

University of Birmingham

Analysing and modelling runtime architectural
stability for self-adaptive software
Salama, Maria; Bahsoon, Rami

DOI:
10.1016/j.jss.2017.07.041

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Salama, M & Bahsoon, R 2017, 'Analysing and modelling runtime architectural stability for self-adaptive
software', Journal of Systems and Software, vol. 133, pp. 95-112. https://doi.org/10.1016/j.jss.2017.07.041

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 28. Apr. 2024

https://doi.org/10.1016/j.jss.2017.07.041
https://doi.org/10.1016/j.jss.2017.07.041
https://birmingham.elsevierpure.com/en/publications/7b3173a5-c95c-451b-b026-c1a2dbe3c53b

Accepted Manuscript

Analysing and Modelling Runtime Architectural Stability for
Self-Adaptive Software

Maria Salama, Rami Bahsoon

PII: S0164-1212(17)30162-0
DOI: 10.1016/j.jss.2017.07.041
Reference: JSS 10014

To appear in: The Journal of Systems & Software

Received date: 27 June 2016
Revised date: 14 July 2017
Accepted date: 27 July 2017

Please cite this article as: Maria Salama, Rami Bahsoon, Analysing and Modelling Runtime Ar-
chitectural Stability for Self-Adaptive Software, The Journal of Systems & Software (2017), doi:
10.1016/j.jss.2017.07.041

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.jss.2017.07.041
http://dx.doi.org/10.1016/j.jss.2017.07.041

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

• Analysing and modelling run-time architectural stability for self-adaptive
software

• Focus on stabilising the quality of service provision and quality of adap-
tation

• Consider multiple stability concerns and viewpoints

• Application to the case of cloud architectures

1

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Analysing and Modelling Runtime Architectural
Stability for Self-Adaptive Software

Maria Salamaa,∗, Rami Bahsoona

aSchool of Computer Science, University of Birmingham,
Birmingham, B15 2TT, UK

Abstract

With the increased dependence on software, there is a pressing need for engineer-
ing long-lived software. As architectures have a profound effect on the life-span
of the software and the provisioned quality of service, stable architectures are
significant assets. Architectural stability tends to reflect the success of the sys-
tem in supporting continuous changes without phasing-out. For self-adaptive
architectures, the behavioural aspect of stability is essential for seamless op-
eration, to continuously keep the provision of quality requirements stable and
prevent unnecessary adaptations that will risk degrading the system. In this
paper, we introduce a systematic approach for analysing and modelling archi-
tectural stability. Specifically, we leverage architectural concerns and viewpoints
to explicitly analyse stability attributes of the intended behaviour. Due to the
probabilistic nature of systems’ behaviour, stability modelling is based on a
probabilistic relational model for knowledge representation of stability multiple
viewpoints. The model, empowered by the quantitative analysis of Bayesian
networks, is capable to conduct runtime inference for reasoning about stabil-
ity under runtime uncertainty. To illustrate the applicability and evaluate the
proposed approach, we consider the case of cloud architectures. The results
show that the approach increases the efficiency of the architecture in keeping
the expected behaviour stable during runtime operation.

Keywords: software architecture, architectural stability, self-adaptive
architecture, sustainability, quality of service, cloud architecture

1. Introduction

Modern software systems are increasingly operating in highly open and dy-
namic environments [1]. Subsequently, self-adaptation has widely emerged for

∗Corresponding author
Email addresses: m.salama@cs.bham.ac.uk (Maria Salama), r.bahsoon@cs.bham.ac.uk

(Rami Bahsoon)

Preprint submitted to Journal of Systems and Software July 14, 2017

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

engineering modern software systems to achieve the necessary level of dynam-
icity and scalability [2]. For a quick response to runtime changes, systems au-5

tonomously and dynamically adapt their architectures, in order to regulate the
satisfaction of functional and quality requirements [3] [4]. Self-adaptive archi-
tectures are built with self-managing and controlling capabilities following the
principles of autonomic computing, to respond to changes in user requirments
and the execution environment, as well as to cope with uncertainty in runtime10

operation [5].
As architectures have a profound effect on the life-span of the software and

the quality of service (QoS) provision [6] [7], the architecture’s behaviour tends
to reflect the success of the system in constantly provisioning end-users’ require-
ments, as well as supporting and tolerating continuous changes and evolution15

over time. We argue that architectural stability manifests itself as an archi-
tectural property necessary for the operation of self-adaptive software, their
dependability and long-livety over time [8]. To leverage the capabilities of self-
adaptive systems, it is necessary to consider behavioural stability to ensure that
the architecture’s intended behaviour is provisioned during runtime operation.20

An extensive literature survey [9] has revealed that the stability property
has been considered at different levels (e.g. code, whole program, design, ar-
chitecture levels) and with respect to several aspects (e.g. logical, structural,
physical). This implies many different interpretations for considering stability
as a quality attribute. At the architecture level, stability has been viewed as25

the ability to endure with changes in requirements and the environment, while
reducing the likelihood of architectural drifting and phasing-out, by avoiding
ripple structural modifications (over two or more versions the software) [10]
[11]. That is an evolutionary perspective in considering stability, i.e. evolving
the system through a number of releases [12]. Meanwhile, dynamic changes,30

which occur while the system is in operation, require quick and dynamic adap-
tations during runtime [12]. This calls for an operational perspective of stability
that is fundamental for self-adaptive software architectures, to ensure seamless
operation.

Even though adaptation mechanisms have been widely investigated in the35

engineering of dynamic software systems, stability was not explicitly tackled [13].
The shortcoming of current software engineering practice regarding stability is
that the stable provision of certain quality attributes essential for end-users
(e.g. response time for real-time systems) is not explicitly considered in the
adaptation decision taken during runtime. Besides, the adaptation process does40

not address the adaptation properties that affect the quality of adaptation. An
adaptation indefinitely repeating the action or making frequent adaptations will
risk not improving or even degrading the system’s behaviour to unacceptable
levels [13] [14]. The challenge we address in this paper is how to systematically
handle architectural stability as a behavioural aspect during the runtime oper-45

ation of the system, so that the system can be seamlessly adapted and ensure
a constant provision of the intended services. A stable self-adaptive architec-
ture is expected to keep the fulfilment of QoS objectives stable, while performing
adaptations that converge towards these objectives and eliminating unnecessary

2

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

ones.50

To address this challenge, we propose a new systematic approach for analysing
and modelling architectural stability, focusing on the behavioural aspect during
runtime. The analysis model aims to capture stability dimensions, stakehold-
ers’ concerns for stability and related attributes. Given the non-deterministic
behaviour of the systems, modelling stability is based on probabilistic rela-55

tional model for knowledge representation of stability multiple viewpoints and
related attributes. The mathematical model empowers the quantitative analysis
of Bayesian networks for modelling dynamic impact and correlation assessment
among stability attributes and analysing associated trade-offs. This approach
can effectively conduct runtime inference to reason about stability attributes60

given the continuous runtime uncertain changes. Such reasoning improves the
quality of adaptation for achieving the intended behaviour and supporting seam-
less operation. The approach for considering stability shall be an integral part
of self-adaptive software systems runtime operation to ensure effectiveness and
long-term use.65

The main contributions of our work are as follows.

• We propose a model for analysing stability based on architectural concerns
and viewpoints. Stability viewpoints frame the stakeholders’ concerns for
the system’s behaviour along with the dimensions of stability that reflect
the architecture type. Stability attributes are, then, defined to present70

the details of the intended behaviour needed to be kept stable.

• We mathematically model the non-deterministic behaviour of stability at-
tributes using probabilistic modelling. We present the interdependencies
between stability attributes using probabilistic relational model. Based
on that, we quantitatively measure the strengths of dependence relations75

and sensitivity among stability attributes, and construct the Bayesian net-
work using observed data. With the help of Bayesian networks, we conduct
runtime inference to measure the probable effect of stability attributes for
reasoning about the whole architecture’s behaviour under runtime uncer-
tainty.80

• We introduce a systematic approach for considering stability as an archi-
tectural property. The approach consists of three subsequent main phases:
(i) stability analysis aims at building the stability qualitative model that
analyses and presents the intended behaviour, (ii) stability modelling cap-
tures the probabilistic relation between interdependent stability attributes85

by building the stability quantitative model, and (iii) runtime support
which employs the model for runtime inference and reasoning about sta-
bility under runtime uncertainty.

• We apply the proposed approach on the case of self-adaptive cloud archi-
tectures. The analysis model has shown promising capability in exploring90

dimensions, concerns and attributes related to stability, and hence, draw-
ing a comprehensive and explicit consideration of stability as an architec-
tural property. The probabilistic model has quantitatively captured the

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

impacts and correlations between stability attributes. We conduct exper-
imental evaluation using the RUBiS benchmark [15] and the World Cup95

1998 workload trend [16], to stress the architecture with variations of run-
time changing workloads. The results show that reasoning about stability
using the the runtime inference has improved the adaptation decision and
achieved the intended behavioural requirements with less violations.

Organisation. In section 2, we describe the background and discuss related100

work. Section 3 and 4 elaborates the technical contributions of behavioural
stability analysis and modelling. Section 5 presents our holistic approach for
supporting runtime behavioural stability. Section 6 applies our approach to
the case study, followed by the experimental evaluation in Section 7 and the
discussion in Section 8. We discuss the threats to validity of the proposed work105

in section 9. Section 10 concludes the paper and indicates future work.

2. Background

In this section, we introduce the main concepts (sub-section 2.1), sketch the
properties of architectural stability as a quality attribute (sub-section 2.2), and
discuss related work (sub-section 2.3).110

2.1. Definitions of the Main Concepts

Software Architecture. The concept of software architecture has been defined
in different ways under different contexts. In our work, we adopt the defini-
tion of the ISO/IEC/IEEE Standards that defines software architecture as the
“fundamental organisation of a system embodied in its components, their rela-115

tionships to each other, and to the environment, and the principles guiding its
design and evolution” [17]. This definition is in line with early definitions when
the discipline has emerging [18] [19] and with matured ones appearing later
[20]. Software architectures provide abstractions for representing the structure,
behaviour and key properties of a software system [19]. They are described in120

terms of software components (computational elements), connectors (interac-
tion elements), their configurations (specific compositions of components and
connectors) and their relationship to the environment [21] [22].

Software life cycle. The life cycle of a software system consists basically of
the development and operation phases [23]. The development phase includes125

all activities till the decision that the software is ready for operation to deliver
service, such as requirements elicitation, conceptual design, architectural design,
implementation and testing [23]. The operation phase begins when the system is
deployed, configured and put into operation to start delivering the actual service
in the end-user’s environment, cutover issues are resolved and the product is130

launched [23] [17]. The former phase is known as initial development or design-
time, and the latter is usually referred as runtime. After the development and
launch of the first functioning version, the software product enters to different

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

cycles of maintenance and evolution stages till reaching the phase-out and close-
down [24] [23] [17]. During the maintenance stage, minor defects are repaired,135

while the system functionalities and capabilities are extended in major ways in
the evolution stage [24].

Quality Attribute. The definition of a quality attribute we use is of the IEEE
Standard for a Software Quality Metrics defining quality attribute as “a char-
acteristic of software, or a generic term applying to quality factors, quality140

subfactors, or metric values” [25]. According to the same standard, a quality
requirement is defined as “a requirement that a software attribute be present in
software to satisfy a contract, standard, specification, or other formally imposed
document” [25].

Architecturally-significant requirements. Generally, the architecture should ful-145

fil the software requirements, both functional requirements (what the software
has to do) and quality requirements (how well the software should perform)
[26] [27]. Functional requirements are implemented by the individual compo-
nents, while the quality requirements are highly dependent on the organisa-
tion and communication of these components [28]. In the software architec-150

ture discipline, the architecturally-significant requirements are considered, as
not all requirements have equal effect on the architecture [29]. Architecturally-
significant requirements are a subset of technically challenging requirements,
technically constraining and central to the system’s purpose. These require-
ments have signficant influence on the architecture design decisions, as they155

should be satisfied by the architecture [29]. Architecturally-significant func-
tional requirements may define the essence of the functional behaviour of the
system [30], while architecturally-significant quality requirements are often tech-
nical in nature, such as performance targets [31] [32]. This special category of
requirements, describing the key behaviours that the system should perform,160

plays a main role in making architectural decisions and has measurable effect
on the software architecture.

System Behaviour. The behaviour of a system is the “observable activity of the
system, measurable in terms of quantifiable effects on the environment whether
arising from internal or external stimulus” [17]. This is determined by the state-165

changing operations the system can perform [17].

Self-adaptive software system. In general settings, to adapt means “to change
a behaviour to conform to new circumstances” [33]. A self-adaptive software
“evaluates its own behavior and changes behavior when the evaluation indicates
that it is not accomplishing what the software is intended to do, or when better170

functionality or performance is possible” [34] [5] [3]. Intuitively, a self-adaptive
system is one that has the capability of modifying its behaviour at runtime in
response to changes in the dynamics of the environment (e.g. workload) and
disturbances to achieve its goals (e.g. quality requirements) [35]. Self-adaptive
systems are composed of two sub-systems: (i) the managed system (i.e. the sys-175

tem to be controlled), and (ii) the adaptation controller (the managing system)

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[13]. The managed system structure could be either a non-modifiable structure
or modifiable structure with/without reflection capabilities (e.g. reconfigurable
software components architecture) [13]. The controller’s structure is a variation
of the MAPE-K loop [13].180

2.2. Architectural Stability

Generally, the notion of “stability” refers to the resistance to change and the
tendency to recover from perturbations. The condition of being stable, thus,
implies that certain properties of interest do not (very often) change relative
to other things that are dynamically changing. Stability has been defined in185

different domains and disciplines, such as nature, ecology, chemistry and math-
ematics.

As a software quality property, stability is defined in the ISO/IEC 9126
standards for software quality model [36] as one of the sub-characteristics of the
maintainability characteristic of the software, along with analysability, change-190

ability and testability. Maintainability is “the capability of the software product
to be modified in order to cope with changes in requirements and environment
or to handle errors” [36]. Stability itself is “the capability of the software prod-
uct to avoid unexpected effects from modifications of the software” [36]. For
general application purposes, the standard does not determine specific features195

or aspects for stability [37].
Reviewing the state-of-the-art in software engineering [9], we have found that

stability has been considered at different levels, i.e. at the code level (e.g. [38]),
requirements (e.g. [39]), design ([40] [41] [42] [43] [44]) and at the architecture
level ([45] [10] [46] [47]). At each level, stability has been considered in relation200

to several aspects from different perspectives, and thus interpreted in many
ways according to the perspective of consideration For instance, stability at
the code level has been interpreted as “the resistance to the potential ripple
effect that the program would have when it is modified” [38], that is considering
the logical and performance (i.e. behavioural) aspects of stability from the205

maintenance perspective. Design stability has been refered to “the extent to
which the structure of the design is preserved throughout the evolution of the
software from one release to the next” [40], where the logical and structural
aspects of stability are considered from evolutionary perspective.

Architectural stability has been considered in terms of ripple structural mod-210

ifications over two or more versions of the software, as a structural aspect with
respect to architecturally-relevant changes carried from evolutionary ([45] [10])
and maintenance perspectives ([47]). This has been referred to the extent to
which the architecture’s structure is capable to accommodate the evolutionary
changes without re-designing the architecture or making ripple modifications215

[45] [10]. For the different perspectives, the structural aspect of stability is the
one mostly considered at the architecture level.

Considering self-adaptive software systems, the structure and the behaviour
of the software may be affected when adaptations are taking place during run-
time [48]. In this context, we distinguish between the structural and behavioural220

aspects of stability. We also posit that an operational perspective (during the

6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

runtime operation of the software) for stability is essential for self-adaptive sys-
tems, different from the evolutionary perspective (over two or more versions of
the software). The stability meaning, we are seeking, can be regarded at the ar-
chitectural level as a runtime property considering the behavioural aspect from225

an operational perspective.
Inspired by stability studies in the “Control Theory” discipline [49] [50] -

that has been widely used to incorporate self-adaptive capabilities into software
systems [51], we posit that stability occupies a key position for the reason that
the upper limit of the performance of the architecture is often set by stability230

considerations [50]. A stable architecture is an architecture that, “when per-
turbed from an equilibrium state, will tend to return to that equilibrium state”
[50]. So, stability of the architecture is essential to examine the behaviour with
time following a perturbation during runtime.

Given the different levels, aspects and perspectives of considering stability,235

we view that a precise definition should focus on a simple ability (e.g. ability to
keep unchanged or recover from perturbations) based on the intended perspec-
tive (e.g. evolutionary or operational), as well as a specific level and aspect. For
instance, one possible definition could be the ability of the architecture’s struc-
ture to keep unchanged along with the time to endure evolutionary changes.240

Such definition targets stability at the architecture level from an evolutionary
perspective and focuses on the structural aspect. Another possible definition
could be the ability of the architecture’s behaviour to maintain a fixed level of
operation (or recover from operational perturbations) within specified tolerances
under varying external conditions for considering the behavioural aspect from an245

operational perspective. By that, a stable architecture from the operational per-
spective is the one capable to continuously fulfil the architecturally-significant
quality requirements during runtime, where the architecture can return to the
equilibrium state, following perturbation due to changes in quality requirements,
workload patterns or in the operational environment. Conversely, an unstable250

architecture is one that, when perturbed from equilibrium, will show deviation
from the expected behaviour.

2.3. Related Work

The runtime behavioural stability of software architectures was not explicitly
tackled as an architectural property in the literature to date, to the best of our255

knowledge. The work of Gorbenko et al. [52] could be considered as a partial ex-
ception. This study investigated the instability of service-oriented architectures,
focusing on the instability of three attributes: performance, response time and
communication delays. Though, this work could be considered partially tackling
the stability of the architecture’s behaviour (performance characteristics) dur-260

ing runtime, the explicit focus of this work was on dependability and resilience,
not explicitly considering stability as an architectural property.

The architecture analysis community has developed mehtods for predicting
the quality provision of architecture design alternatives during design-time [37].
Examples include Scenario-based Architecture Analysis Method (SAAM) [53],265

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Architecture Tradeoff Analysis Method (ATAM) [54] and quality impact analy-
sis [55] which focused on traditional quality attributes, not their stability. Other
studies focused on estimating system failures or predicting the probability that
the system will perform its intended functionality aiming at reducing or elimi-
nating failures [56] [57] [58] [59]. Architecture analysis methods cannot be used270

to support the runtime provision of quality requirements and their stability,
given the uncertainty during operation and the automation and quantitative
analysis required for runtime operation.

Considering self-adaptive architectures, the adaptation mechanisms proposed
in the literature focused on some adaptation properties, such as tactics latency275

(the time it takes since an adaptation is started until its effect is observed) [60],
settling time (the amount of time the controller takes to achieve the adaptation
goal) [61] [62]. Yet, properties reflecting the quality of adaptation, i.e. how
well the adaptation process converges towards the adaptation objective, are not
explicitly considered [63] [13]. Meanwhile, properties reflecting the behaviour of280

the controller have impact on the stability of the whole architecture [13].

3. Stability Analysis

Architectural stability could not be considered an absolute action, or rather
it is relative to the type of the architecture and its intended behaviour. In
particular, the architecture type (i.e. self-adaptive) and the application domain285

(e.g. mobile-, web-, cloud-based) have direct inputs to behavioural stability. As
an example of behaviour, one architecture could be intended to keep the response
time stable (as it is a crucial quality attribute for the end-users in the case of
real-time systems), while energy consumption could be a critical requirement
attribute to be kept stable for another architecture. We argue that stability290

is a relative matter subject to the concerns of stability and the type of the
architecture. Thus, stability should be considered relatively to these concerns.
This calls for more expressive abstractions to represent the concerns and their
related attributes subject of stability. The analysis aims to capture the relevant
attributes that characterise stability concerns and stability dimensions, as well295

as their influence on each other’s stability.
To consider the architecture type in the analysis, we view two main stability

dimensions for self-adaptive software architectures, that are adaptation goals
and adaptation properties. Both underlies the functioning of a self-adaptive
system, that we intend to stabilise its architectural behaviour (i.e. the managed300

system and the managing system) [13]. Adaptation goals are the quality of
service (QoS) properties intended to be achieved by the architecture, while
adaptation properties are observed and measured in the adaptation process [13].
These two distinct dimensions allows considering both the quality requirements
and the behaviour of the adaptation controller in the analysis of behavioural305

stability of the architecture as a whole.
For analysing stability, we exploit one of the holistic reasoning methods

for quality analysis in software architectures. In particular, we extend the

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

“ISO/IEC/IEEE 42010 Systems and software engineering - Architecture de-
scription” standards [64], as outlined in Figure 1). 1

310

Figure 1: Architectural Stability Analysis Model.

According to the ISO/IEC/IEEE 42010 [64], a system has one or more stake-
holders, where each stakeholder has interest (i.e. concerns) for that system.
Concerns are “those interests which pertain to the system’s development, its
operation or any other aspects that are critical or otherwise important to one
or more stakeholders” [64]. Examples of concerns include quality of service,315

enviromental regulations and economical concerns. We envision mapping the
stability analysis to the well-known architecture related concept “architectural
concerns” that refer to the requirements of different stakeholders [64]. Consid-
ering stability, stakeholders’ concerns for stabilising the architecture behaviour
can be seen as architectural concerns or stability concerns.320

Having different stakeholders, viewpoints have been introduced to support
the modelling, understanding and analysis of software architectures for different
stakeholders [65], delineating the architectural information that address stake-
holders’ concerns [66]. Architectural viewpoints refer to the conventions for

1The figure uses UML notation of ISO/IEC 19501:2005, Information Technology Open
distributed processing Unified modeling language (UML) Version 1.4.2.

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

constructing and using architectural representation addressing the requirements325

of different stakeholders [64] [67] [68]. Analysing stability from different per-
spectives can be seen as architectural viewpoints or stability viewpoints. We
consider stability viewpoints as a model for framing stakeholders’ concerns and
representing architectural stability from different perspectives.

Realising runtime behavioural stability requires continuous provision of qual-330

ity requirements. Following the approach of well-established architectural meth-
ods, which considers quality attributes [31] [54] [69] as the base for architectural
analysis, we analyse stability in relation to the attributes that are required
to be kept stable throughout the operation of the architecture, i.e. stability
attributes. Attributes that are subject to stability are defined for different view-335

points reflecting stakeholders’ concerns, including traditional quality of service
attributes, which are the adaptation goals [13]). Since adaptations are moti-
vated by the need of continued satisfaction of quality requirements, the analysis
should also consider attributes of the adaptation properties [13], in order to
reflect how adaptations converge towards adaptation goals.340

Stability attributes are interdependent, i.e. may influence each other, either
by supporting or by contradicting each other. So, architects should, for explic-
itly targeting stability, analyse the interdependency and correlation between
different stability attributes (appearing as influences relation between stability
attributes in Figure 1) and resolve related trade-offs.345

While traditional architecture analysis considers dependencies and trade-offs
analysis between traditional quality attributes, such as performance and avail-
ability [70], stability analysis involves multiple viewpoints and related attributes,
as well as analyses their interdependencies and trade-offs. These include not
only traditional quality attributes, but also adaptation properties that affect350

the architecture’s behaviour for continuously satisfying quality requirements.
Using the analysis model for identifying stability viewpoints, attributes and
their dependencies explicit would help architects appreciate behavioural stabil-
ity beyond traditional quality attributes.

4. Stability Modelling355

4.1. Stability Modelling

Achieving runtime architectural stability for different viewpoints should in-
volve a careful understanding of the relationship, impact, correlation and sensi-
tivity among stability attributes, as well as handling potential conflicts between
different viewpoints. Such attributes are non-deterministic given the uncertainty360

associated with the runtime operation. Uncertainty, affecting the architecture’s
operation, can be attributed to many facets, such as changes in workload, qual-
ity requirements, runtime goals, and the environment where the architecture is
operating [71] [72]. Therefore, probabilistic modelling is appropriate for mod-
elling stability given the runtime operational uncertainties, since deterministic365

analysis is limited when dealing with such operational uncertainties.
It is possible for the architect to use alternative techniques to Bayesian net-

work, where the architect can evaluate the extent to which changes to one or

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

more attributes value can potentially influence the stability of the architecture.
Asserting changes to attribute value can be reliable when informed by expert370

judgement or accompanied with careful assessment of the application domain.
One potential problem, however, is that the analysis tend to be human-centred,
subjective and can miss potential cases that are change-revealing, as such tech-
niques rely on human judgement and sensitivity analysis. Furthermore, the anal-
ysis can be difficult to scale and handle in cases where more than one attribute375

can potentially change or higher number of attributes are under evaluation. It
worth noting that our method can complement existing architecture analysis
and evaluation methods (e.g. Architecture Tradeoff Analysis Method (ATAM)
[54] and quality impact analysis [55]) to provide automatic and probabilistic
assessment, which replace and improve human assertions for attribute value380

and its likely influence on the trade-offs analysis and the choice of decisions.
Probabilistic assessment is especially important for architectures that exhibit
high degree of uncertainty in their operation which is the case of self-adaptive
systems.

Meanwhile, we adhere to the Bayesian choice in the automated reasons about385

stability during runtime for many reasons. As a consistent and complete rep-
resentational tool, it is guaranteed to define a unique probability distribution
over the network variables [73]. Also, the the Bayesian network is a compact
representation, as it allows one to specify an exponentially sized probability
distribution using a polynomial number of probabilities [73]. The coherence of390

the Bayesian statistical inference is another important feature. By modelling
the unknown parameters of the sampling distribution through a probability
structure, i.e. by probabilising uncertainty, the Bayesian approach authorises a
quantitative discourse on these parameters [74]. The Bayesian approach is also
known to be the only system allowing for conditioning on the observations, effec-395

tively implementing the Likelihood Principle and frequented optimality notions
of Decision Theory [74].

Probabilistic modelling consists of two components: (i) the structure, of-
ten referred as the qualitative model, and (ii) the parameters (i.e. conditional
probabilities) referred as the quantitative model [75]. For the former, we use400

Probabilistic Relational Models that are able to harness the expressive power
of architecture analysis. For the latter, Bayesian networks feature the ability
to quantitatively perform dynamic impact analysis and correlation assessment
among stability attributes under runtime uncertainty [70]. Generally, Bayesian
networks have proven to be ideally suited knowledge representations for reason-405

ing and decision making under uncertainty [75], i.e. reasoning over probabilistic
causal models under uncertainty [76]. Bayesian networks have been widely used
for the modelling and analysis of uncertain phenomena which are known to be
causally connected [77]. With the capability of representing probabilistic be-
haviours in a compact and intuitive way [56], Bayesian networks are applicable410

for domain areas with inherent uncertainty [75], which is applicable to the case
of architecture’s behaviour at runtime.

We view stability attributes as the “knowledge” to be presented by Prob-
abilistic Relational Models, as these attributes tend to vary during runtime.

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Probabilistic modelling, empowered by the quantitative analysis of Bayesian415

networks, aims to model the wide variations of probable values linked to sta-
bility attributes that we are interested in, as well as understand their likely
ramifications on other attributes and their trade-offs under runtime uncertainty.

Our approach for modelling stability follows the formalism process of prob-
abilistic relational models [75], that is suitable for representing and processing420

probabilistic knowledge of runtime behavioural stability. For each viewpoint, a
probabilistic relational model is constructed using the stability attributes iden-
tified earlier in the analysis. The model represents the relation between the
attributes of the viewpoint and interdependent attributes. The approach for
eliciting the model structure relies on the notion of cause-effect relations be-425

tween the variables of the problem domain [75]. In practice, such relations are
modelled using a graph of nodes representing the variables and links represent-
ing the cause-effect relations between the entities.

The construction of probabilistic networks usually proceeds according to an
iterative procedure, where the set of nodes and the set of links are updated430

iteratively as the model becomes more and more refined [75]. Modelling causal
dependence relations requires careful consideration, as sometimes it is not quite
obvious in which direction a link should point [75]. In the case of architectural
stability, we can rely on the architect’s experience, subject matter experts and
pre-experiments in defining the dependency relations between different stability435

attributes. Structure learning could also make use of data-driven approaches,
where data could be acquired from pre-experiments and simulations. There
exist different classes of algorithms for learning the structure of Bayesian net-
works, such as search-and-score and constraint-based algorithms [75]. Back-
ground knowledge of domain experts and architects can be specified in the form440

of constraints on the structure of the model.
Having the probabilistic relational model established, this defines the struc-

ture of the Bayesian network, where the elicitation of the quantitative infor-
mation will take place. We use Bayesian networks to model the dynamic non-
deterministic behaviour of stability attributes, that change with a range of values445

at runtime and tend to interfere among each other, collectively influencing the
behaviour of the architecture.

A Bayesian network is a directed acyclic graph (DAG), where the nodes
represent stochastic uncertain variables [78] [56], which are the stability at-
tributes in our case. The edges of the graph are the dependencies between450

the nodes, showing influential relations between the variables [78] [56]. The
nodes’ dependencies are specified qualitatively by the edges and quantitatively
by the conditional probability distributions. The underlying joint probability is
decomposed as a product of local conditional probability distributions (CPDs)
associated with each node and its respective parents. The CPDs are represented455

as node probability tables (NPTs), which list the probability that the child node
takes on each of its different values for each combination of values of related
nodes.

Formally (following [79] [75]), a discrete Bayesian network N = (X ,G,P)
consists of a set of n discrete random variables (stability attributes) X , a directed460

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

acyclic graph G = (V,E), and a set of conditional probability distributions P.
Each variable Xi ∈ X , 1 ≤ i ≤ n is represented by a node vi of G and has
a finite set of mutually exclusive states dom(Xi). The directed edges E of G
specify assumptions of conditional dependencies between the nodes, where a
directed edge from Xi to Xj is in E iif Xi is a parent of Xj . Each variable Xi ∈ X465

has a conditional probability distribution P(Xi|Xpa(vi)) ∈ P, that specifies the
probabilistic dependence between the node vi and its parents pa(vi) ∈ V.

Definition. A discrete Bayesian network N = (X ,G,P) consists of

• a set of discrete random variables X = {X1, ...,Xn}

• a directed acyclic graph G = (V,E) with nodes V = {v1, ..., vn} represent-470

ing the variables of X and directed edges E ⊆ V × V

• a set of conditional probability distributions P containing probability dis-
tribution P(Xv|Xpa(v)) for each variable Xv ∈ X

The joint probability distribution of the Bayesian network N is obtained by
the multiplicative factorisation of the joint probability distributions P over the475

set of variables X as represented by the chain rule of Bayesian networks:

P(X) =
∏

v∈V
P(Xv|Xpa(v)) (1)

The Bayesian network is constructed by computing prior probabilities, i.e.
P(X) for all X ∈ X , collected from empirical data in order to get initial proba-
bility values.

Capturing dependency factors between stability attributes, the constructed480

Bayesian network for stability provides a powerful tool for reasoning and deci-
sion support, as it can be used to reason about the effect of stabilising a specific
attribute on the stability of other attributes. By that, an adaptation action
achieving the stability of the whole architecture’s intended behaviour could be
derived for multiple stability concerns, viewpoints and attributes. Also, be-485

havioural stability could be estimated under changing runtime workloads.

4.2. Stability Runtime Inference

The Bayesian network model representation of a problem domain can be used
as the basis for drawing inference and performing analysis about the domain,
in order to support reasoning under uncertainty. Decision options and utilities490

associated with these options can be incorporated explicitly into the model,
where the model becomes capable of computing expected utilities of all decision
options given the information known [75]. Since a Bayesian network encodes all
relevant qualitative and quantitative information contained in a full probability
model, it is a well-suited tool for many types of probabilistic inference.495

The Bayesian model is used to support reasoning about stability under run-
time uncertainty, which requires dynamically computing the probability states
of stability attributes given the runtime changes. That is the task of computing

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the posterior probability distribution of some variables of interest conditioned
on some other variables that have been observed [75].500

A Bayesian inference approach starts with the priori knowledge about the
model structure. This initial knowledge, represented in the form of prior proba-
bility distribution gathered during the construction of the model, is updated to
obtain posterior probability distribution over the model. By observing which
states the nodes of the Bayesian network assume, known as events, we ob-505

tain the evidence ε for a subset of these nodes. With the help of evidence,
we can compute the posterior marginals given a set of evidence ε, which are
P(X|ε) for all X ∈ X . If the evidence set is empty ε = φ, then the task is to
compute all prior marginals, i.e. P(X) for all X ∈ X .

Exploiting the independence relations induced by the structure of G and the
evidence, let us consider the general case of computing the posterior marginal
P(Xi|ε) of a variable Xi given evidence ε. Let ε = {ε1, ..., εm} be a non-empty set
of evidence over variables X (ε). For a non-observed variable Xj ∈ X , the task to
compute the posterior probability distribution P(Xj |ε) can be done by exploiting
the chain rule factorisation of the joint probability distribution (equation 1):

P(Xj |ε) =
P(ε|Xj)P(Xj)

P(ε)

=
∑

X∈X\{Xj}

∏

Xi∈X
P(Xi|Xpa(vi))

∏

X∈X (ε)

εX (2)

for each Xj 6∈ X (ε), where εX is the evidence function for X ∈ X (ε) and vi is the510

node representing Xi. By that, we can observe the state of all stability attributes,
and hence the stability state of the whole architecture’s behaviour, while the
architecture is operating at runtime. The runtime inference is performed based
on the Pearl’s Message-Passing Algorithm [80] [81] [77].

4.3. Complexity Analysis515

Given that the Bayesian analysis should be executed at runtime, this requires
considering the complexity of the stability model.

The specification of conditional probability distribution P(Xv|Xpa(v)) can
be an intensive task, as the number of parameters grows exponentially with
the size of dom(Xfa(v)). The complexity of the network is defined in terms of520

the family fa(v) with the largest state space size ‖Xfa(v)‖ , |dom(Xfa(v))|,
where fa(v) = pa(v) ∪ {v}. As the state space of a family of variables grows
exponentially with the size of that family, a technique to reduce the complexity
of Bayesian networks is to reduce the size of the parent sets pa(v) to a minimum.
This is, in fact, the case of the stability model, where the number of variables,525

i.e. stability attributes of each viewpoint, is limited. In such cases, estimating
parameters from data could be a useful technique to simplify the intensive task
of knowledge acquisition when operating at runtime.

While the Bayesian network is placed into operation, the model stores prob-
ability distributions and calculates various marginal distributions subject of

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

interest [82]. So, it is important to understand the storage capabilities of the
network. Given that the variables are discrete and have a finite state space,
to fully specify the model, we need to elicit P(Xv) — which is the marginal
probability mass function of Xv together with the conditional mass function
P(Xv|Xpa(v)) — of each of the variables conditioned on each possible configura-
tion of values of its parents that might occur. The practical difficulty appears
when the number of different configurations of parents, and hence the number
of probability vectors that need to be elicited, is extremely large. In the case
of a Bayesian network for a stability viewpoint, there is one variable subject
of stability X1, and its dependant variables {X2,X3, ...,Xn}. If the number of
possible stability values of X1 is m1 and for Xi is mi, i = 2, 3, ..., n + 1, then
the number of probabilities we need to elicit P(X1) is m1 − 1. And to elicit all
the conditional tables P(Xi|Xpa(vi)) we need mi − 1 for each possible stability
value. Summing these, we have the total number of probabilities that need to
be elicited, as follows:

m1

{ n+1∑

i=2

(mi − 1 + 1)

}
− 1 (3)

which is practically feasible, due the structure of the Bayesian network.
Also, storing stability values in ranges, rather than single values, is useful for530

reducing the complexity of the stability model. For instance, response time is
to be considered as ranges of 1-5, 5-10 ms. instead of multiple single values.

Considering the complexity of runtime inference, though probabilistic infer-
ence is an NP-hard problem in general, the complexity is polynomial in the
number of variables of the network when the Bayesian network a singly con-535

nected garph [81] [75]. This is valid in the case of stability models, where we
have one stability attribute directly connected to its dependent attributes for
each stability viewpoint.

5. Methodological Support for Runtime Behavioural Stability

Our method for addressing architectural stability consists of three subse-540

quent main phases: (i) stability analysis, (ii) stability modelling, and (iii) sta-
bility runtime support. For each step, we identify the human-based efforts
required for the qualitative analysis and potential automated tools to be used
in the quantitative modelling. The approach is illustrated in Figure 2.

Phase 1: Stability Analysis. In this phase, the initial analysis of stability545

as an architectural property is conducted, to build the stability qualitative model.
In more details, this phase shall include the following activities:

Step 1. identify stability dimensions. For the case of self-adaptive software, the
two main stability dimensions are: the adaptation goal and adaptation
property. Other dimensions could be considered for the domain-specific550

application.

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Figure 2: Architectural Stability methodology.

Step 2. identify stability stakeholders. Stability analysis entails architects to
first identify the system’s stakeholders that have interest in the system
under consideration, and hence input for stability.

Step 3. identify stability concerns. In this step, the stability interests and con-555

cerns of stakeholders are taken into account in order to build a well-
balanced solution, as it is important to have a good understanding of
the different concerns that the stability analysis should reflect.

Step 4. derive stability viewpoints. Stakeholders concerns are consolidated to
derive stability viewpoints, in order to consider stability from different560

perspectives for building a stability solution relative to multiple con-
cerns. The analysis also takes into consideration concerns from the
components of the self-adaptive system (i.e. the managed system and
the adaptation controller).

Step 5. define stability attributes and their evaluation criteria. Stability at-565

tributes are, then, defined for different viewpoints reflecting the stake-
holders’ concerns for stability. The set of stability attributes also in-
cludes attributes belonging to the adaptation properties, as one of the
main stability dimensions for self-adaptive software architectures. Eval-
uation criteria can inform the choice of suitable metrics for assessing the570

fulfilment of these attributes. The choice of the metrics is highly depen-
dent on the analysis, where the metric can be structural, behavioural,
quantitative, qualitative, economic-driven in nature. Practitioners often
utilise commonly used metrics. ISO standards documents [36], guide-
lines and quality models [25] [83], white papers and benchmarks are575

among the credible sources for extracting these metrics. Systematic ap-
proaches could also be employed, such as goal-driven measurement [84]
[85] and Goal Question Metric (GQM) approach [86].

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Step 6. extract interdependencies between stability attributes. Interdependent
quality attributes may influence one another. The dependencies be-580

tween stability attributes are captured, in order to analyse how stabil-
ising one attribute would affect the stability of related attributes.

The activities in this phase shall be conducted by architects and domain
experts, relying on their experience and knowledge. The analysis could also
be supported by subject matter expert panels and end-users workshops. The585

outcome of this phase is the stability qualitative model that will be used in the
second phase as the model structure for quantitatively modelling stability.

Phase 2: Stability Modelling. In this phase, the stability model is built
and stability attributes are quantitatively assessed. This phase includes the
following activities:590

Step 1. build the probabilistic relational model. For each viewpoint, a proba-
bilistic relational model is built, based on the attributes dependencies
identified in the last step of the stability analysis. Each probabilistic
relational model, representing the relations between the attributes of
a viewpoint, defines the structure of the Bayesian network. The prob-595

lem of inducing the structure of Bayesian network is NP-complete, thus,
heuristic methods are considered appropriate. Building the probabilistic
relational models should go through an iterative process by the archi-
tects, domain experts and subject matter experts. This could be com-
plemented with mechanisms and tool support to facilitate the adoption600

of the method. Examples include tools for documenting architecture
knowledge and detecting patterns of use where similar problems could
exhibit similar modelling, as well as platforms for sharing experiences,
guidelines and recommended practices [87].

Step 2. build the stability Bayesian network. The Bayesian network is built605

for quantitatively modelling the interdependency impacts of different
stability attributes. Bayesian network specifies the strengths of inter-
dependencies and correlations between different attributes, using prob-
ability theory and preference relations quantified by the utility associ-
ated with these attributes. This task is inducing the Bayesian network610

for modelling stability by fusion of observed data and domain experts
knowledge is undertaken. Building the Bayesian network could leverage
on operational pre-experiments and/or simulations of the system.

Step 3. build the stability Bayesian network. The Bayesian network is built
for quantitatively modelling the interdependency impacts of different615

stability attributes. Bayesian network specifies the strengths of inter-
dependencies and correlations between different attributes, using prob-
ability theory and preference relations quantified by the utility associ-
ated with these attributes. This task is inducing the Bayesian network
for modelling stability by fusion of observed data and domain experts620

knowledge is undertaken. Building the Bayesian network could leverage
on operational pre-experiments and/or simulations of the system.

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The outcome of this phase is the stability quantitative model that will be
used for reasoning about stability during runtime. The model provides a basis
for what-if analysis covering probable runtime behaviour that ranges from likely625

to extreme scenarios.

Phase 3: Stability Support at runtime. The stability quantitative
model is used during runtime for estimating probable variations in stability
attributes and associated trade-offs under the dynamically changing workload.
This, consequently, improves the quality of decision making under runtime un-630

certainty for achieving the intended behaviour of the architecture and supports
seamless runtime operation of the system. This phase is the continuous runtime
process of:

Step 1. conducting the runtime inference. During runtime, posterior probabil-
ities are obtained using the Bayesian network that allows measuring635

the probable effect of stabilising different stability attributes and their
impact on each other. The posterior probabilities, contributing to the
adaptation decision making, help in improving the quality of adaptation
and ensuring the stability of quality attributes and hence the architec-
ture intended behaviour.640

Step 2. performing online learning. When the system is operating, new cases
arise and it is recommended to learn from these cases, assuming that the
structure of the Bayesian network will remain unchangeable [88] [75].
The conditional probabilities are dependent on the context and opera-
tion environment which change dynamically. The situation may also be645

that the simulation results used to extract the conditional probabilities
do not reflect accurately the actual runtime workloads. This calls for
online learning and updating the conditional probability distributions
of the Bayesian network to reflect the real world, e.g. reasoning about
quality requirements satisfaction as the system evolves dynamically [89]650

and learning for adaptation [90]. 2

The runtime support for stability can be conducted online while the system
is operating, by embedding the Bayesian analysis into the adaptation controller.
The runtime inference and online learning can also be conducted through sym-
biotic simulation along with the adaptation controller. Symbiotic simulations655

shall run closely to the physical system, benefiting from real-time measure-
ments from the actual system, and provide feedback to the system [91] [92]
[93]. The results of the simulation shall be used for taking adaptation decisions
autonomously during runtime by the adaptation controller (managing system).
While the former approach can achieve effective immediate results, it can place660

extra computational overhead onto to the system while running. Conversely
is the case of the latter approach. A balanced solution would be conducting

2An online learning algorithm would be out of the scope of this paper, but we introduce it
in our method for the purpose of completeness. Our future work will focus on this part.

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

the inference online (using a threshold prior to violation) and employing the
symbiotic simulation for online learning.

6. Case Study: Self-Adaptive Cloud Architectures665

We show the applicability of the proposed approach through the case of
self-adaptive cloud architectures built on the principles of self-awareness [94]
[95]. First, we briefly introduce the architecture’s domain, then apply the pro-
posed approach for analysing and modelling runtime behavioural stability of
this special class of self-adaptive architectures.670

Cloud-based software architectures are a suitable example of high dynamism,
unpredictability and uncertainty [96]. The execution environment of cloud ar-
chitectures is highly dynamic, due to the on-demand nature of the cloud. Cloud
architectures operate under continuous changing conditions, e.g. changes in
workload (number/size of requests), end-user quality requirements, unexpected675

circumstances of execution (peak demand) [94] [14]. The on-demand service pro-
vision of clouds imposes performance unpredictability, and makes the elasticity
of resources an operational requirement.

This type of architecture tends to highly leverage on adaptation (e.g. chang-
ing behaviour, reconfiguration, provisioning additional resources, redeployment)680

to regulate the satisfaction of end-user requirements under the changing con-
texts of execution [2] [14]. The self-adaptation process is meant to make the
system behaviour converges towards the adaptation goals, i.e. quality require-
ments of the end-users [14]. An unstable adaptation will repeat the action with
the risk of not improving or even degrading the system to unacceptable states685

[13]. Thus, there are more dynamics to observe, and stability is challenging
with the continuous runtime adaptations in response to the perception of the
execution environment and the system itself [14]. We consider the cloud ar-
chitecture with a catalogue of architectural tactics, such as horizontal scaling
(increasing/decreasing the number of physical machines), vertical scaling (in-690

creasing/decreasing the number of virtual machines or their CPU capacities),
virtual machines consolidation (running the virtual machines on less number
of physical machines for energy savings), as adaptation actions [95]. The pur-
pose of adaptation is to satisfy the runtime demand of multi-tenant users, by
changing configuration and choosing optimal tactics for adaptation.695

Further, the economic model of clouds (pay-as-you-go) imposes on providers
economical challenges for SLA profit maximisation by reducing their operational
costs [96]. With the rising demand of energy, increasing use of IT systems and
potentially negative effects on the environment, the environmental aspect, in
terms of energy consumption, has emerged as a factor affecting the software700

quality and sustainability [97]. While sometimes imposed by laws and regu-
lations, decreasing energy consumption does not have only potential financial
savings, but also affects the ecological environment and the human welfare [97].
So, environmental requirements should be considered and traded off against
business requirements and financial constraints [97].705

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The step-by-step application of the approach is described in the next sub-
sections.

6.1. Stability Analysis for Self-adaptive Cloud Architectures

The analysis is based on the architectural stability taxonomy [72] applied on
this case study [94] [95].710

Step 1. identify stability dimensions. As mentioned in the Stability analysis
model earlier, we identify two main stability dimensions for the case of
self-adaptive software, which are: the adaptation goal and adaptation
property.

Step 2. identify stability stakeholders. The main stakeholders that we consider715

are the end-users, the environment and the business.

Step 3. identify concerns for stability. The concerns for each stakeholder are
listed as follows: (i) end-users’ concern is the provision of QoS defined in
their Service Level Agreements (SLAs), (ii) the environment regulations
are concerned with the energy consumption constraints, and (iii) the720

business is concerned with operational costs.

Step 4. derive stability viewpoints. Given the stability dimensions and the stake-
holders’ concerns, we identify the following viewpoints for stability:
quality of service, environmental, economical and quality of adapta-
tion viewpoints. The former three denote the adaptation goals, and725

the latter represents the adaptation property dimension. The quality of
service viewpoint mainly covers the quality requirements of end-users.
The environmental viewpoint covers aspects related to energy consump-
tion and savings [97] [98]. The economical viewpoint is related to the
business concerns about monetary operational cost.730

Step 5. define stability attributes and their evaluation criteria. Based on the
stability viewpoints, we define related attributes. Stability attributes
could, then, include traditional quality requirements specified in end-
users SLAs. Here, we consider performance (measured by response time
in milliseconds), and throughput (measured by number of completed735

requests per second). For the environmental aspect, we use the green-
ability attribute [97] [98] measured by energy consumption in kWh. For
the economic constraints, we define the operational cost by the cost of
computational resources (CPUs, memory, storage and bandwidth). Re-
garding the adaptation properties, we consider the settling time - that740

is the time required by the adaptation system to achieve the adaptation
goal [13]. In order to capture the negative impact of adaptation on the
system’s behaviour, we consider the overhead of adaptation, measured
by the frequency of adaptation cycles to achieve the adaptation goals
[3] [13].745

20

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

The analysis is illustrated in Figure 3. For simplicity, the information
relating stability attributes with the stability concerns and their stake-
holders is not included in the figure.

Figure 3: Case Study: Stability Analysis.

Step 6. extract interdependencies between stability attributes. Dependencies be-
tween stability attributes are defined based on the architect’s domain ex-750

perience, as depicted in Figure 4. For example, performance and green-
ability could contradictorily affect each other, i.e. stabilising perfor-
mance shall demand more computational resources that consume more
power and eventually have a negative effect on stabilising greenability.
Meanwhile, greenability and operational cost could support each other,755

i.e. decreasing the usage of computational resources for saving power
consumption would in turn decrease the operational costs.

Figure 4: Case Study: Stability Attributes dependencies.

6.2. Stability Modelling for Cloud Architectures

Step 1. build probabilistic relational model. Based on the interdependencies be-
tween stability attributes, we deduce the probabilistic relational model760

21

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

for each stability viewpoint. The probabilistic relational model related
to the four stability viewpoints (quality of service, environmental, eco-
nomical and quality of adaptation viewpoints) is depicted in Figure
5 (a), (b), (c) and (d) respectively. For instance, the quality of ser-
vice model could be read as follows: stabilising the performance and765

throughput would affect the stability of related attributes that are
greenability, operational cost and quality of adaptation attributes. Re-
garding the environmental model, such representation reflects that sta-
bilising the energy consumption would affect the stability of perfor-
mance, throughput and operational cost.770

(a) Quality of Service viewpoint

(b) Environmental viewpoint

(c) Economical viewpoint

(d) Quality of Adaptation viewpoint

Figure 5: Case Study: Stability Relational Models.

Step 2. build stability Bayesian network. To quantitatively measure the depen-

22

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

dency factors between stability attributes and getting the prior knowl-
edge to build the stability Bayesian network, we simulated the cloud
self-adaptive architecture.
Our simulation tool, extending the widely adopted CloudSim simulation775

platform for cloud environments [99], was built using Java JDK 1.7 to
create the cloud self-adaptive architecture, and was run on an Intel Core
i5 3.40 GHz, 8 GB RAM computer. We conducted the pre-experiments
by simulating a cloud data center initially operating 10 IBM x3550
server physical machines (PMs), with the configuration of 2 x Xeon780

X5675 3067 MHz, 6 cores and 16 GB RAM. The frequency of the servers’
CPUs are mapped onto Million Instructions Per Second (MIPS) ratings:
3067 MIPS each core [100]. The characteristics of the virtual machines
(VMs) types correspond to the latest generation of General Purpose
Amazon EC2 Instances [101]. In particular, we use the m4.large (2 core785

CPU, 8 GB RAM) and m4.xlarge (4 core CPU, 16 GB RAM) instances.
Initially, the VMs are allocated according to the resource requirements
of the VM types. However, VMs utilise less resources according to
the workload data during runtime, creating opportunities for dynamic
consolidation.790

For the energy consumption, we employed the power models defined
in [100]. For a detailed cost model, the operational cost is calculated
as a total of the usage of processing unit (0.04$ for CPU unit/sec.),
memory (0.02$ for 1 GB memory/sec.), storage (1 GB storage/sec.)
and bandwidth (0.01$ for 1 GB/sec.).795

We run the pre-experiments for 300 time intervals, each interval is of 200
seconds, in order to get sufficient data for building the Bayesian network.
In each time interval, we generate a random number of requests, and
the length of each request randomly varies between 1,000 and 20,000
MIPS requiring 1 or 2 core CPU.800

To measure the stability ranges for different viewpoints, we configured
the architecture to take adaptation actions to stabilise specific attributes
within different ranges, by setting this attribute as the single adapta-
tion goal. We applied rule-based adaptations based on the stimulus-
awareness level, i.e. the adaptation controller selects an adaptation805

tactic from the tactics catalogue mentioned earlier in order to achieve
the quality requirement within the desired range whenever a violation
is detected. The adaptation controller is responsible about selecting the
adaptation tactic based on the quality attribute subject to violation, e.g.
VM consolidation in case greenability is the stimulus. If multiple tactics810

could be applied, the rule applied is choosing the tactic that results in
smaller overhead and/or cost [102]. For instance, we use vertical scal-
ing first and then and horizontal scaling in the performance case, as the
former is usually more expensive [102]. We, then, measured the impact
of such stability actions on the stability of related attributes. Figure815

6 shows the Bayesian networks of different viewpoints when stabilising
their attributes for one range.

23

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

In more details, to capture stability from the quality of service view-
point, we run the architecture with the adaptation goal of having the
performance response time and throughput stable for different ranges.820

Figure 6 (a) shows the Bayesian network for the quality of service view-
point when response time is stabilised for a range of 10-15 ms. and the
throughput within a range of 1-5 request/sec. or higher. The impact
of such stability actions is, then, measured on the related quality at-
tributes, i.e. energy consumption, operational cost, adaptation settling825

time and overhead. The attributes selected for stability, i.e. perfor-
mance, is indicated by probability = 1 for the range of 10-15 ms. Sta-
bilising throughput was for the range 1-5 request/sec. in 60% of the
cases or for higher ranges in the remaining cases, in order to reduce the
complexity of adaptations during runtime. The probability distribution830

of impacts on related attributes is shown in the corresponding graphs
of each node. As shown in the figure, this results in having energy
consumption within ranges of 10-20, 20-30 and 50-100 kWh associated
with probabilities 0.17, 0.15, 0.14 respectively, while other ranges have
smaller probabilities. The cost ranges of 1400-1500, 400-500, and 100-835

200$ have the probabilities 0.15, 0.11, 0.10 respectively. Same applies
for the adaptation settling time, where the highest probability is for the
200 sec., and the adaptation overhead where the majority of adaptation
cycles took place every 200 sec.
With respect to the environmental viewpoint, Figure 6 (b) shows the840

probabilities of impacts of this viewpoint when the energy consumption
is stabilised in the range of 50-60 kWh. The energy consumption range
50-60 kWh is indicated with probability = 1. As shown in the cor-
responding graph of each related attribute, the performance response
time will range between 1-5 ms. with the highest probability of 0.49,845

the throughput range will be 0.1-5 request/sec. with a probability of
0.60, and the cost range 100-200$ with the higher probability of 0.25.
The Bayesian network for economical viewpoint is shown in Figure 6
(c), where operational cost is stabilised for the range of 100-200$. Such
stability would lead to having response time of 1-5 ms. with probability850

of 0.49, throughput of 1-5 request/sec. with probability of 0.60, energy
consumption of 10-20 kWh with probability of 0.25, and adaptation
settling time of 200 sec. with probability of 0.44. Other ranges for all
attributes come with lower probabilities.

7. Experimental Evaluation855

The main objective of the experimental evaluation is to examine the quality
of service delivered and the quality of adaptation when employing the stability
analysis during runtime, and assess the associated runtime overhead for the
stability model. The experiments setup was inspired by the earlier work of
Chen et al. [94] [102] on self-adaptive and self-aware cloud architectures.860

24

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
(a) Quality of Service viewpoint

Figure 6: Case Study: Stability Bayesian networks (to be continued).

7.1. Experiments Setup

To simulate runtime dynamics, we used the RUBiS benchmark [15] and the
World Cup 1998 trend [16] in our experiments. The RUBiS benchmark [15]
is an online auction application defining different services categorised in two
workload patterns: the browsing pattern assuming read-only services, and the865

the bidding pattern simulating both read and write intensive services. For fitting
the simulation parameters, we mapped the two service patterns of the RUBiS
benchmark into MIPS, as follows: 10,000 MIPS 1 CPU core and 20,000 2 CPU
cores for the browsing and bidding services respectively.

Instead of using random workload trend to simulate the number of requests,870

we varied the number of requests proportionally according to the World Cup
1998 trend [16]. We compressed the trend in a way that the fluctuation of
one day in the trend corresponds to 200 seconds in our experiments. Such
benchmarks helped in stressing the architecture with highly frequent changing
demand and observing its consequences on stability.875

We simulated the cloud dynamics based on the RUBiS benchmark service
patterns and run the entire World Cup 1998 workload trend separately for
each service pattern. For the experiment setup, the initial deployment for each
service pattern of our experiments is shown in Table 1.

25

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

(b) Environmental viewpoint

Figure 6: Case Study: Stability Bayesian networks (to be continued).

Table 1: Initial deployments of the experimental evaluation

Configuration browsing service bidding service
No. of PMs 2 10
PMs type IBM x3550 server IBM x3550 server
PMs Specs 2 x Xeon X5675 3067 MHz,

6 cores, 16 GB RAM
2 x Xeon X5675 3067 MHz,
6 cores, 16 GB RAM

No. of VMs 6 30
VMs type General Purpose Amazon EC2

Instances m4.large, m4.xlarge
General Purpose Amazon EC2
Instances m4.large, m4.xlarge

VMs Capacity 4 x 2 core CPU 8 GB RAM,
2 x 4 core CPU 16 GB RAM

20 x 2 core CPU 8 GB RAM,
10 x 4 core CPU 16 GB RAM

We performed the runtime stability analysis based on the following adap-880

tations challenging goals: (i) response time not exceeding 15 ms., (ii) energy
consumption not exceeding 50 kWh, and (iii) operational cost not exceeding
1000$. The runtime adaptation options are (by order of preference) as fol-
lows: increasing/decreasing the VMs capacity, increasing/decreasing the num-
ber of VMs, increasing/decreasing the number of PMs, and consolidating VMs885

on less number of PMs for shutting down the less busy PMs. The architec-
ture was configured to select adaptations, informed by the stability analysis in
one experiment and in another one without stability analysis, which we note
as stability-based adaptations and conventional adaptations respectively. We,
then, examined the quality of service provisioned and the quality of adaptation890

26

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T
(c) Economical viewpoint

Figure 6: Case Study: Stability Bayesian networks (cont.).

at each time interval of 200 sec. in both cases.

7.2. Examined Stability Attributes

The performance comparative results are summarised in Tables 2 and 3.
Table 2 shows the violations of stability attributes of the adaptation goal. Per-
forming adaptations informed by the stability analysis allowed to achieve less895

SLA violations for the attributes required to be maintained stable. For the
browsing service case, stability-based adaptations succeeded to eliminate the
violations for all stability attributes, while conventional adaptations still have
violations for response time (0.28%), energy and cost (0.51% each). The case of
bidding service, which requires higher computational requirements, succeeded900

to make less violations for response time (0.20%) and greenability (0.24%) com-
pared with conventional adaptations (0.21% and 0.51% for both attributes re-
spectively). Meanwhile, stability adaptations had 0.51% violations for energy
consumption compared with 0.22% achieved by the conventional adaptations.
This is interpreted by the less frequency of adaptations as clarified below.905

Table 3 shows the quality of adaptation properties. Adaptation settling time
in the case of stability-based adaptations is 300 and 200 sec. on average for the

27

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 2: Violations of Stability Attributes Adaptation Goals (%)

Service
Pattern

Adaptation Adaptation Goals

Response
Time

Energy Con-
sumption

Operational
Cost

browsing stability-based 0.00 0.00 0.00
conventional 0.28 0.51 0.51

bidding stability-based 0.20 0.51 0.24
conventional 0.21 0.22 0.51

browsing and bidding services respectively, compared with conventional adap-
tations (2040 and 2206 sec.). This reflects the capability of the stability anal-
ysis in converging the self-adaptive architecture quickly towards its adaptation910

goals, resulting in less quality of service violations. Regarding the adaptation
overhead, stability-based adaptations succeeded to perform less frequent adap-
tations for both service patterns (3210 and 5800 adaptation cycles on average
respectively), compared with the conventional adaptations (305 and 479 adap-
tation cycles on average). The less frequency of adaptation would leave the915

architecture in a more stable state and reflect the elimination of unnecessary
adaptations. Meanwhile, this would require performing higher configurations
for adaptations, in order to eliminate unnecessary frequent adaptations with
less configurations. For instance, instead of increasing the number of PMs with
1 PM two times in 2 consecutive adaptations cycles, stability-based adaptations920

give insights for increasing 2 PMs in one longer adaptation cycle. This interprets
the higher energy consumption appearing the case of bidding service above. The
frequent adaptations shall result in slower settling time and consequently SLA
violations. Generally, the less SLA violations, the quicker settling time, and
the less frequent adaptations would reflect the behavioural stability state of the925

architecture.

Table 3: Stability Attributes Adaptation Properties

Service
Pattern

Adaptation Adaptation Properties

Settling time
(sec.)

Overhead (frequency of
adaptation cycles)

browsing stability-based 300 3240
conventional 2040 305

bidding stability-based 200 5800
conventional 2266 479

7.3. Complexity and Runtime Overhead

Considering the complexity and overhead of Bayesian analysis, the perfor-
mance of the Bayesian network is directly related to the number of nodes [82]. In
the case of stability model, the number of stability attributes of each viewpoint930

and their parents is limited. Thus, we can claim that running the stability model

28

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

during runtime is not an overhead on the system, compared with the expected
benefits when achieving stability of the architecture.

With respect to the storage requirements of the Bayesian network, let us
consider the case of the environmental viewpoint. There is one variable sub-935

ject of stability X1, i.e. greenability, and its dependant variables (performance,
throughput, cost) {X2, ...,Xn+1}, n = 3. If each attribute can take 10 possible
ranges for stability, then we have 279 probabilities (from equation (3)), to be
elicited in the stability model. For the case of the economical viewpoint, where
cost is the variable subject of stability with 4 dependant variables, we have 359940

probabilities to store in the stability network, which is just about practically
feasible.

Meanwhile, the state space of the variables will grow exponentially, as the
Bayesian network will accumulate knowledge during runtime. As such growth
will affect the performance of the analysis during runtime, one possible technique945

could be prioritising the stability viewpoints. The highly-prioritised viewpoints
could be kept running online, while the less prioritised could be considered of-
fline using symbiotic simulations and adaptation decisions will be taken forward
online. Such approach will limit the overhead of running the analysis at runtime,
while preserve the benefits of the stability analysis.950

7.4. Summary

Applying the stability approach allows closely monitoring for stability at-
tributes, keeping their provision stable, as well as eliminating violations, con-
sequent penalties and reputation loss. These attributes are the quality require-
ments critical for the system execution, such as response time for real-time sys-955

tems. Adding economical requirements to the analysis allows the cloud providers
to control their operational costs and, thus, maximise their revenues. Consid-
ering the quality of adaptation allows the system to converge towards adapta-
tion goals, and hence eliminate SLA violations. Considering the overhead of
adaptation in the stability analysis helps in eliminating unnecessary frequent960

adaptations that can lead to unstable states for the architecture.
Reaching stability state for the architecture given the runtime uncertainty

would require determining an optimal adaptation action that achieves the sta-
bility of multiple attributes and converges quickly towards adaptation goals,
while verifying the expected stability of interdependent attributes. Probabilis-965

tic Relational Models for different stability viewpoints have provided a natural
representation for capturing the semantics of dependencies between different
attributes subject of stability. Whereas, the Bayesian networks have presented
a quantification of the dependence relations strengths and the preferences for
runtime decision, as well as provided quantitative evaluation for reasoning under970

uncertainty.
Capturing dependency factors that affect the attributes subject to stabil-

ity, the Bayesian networks for stability viewpoints provide a powerful decision-
support tool, as they can be used to measure and predict the effect of an adapta-
tion action on stabilising a specific attribute on other interdependent attributes.975

Given the knowledge gained from the model, this allows giving better insights

29

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

for runtime adaptations that would achieve architectural stability, where mul-
tiple attributes subject of stability are carefully considered. This also prevents
unnecessary adaptations that could lead to instability.

Conducting stability inference for self-adaptive architectures, as part of their980

runtime operation, ensures more effective and efficient adaptations that con-
tribute to the continuous fulfilment of quality requirements and eliminate SLA
violations. As the objective of self-adaptivity is to seamlessly manage the run-
time quality requirements and their trade-offs, the stability model allows veri-
fying to what extent the adaptation actions are able to converge towards their985

goals, i.e. the quality of adaptation. Combining the adaptation properties
with the adaptation goals in the process would result in a more efficient self-
adaptive system. Compared with adaptations not informed by stability analysis,
even with a multi-objectives optimisation, stability analysis would ensure the
constant provision of these requirements with less violations, while the former990

might result in frequent unnecessary adaptations leading to instability.
Probabilistic modelling for multiple stability viewpoints allows reasoning

about a stability state for the architecture that satisfies multiple attributes es-
sential for stability. Such consideration would prevent SLA violations, excessive
runtime adaptations, and consequently architecture drifting or phasing-out. The995

analysis can also give insights on possible enhancements of SLA parameters, as
the analysis allows predicting how such enhancements will affect the stability of
other attributes.

8. Discussion

The proposed analysis model is generic enough to be applied to architecture-1000

centric software systems. As an example, the components of the self-adaptive
software (i.e. managed system and adaptation controller) - appearing in the
analysis model - could be replaced by domain-specific components of the archi-
tecture under evaluation. Yet, we demonstrated the proposed analysis model
using self-adaptive software systems, as they tend to be more complex in be-1005

havioural aspects at runtime.
Domain-specific characteristics could be also included in the analysis as sta-

bility concerns and stability attributes, such as latency access for cloud feder-
ations [103]. As a general case, the stability analysis model could include any
set of viewpoints and attributes subject of stability. Other stakeholders and1010

stability dimensions could also be identified depending on the context, domain
of the system and the architecture type.

On a wider perspective, the stability analysis approach could be applied
to non-adaptive architectures for offline maintenance purposes. Architects can
also employ the analysis model for making architectural decisions during design-1015

time. Realising stability, as an architectural property, allows the architecture
to preserve its capability to continuously meet its expected behaviour without
phasing out.

Integrating the stability model into the adaptation process of such dynamic
architectures provides valuable support for reasoning about the adaptation de-1020

30

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

cision and the operation of the architecture during runtime. The reasoning aims
to satisfy not only the adaptation goals, but also ensure the constant provision
beside the adaptation properties of the controller. The optimal of adaptations
required tend to fulfil multiple stability properties and converge quickly towards
adaptation goals. Such optimality of adaptation decisions can lead to the de-1025

sirable stable state. However, it is possible to reach and maintain stability by
reaching sub-optimal stages. Henceforth, the problem would be what is the
range that can keep the system stable, which could vary between minimum
sub-optimal to optimal. Yet, the results are sensitive to the analysis step and
accuracy of data used to build the model.1030

Our method for reasoning about stability can make use of “sensitivity anal-
ysis” [104] [75], in order to test the extent to which small perturbations to the
inputs of the model, i.e. entries of the conditional probability distributions, can
affect the stability of the whole architecture. Two types of sensitivity analysis
could be performed in probabilistic models: (i) evidence sensitivity analysis, in1035

which how the result of of an evidence is sensitive to the variations in the set
of evidences, and (ii) parameter sensitivity analysis, in which how the result of
of an evidence is sensitive to the variations in a parameter of the model. Sen-
sitivity analysis could be easily embedded in the steps of building the stability
model.1040

Regarding the proposed methodological support, the level of automation
generally varies between steps. For instance, the qualitative analysis depends
on the human capabilities (stakeholders’ input and architects’ decision), which
is different from the automated reasoning during runtime. Though extensive
effort has been taken to ensure re-reproducibility of the method by providing1045

systematic guidance, this would be subject to further empirical studies to de-
termine the practicality of the method, where factors, such as availability of
information, stakeholders’ experience would be examined. Though, we believe
that the presented case study for evaluation exemplifies the working procedure
of the approach and reflect the potential usability.1050

The self-aware architecture —as the latest emerging class of self-adaptive
architectures —could benefit from the different levels of awareness for realising
stability. For instance, adaptation actions could be evaluated for stabilising the
behaviour of the architecture towards multiple goals and interaction with other
self-aware nodes. Meanwhile, the construction of the Bayesian network and the1055

calculation of posterior stability probabilities during runtime could further ben-
efit from the time-awareness level, which is the capability of having knowledge
of historical and likely future phenomena.

9. Threats to Validity

Though we proposed a systematic approach for analysing and modelling1060

stability, there are potential threats to validity:

• The dependency on the human capabilities in the analysis step of the
proposed method would form a threat to validity on the end results when

31

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

using the proposed approach. This might be due to the lack of information
or expertise knowledge. Yet, our approach could be complemented with1065

formal methods of causality discovery [105] [106], structuring causal trees
[80] and learning structure from data [81].

• With respect to the generalisability of the proposed work, we believe
the method provides systematic guidance to architects and practitioners,
where the steps were designed to promote replication. Yet, customisa-1070

tion might be needed if the self-adaptive system has different components
for the adaptation controller. As the application of the method tends
to be subject of the system under consideration, applicability and gener-
alisability of the method to different software domains can uncover new
modalities, customisation, simplification or extension to the method.1075

• The fact that the proposed method is evaluated by its authors presents a
threat to objectivity. To mitigate this risk, we sought to conduct practical
evaluation by architects in industrial settings, in order to provide more
feedback from independent sources.

• Another threat to validity of our evaluation lies in the fact that the ap-1080

proach was evaluated using one case. Yet, the dynamics presented in
cloud architectures is an appropriate case study representing dynamics of
modern software systems, and we plan to conduct other case studies in
industrial contexts and different business segments.

• Subjectivity might be considered a threat to validity for the stability anal-1085

ysis of the case study, as the analysis was conducted based on the authors’
background and knowledge. Our strategy mitigation for this issue has been
basing the case study on previous work of [94] [95] [72], this makes us be-
lieve that the case study is practical and reflects the nature of cloud-based
software systems.1090

• Experiments were conducted in a controlled environment and have not
considered the real-life scenario of switching between different service pat-
terns and changing stability goals during runtime for different end-users.
Given the use of a real-world workload trend and the RUBiS benchmark,
we consider that our experiments have given good enough indication and1095

approximation of likely scenarios in a practical setting. Also, we have
chosen the stability goals thresholds purely based on our observations,
e.g. response time not exceeding 15 ms. Yet, these goals have proved
to be challenging when running the simulation for building the stability
Bayesian networks.1100

10. Conclusion and Future Work

In this paper, we presented a systematic approach for analysing and mod-
elling stability as an architectural property. The stability analysis, based on

32

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

architectural concerns and viewpoints, introduced a qualitative model for repre-
senting the knowledge related to the attributes subject to stability and their de-1105

pendencies. For modelling stability, we employed probabilistic relational models
that capture the correlations between stability attributes of different viewpoints.
Bayesian networks are, then, used for quantitatively calculating probability dis-
tributions of the impact of stabilising specific attributes on interdependent at-
tributes, as well as reasoning about stability under runtime uncertainty.1110

Our future work will focus on building the time-awareness model for online
learning. More specifically, we will use historical information from the time-
awareness level to update the prior knowledge and devise online learning for
obtaining posterior stability probabilities. We will also consider modelling tem-
poral (dynamic) relationships among stability attributes, i.e. representing how1115

the value of an attribute may be related to its value and the values of other
attributes at previous points in time.

Acknowledgment

Thanks are due to Patricia Lago for the constructive feedback to improve
the technical quality and readability of the paper.1120

References

[1] B. Chen, X. Peng, Y. Liu, S. Song, J. Zheng, W. Zhao, Architecture-based
behavioral adaptation with generated alternatives and relaxed constraints,
IEEE Transactions on Services Computing (99).

[2] M. Salehie, L. Tahvildari, Self-adaptive software: Landscape and research1125

challenges, ACM Transactions on Autonomous and Adaptive Systems
(TAAS) 4 (2) (2009) 1–42.

[3] B. H. C. Cheng, R. de Lemos, H. Giese, P. Inverardi, J. Magee, J. Ander-
sson, B. Becker, N. Bencomo, Y. Brun, B. Cukic, G. Marzo Serugendo,
S. Dustdar, A. Finkelstein, C. Gacek, K. Geihs, V. Grassi, G. Karsai,1130

H. M. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Mirandola, H. Müller,
S. Park, M. Shaw, M. Tichy, M. Tivoli, D. Weyns, J. Whittle, Software en-
gineering for self-adaptive systems: A research roadmap, Springer-Verlag,
2009, pp. 1–26.

[4] R. de Lemos, H. Giese, H. Müller, M. Shaw, J. Andersson, M. Litoiu,1135

B. Schmerl, G. Tamura, N. Villegas, T. Vogel, D. Weyns, L. Baresi,
B. Becker, N. Bencomo, Y. Brun, B. Cukic, R. Desmarais, S. Dustdar,
G. Engels, K. Geihs, K. Goschka, A. Gorla, V. Grassi, P. Inverardi, G. Kar-
sai, J. Kramer, A. Lopes, J. Magee, S. Malek, S. Mankovskii, R. Miran-
dola, J. Mylopoulos, O. Nierstrasz, M. Pezze, C. Prehofer, W. Schafer,1140

R. Schlichting, D. Smith, P. Sousa, L. Tahvildari, K. Wong, J. Wut-
tke, Software engineering for self-adaptive systems: A second research

33

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

roadmap, Vol. 7475 of Lecture Notes in Computer Science, Springer-
Verlag, 2013, pp. 1–32.

[5] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner, G. Johnson,1145

N. Medvidovic, A. Quilici, D. S. Rosenblum, A. L. Wolf, An architecture-
based approach to self-adaptive software, IEEE Intelligent Systems 14 (3)
(1999) 54–62.

[6] D. Garlan, Software architecture: a roadmap, in: Proceedings of Confer-
ence on The Future of Software Engineering, 2000, pp. 91–101.1150

[7] D. Garlan, Software architecture: a travelogue, in: Proceedings of Inter-
national Conference on Future of Software Engineering, ACM, 2015, pp.
29–39.

[8] J. Buckley, T. Mens, M. Zenger, A. Rashid, G. Kniesel, Towards a taxon-
omy of software change, Journal of Software Maintenance and Evolution:1155

Research and Practice 17 (5) (2005) 309–332.

[9] M. Salama, R. Bahsoon, P. Lago, Architectural stability: Survey of the
state-of-the-art and research directions, (manuscript submitted for publi-
cation).

[10] R. Bahsoon, W. Emmerich, Evaluating software architectures: develop-1160

ment, stability, and evolution, in: Proceedings of ACS/IEEE International
Conference on Computer Systems and Applications, 2003, p. 47.

[11] R. Bahsoon, W. Emmerich, Architectural stability, Vol. 5872 of Lecture
Notes in Computer Science, Springer Berlin Heidelberg, 2009, book sec-
tion 43, pp. 304–315.1165

[12] J. Kramer, J. Magee, Self-managed systems: An architectural challenge,
in: Proceedings of Future of Software Engineering (FOSE), 2007, pp. 259–
268.

[13] N. M. Villegas, H. A. Müller, G. Tamura, L. Duchien, R. Casallas, A
framework for evaluating quality-driven self-adaptive software systems, in:1170

Proceedings of 6th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SEAMS), ACM, 2011, pp. 80–89.

[14] N. M. Villegas, G. Tamura, H. A. Müller, Architecting software systems
for runtime self-adaptation: Concepts, models, and challenges, Elsevier
(Morgan Kaufmann), Boston, 2017, pp. 17–43.1175

[15] Rice University Bidding System (RUBiS).
URL www.rubis.ow2.org

[16] M. Arlitt, T. Jin, A workload characterization study of the 1998 World
Cup web site, IEEE Network 14 (3) (2000) 30–37.

34

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[17] International Organization for Standardization and International Elec-1180

trotechnical Commission (ISO/IEC), ISO/IEC/IEEE 24765:2010(E) Sys-
tems and software engineering – Vocabulary, Report (2010).

[18] D. E. Perry, A. L. Wolf, Foundations for the study of software architecture,
SIGSOFT Software Engineering Notes 17 (4) (1992) 40–52.

[19] M. Shaw, D. Garlan, Software Architecture: Perspectives on an emerging1185

discipline, Prentice-Hall, Inc., 1996.

[20] L. Bass, P. Clements, R. Kazman, Software Architecture in Practice, 2nd
Edition, Addison-Wesley Longman Publishing Co., Inc., 2003.

[21] N. Medvidovic, R. N. Taylor, A classification and comparison framework
for software architecture description languages, IEEE Transactions on1190

Software Engineering 26 (1) (2000) 70–93.

[22] C. Seo, G. Edwards, S. Malek, N. Medvidovic, A framework for estimating
the impact of a distributed software system’s architectural style on its en-
ergy consumption, in: Proceedings of 7th Working IEEE/IFIP Conference
on Software Architecture (WICSA), 2008, pp. 277–280.1195

[23] A. Avizienis, J. C. Laprie, B. Randell, C. Landwehr, Basic concepts and
taxonomy of dependable and secure computing, IEEE Transactions on
Dependable and Secure Computing 1 (1) (2004) 11–33.

[24] V. T. Rajlich, K. H. Bennett, A staged model for the software life cycle,
Computer 33 (7) (2000) 66–71.1200

[25] Software Engineering Standards Committee of the IEEE Computer So-
ciety, IEEE standard for a software quality metrics methodology, Report
IEEE Std 1061-1998, The Institute of Electrical and Electronics Engineers,
Inc. (1998).

[26] B. I. Witt, Software Architecture and Design : Principles, models, and1205

methods, New York : Van Nostrand Reinhold, New York, 1994.

[27] H. Gomaa, Software Modeling and Design : UML, use cases, architecture,
and patterns, Cambridge University Press, Cambridge, 2010.

[28] I. Sommerville, Software Engineering, Boston, Mass. London : Pearson
Education, Boston, Mass. London, 2011.1210

[29] C. Lianping, M. A. Babar, B. Nuseibeh, Characterizing architecturally
significant requirements, IEEE Software 30 (2) (2013) 38–45.

[30] P. R. Anish, B. Balasubramaniam, A knowledge-assisted framework to
bridge functional and architecturally significant requirements, in: Pro-
ceedings of 4th International Workshop on Twin Peaks of Requirements1215

and Architecture, ACM, 2014, pp. 14–17.

35

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[31] R. Kazman, L. Bass, Toward deriving software architectures from quality
attributes, Technical Report CMU/SEI-94-TR-010, Software Engineering
Institute, Carnegie Mellon University (1994).

[32] D. Ameller, C. Ayala, J. Cabot, X. Franch, Non-functional requirements1220

in architectural decision making, IEEE Software 30 (2) (2013) 61–67.

[33] K. J. Åström, B. Wittenmark, Adaptive Control, Addison-Wesley, 1989.

[34] R. Laddaga, Self-adaptive software, Technical Report 98-12, DARPA BAA
(1997).

[35] A. C. Meng, On evaluating self-adaptive software, Springer Berlin Heidel-1225

berg, Berlin, Heidelberg, 2001, pp. 65–74.

[36] International Organization for Standardization and International Elec-
trotechnical Commission (ISO/IEC), ISO/IEC 9126-1 – Information tech-
nology – Software product quality – Quality model, Report ISO/IEC 9126-
1:2001, ISO/IEC (2000).1230

[37] L. Dobrica, E. Niemela, A survey on software architecture analysis meth-
ods, IEEE Transactions on Software Engineering 28 (7) (2002) 638–653.

[38] S. S. Yau, J. S. Collofello, Some stability measures for software mainte-
nance, IEEE Transactions on Software Engineering SE-6 (6) (1980) 545–
552.1235

[39] D. Bush, A. Finkelsteiin, Requirements stability assessment using scenar-
ios, in: Proceedings of 11th IEEE International Conference on Require-
ments Engineering (RE), IEEE Computer Society, 2003, p. 23.

[40] S. S. Yau, J. S. Collofello, Design stability measures for software main-
tenance, IEEE Transactions on Software Engineering SE-11 (9) (1985)1240

849–856.

[41] M. E. Fayad, A. Altman, An introduction to software stability, Commu-
nications of the ACM 44 (9) (2001) 95–98.

[42] D. Grosser, H. A. Sahraoui, P. Valtchev, An analogy-based approach for
predicting design stability of Java classes, in: Proceedings of 9th Interna-1245

tional Software Metrics Symposium, 2003, pp. 252–262.

[43] M. O. Elish, D. Rine, Indicators of structural stability of object-oriented
designs: A case study, in: Proceedings of 29th Annual IEEE/NASA Soft-
ware Engineering Workshop, 2005, pp. 183–192.

[44] D. Kelly, A study of design characteristics in evolving software using sta-1250

bility as a criterion, IEEE Transactions on Software Engineering 32 (5)
(2006) 315–329.

36

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[45] M. Jazayeri, On architectural stability and evolution, in: Proceedings of
7th Ada-Europe International Conference on Reliable Software Technolo-
gies, Springer-Verlag, 2002, pp. 13–23.1255

[46] S. A. Tonu, A. Ashkan, L. Tahvildari, Evaluating architectural stability
using a metric-based approach, in: Proceedings of 10th European Confer-
ence on Software Maintenance and Reengineering (CSMR), 2006.

[47] A. Molesini, A. Garcia, C. v. F. G. Chavez, T. V. Batista, Stability as-
sessment of aspect-oriented software architectures: A quantitative study,1260

Journal of Systems and Software 83 (5) (2010) 711–722.

[48] A. Chomchumpol, T. Senivongse, Stability measurement model for
service-oriented systems, in: Proceedings of 9th Malaysian Software En-
gineering Conference (MySEC), 2015, pp. 54–59.

[49] A. M. Lyapunov, The general problem of the stability of motion, Taylor1265

& Francis, London, 1992.

[50] J. R. Leigh, Control Theory, 2nd Edition, Vol. 64 of IEE Control Engi-
neering Series, Institution of Electrical Engineers, London, UK, 2004.

[51] T. Patikirikorala, A. Colman, J. Han, L. Wang, A systematic survey on
the design of self-adaptive software systems using control engineering ap-1270

proaches, in: Proceedings of 7th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), 2012,
pp. 33–42.

[52] A. Gorbenko, V. Kharchenko, O. Tarasyuk, Y. Chen, A. Romanovsky, The
threat of uncertainty in service-oriented architecture, in: Proceedings of1275

RISE/EFTS Joint International Workshop on Software Engineering for
Resilient Systems, ACM, 2008, pp. 49–54.

[53] R. Kazman, G. Abowd, L. Bass, P. Clements, Scenario-based analysis of
software architecture, IEEE Software 13 (6) (1996) 47–55.

[54] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, J. Carriere,1280

The architecture tradeoff analysis method, in: Proceedings of 4th IEEE
International Conference on Engineering of Complex Computer Systems
(ICECCS), 1998, pp. 68–78.

[55] T. Keuler, D. Muthig, T. Uchida, Efficient quality impact analyses
for iterative architecture construction, in: Proceedings of 7th Working1285

IEEE/IFIP Conference on Software Architecture (WICSA), 2008, pp. 19–
28.

[56] M. Neil, M. Tailor, D. Marquez, N. E. Fenton, P. Hearty, Modelling de-
pendable systems using hybrid bayesian networks, Reliability Engineering
& System Safety 93 (7) (2008) 933–939.1290

37

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[57] D. Marquez, M. Neil, N. E. Fenton, A new bayesian network approach to
reliability modelling, in: Proceedings of 5th International Mathematical
Methods in Reliability Conference (MMR), 2007.

[58] A. Bobbio, D. Codetta-Raiteri, S. Montani, L. Portinale, Reliability anal-
ysis of systems with dynamic dependencies, John Wiley & Sons, Ltd, 2008,1295

pp. 225–238.

[59] R. Roshandel, N. Medvidovic, L. Golubchik, A bayesian model for predict-
ing reliability of software systems at the architectural level, in: Proceed-
ings of Quality of Software Architectures 3rd International Conference on
Software Architectures, Components, and Applications (QoSA), Springer-1300

Verlag, 2007, pp. 108–126.

[60] J. Cámara, G. A. Moreno, D. Garlan, Stochastic game analysis and la-
tency awareness for proactive self-adaptation, in: Proceedings of 9th In-
ternational Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS), ACM, 2014, pp. 155–164.1305

[61] J. A. Stankovic, H. Tian, T. Abdelzaher, M. Marley, T. Gang, S. Sang,
L. Chenyang, Feedback control scheduling in distributed real-time sys-
tems, in: Proceedings of 22nd IEEE Real-Time Systems Symposium
(RTSS), 2001, pp. 59–70.

[62] T. Patikirikorala, A. Colman, J. Han, L. Wang, A multi-model frame-1310

work to implement self-managing control systems for QoS management,
in: Proceedings of 6th International Symposium on Software Engineer-
ing for Adaptive and Self-Managing Systems (SEAMS), ACM, 2011, pp.
218–227.

[63] J. L. Hellerstein, S. Singhal, Q. Wang, Research challenges in control1315

engineering of computing systems, IEEE Transactions on Network and
Service Management 6 (4) (2009) 206–211.

[64] International Organization for Standardization and International Elec-
trotechnical Commission (ISO/IEC), ISO/IEC/IEEE 42010 – Sys-
tems and software engineering – Architecture description, Report1320

ISO/IEC/IEEE 42010:2011(E), ISO/IEC (2011).

[65] B. Tekinerdogan, H. Sozer, Variability viewpoint for introducing variabil-
ity in software architecture viewpoints, in: Proceedings of WICSA/ECSA
Companion Volume, ACM, 2012, pp. 163–166.

[66] H. Koning, H. van Vliet, A method for defining IEEE Std 1471 viewpoints,1325

Journal of Systems and Software 79 (1) (2006) 120–131.

[67] G. Qing, P. Lago, On service-oriented architectural concerns and view-
points, in: Proceedings of Joint Working IEEE/IFIP Conference on
Software Architecture & European Conference on Software Architecture
(WICSA/ECSA), 2009, pp. 289–292.1330

38

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[68] P. Kruchten, R. Capilla, J. C. Dueas, The decision view’s role in software
architecture practice, IEEE Software 26 (2) (2009) 36–42.

[69] I. Ozkaya, R. Kazman, M. Klein, Quality-attribute-based economic valua-
tion of architectural patterns, Technical Report CMU/SEI-2007-TR-003,
Software Engineering Institute, Carnegie Mellon University (2007).1335

[70] P. Narman, M. Buschle, J. Konig, P. Johnson, Hybrid probabilistic re-
lational models for system quality analysis, in: Proceedings of 14th
IEEE International Enterprise Distributed Object Computing Conference
(EDOC), 2010, pp. 57–66.

[71] A. J. Ramirez, A. C. Jensen, B. H. C. Cheng, A taxonomy of uncertainty1340

for dynamically adaptive systems, in: Proceedings of 7th International
Symposium on Software Engineering for Adaptive and Self-Managing Sys-
tems (SEAMS), IEEE Press, 2012, pp. 99–108.

[72] M. Salama, R. Bahsoon, A taxonomy for architectural stability, in:
Proceedings of 31st ACM/SIGAPP Symposium on Applied Computing1345

(SAC), Software Architecture: Theory, Technology, and Applications
Track (SATTA), 2016.

[73] A. Darwiche, Modeling and Reasoning with Bayesian Networks, Cam-
bridge University Press, 2009.

[74] C. P. Robert, The Bayesian choice: from decision-theoretic foundations to1350

computational implementation, Springer Science & Business Media, 2007.

[75] U. B. Kjaerulff, A. L. Madsen, Bayesian Networks and Influence Diagrams:
A guide to construction and analysis, Information Science and Statistics,
Springer, New York London, 2008.

[76] N. Bencomo, A. Belaggoun, V. Issarny, Bayesian artificial intelligence for1355

tackling uncertainty in self-adaptive systems: The case of dynamic deci-
sion networks, in: Proceedings of 2nd International Workshop on Realizing
Artificial Intelligence Synergies in Software Engineering (RAISE), 2013,
pp. 7–13.

[77] R. E. Neapolitan, Learning Bayesian Networks, Pearson Prentice Hall,1360

2004.

[78] J. Pearl, Graphical models, causality, and intervention, Statistical Science
8 (3) (1993) 266–273.

[79] F. V. Jensen, Bayesian Networks and Decision Graphs, Springer-Verlag
New York, Inc., 2001.1365

[80] J. Pearl, Fusion, propagation, and structuring in belief networks, Artificial
Intelligence 29 (3) (1986) 241–288.

39

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[81] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of plau-
sible inference, Morgan Kaufmann Publishers Inc., 1988.

[82] J. Q. Smith, Bayesian Decision Analysis: Principles and Practice, Cam-1370

bridge University Press, 2010.

[83] T. Hall, N. E. Fenton, Implementing effective software metrics programs,
IEEE Software 14 (2) (1997) 55–65.

[84] R. E. Park, W. B. Goethert, W. A. Florac, Goal-driven software mea-
surement. a guidebook, Report Technical Report CMU/SEI-96-HB-002,1375

Software Engineering Institute, Carnegie Mellon University (1996).

[85] N. E. Fenton, S. L. Pfleeger, Software Metrics: A Rigorous and Practical
Approach, PWS Publishing Co., 1998.

[86] R. van Solingen, V. Basili, G. Caldiera, H. D. Rombach, Goal Question
Metric (GQM) Approach, John Wiley & Sons, Inc., 2002.1380

[87] P. Lago, P. Avgeriou, P. Kruchten, Fifth international workshop on
sharing and reusing architectural knowledge (shark), in: Proceedings
of ACM/IEEE 32nd International Conference on Software Engineering
(ICSE), Vol. 2, 2010, pp. 437–438. doi:10.1145/1810295.1810417.

[88] F. V. Jensen, An Introduction to Bayesian Networks, UCL Press, London,1385

1996.

[89] C. Ghezzi, G. Tamburrelli, Reasoning on non-functional requirements for
integrated services, in: Proceedings of 17th IEEE International Require-
ments Engineering Conference (RE), 2009, pp. 69–78.

[90] M. Hölzl, T. Gabor, Reasoning and Learning for Awareness and Adapta-1390

tion, Springer International Publishing, 2015, pp. 249–290.

[91] H. Aydt, S. J. Turner, W. Cai, M. Y. H. Low, Research issues in symbi-
otic simulation, in: Proceedings of Winter Simulation Conference (WSC),
2009, pp. 1213–1222.

[92] S. J. Turner, Symbiotic simulation and its application to complex adap-1395

tive systems (keynote), in: Proceedings of IEEE/ACM 15th International
Symposium on Distributed Simulation and Real Time Applications (DS-
RT), 2011, pp. 3–3.

[93] B. Tjahjono, J. Xu, Linking symbiotic simulation to enterprise systems:
Framework and applications, in: Proceedings of 2015 Winter Simulation1400

Conference (WSC), 2015, pp. 823–834.

[94] T. Chen, F. Faniyi, R. Bahsoon, P. R. Lewis, X. Yao, L. Minku, L. Es-
terle, The handbook of engineering self-aware and self-expressive systems,
Technical report, School of Computer Science, University of Birmingham
(2014).1405

40

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

[95] M. Salama, R. Bahsoon, Quality-driven architectural patterns for self-
aware cloud-based software, in: Proceedings of IEEE 8th International
Conference on Cloud Computing (IEEE CLOUD), 2015, pp. 844–851.

[96] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica, M. Zaharia, A view of Cloud1410

Computing, ACM Communications 53 (4) (2010) 50–58.

[97] P. Lago, S. A. Kocak, I. Crnkovic, B. Penzenstadler, Framing sustainabil-
ity as a property of software quality, Communications of the ACM 58 (10)
(2015) 70–78.

[98] C. Calero, M. Piattini, Introduction to green in software engineering,1415

Springer, 2015, pp. 3–27.

[99] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, R. Buyya,
CloudSim: A toolkit for modeling and simulation of cloud computing en-
vironments and evaluation of resource provisioning algorithms, Software:
Practice and Experience 41 (1) (2011) 23–50.1420

[100] A. Beloglazov, R. Buyya, Optimal online deterministic algorithms and
adaptive heuristics for energy and performance efficient dynamic consoli-
dation of virtual machines in cloud data centers, Concurrency and Com-
putation: Practice and Experience 24 (13) (2012) 1397–1420.

[101] Amazon Web Services, Inc., Amazon EC2 Instance Types, accessed: 2016-1425

06-01.
URL https://aws.amazon.com/ec2/instance-types/

[102] T. Chen, R. Bahsoon, Symbiotic and sensitivity-aware architecture for
globally-optimal benefit in self-adaptive cloud, in: 9th International Sym-
posium on Software Engineering for Adaptive and Self-Managing Systems1430

(SEAMS), ACM, 2014, pp. 85–94.

[103] A. N. Toosi, R. N. Calheiros, R. Buyya, Interconnected cloud comput-
ing environments: Challenges, taxonomy, and survey, ACM Computing
Surveys 47 (1) (2014) 1–47.

[104] A. Ekrt, S. Z. Nmeth, Stability analysis of tree structured decision func-1435

tions, European Journal of Operational Research 160 (3) (2005) 676–695.

[105] P. Spirtes, C. Glymour, R. Scheines, Causation, prediction, and search,
2nd Edition, MIT Press, Cambridge, Mass., 2000.

[106] S. Shimizu, P. O. Hoyer, A. Hyvärinen, A. Kerminen, A linear non-
gaussian acyclic model for causal discovery, Journal of Machine Learning1440

Research 7 (2006) 2003–2030.

41

