiated for Pattern_TR4 in PetriNet2PNML

3 As it is the case in most metamodels, in this version we only consider lower
bounds to be 0 or 1 and upper bounds to be 1 or *
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Figure 11: Domain-Independent Trace Patterns (cf. Figure 7)

1 SE-PetriNet TE-PNMLDocument trgRef=xmlns multiplicity=(1..1]

2 SE-PetriNet TE-Name trgRef-labels multiplicity=[0..x]

3 SE-Transition TE=Transition trgRef-name multiplicity=[0..1]

4 SE-TransitionToPlace TE-Name trgRef-labels miltiplicity=[0..x]

PatternTR 5: reference creation in the target model from
reference in the source model. This pattern considers the exis-
tence of two occurrences of PatternTR_I in the trace model. Be-
sides, the source element of the first occurrence of PatternTR_I
references (srcRef) the source element of the second occurrence
of PatternTR_I, and same thing with the target elements (tr-
gRef). The pattern is shown in Figure 11(e), and the references,
which are specific for this pattern, are depicted with constant
dotted lines. The names and cardinalities of the references are
written in italics. There are 2 occurrences of this pattern in our
case study, shown in Listing 7. SEI and TE/ indicate the source
element and target element of the first trace. SE2 and TE?2 rep-
resent the same but for the second trace. As for the references,
srcRef is the reference from SEI to TEI and trgRef is the one
from SE2 to TE2. Therefore, the first instantiation in the listing
specifies that an Arc is created from a PlaceToTransition and
that a Transition is created from a Transition. Furthermore, in
the source model, the PlaceToTransition points, with the 7o ref-
erence, the Transition, while in the target model, the Arc points
the Transition with the target reference.

Listing 7: Some Trace Patterns instantiated for Pattern_TR5 in PetriNet2PNML

1 SE1-PlaceToTransition SE2-Transition srcRef=to TEl-Arc TE2-Transition
trgRef-target

2 SEl-TransitionToPlace SE2-Transition srcRef=from TEl-Arc TE2-Transition
trgRef=source

3.3. Automated Inference of Likely Metamorphic Relations

From every Domain-Independent Trace Pattern (cf. Fig-
ure 7), we derive a set of likely DIMRs, and group them all
in an extensible Catalogue of likely DIMRs. They are abstractly
defined, meaning they are to be instantiated in specific model
transformations. In fact, when the patterns of the traces are in-
stantiated in a specific model transformation (7race Patterns in-
stantiated), the MRs get also instantiated (Specific likely MRs).
In order for the generated MRs to be formally expressed and
processable by testing tools, we generate them in the well-
known Object Constraint Language (OCL) [78].

For the definition of metamorphic relations in the context of
model transformations, we keep in mind the schema shown in
Figures 5 and 6. In this context, a metamorphic input relation
(MR;p) defines a change that is performed in the source test
case input (SM) in order to produce the follow-up test case in-
put (fuSM). Typically, when applying metamorphic testing in
model transformations, a MR;p defines the addition/deletion of
an element of a certain type, together with (optionally) the ad-
dition/deletion/modification of some attributes or references, in
fuSM with respect to SM. In our approach, the MRs;p are ex-
pressed with a sentence in natural language, for instance, “An
element of type Place is added in fuSM”. Then, the metamor-
phic output relations (MRsop) typically compare the content of
the target model (TM) with the content of the follow-up target
model (fuTM). A pair [MR;p, MRop] constitutes a metamor-
phic relation. A MR;p can be part of several MRs, meaning
that several MRsop may share the same MR;p. Each MRp ex-
presses a condition that must hold for the model transformation
to be correct, provided the specified change has been performed
in fuSM with respect to SM as specified by MR;p. The MRsop
are expressed in OCL, where we add “TM_" or “fuTM_" before
the name of a class to specify whether we are referring to the
elements of that class in the target model or in the follow-up
target model, respectively.

In the following, we explain each of the 24 domain-
independent metamorphic relations (DIMRs) that compose
our Catalogue of likely DIMRs (cf. Figure 7). They are
also shown on our website [77]. For clarification purposes,
they are conceptually classified in ten patterns, and they
have been named hierarchically. We explain each of the
DIMRs defined, and show some instances (Specific likely
MRs) for our running example, namely the PetriNet2PNML
model transformation. Several DIMRs and specific MRs
are shown in different listings. In those listings showing
DIMRs (Listings 8, 10, 12, 14, 16, 18, 19, 21, 23, 25),
DIMRs are enumerated according to the pattern they belong
to. In the listings that show examples of specific MRs (List-
ings 9, 11, 13, 15, 17, 20, 22, 24, 26), MRs are enumerated
according to their position in the listing, and it is also indicated
between brackets the DIMR they are instantiating. All the MRs
inferred for the PetriNet2PNML case study, as well as for sev-
eral other model transformations (cf. Section 4), are shown on
our website [77].

PatternMR _1: addition of a SourceElement. The MRs in this
pattern are to be produced if PatternTR_I (cf. Figure 11(a)) is
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Figure 12: Possible containment associations (metamodel level)

found in the traces. The domain-independent metamorphic re-
lations that conform this pattern are shown in Listing 8*. The
MR;p defines the addition of an element of type SourceEle-
ment in fuSM. The consequence is that NE elements of type
TargetElement are created after executing the model transfor-
mation in fuTM, as specified by the pattern PatternTR_1 in the
traces (cf. Figure 11(a) and Section 3.2). This means that fuTM
has NE more elements of this type than TM, as it is shown by
DIMR_1_1 in the listing.

Furthermore, the element that has been added in fuSM may
have containment relationships with other elements that, in
turn, may act as input elements in the model transformation
in order to generate other output elements (cf. Figure 12). In
order to maintain the conformance relationship with the source
metamodel in fuSM, we consider that said contained elements
are also added in fuSM whenever the lower bound of the asso-
ciation is bigger than 0, specifically:

o If the multiplicity of the association is [/..1], then one ele-
ment of the generic type SEContained? is created in fuSM,
what yields DIMR_1_2 in Listing 8.

o If the multiplicity is [/..*], one or more new elements
of type SEContained4 are created in fuSM, expressed by
DIMR_1.3.

Finally, the number of instances of those elements that are
neither created from SourceElement nor from any of its con-
tained classes should remain the same (AnyOtherType), as ex-
pressed by DIMR_1_4. In order to determine which types are
AnyOtherType, all classes in the target metamodel are gathered
and those that do not appear in a trace as target element for
SourceElement nor for any of its contained classes are consid-
ered as AnyOtherType.

Listing 8: Likely DIMRs in PatternMR_I of the Catalogue

An element of type SourceElement is added in fuSM.

DIMR.1.1: TM_TargElement.allInstances()->size()=fuTM_TargElement.allInstances()
—>size()-NE

DIMR.12: TM_TEFromContainment2.allInstances()->size()=fuTM_TEFromContainment?2.
allInstances()->size()-1

DIMR.1.3: TM_TEFromContainment4.allInstances () ->size() <fuTM_TEFromContainment4.
allInstances()->size()

DIMR.1.4: TM_AnyOtherType.allInstances()->size()=fulM_AnyOtherType. alllnstances
()->size()

Example. As we see in Figure 10 and in Listing 3, two URIs
are created from a PetriNet. At the same time, no Arc is created
from a PetriNet. We also observe that a Place, a Name and a

“In this and remaining listings, each MR is divided in two parts. First, the
MRp is specified, followed by the MRsop that share the same MR;p.
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Label are always created from a Place. Therefore, we have the
MRs shown in Listing 9. MR1, MR3, MR4 and MRS are in-
stances of DIMR_1_1, while MR2 is an instance of DIMR_1_4.

Listing 9: Specific MRs for PatternMR_I in PetriNet2PNML
An element of type PetriNet is added in fuSM
MR1 (DIMR_1.1): TM_URI.allInstances()->size()=fuIM_URI.allInstances()->size()-2
MR2 (DIMR-1.4): TM_Arc.allInstances()->size()=fulM_Arc.allInstances()->size()
An element of type Place is added in fuSM
MR3 (DIMR_1.1): TM_Place.allInstances()->size()=fuTM_Place.allInstances()->size()-1
MR4 (DIMR.1.1): TM_Name.allInstances()->size()=fuTM_Name.allInstances()->size()-1
MRS (DIMR-1.1): TM_Label.allInstances()->size()=fulM_Label.allInstances()->size()-1

PatternMR 2: deletion of a SourceElement. The MRs in this
pattern are to be produced if PatternTR_I (cf. Figure 11(a))
is found in the traces. The DIMRs defined in this pattern are
shown in Listing 10. The MR;p defines the deletion of an el-
ement of type SourceElement in fuSM. The effect is that NE
elements of type TargetElement that were created in TM af-
ter executing the model transformation are not created now in
fuTM. This means that fuTM has NE less elements of this type
than TM, as it is shown in DIMR_2_1 in the listing. Addition-
ally, the element deleted may have been containing other ele-
ments when it was deleted. We take this into consideration for
generating several DIMRs. Specifically, we consider the four
types of multiplicities considered in this paper and shown in
Figure 12:

o If it is [0..1], the deleted element may have either con-
tained another element or not. If such containment associ-
ation is found, then DIMR _2_2 holds.

e If it is [1..1], the deleted element contained an element,
what yields DIMR_2_3.

o Ifitis/0..*], the deleted element may have contained from
none to several elements. This is the reason why the sym-
bol >=is used in DIMR_2 4.

e Finally, if the multiplicity is [1..*], the deleted element
contained at least one element, so DIMR_2_5 must hold.

Finally, the number of instances of those elements that are
neither created from SourceElement nor from any of its con-
tained classes should remain the same (AnyOtherType), as ex-
pressed by DIMR_2_6.

Listing 10: Likely DIMRs in PatternMR_2 of the Catalogue

An element of type SourceElement is deleted in fuSM.

DIMR2.1: TM_TargElement.allInstances()->size()=fulM_TargElement.allInstances()—>
size()+NE

DIMR22: TM_TEFromContainment1.allInstances()->size()=fuTM_TEFromContainmentl.
allInstances()->size() or TM_TEFromContainmentl.allInstances()->size()=
fuTM_TEFromContainmentl.allInstances()->size() +1

DIMR2.3: TM_TEFromContainment2.allInstances()->size()=fulM_TEFromContainment2.
allInstances()->size() +1

DIMR2.4: TM_TEFromContainment3.allInstances()->size()>=fuTM_TEFromContainment3.
alllnstances()->size()

DIMR2.5: TM_TEFromContainment4.allInstances()->size()>fulM_TEFromContainment4.
allInstances()->size()

DIMR2.6: TM_AnyOtherType.allInstances()->size()=fuIM_AnyOtherType.allInstances()—>
size()

Example. As we see in the PetriNet metamodel (cf. Figure 8),
a PetriNet has a containment association, elements, with mul-
tiplicity [0..*] with Transition. At the same time, we observe
in Figure 10 and in Listing 3 that a Name is created from a

PetriNet. Furthermore, a Transition, a Name and a Label are
created from a Transition. All this information yields the MRs



shown in Listing 11. There, MR1 is an instance of DIMR_2_5;
MR2 and MR3 are instances of DIMR_2_4; and MR4, MR5 and
MRG6 are instances of DIMR_2_3.

Listing 11: Specific MRs for PatternMR 2 in PetriNet2PNML

An element of type PetriNet is deleted in fuSM

MR1 (DIMR2.5): TM_Name.allInstances()->size()>fuTM_Name.allInstances()->size()

MR2 (DIMR2.4): TM_Label.allInstances()->size()>=fuTM_Label.allInstances()->size()

MR3 (DIMR2.4): TM_Transition.allInstances()->size()>=fulM_Transition.allInstances()
->size()

An element of t

MR4 (DIMR2.3):
—>size() +1

MRS (DIMR2.3): TM_Name.allInstances()->size()=fuTM_Name.allInstances()->size()+1

MR6 (DIMR2.3): TM_Label.allInstances()->size()=fulM_Label.allInstances()->size()+1

Transition is deleted in fuSM
| Transition.allInstances()->size()=fulM_Transition.allInstances()

PatternMR _3: addition of an element with a specific at-
tribute. The MRs in this pattern are to be produced if Pat-
ternTR_2 (cf. Figure 11(b)) is found in the traces. The meta-
morphic input relation defines the addition of an element of type
SourceElement in fuSM, where the attribute sa of the element
has been set to sav. When we execute the transformation, it
creates an element of type TargetElement in fuTM and initial-
izes its attribute ta with value fav. In this pattern, attribute fa is
initialized with the value of attribute sa. We consider the basic
types Integer and String. For the Integer type, we only con-
sider the case where the value is copied, whereas for String we
consider that the value of zav can be created in four ways:

It is copied from sav.
It is formed by a string concatenated with the value of sav.
It is formed by the value of sav concatenated with a string.

Ll S

It is formed by a string concatenated with the value sav
and yet concatenated with another string.

This pattern is a specialization of PatternMR_I, meaning that
the MR;p defined now implies the one defined in PatternMR_I,
so the DIMRs generated in PatternMR_I are also valid here.
Additionally, the DIMR in Listing 12 must hold. It states that
in fuTM there is one more element of type TargetElement with
value fav in attribute fa than in TM.

Listing 12: Likely DIMR in PatternMR_3 of the Catalogue

An element of type TargetElement is added in fuTM and its attribute ta is
initialized with value tav

DIMR3.1: TM_TargetElement.allInstances()->select(te|te.ta=tav)= fulM_TargetElement.
allInstances()->select(te|te.ta=tav)-1

Example. According to the first, second and third examples of
PatternTR_2 shown in Listing 4, a PetriNet creates a NetEle-
ment, and the value of the location attribute of the former is
copied into the id and location attributes of the latter. Further-
more, a Label is also created from a PetriNet, and its text at-
tribute acquires the value of the name of the PetriNet. This gen-
erates the following MRs, all of them instances of DIMR_3_1:

Listing 13: Specific MRs for PatternMR_3 in PetriNet2PNML

An element of type PetriNet is added in fuSM with its attribute location set to °*
ue’

MR1 (DIMR3.1): TM_NetElement.allInstances()->select(te|te.id=""value’ )=
fuTM_NetElement .allInstances()->select(te|te.id=""value’ ' )-1

MR2 (DIMR3.1): TM_NetElement.allInstances()->select(te|te.location=""value’ )=
fuTM_NetElement.allInstances()->select(te|te.location=""value’ ")-1

An element of type PetriNet is added in fuSM with its attribute name set to
value’*

MR3 (DIMR3.1): TM_Label .allInstances()->select(te|te.text=""value’ ’)= fulM _Label.
alllnstances()->select(te|te.text=""value *)-1
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PatternMR _4: deletion of an element with a specific at-
tribute. The MRs in this pattern are to be produced if Pat-
ternTR_2 (cf. Figure 11(b)) is found in the traces. The meta-
morphic input relation in this pattern defines the deletion of an
element of type SourceElement in fuSM, where its attribute sa
had the value sav. If we execute the transformation the element
of type TargetElement that was created from such element in
TM and whose attribute ta had a value of tav will not be cre-
ated in fuTM. In this pattern, attribute fa was initialized with
the value of attribute sa. We consider the same cases as in Pat-
ternMR _3 regarding the values of the attributes.

This pattern is a specialization of PatfernMR_2, meaning that
the MR;p defined now implies the one defined in PatternMR_2,
so the DIMRs generated in PatternMR_2 are also valid here.
Additionally, the DIMR in Listing 14 is produced. It states that
in fuTM there is one less element of type TargetElement with
value fav in attribute fa than in TM.

Listing 14: Likely DIMR in PatternMR 4 of the Catalogue

An element of type TargetElement is deleted in fuTM. whose ta had the value tav

DIMR4.1: TM_TargetElement allInstances()->select(te|te.ta=tav)= fulM_TargetElement.

allInstances()->select(te|te.ta=tav)+1

Example. According to the third and fourth examples of Pat-
ternTR_2 shown in Listing 4, an Arc is created from a PlaceTo-
Transition, and the id attribute of the former is initialized with
the value of the name attribute of the latter. Furthermore, the
location attribute of the Arc is set with the value of the location
attribute of the PlaceToTransition. This generates the following
MRs, all of them instances of DIMR 4 _1.

Listing 15: Specific MRs for PatternMR_4 in PetriNet2PNML
An element of type PlaceToTransition is deleted in fuSM with its attribute name set
to 'value”
MR1 (DIMR4.1): TM_Arc.allInstances()->select(te|te.id=""value’ *)= fulM_Arc.
allInstances()->select(te|te.id=""value’ ’)+1
An element of type PlaceToTransition is deleted in fuSM with its attribute location
set to ’value’’
MR2 (DIMR4.1): TM_Arc.allInstances()->select(te|te.location=""value’ ' )= fulM_Arc.
allInstances()->select(te|te.location=""value’ ')+l

PatternMR _5: addition of an element that will create a con-
stant attribute. The MR in this pattern is to be produced if
PatternTR_3 (cf. Figure 11(c)) is found in the traces. In this
pattern, the MR;p is the same as in PatternMR_I: it consists in
adding an element of type SourceElement in fuSM. When we
execute the transformation, it creates an element of type Tar-
getElement in fuTM and initializes its attribute tca with the
constant value fcav. This means that it does not matter how
the element of type SourceElement added in fuSM is or how its
attributes are. The attribute fca will always be given the same
value. We consider the basic types Integer and String.

This pattern is a specialization of PatternMR_1, meaning that
the DIMRs generated in PatternMR_I are also valid now. Be-
sides, the DIMR in Listing 16 must hold. It states that in fuTM
there is one more element of type TargetElement with value
tcav in attribute fca than in TM.

Listing 16: Likely DIMR in PatternMR_5 of the Catalogue

An element of type SourceElement is added in fuSM
DIMR.5.1: TM_TargetElement allInstances()->select(te|te.tca=tcav)=
fulM_TargetElement.allInstances()->select(te|te.tca=tcav)-1



Example. According to the examples of PatternTR_3 shown in
Listing 5, two URIs are created from a PetriNet, where their
value attributes acquire a constant value. This generates the
following MRs, which are instances of DIMR_5_1:

Listing 17: Specific MRs for PatternMR_5 in PetriNet2PNML

An element of t PetriNet is added in fuSM

MR1 (DIMRS.1): TM_URI.allInstances()->select(te|te.value="http://www.informatik. hu-
berlin.de/top/pnml/ptNetb”)->size()=fuIM_URI.allInstances()->select(te|te.value="
http://www.informatik.hu-berlin. de/top/pnml/ptNetb”)->size()-1

MR2 (DIMRS.1): TM_URI.allInstances()->select(te|te.value="http://www.informatik . hu-
berlin.de/top/pnml/ptNetb/Seville”)->size()=fulM_URI.alllnstances()->select(te|te
.value="http://www.informatik. hu-berlin.de/top/pnml /ptNetb/Seville”)->size()-1

PatternMR 6: deletion of an element that created a con-
stant attribute. The MR in this pattern is to be produced
if PatternTR_3 (cf. Figure 11(c)) is found in the traces. In
this pattern, the MR;p is the same as in PatternMR_2: it con-
sists in removing an element of type SourceElement in fuSM.
Thereby, after executing the transformation, the element of type
TargetElement that was created in TM and whose attribute tca
was initialized with the constant value fcav is not created in
fuTM. This means that it does not matter how the element of
type SourceElement removed in fuSM was or how its attributes
were. The attribute fca would have always been given the same
value. We consider the basic types Integer and String.

This pattern is a specialization of PatternMR _2, meaning that
the DIMRs generated in PatternMR_2 are also valid now. Be-
sides, the DIMR in Listing 18 is produced. It states that in fuTM
there is one less element of type TargetElement with value tcav
in attribute fca than in TM.

Listing 18: Likely DIMR in PatternMR_6 of the Catalogue
An element of type SourceElement is deleted in fuSM

DIMR.6.1: TM_TargetElement.allInstances()->select(te|te.tca=tcav)=
fulM_TargetElement .allInstances()->select(te|te.tca=tcav)+1

Example. The same MRs as in the pattern before are generated,
but with the symbol ‘+’ instead of *-’. As for its MR;p, it is “An
element of type PetriNet is deleted in fuSM”.

PatternMR_7: addition of an element that will create ref-
erences. The MRs in this pattern are to be produced if Pat-
ternTR 4 (cf. Figure 11(d)) is found in the traces. In this
pattern, the MR;p is the same as in PatternMR_I: it consists
in adding an element of type SourceElement in fuSM. When
we execute the transformation, it creates an element of type
TargetElement in fuTM together with its outgoing references,
trgRef, that will point to other elements in the model. We
consider four types of cardinality, as explained in Section 3.2:
[0..1],[1..1], [0..*%], [1..*]. This means that more than one ref-
erence of the same type can be created in the target model.

This pattern is a specialization of PatternMR_I, meaning that
the DIMRs inferred in PatternMR_1 are also valid now. Be-
sides, the DIMRs in Listing 19 must hold, depending on the
cardinality of the reference:

e If it is [0..1], the element created may reference none or
one element, so DIMR_7_1 must hold.

o If the cardinality is [0..*], the element created may ref-
erence none or any number of elements, what yields
DIMR_7_2.
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e If it is [1..*], it references one or more elements, so
DIMR_7_3 must hold.

o Finally, if the cardinality is [1..1], it will reference exactly
one element, yielding DIMR_7 4.

Listing 19: Likely DIMRs in PatternMR_7 of the Catalogue
An element of type SourceElement is added in fuSM
DIMR7-1: TM_TargetElement.allInstances()->collect(te|te.trgRef)->flatten()->size()=
fulM_TargetElement allInstances()->collect(te|te.trgRef)->flatten()->size() or
TM_TargetElement.allInstances()->collect(te|te.trgRef)->flatten()->size()=
fulM_T: ement .allInstances()->collect(te|te.trgRef)->flatten()->size()-1
DIMR72: TM_TargetElement.allInstances()->collect(te|te.trgRef)->flatten()->size()
<= fuTM_TargetElement.alllnstances()->collect(te|te.trgRef)—>flatten()->size()
DIMR.7.3: TM_TargetElement.allInstances()->collect(te|te.trgRef)—>flatten()->size()<
fuTM_TargetElement.allInstances()->collect(te|te.trgRef)->flatten()->size()
DIMR14: TM_TargetElement.allInstances()->collect(te|te.trgRef)->flatten()->size()=
fuTM_TargetElement.alllnstances()->collect(te|te.trgRef)—>flatten()->size()-1

Example. According to the examples of PatternTR_4 shown
in Listing 6, the PNMLDocument and Name created from a
PetriNet have the outgoing references xmlns and labels, respec-
tively, with multiplicities //..1] and [0..*]. This produces the
MR in listing 20, where MR1 is an instance of DIMR_7_4 and
MR?2 is an instance of DIMR_7_2.

Listing 20: Specific MRs for PatternMR_7 in PetriNet2PNML
An element of type PetriNet is added in fuSM
MR1 (DIMR.7-4) : TM_PNMLDocument.allInstances()->collect(c|c.xmlns)->flatten()->size
()=fuTM_PNMLDocument .allInstances()->collect(c | c.xmlns)->flatten()->size()-1
MR2 (DIMR.72): TM_Name.allInstances()->collect(c|c.labels)->flatten()->size()<=
fuTM_Name.allInstances()->collect(c|c.labels)->flatten()->size()

PatternMR 8: deletion of an element that created refer-
ences. The MRs in this pattern are to be produced if Pat-
ternTR 4 (cf. Figure 11(d)) is found in the traces. In this pat-
tern, the MR;p is the same as in PatternMR_2: it consists in
removing an element of type SourceElement in fuSM. When
we execute the transformation, the element of type TargetEle-
ment that was created in TM together with its outgoing refer-
ences, trgRef, that pointed to other elements in the model are
not created in fuTM. Again, the cardinalities of the references
created in TM can be of the four types mentioned before. This
means that, depending on them, a certain number of references
that were created in TM are not created in fuTM. Following the
same schema as before, we infer the DIMRs shown in List-
ing 21. Additionally, the DIMRs generated in PatternMR_2
are also valid now, since this pattern is a specialization of Pat-
ternMR 2.

Listing 21: Likely DIMRs in PatternMR_8 of the Catalogue

An element of type SourceElement is deleted in fuSM
DIMR8.1: TM_TargetElement.allInstances()->collect(te|te.trgRef)—>flatten()->size()=
fuTM_T: tElement .allInstances()->collect(te|te.trgRef)->flatten()->size() or
TM_TargetElement.allInstances()->collect(te|te.trgRef)->flatten()->size()=
fulM_TargetElement .allInstances()->collect(te|te.trgRef)->flatten()->size()+1
DIMR.82: TM_TargetElement .alllnstances()->collect(te|te.trgRef)—>flatten()->size()
>= fulM_TargetElement allInstances()->collect(te|te.trgRef)->flatten()->size()
DIMR8.3: TM_TargetElement.allInstances()->collect(te|te.trgRef)->flatten()->size()>
fuTM_TargetElement.alllnstances()->collect(te|te.trgRef)—>flatten()->size()
DIMR.8.4: TM_TargetElement.allInstances()->collect(te|te.trgRef)->flatten()->size()=
fulTM_TargetElement.allInstances()->collect(te|te.trgRef)->flatten()->size()+1

Example. According to the third and fourth examples of Pat-
ternTR 4 shown in Listing 6, a Transition produces a Transi-
tion with outgoing reference name and multiplicity [0..1], and
a TransitionToPlace generates a Name with outgoing reference
labels and multiplicity [0..*]. This produces the MRs in List-
ing 22, where MR1 is an instance of DIMR_8_1 and MR2 is an
instance of DIMR_8_2.



Listing 22: Specific MRs for PatternMR_8 in PetriNet2PNML

An element of type Transition is deleted in fuSM

MR1 (DIMRS.1): TM_Transition.allInstances()->collect(c|c.name)->flatten()->size()=
fuTM_Transition.allInstances()->collect(c|c.name)->flatten()->size()
orTM_Transition.allInstances()->collect(c|c.name)->flatten()->size()=
fulM_Transition.allInstances()->collect(c|c.name)—>flatten()->size()+1

An element of type TransitionToPlace is deleted in fuSM

MR2 (DIMRS8.2): TM_Name.allInstances()->collect(c|c.labels)->flatten()->size()>=
fuTM_Name.allInstances()->collect(c|c.labels)->flatten()->size()

PatternMR 9: addition of an element with an incoming ref-
erence. The MRs in this pattern are produced if PatternTR_5
(cf. Fig. 11(e)) is found in the traces. In the scenario seen in
the figure, the MR;p in this pattern consists in adding an ele-
ment of type SourceElement2 in fuSM. This element has the
incoming reference srcRef coming from an element of type
SourceElement]. When the transformation is executed, it cre-
ates an element of type TargetElement2 in fuTM according to
PatternTR_I. Besides, an incoming reference to such element,
trgRef, from an element of type TargetElementl is also created.
The element of type TargetElementl from which the reference
trgRef departs is the one created from SourceElementl. Apart
from the DIMRSs of PatternMR_I, the DIMR in Listing 23 is
produced. It compares the number of references of type trgRef
in TM and fuTM, since there must be one more in fuTM.

Listing 23: Likely DIMRs in PatternMR_9 of the Catalogue
An element of type SourceElement2 is added in fuSM with an incoming srcRef
reference from an element of type SourceElementl

DIMRY.1: TM_TargetElement].allInstances()->collect(te|te.trgRef)—>flatten()->size()
=fuTM_TargetElement1.allInstances()->collect(te|te.trgRef)—>flatten()->size()-1

Example. According to the first example of PatternTR_5 shown
in Listing 7, when a Transition is added in fuSM with an in-
coming fo reference from a PlaceToTransition, the generated
Transition has an incoming farget reference from an Arc. This
produces the following MR, which is an instance of DIMR_9_1:

Listing 24: Specific MR for PatternMR_9 in PetriNet2PNML
An element of type Transition is added in fuSM with an incoming to reference from
an element of type PlaceToTransition

MR1 (DIMRS.1): TM_Arc.allInstances()->collect(ct|ct.target)->flatten()->size()=
fuTM_Arc.allInstances()->collect(ct|ct.target)->flatten()->size()-1

PatternMR _10: deletion of an element with an incoming ref-
erence. The MR in this pattern is produced if PatternTR_5
shown in Figure 11(e) is found in the traces. Therefore, the
scenario is the same as the one described in the previous pat-
tern. However, now, the MR;p is defined by deleting an ele-
ment of type SourceElement2 in fuSM, which had an incom-
ing reference srcRef from an element of type SourceElementl.
Therefore, the trgRef reference that is created in TM will not
be created now in fuTM. For this reason, apart from the DIMRs
produced in PatternMR_2, the DIMR in Listing 25 is generated.

Listing 25: Likely DIMRS in PatternMR_10 of the Catalogue
An element of type SourceElement2 is deleted in fuSM that had an incoming srcRef
reference from an element of type SourceElementl

DIMR-10.1: TM_TargetElementl.allInstances()->collect(te|te.trgRef)->flatten()->size
()=fuTM_TargetElement1.allInstances()->collect(te|te.trgRef)->flatten()->size() +1

Example. According to the second example of PatternTR_5
shown in Listing 7, when a Transition is added in fuSM with an
incoming from reference from a Transition, the generated Tran-
sition has an incoming source reference from an Arc. This pro-
duces the following MR, which is an instance of DIMR_10_1:
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Figure 13: MRs4generator and its inputs/output.

Listing 26: Specific MR for PatternMR_10 in PetriNet2PNML
An element of type Transition is deleted in fuSM that had an incoming from
reference from an element of type TransitionToPlace

MR1 (DIMR-10.1) : TM_Arc.allInstances()->collect(ct|ct.source)->flatten()->size()=
fuTM_Arc.allInstances()->collect(ct|ct.source)->flatten()->size() +1

3.4. Considerations and Automation

We have applied a small granularity when defining the
domain-independent metamorphic relations (DIMRs) of our
catalogue, as it can be observed by having a look at the MRs
inferred for the different case studies, available on our web-
site [77]. For this reason, we have tried to define a single DIMR
for each error that can be committed in the three scenarios tar-
geted by our approach, namely regression testing, incremental
transformations and migration of transformations to other lan-
guages. By doing this, we try to maximize the number and
types of errors that can be detected. Furthermore, we have sepa-
rated similar metamorphic input relations (MR;p) into different
patterns. For instance, the MR;p “An element of type Transition
is added in fuSM with its attribute location set to value” implies
the MR;p “An element of type Transition is added in fuSM”.
However, they are separated in different patterns. Again, this
helps find the cause of the errors a transformation may contain.
For instance, if a certain MR fails and it contains the second
MR;p, one or more MRs that have as MR,p the first one are
likely to fail as well. On the contrary, if a MR that has as MR;p
the first one fails but no MR containing the second MR, p fails, it
may be due to the information added with respect to the second
MR;p —namely information related to the attributes—, making it
easier to identify the specific problem.

Let us clarify something at this point. Typically, and as it
happens in our running example, a metamodel has a root class
that contains the rest of classes in the metamodel. For instance,
the PetriNet metamodel shown in Figure 8 has PetriNet as root
class. In the models that instantiate a metamodel and in order
to satisfy the conformance relationship, there is typically only
one element of the root class, and this element contains the rest
of the elements. However, in the Eclipse Modeling Framework
(EMF) [79] it is possible to create and visualize models that
contain more than one root elements. Furthermore, there are
some metamodels in the transformations of the ATL Zoo [52]
that do not have a root class. For this reason, in the MRs that are
inferred for a specific model transformation, we have included



those that imply the addition/deletion of a root element, in our
running example PetriNet.

We have automated the inference of metamorphic relations
for any model transformation by means of a Java program that
we have called MRs4MTgenerator, and that is shown together
with its inputs and output in Figure 13. As we can see, there
are several inputs to our program. Of course, we need the ATL
Model Transformation from which we will infer MRs, although
it is not a direct input to our program. The model transfor-
mation takes as input the Source/Target Metamodels as well as
the Source Model. In fact, it can take as input several source
models in order to perform several executions. After each ex-
ecution, it produces an instance of a Trace Model (trace model
1, trace model 2, ..., trace model N), represented by the first
step in Figure 7. As explained earlier in the paper (cf. Sec-
tion 2.2.2), the trace model produced by a model transforma-
tion points, through inter-model references, to the source and
target models. Said trace models, together with the source and
target models they point to, are inputs to our program. They
are needed in order to identify and instantiate the trace patterns
presented in Section 3.2 and represented by the second step in
Figure 7.

Furthermore, in order for our program to be able to navi-
gate the models, it needs knowledge of the metamodels they
conform to. This is why the Model Code is necessary in our
program. It is Java code that represents the metamodels. This
model code is generated automatically by the EMF tools and
integrated in our program as packages and classes. This is done
in two steps. First, the so-called Genmodels are generated by
the EMF Generator Model from the metamodels. Second, the
model code is automatically extracted from them.

After having instantiated the patterns in the traces, our pro-
gram infers and prints the MRs specified as OCL expressions,
represented by the third step in Figure 7. Each MR inferred
is an instance of one of the 24 DIMRs that our catalogue con-
tains. The inferred MRs are printed as they are shown on our
webpage [77]: they are organized according to the patterns de-
scribed in Section 3.3 and, within each pattern, they are classi-
fied by different metamorphic input patterns. Therefore, those
MRs that share the same MR;p are printed together.

Please note that by not having the ATL model transformation
as input to our program, it can be trivially extended to be used
with any model transformation language. All we need is for
the specific model transformation program to generate an exe-
cution trace model. Our MRs4MTgenerator is available from
our website [77].

4. Evaluation

In this section we present an evaluation of our approach
based on seven case studies. In particular, we are interested
in answering the following research questions (RQs).

e RQI1. Feasibility: Is is possible to automatically infer
likely metamorphic relations for any model transfor-
mation with the user having no knowledge about the
transformation? Since, at the time of writing, there was
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no proposal to automatically infer metamorphic relations
for model transformations, we want to answer if that is
feasible.

e RQ2. Precision: What is the precision of our inferred
metamorphic relations? Due to the fact that the inferred
MRs are obtained automatically, without any user inter-
vention, we want to study whether they are accurate and,
therefore, can be applied in testing processes.

¢ RQ3. Usefulness: Is our approach able to detect faults
in regression testing? In order to test if our approach can
be usable in this context, we want to check whether it can
identify mutants created with injected faults.

In order to answer RQ1 and RQ2, we use seven case stud-
ies that target different problem areas and differ in their level
of complexity regarding number and types of features used
(number of rules, use of imperative rules, filters, helpers...).
The answer to RQ3 is given by producing mutants and sev-
eral source test case inputs and follow-up test case inputs for
one of the seven case studies, namely our running example, the
PetriNet2PNML model transformation.

The rest of this section is structured as follows [80]. First,
we describe the seven case studies used in the evaluation. Sec-
ond, we define the evaluation metrics for answering RQ2 and
RQ3. Third, we describe the execution environment and detail
the process followed in this evaluation, which is composed of
manual and automated tasks. Fourth, we present the results and
the answer to the three RQs. Finally, we discuss some aspects
of our approach and present the threats to the validity of this
evaluation.

4.1. Case Studies

This section presents the seven case studies used to evaluate
our approach and developed solution with respect to the RQs.
They are seven model transformations, taken from the ATL Zoo
repository [52], master courses and from the literature. They
differ regarding the application domains, size of metamodels
and in the number and types of features of ATL used. Table 1
summarizes some information regarding the transformations.
We can see that the size of the metamodels vary from 6 to 15
classes in the input metamodels and from 5 to 48 classes in the
output metamodels. As for the size of the transformations, the
number of rules vary between 3 and 13 rules, and the lines of
code (LoC) between 70 and 273 lines. Therefore, the smallest
transformation is four times smaller than the biggest one. There
are transformations using none, 1 or 2 helpers. We have also
included further information, namely whether imperative rules,
conditions and filters are used within the transformations. An
explanation of the domains of each transformation is given in
the following.

o PetriNet2PNML. This is our running example and is ex-
plained in detail in Section 3.1.

e Class2Relational. It is a simplified transformation of
a class schema model to a relational database model,
adapted from [81].



Table 1: Model transformations used as case studies and their characteristics

ID Transformation i# Classes MM #LoC #Rules # Helpers Imperative Conditions Filters
Name Input - Output rules
CS1 PetriNet2PNML 9-13 110 4 0 X X X
CS2 Class2Relational 6-5 100 7 1 X X v
CS3 Grafcet2PetriNet 9-9 89 5 0 X X X
CS4 | IEEE1471_2_MoDAF 14 - 48 229 13 1 X v v
CS5 ATOM2RSS 14 -9 70 3 0 X X X
CS6 SOOML2SOOPL 15-10 273 10 2 X X X
Families2Persons
CS7 Extended 11-12 111 10 0 v X v

o Grafcet2PetriNet. This transformation establishes a
bridge between grafcet, a mainly French-based represen-
tation support for discrete systems, models and petri net
models.

o IEEE1471 2 _MoDAF. This is a conceptual transforma-
tion between IEEE1471 Conceptual Model, a terminology
that defines views and viewpoints concepts about archi-
tectural descriptions, and MoDAF Architecture View, an
architecture framework specified by the British Ministry
of Defense that is based on the IEEE1471 terminology.

e ATOM2RSS. This transformation permits to get an RSS
model from an ATOM model. RSS is a format for syn-
dicating news and the content of news-like sites, includ-
ing major news sites like Wired, news-oriented community
sites like Slashdot, and personal web logs; while ATOM is
an XML-based file format intended to allow lists of in-
formation, known as “feeds”, to be synchronised between
publishers and consumers.

e SOOML2SOOPL. This model transformation takes as
input a model representing an Object Oriented Model-
ing Language and transforms it into a model represent-
ing an Object Oriented Programming Language. This ATL
model transformation has been created by the Business In-
formatics Group of the Institute of Software Technology
and Interactive Systems at the Vienna University of Tech-
nology (TU Wien). It is used as part of a Master Course.

e Families2Persons_Extended. This is an extended ver-
sion of the original Families2Persons model transforma-
tion that can be found in the ATL Zoo and that has been
discussed in a number of related works on verification and
testing [82].

4.2. Evaluation Metrics

To obtain the precision of our approach and therefore to an-
swer RQ2, we compute the precision measure originally de-
fined in the area of information retrieval [83]. In the context
of our study, precision denotes the fraction of correctly inferred
MRs among the set of all inferred MRs. When we say that
a MR is correctly inferred, we mean that this MR meets the
specification of the transformation. In fact, the set of MRs
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automatically inferred with our approach is nothing but (part
of) the specification of the model transformation. Actually,
the formal specification of model transformations by means of
OCL expressions has been proposed [84, 85, 86, 9], so our ap-
proach provides a way to automatically obtain a formal speci-
fication for model transformations based on metamorphic rela-
tions. Therefore, we assume that a MR is not correctly inferred
when it does not meet any part of the specification of the trans-
formation. In practical terms, this means that the MR will not
hold for all possible SMs.

For computing precision, we manually classified the inferred
likely MRs as true positives (TPs) and false positives (FPs).
They have been manually classified by the authors of the pa-
per, who are ATL experts and knowledgeable of the transforma-
tions used in the evaluation. It incurred an effort of around 1.5
persons-day. The fact that the MRs are classified and grouped
according to their MR,p facilitated this task. A MR is a true
positive when it meets (part of) the specification of the model
transformation. On the contrary, a MR is a false positive when
it specifies something that does not meet the specification of
the model transformation. From the number of true positives
and false positives —|T P| and |F P|-, we compute precision as
follows:

TP
|TP| + |FP|

In order to answer RQ3 we need to measure the usefulness
of our approach. To address this, we have focused on our run-
ning example, namely the PetriNet2PNML case study. We want
to test if the automatically inferred MRs are useful for detect-
ing faults in regression testing. To this end, we have automat-
ically generated 30 different source test case inputs (SM, cf.
Figure 5), whose characteristics are described in detail on our
webpage [77]. In short, the number of PetriNets in the models
range from 1 to 3, and the number of Places, Transitions, Place-
ToTransition and TransitionToPlace range from 0 to 15. In this
way, we make sure that we maximize diversity among the dif-
ferent models and we ensure that all elements of the source
metamodel are covered.

The next step is to create mutants of the PetriNet2PNML
model transformation. The idea is that these mutants emulate
semantic faults [87] that could be present when evolving the
model transformation. In order to create them, we have applied
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Table 2: Mutants generated for PetriNet2PNML

Mutant | Line number Mutation operators
M1 56 1 binding deletion
M2 76 1 binding deletion
80-87 2 out-pattern element deletion
M3 100 1 binding value change
M4 33 1 binding value change
44-47 1 out-pattern element addition
M5 42 1 binding deletion
M6 95 1 filter addition
M7 29 1 binding value change
44-47 3 out-pattern element addition
55-56 1 pair of binding features swapped
M8 77-78 1 pair of binding features swapped
100-101 1 pair of binding features swapped
MO 29 1 binding value change
93-113 1 rule deletion
M10 29 1 binding value change
95 1 in-pattern element class change
60 1 binding value change
Ml11 62-65 1 out-pattern element deletion
68-75 1 rule addition
M12 11,50, 72, 95 4 filter addition
M13 50, 72 2 in-pattern element class change
Mid 29,102, 103 3 binding value change
113-120 2 out-pattern element addition
50 1 in-pattern element class change
MI15 70-88 1 rule deletion
102, 103 2 binding value change

several mutation operators presented in [88]. The 15 mutants
produced are summarized in Table 2 and available on our web-
site [77]. These mutants will be used for calculating the muta-
tion score, i.e., the rate of mutants that are killed.

4.3. Execution Environment

All the runs have been executed on a PC running the 64-
bits OS Windows 10 Pro with processor Intel Core i7-4770 @
3.40GHz and 16 GB of RAM. We have used Eclipse Modeling
Tools version Mars Release 2 (4.5.2), and we had to install the
plugins ATL (we have used version 3.6.0) and ATL/EMFTVM
(version 3.8.0). Finally, Java 8 is needed.

4.4. Evaluation Process

This section describes the execution steps needed to obtain
the artifacts that have been used in the evaluation of our ap-
proach and gives information of the time taken to execute some
automated tasks.

In order to answer RQ1 and RQ2, we needed to obtain the
MRs for the seven case studies described before. As shown
in Figure 13 and described in Section 3.4, our approach auto-
matically infers MRs for any given model transformation. As
input, our MRs4MTgenerator simply needs the result of at least
one execution of the model transformation in terms of a trace
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model, as well as the Java code generated from the source and
target metamodels, which is done by EMF. For the same model
transformation with the same trace model(s) as input, our pro-
gram always infers the same MRs. All the executions of our
program for the seven case studies take less than 0.5 seconds
in inferring and printing all the MRs organized by patterns and
MR Sip.

For answering RQ3, related to the usefulness of our ap-
proach, we have carried out a study with several mutants, source
test case inputs and follow-up test case inputs. The process fol-
lowed involves some automatic and some manual steps. The
different artifacts in the different parts of the process are dis-
played in Figure 14.

As we can see in the upper part, we have 30 source models
(SMs). They have been generated automatically by a simple
Java program, whose execution has taken 0.03 seconds in pro-
ducing the 30 models. For each of these models, 12 follow-up
source models (fuSMs) have been generated. We have imple-
mented a Java class with a method for generating each of the 12
fuSMs. The execution of all of them for all the 30 SMs is done
all at once, taking 0.25 seconds.

We have also generated 15 mutants of the PetriNet2PNML
model transformation described before, what has been done
manually. The next step is to automatically execute all the
SMs and fuSMs in each of the mutants to obtain all target mod-
els (TMs) and follow-up target models (fuTMs) needed. This
means to perform 15 X 30 + 15 x 30 X 12 = 5850 executions,
which is done all at once by a Java program that invokes all
the transformations with the corresponding input models. The
execution of this program takes 65.5 seconds.

For checking the MRs generated, we have used
OCLinEcore®. 198 MRs are inferred for the PetriNet2PNML
case study. Out of those, we have only taken into consideration
those that are TPs, which are a total of 188 MRs (cf. Table 4).
Since each MR has been checked for each mutant and each

Shttps://wiki.eclipse.org/0CL/0CLinEcore



Table 3: Execution Times in the Evaluation Study

Task Time (sec)
RQ1,2 Generation and printout of MRs <0.5
Generation of 30 SMs 0.03
Generation of 30 X 12 fuSMs 0.25
RQ3 Execution of 15><'30+ 15x30x12 65.5
model transformations
Execution of 188 x 15 x 30 checks 71.3
Table 4: Results for precision
ID .# MRs #TPs #FPs # Precision
inferred
CS1 198 188 10 94.9%
CS2 60 49 11 81.7%
CS3 122 122 0 100%
CS4 1242 1228 14 98.9%
CS5 118 108 10 91.5%
CS6 256 235 21 91.8%
CS7 124 114 10 91.9%
Overall 4254 4101 153 96.4%

SM, this means we have 188 x 15 x 30 = 84600 checks
of metamorphic relations, done using OCLinEcore in 71.3
seconds.

The major effort has been made for classifying the MRs ac-
cording to their scenario. Indeed, as we have explained in Sec-
tions 2 and 3, several metamorphic relations can share the same
metamorphic input relation (MR;p). Recall that a MR;p is used
to construct pairs [SM, fuSM], i.e., it represents the change that
is performed in fuSM with respect to SM. In our running ex-
ample, some sets of MRs out of the total of 188 MRs share the
same MR;p. Specifically, as described in detail on our web-
site [77], there are 34 different MRs;p. As explained in Sec-
tion 3.4, some MRs;p may imply others. For this reason and in
order to minimize the number of executions for evaluating our
approach, we have grouped the 34 MRs,p in the 12 so-called
scenarios mentioned above, so that, for each source test case
input, we only have to define 12 MRs,p, i.e., we only need 12
fuSMs, as detailed on our website [77].

A summary of the execution times of all automated tasks is
displayed in Table 3.

4.5. Results

RQ1. Column # MRs inferred of Table 4 shows the number
of MRs that are inferred for each model transformation. We
can assert that our approach has achieved its target of automat-
ically inferring metamorphic relations. In fact, we observe that
a high number of them are produced. Our approach has been
applied to seven model transformations from different domains
and that vary in the size of the source/target metamodels and of
the transformation (cf. Table 1). Furthermore, the tester does
not need to have any knowledge of the transformations nor the
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transformation domain, since our approach is able to infer the
MRs without any user intervention. It only needs the inputs
shown in Figure 13.

This has been possible thanks to the definition of domain-
independent metamorphic relations (DIMRs). These DIMRs
reflect the behavior that model transformations must have if
specific patterns occur in their traces, as explained through Sec-
tion 3. In the next two RQs we study the precision and useful-
ness of the inferred MRs.

RQ2. We have manually checked the true positives (TPs) and
false positives (FPs) of the metamorphic relations automatically
inferred. The specific MRs that result in TPs and FPs are shown
on our website [77]. The results are summarized in Table 4. We
can see that our approach produces a high number of TPs, being
the precision in one case study of 100% and the overal precision
of 96.4%. Furthermore, some of the FPs are produced because
the trace models that serve as input are not complete enough.
If they had contained more traces, there would have likely been
less FPs. This is explained in detail in Section 4.6. Summa-
rizing, we can assert that our approach produces accurate meta-
morphic relations, although there is still room for improvement.

RQ3. We consider that a specific MR is violated for a specific
mutant if it is violated, at least, in one out of the 30 source
test case inputs. In Table 5 we show how many instances of
each of the 24 domain-independent metamorphic relations of
our catalogue are violated in each mutant. The second column
indicates the number of instances for each domain-independent
metamorphic relation that are inferred in the PetriNet2PNML
model transformation.

The fact that the instances of a specific DIMR are never vi-
olated does not mean this DIMR is useless. The reason for the
non violation is that we are utilizing a specific model transfor-
mation with 15 mutants. Should we have used a different exam-
ple or different mutants, we would have gotten different results.
In fact, the generic nature of our approach, where metamorphic
relations are defined in an abstract way in order to be inferable
for any model transformation, makes our approach applicable
to any model transformation, meaning that, at the same time, it
is not tailored at one particular model transformation. This is
the reason why some DIMRs do not have any instances or why
some instances are never violated for our particular running ex-
ample.

In the table we can see that there are MRs violated in all mu-
tants but one, mutant 5. We may clarify that mutant 5 is not an
equivalent one, i.e., the TMs created by it will differ from those
created by the original transformation for some SMs. This mu-
tant is constructed by removing a binding of one of the URIs
created by the model transformation. These results show that
our approach is able to kill 14 out of 15 mutants, obtaining
a mutation score of 93.3%. Therefore, we can conclude that
our approach is useful for identifying errors in regression test-
ing. Furthermore, due to the granularity used when defining
the domain-independent metamorphic relations, as explained in
Section 3.4, having a look at the MRs that have failed for a mu-
tant helps identifying the reason for such failure. A detailed
spreadsheet document showing the specific MRs that fail for



Table 5: Number of instances of the DIMRs violated in each transformation mutant of the PetriNet2PNML transformation

| #Inst | M1 M2 M3 M4 M5 M6 M7 M8 M9 MI0O MIl MI2 MI3 Mi4 MI5| Total

DIMR_1_1 17 - 2 - 1 - 6 6 - 6 3 1 6 7 - 12 50
DIMR_1.2 0 - - - - - - - - - - - - - - - 0
DIMR_1.3 0 - - - - - - - - - - - - - - - 0
DIMR_1.4 23 - - - - - - 3 - - - - - 2 2 4 11
DIMR_2_1 15 - 2 - - - 7 4 - 6 3 1 - 2 - 7 32
DIMR 2.2 0 - - - - - - - - - - - - - - - 0
DIMR 2.3 0 - - - - - - - - - - - - - - - 0
DIMR 2 4 5 - - - - - - - - - - - - - - - 0
DIMR_2_5 0 - - - - - - - - - - - - - - - 0
DIMR 2.6 20 - - - - - 2 2 - - - - - 2 4 3 13
DIMR_3_1 17 1 1 2 1 - 6 6 8 6 3 2 6 8 - 9 59
DIMR 4._1 12 1 - 2 - - 1 1 9 4 2 1 - 4 - 4 29
DIMR_5_1 1 - - - - - - - - - - - - - - - 0
DIMR 6_1 1 - - - - - - - - - - - - - - ; 0
DIMR_7_1 15 - - - - - - - - - - - - - - 13 13
DIMR_7.2 6 - - - - - - - - - - - - - - 3 3
DIMR_7_3 1 - - - - - - - - - - - - - - - 0
DIMR_7 4 16 - 1 - 1 - 8 8 - 12 3 1 8 7 - 10 59
DIMR_8_1 13 - - - - - 7 4 - - - - - - 7 18
DIMR_8_2 6 - - - - - - - - - - - - - - 2 )
DIMR_8_3 1 - - - - - - - - - - - - - - - 0
DIMR _8 4 15 - 1 - - - 5 2 - 4 4 1 - 2 - 6 25
DIMR 9_1 2 - - - - - - - - 2 1 - - - - 2 5
DIMR_10_1 2 - - - - - - - - 2 1 - - - - 2 5
Overall ‘ 188 ‘ 2 7 4 3 0 42 36 17 42 20 7 20 34 6 84 ‘ 324

each mutant and each test case is available on our website [77].

4.6. Discussion

In the following we discuss some aspects that determine the
quantity and quality of the inferred MRs.

Regarding the quantity, the number of MRs that are inferred
for a specific model transformation is determined by the follow-
ing factors:

e Number of classes in source MM. The more classes the
source MM has, the more metamorphic input relations
(MRs;p) in PatternMR _1 and PatternMR_2 are inferred. In
fact, most times one MR;p will be defined for each class.

e Number of attributes in source and target MMs. The
more attributes both MMs have, the more MRs;p for Pat-
ternMR_3, PatternMR_4, PatternMR_5 and PatternMR_6
are likely to be inferred. However, it also depends on the
transformation.

o Number of classes in target MM. The more classes the tar-
get MM has, the more instances of DIMRSs in PatternMR _1
and PatternMR_2 for each MRs;p are inferred. In fact,
the number of MRs inferred in these two patterns for each
MRs;p is precisely the number of classes of the target MM.

This is the main reason why there are so many MRs in-
ferred in the IEEE1471_2_MoDAF case study (cf. Tables 1
and 4).

Number of references in source and target MMs. The
more references the target MM has, the more instances
of DIMRs in PatternMR_7 and PatternMR_8 are inferred.
Furthermore, the more references there are in the source
MM, the more MRs for PatternMR_9 and PatternMR_10
are likely to be inferred. However, the latter also depends
on the transformation.

Number of rules of model transformation. The more rules
a model transformation has, the more instances of DIMRs
in all patterns are likely to be inferred.

Number of out-pattern elements. The more out-pattern el-
ements are produced in the rules of the transformation, the
more MRs;p for PatternMR_1, PatternMR_2, PatternMR_7
and PatternMR_8 are inferred.

Number of bindings in rules. The more bindings the
rules have, the more MRs;p for PatternMR_3, Pat-
ternMR_4, PatternMR_5, PatternMR_6, PatternMR_9 and
PatternMR _10 are likely to be inferred.

Regarding the quality of the MRs inferred, the number of TPs

and FPs obtained are influenced by some aspects. As explained
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in Section 3.4 and captured in Figure 13, our tool takes as input
a set of trace models. The more complete, in terms of meta-
model coverage, the source models are, the more variability of
traces the resulting trace models contain. Having as input for
our approach several trace models is very useful, since our tool
combines all of them as if it only received a big trace model.
Therefore, if several incomplete trace models are received as in-
put, the combination of all of them may yield a complete trace
model. By complete we mean that all the possible traces are
present.

Not having a complete trace model may produce FPs. For
instance, let us suppose that we have a trace that records the
generation of an element of type TargetElement from an ele-
ment of type SourceElement (cf. Figure 11(a)), and there is no
other trace that has a SourceElement as input. Our tool would
infer an instance of DIMR_1_1 (cf. Listing 8) and another one
of DIMR 2_1 (cf. Listing 10) according to this information.
However, in the model transformation we could have two rules
that take a SourceElement as input, and both rules have a filter,
so the MRs produced are FPs if the out-pattern elements pro-
duced in both rules are of different types. The reason for the
generation of these FPs is that the source model that produces
this specific trace model is incomplete in the sense that it should
have more elements of type SourceElement such that all rules
that have a SourceElement as input are fired.

In the five case studies taken from the ATL Zoo where we
have applied our approach (cf. Section 4.1), we have taken as
input the source models available in the zoo. In the other two
case studies we have produced a source model that contains at
least an element of each class in the metamodel. The reason
for not creating big source models to use as input of the model
transformations, what can be done with approaches such as [6,
89, 5, 4, 3], is that we wanted to evaluate the MRs inferred with
the input models that were already available, so that no extra
effort was required by the tester.

The following is a summary of the reasons why some FPs
are produced when the trace models used as input of our tool
are not complete enough:

o Rules with filters. In may happen that if there are several
rules than contain filters, then some of the instances of the
DIMRs in PatternMR_I and PatternMR_2 do not always
hold.

o String binding initialized with condition. When an at-
tribute of type String is initialized with a condition, it
may produce instances of the DIMRS in PatternMR_3, Pat-
ternMR _4, PatternMR_5 and PatternMR _6 that are FPs.

o String binding initialized with concatenation of two at-
tributes. When an attribute of type String is initialized
with the concatenation of two attributes of the rule’s input
element, it may produce instances of the DIMRs in Pat-
ternMR_3, PatternMR_4, PatternMR_5 and PatternMR_6
that are FPs.

o String attribute set in imperative rule. When the String
value of an attribute is initialized in a rule imperatively
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called and not in the main rule, our tool may infer instances
of DIMRs in PatternMR_3, PatternMR_4, PatternMR_5
and PatternMR_6 that are FPs.

e More than one nested containment associations. When a
source class contains another class that, in turn, contains
one or more classes (and so on), our tool may produce
instances of the DIMRS in PatternMR _4 and PatternMR_8
that are FPs.

The reasons for each and all of the specific MRs inferred in
our seven case studies that result in FPs are explained on our
website [77].

4.7. Threats to Validity

4.7.1. Threats to Internal Validity

Are there factors that might affect the results of this evalua-
tion? We consider the following internal threats to the validity
of our evaluation based on the executed experiments. First, as
source models for the model transformations used as case stud-
ies we have mainly used those available in the ATL Zoo [52].
Should we have used smaller models, the precision of the spe-
cific MRs inferred would have likely been worse. However, at
the same time, we could have generated more complete input
models [6, 89, 5, 4, 3], what would have likely resulted in more
precise MRs. In any case, a thorough evaluation is needed in or-
der to determine if adding more complete input models would
not generate new FPs, or even if it would not remove some of
the TPs generated in this evaluation. Second, the precision has
been calculated by manually extracting the true positives and
false positives for all the generated metamorphic relations in
the seven case studies. Despite this process has been carried
out by the authors, experts in MDE and model transformations,
some TPs or FPs may have been incorrectly identified. In any
case, an argument for the mitigation of this threat is that the re-
sulting precision is similar for the seven case studies, being the
standard deviation among them of only 6.42%.

Third, the experiment to evaluate the usefulness of our ap-
proach requires the generation of several inputs, what may in-
fluence the results. In this sense, we have generated 30 source
test case inputs that, although it is not a big number, we consider
sufficient because the input metamodel is not big. The mutants
could have also been designed differently. We have decided to
use mutation operators that have been proposed in the literature
and whose automation is feasible [88]. Despite more mutants
could have been generated, the transformation is not that big, so
we do not think the results would have varied significantly. As
another remark, the usefulness has been checked only for the
regression testing scenario. We leave as future work a deeper
evaluation that also considers incremental transformations and
transformation migrations.

Finally, the possibility of deriving incorrect MRs if the trans-
formation program is faulty is an intrinsic problem of the auto-
mated inference of MRs and program invariants [90, 91, 92,
93]. This is why the scope of these types of techniques is
typically regression testing, that is, MRs are inferred from a
well-tested version of the program with the intention of using



them to detect faults in future versions of the system. In our
approach and evaluation, we assume the model transformation
from which the MRs are inferred has been well-tested. Should
it had contained errors, many of the MRs obtained would not
have met the specification of the transformation.

4.7.2. Threats to External Validity

To what extent is it possible to generalize the findings? The
first threat is the limited number of transformations we have
evaluated, which externally threatens the generalizability of our
results. The results for the precision of our approach are based
on the seven case studies summarized in Table 1. To mitigate
this threat, we have tried to select model transformations that
differ in their domains, size of metamodels and transformation,
and variability of features used within the transformation. Fur-
thermore, considering the small deviation among the resulting
precision for the seven case studies, it should not vary much
if more model transformations are studied. As for the useful-
ness study, we have chosen our running example to be studied
in depth. Further studies with other model transformations may
have yielded different results. Indeed, the fact that the instances
of a specific DIMR are never violated does not mean this DIMR
is useless. The reason for the non violation is that we are utiliz-
ing a specific model transformation with 15 mutants. Should we
have used a different example or different mutants, we would
have gotten different results. In any case, based on the high
percentage of mutants killed, 93.3%, we are confident that our
approach would have been able to kill many mutants in other
model transformations.

Finally, we have applied our approach for the Atlas Transfor-
mation Language (ATL) due to its importance both in industria
and academia, so it would be interesting to test it with other
transformation languages. In fact, we believe our approach
would produce similar results for any model transformation lan-
guage as long as the result of its executions can be stored in a
trace model (cf. Figure 3).

5. Related Work

In this section we summarize some works that relate to our
approach from different contexts. First, we present approaches
that target the testing of model transformations, especially those
that propose the generation of test case inputs for model trans-
formations. Second, we describe the only work that, at the time
of writing, has applied metamorphic testing to model transfor-
mations. Finally, we enumerate some approaches that try to
automatically infer metamorphic relations.

5.1. Testing in Model Transformations

Many approaches have proposed the generation of test case
inputs for model transformations, where most of them em-
ploy a black-box approach. Test case inputs, i.e., source mod-
els, are mainly generated either considering the source meta-
model [94, 95, 96] or some specified requirements [97, 5]. Most
of the approaches are based on constraint satisfaction by means
of SAT solvers. There is also an approach to automatically com-
plete test input models. Thereby, the transformation engineer
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only needs to define a model fragment, which is then automat-
ically completed in order to obtain a valid test case input [6].
There are also approaches that propose white-box methods. For
instance, Gonzalez and Cabot [3] propose to generate test input
models out of ATL model transformations by extracting OCL
constraints and using a model finder to compute the models ful-
filling certain path conditions.

These works are complementary to our approach since, as
explained in Section 4.6, they could be used in order to produce
complete source models to be given as input to the model trans-
formations for which we want to infer metamorphic relations.
This would increase the chances to obtain accurate metamor-
phic relations.

Other than these works, there are several approaches that can
be seen as orthogonal to ours for the testing of model trans-
formations. For instance, some works propose to apply static
analysis to ATL model transformations [7, 9], so that errors
can be spotted without the need to execute the transformation.
There are works that propose the translation of model transfor-
mation languages to formal domains, where specific analysis
can be carried out. For instance, Troya and Vallecillo [8] de-
scribe a formal semantics for ATL by translating it to Maude.
The work in [21] automatically transforms transformations in
a number of transformation languages (such as ATL) to OCL,
and the work by Anastasakis et al. [22] transforms QVT model
transformations to Alloy in order to verify if given assertions,
i.e., properties, hold for the given transformations. Calegari et
al. [23] propose an interactive approach to verify contracts for
ATL transformations based on the Coq proof assistant. This ap-
proach is unbounded, but requires some user guidance. Another
approach using the Coq proof assistant to ensure the correctness
of model transformations is presented in [98].

Other approaches using theorem provers for model transfor-
mation verification go one step further by using modern SMT
solvers such as is done in [99, 100]. These approaches do not
require user guidance as it was required in the aforementioned
Cog-based approaches. They translate the ATL transformations
as well as the contracts expressed in OCL into first-order logic
expressions and use Z3 for performing the theorem proving.
Oakes et al. [20] present an approach to fully prove proper-
ties defined as contracts for model transformations expressed
in declarative ATL, including advanced features such as lazy
rules, by translating the transformations to DSLTrans [101].

Regarding properties specified as contracts, in [82, 102] the
authors describe their method where ‘Tracts’ can be specified
for model transformations. These tracts define a set of con-
straints on the source and target metamodels, a set of source-
target constraints, and a tract test suite, i.e., a collection of
source models satisfying the source constraints. Our metamor-
phic relations can be seen similar to these tracts, which are also
expressed in OCL. However, while these tracts have to be man-
ually defined and a good knowledge of the transformation do-
main and purpose are necessary, our metamorphic relations are
inferred automatically.



5.2. Metamorphic Testing in Model Transformations

At the time of writing, only Jiang et al. [29] have proposed
the application of metamorphic testing to test model transfor-
mations, which is the work that has inspired us to keep advanc-
ing in the matter. They empirically prove that metamorphic
testing is an effective testing method for model transformation
programs. However, differently from our approach, they focus
on one case study, the popular Class2Relational model transfor-
mation available on the ATL Zoo [52], for which they manually
define metamorphic relations based on their knowledge of the
transformation and its domain.

5.3. Automatic Inference of Metamorphic Relations

Enumerating a set of metamorphic relations (MRs) that
should be satisfied by a program is a critical initial task in ap-
plying metamorphic testing. Typically, a tester or developer has
to manually identify MRs using her knowledge of the program
under test. This process can easily miss some of the important
MRs that could reveal faults as well as produce incorrect MRs.
Kanewala and Bieman [103, 104, 26] present the first attempt at
developing techniques to automatically infer likely MRs. They
propose to apply advance machine learning algorithms to do
so. The automated method operates by extracting a set of fea-
tures from a function’s control flow graph, what has similarities
to extracting information from the model transformation traces.
In further work [105], they explore the effectiveness of several
representations of the control flow graphs using the machine
learning framework of graph kernels and concluded that a graph
kernel that evaluates the contribution of all paths in the graph
has the best accuracy.

Zhang et al. [27] propose a search-based approach for the au-
tomatic inference of polynomial MRs via dynamically analyz-
ing multiple executions using particle swarm optimization. By
polynomial MRs they refer to a set of parameters to represent a
particular class of MRs. In this way, they convert the problem
of inferring MRs into a problem of searching for suitable values
of the parameters. On polynominal MRs, the relations between
inputs and the relations between outputs are both polynomial
equations. With this approach, the authors are able to automati-
cally infer a high number of MRs, as we also achieve. However,
the application domain of this approach is drastically different
from our application domain, so no fair comparison is possible.

Su et al. [28] present an approach that guides developers to
so-called likely metamorphic properties (MPs) that may apply
to their systems. In this sense, the approach is not completely
automatic, since the developers profile executions of the system
to detect which MPs might apply to which methods, and then
present these properties for testers to either confirm or reject.

Despite approaches for the automatic inference of metamor-
phic relations are starting to appear, this is still a major chal-
lenge in metamorphic testing.

5.4. Synopsis

To the best of our knowledge, in this paper we have presented
the first approach to automatically infer metamorphic relations
for model transformations. The tester does not need to have any
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knowledge about the model transformations nor their domains,
since the MRs are automatically generated. She only needs to
have a source model for the transformation. Finally, compared
to related works on the inference of MRs [103, 104, 26, 27, 28],
our approach only needs one execution of the program under
test in order to produce the MRs.

6. Conclusions

In this paper we have presented the first approach for the
automatic inference of likely metamorphic relations in model
transformations. We have created a catalogue of 24 likely
domain-independent metamorphic relations defined generically
and grouped by patterns. This means that they are to be in-
stantiated for specific model transformations. Our approach re-
ceives the executions of model transformations as trace models
as input and automatically infers a set of specific MRs that are
instances of the domain-independent metamorphic relations of
our catalogue. The tester does not need to have any knowledge
of neither the transformation nor its domain in order to extract
the MRs. Furthermore, the way the patterns have been defined
makes our approach extensible, so future versions could have
more accurate or new MRs. Our approach has been applied to
model transformations written in ATL due to its importance in
both industry and academia. Nevertheless, it can be applied to
any model transformation language as long as it is able to store
the result of the execution in trace models.

Together with the approach by Jiang et al. [29], this paper
opens the door to a novel way of testing model transforma-
tions, so-called metamorphic testing. Since the more complete
the input models for the model transformations are, the more
accurate the automatically inferred metamorphic relations are
likely to be, our approach can be used in conjunction with ex-
isting approaches for the automatic generation of test case in-
puts in model transformations [94, 95, 96, 97, 5, 6, 3]. Be-
sides, there exist several approaches that propose the applica-
tion of different techniques in the testing of model transforma-
tions [7, 9, 8, 21, 22, 23, 98, 99, 100, 20, 101, 82, 102] and that
could be complemented with our approach.

Our approach is specifically tailored at detecting faults
in model transformations under three application scenarios,
namely regression testing, incremental transformations and mi-
grations among different transformation languages. In fact, we
assume the MRs are extracted from a well-tested version of the
model transformation with the intention of using them to detect
faults in (i) future versions of the transformation (regression
testing), (ii) incremental versions of the original transformation
and (iii) the same transformation written in a different language.

There are several lines of future work that may follow. First,
we have proposed an initial set of domain-independent patterns
in the traces (cf. Figure 11). It would be interesting to extend
this set by identifying new patterns. One possibility is to come
up with techniques to detect the presence of filters in the rules.
This could be done by studying the value of the attributes and
references of the source elements in the traces. Having more
patterns in the traces would produce more domain-independent
metamorphic relations, so that our catalogue could be extended.



Second, it would be interesting to integrate some of the ap-
proaches to automatically generate test case inputs within our
tool. In this way, the tester would not need to provide a source
model for the model transformation, so the process of generat-
ing the MRs could be further automated.

Finally, we would also like to perform a deeper evaluation
in order to consider incremental transformations and migra-
tion scenarios. It would be interesting not only to check if
the MRs inferred are able to detect faults, but also the defini-
tion of a methodology to help testers actually locate the faults.
The methodology would define a way to locate the errors that
produce the violation of the MRs, by analyzing from the more
specific to the more general.
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