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Abstract

It is nowadays more probable that a print media is captured and shared

with a mobile phone than with a scanner. The reasons for photographing the

print range from intention of copying the image to simply sharing an interesting

add with friends. Watermarking offers a solution for carrying side information

in the images, and if the watermarking method being used is robust to the

print-cam process, the information can be read with a mobile phone camera.

In this paper, we present a print-cam robust watermarking method that is also

implemented on a mobile phone and evaluated with user tests. Especially, the

lens focusing problem when the picture is captured in a wide angle with respect

to the printout is addressed. The results show that the method is highly robust

to capturing the watermark without errors in angles up to 60➦ with processing

times that are acceptable for real-life applications.

Keywords: focal stack optimization, mobile phone application, watermark

application, camera phone, computational photography

1. Introduction

The aim of this paper is to present an algorithm for reading a watermark from

a printed image with a mobile phone camera with wide angles of capture. To

achieve this, three research fields are joined: print-cam robust image water-

marking, mobile phone applications and computational photography.
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The aim of the print-cam robust watermarking is to link the physical world

with the digital without compromising the aesthetics of the artwork. The rea-

sons for hiding information vary from increasing security to offering beneficial

information to the recipient. However, in real world applications, several things

make the print-cam robustness challenging. The watermark should be simulta-

neously robust to AD/DA transformations, rotations in 3D, scaling and transla-

tion. In addition, human interaction, JPEG distortions, lighting variations and

camera related distortions, such as barrel distortions and focusing, need to be

considered as well. (Pramila et al., 2007)

In the scenario presented in Fig. 1, the watermarked image is located in

a magazine laying on a table. The image could also be placed on a wall and

people with different heights could take pictures of it from different angles or

around a cluster of other people. Specifically, the lens might not focus correctly

to the image taken at a large angle causing the watermark extraction to fail. It

should be noted that the watermarked image is never published electronically

and therefore intentional attacks against the watermark are not considered here.

Figure 1: The scenario. The watermark is embedded in an image. The watermark contains a

link to a webpage that the user can read with his/her camera phone.

Most of the proposed print-cam robust watermarking methods have been

tested in relatively constricted settings and only a few of them have been proved

to work on a mobile phone. Most of the methods assume that the user is able

to point the camera straight in relation to the watermark and so the distortions
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are minimized.

The first print-cam robust watermarking method was proposed by Katayama

et al. (2004). The method was based on a sinusoidal watermark pattern and a

frame for synchronization. They noted that utilizing a frame is not a problem

as it shows the user that a watermark is present.

Kim et al. (2006) relied on an autocorrelation function for watermark ex-

traction. They embedded a pseudo-random vector by tiling it repeatedly and

later detected the peaks that were formed by the autocorrelation function. The

method was tested on a digital camera on a tripod and human interaction was

required for the final extraction of the watermark to minimize geometrical dis-

tortions. Likewise, Pramila et al. (2012) used autocorrelation although they

employed directed patterns. The message was encoded in the angle of these

patterns and the method was robust to ±20➦ of the tilt of the optical axis.

Yamada and Kamitani (2013) placed the information only in some locations

in the image in order to preserve quality of the image. The watermark was

embedded with spread spectrum techniques and read from the video feed by

trying to find the watermark from each frame in turn. The method required the

user to keep the camera near perpendicular to the watermark.

All these methods operate in the spatial domain and only a few have pro-

posed methods in other domains. Delgado-Guillen et al. (2013) operated their

method in log-polar transformations and Pramila et al. (2008) divided the

method across several domains.

In addition, commercial applications have been launched. Most notably,

Digimarc (2015) introduced an application called Discover. The aim of the

application was to connect users from magazine pages to the Internet.

All the aforementioned print-cam robust watermarking algorithms rely on

the autofocus feature of the camera. However, when the image is captured in a

large angle, autofocus does not work. None of the methods consider the large

angles at which depth of field of the camera comes into play and parts of the im-

age are unfocused. Increasing the depth of field would solve the focusing issues

and traditionally this is achieved by decreasing the size of aperture. However,
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this requires more lighting or longer exposure time, which might introduce dis-

tortions such as the motion blur. In addition, mobile devices often have a fixed

aperture and changing the depth of field is not possible.

Computational photography refers to techniques for capturing and process-

ing images digitally, therefore overcoming the limitations of traditional optics.

The effect of increasing the depth of field can be achieved with computational

photography by capturing a focal stack, a series of images focused at different

depths, and building a new image with an extended depth of field. Several meth-

ods have been proposed, unfortunately, only a few of them take into account the

movement between images that occurs when images are captured free handedly.

None have been suggested to be used in combination with watermarking.

One of the most promising methods was proposed by Vaquero et al. (2011)

who utilized FCam programmable-camera software stack (Adams et al., 2010).

For better efficiency and results, they noted that not all of the images in the

focal stack are required for building an all-in-focus image. Their method was

based on sweeping the focus of the camera lens and selecting the optimal set of

images to be taken according to small sharpness maps.

However, all the cameras cannot focus the lens on specific focal points, nor

sweep the lens. Sakurikar and Narayanan (2014) approached this problem by

using camera autofocus so that the viewfinder was divided into 16 blocks and

autofocus algorithm was pointed towards each block in order. Overly similar

images were removed before registration. Solh (2014) selected three predeter-

mined focal distances and captured pictures at these lens locations. The frames

were then aligned and fused. Zhang et al. (2013) captured the whole focal stack

but removed the worst images from the stack. They took advantage of the IMU

(Inertial Measurement Unit) to receive information about the movements of the

phone, so that the sharp images could be discerned from the blurry images more

easily.

Here, the print-cam robust watermarking is combined with the all-in-focus

imaging into a system that is robust to severe 3D distortions. To solve the focus-

ing issues, an algorithm is proposed that employs computational photography
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to improve the sharpness of the images for the watermark extraction.

The algorithm, denoted here as WCAM (Watermark CAMera), begins by

collecting a focal stack that is scaled down to a fraction of a size for fast cal-

culations. The number of images in the stack is then optimized by selecting

a small amount of the images in the stack that contain most of the informa-

tion about the scene. The selected images are registered and blended into an

all-in-focus image. From this scaled-down all-in-focus image, an approximation

of the correct watermark location and alignment in the original images can be

determined.

The method takes advantage of our previous results on combining computa-

tional photography and robust watermarking (Pramila et al., 2017). An evolved

algorithm is presented which is 35 times faster by taking better into account the

inherent features of the selected watermarking method and demands of camera

phones. The method is robust up to capturing angles of 60➦ with varying dis-

tances. In addition to testing capturing angles, the robustness is evaluated with

user tests.

In Section 2, the embedding process of the watermark is explained. In Sec-

tion 3, the implementation of the watermark extraction is presented and the

required methodologies are explained. The method is implemented on a camera

phone and tested with users. The results have been collected in Section 4, and

finally Conclusion is given in Section 5.

2. Watermark embedding and printing

The scenario imposes requirements for a moderate amount of geometrical distor-

tions that occur as the approximations of transformation matrices are utilized

instead of actual matrices as well as medium capacity. The blind print-cam

robust method by Pramila et al. (2012) fulfils most of the requirements. With

few changes, mainly in extraction part, the method adapts well to the scenario.

The overview of the watermark embedding method is illustrated in Fig. 2.

The watermark is embedded in the Y-channel of YCbCr transformation of the

5



image by dividing the image into k blocks and embedding the watermark in the

blocks. Unlike in (Pramila et al., 2012) in which k = 1...9, in here k = 1...16

in order to increase the capacity. The size of the block depends, therefore, on

the size of the image. For an image of size 512× 512 this means a blocksize of

128× 128. One block is reserved for watermark detection and synchronization.

Four bits are embedded in each of the remaining blocks resulting in 4∗(16−1) =

60 bits of capacity. This enables the suggested scenario in which the watermark

conains a link to a webpage.

Figure 2: The algorithm for embedding the watermark.

The watermark message is encoded in the angles of pseudorandom patterns.

The message was first error coded with Reed-Solomon error correction coding

(Reed and Solomon, 1960) and then with Gray coding to minimize effect of

errors. The error-coded message was then divided into bit sequences and each

sequence of 4-bits was assigned an angle θk. A pattern W was then rotated

according to the angles. W was build by tiling a small pseudorandom pattern,

the size of which was experimentally determined to be 28× 7.

The embedding strength per pixel is controlled with JND (Just Noticeable

Difference) which is calculated with the method by Chou and Li (1995). The

watermark is finally embedded in the image X with
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Yk(x, y) = Xk(x, y) +W θk
k (x, y)(δ1JND(x, y)+

δ2(1− JND(x, y))),
(1)

where Yk is the kth watermarked image block, Xk is the kth preprocessed image

block andW θk
k is the two-dimensional pattern that has been rotated according to

the kth angle θk. The two parameters δ1 and δ2 govern the embedding strength.

More details of the embedding method can be found in (Pramila et al., 2012)

In addition, a frame is placed around the image, enabling image rectification

using frame corners. This is needed against severe rotations of > 30➦ in 3D, and

blind block division, as suggested by Pramila et al. (2012), is not feasible.

3. Watermark extraction and focal stack optimization

The algorithm should work on a mobile phone and consequently it should be

fast and efficient without compromising watermark robustness. Fig. 3 shows

the flow of the watermark extraction process, which will be presented in detail

in the following subsections.

3.1. Capturing process

The focal stack is built by first determining the initial focus point with the

inbuilt autofocus routine of the camera and then capturing images at equal

distances of

fstep = 1.0/100.0

fnext = 1.0/((1.0/foriginal)− (3.0 ∗ fstep) + (fstep ∗ (i− 1))),
(2)

in which f -values are given in dioptres and i = 1...N . Here, N was chosen to

be 10.

To speed up processing times and save memory, each image is scaled to a

size of half a megapixel, that is, 816×612 after capturing. The full sized original

images are saved in memory for later processing.
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Figure 3: The flow of the watermark extraction algorithm implementation.
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3.2. Sharpness map acquisition

The scaled images are used for the fast optimization of the focal stack. For this,

sharpness maps are calculated from the scaled images. The sharpness maps

work as a crude depth map, showing which focal lengths contain the most of

the information about the scene.

Let us assume that there are N images in the focal stack and Îi, i = 1...N de-

notes a scaled image. The sharpness maps are calculated by taking the absolute

values of Laplacian for each image as in Eq. 3

Li =

∣

∣

∣

∣

∣

∂2Îi
∂2x

+
∂2Îi
∂2y

∣

∣

∣

∣

∣

. (3)

The obtained images Li, i = 1...N are then divided into blocks so that the

final sharpness maps are the size of 96×72. This is done by averaging the values

in each block. Finally, the maps are normalized so that the maximum value of

the maps is set to 1 and minimum to 0. Let us denote these sharpness maps so

that Si is the sharpness map of the ith image in the stack.

3.3. Optimizing the size of the focal stack

Optimization of the size of the focal stack speeds up the process of watermark

extraction by selecting a subset of the images that contains non-overlapping

information about the scene. Also the robustness increases as having fewer

images decreases the probability of making errors in registration while building

the all-in-focus image. Here, the optimization process is inspired by Vaquero

et al. (2011) and explained in detail in (Pramila et al., 2017).

First, the maps are segmented into foreground and background areas. Stan-

dard deviation σ is calculated for each element S(u, v), in which u and v go

through all the elements in S. Each element is classified as foreground if

σ > 0.1× σmax, (4)

in which the constant 0.1 was experimentally determined to yield accurate re-

sults for the segmentation.
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Next, the foreground elements are divided into blurry and sharp regions. An

element (u, v) in the ith map is determined as sharp if Smax(u, v) == Si(u, v),

or Smax(u, v) − Si(u, v) < Smax × t and the element in the neighbouring map

is sharp. That is, element Si−1(u, v) or Si+1(u, v) is sharp. The threshold t is

described as an approximate number of images that contain valuable information

about the scene. It is determined by saving for each element (u, v) the image

that maximizes the sharpness and calculating the occurrences of each image.

The occurrence values are saved in a vector and the values are normalized to

the sum of 1. Experiments showed that all images with an occurrence number

less than 0.1 can be considered noise.

After the previous steps, the sharpness maps now show in binary form which

images contain sharp regions and at which locations. In reality, the sharpness

changes between images gradually and therefore the binary maps Bi are first

processed with a small 3 × 3 Gaussian kernel g with a standard deviation of

σg = 0.5 so that

Gi(u, v) = max
(l,n)∈g

{g(l, n), Bi(u+ l, v + n)} , (5)

in which u and v go through all elements in the binary sharpness map Bi. From

Gi, a greedy algorithm is used for selecting the subset of the focal stack. The

starting point of the algorithm is selected with m = argmaxi∈N

∑

u,v Gi(u, v).

The map Gm is considered the sharpest and contain most of the information.

Next, each of the remaining maps is combined in turn with the selected map.

The map that adds most to the first map is chosen for further processing. The

maps are combined with the max operation and compared with

sumi =
∑

u,v

max
u,v

{Gm(u, v), Gi(u, v)}, (6)

The index, m′, that maximizes sum is determined and map Gm′ is selected

and combined with Gm to to form a new combined map so that new Gm =

max
u,v

{Gm(u, v), Gm′(u, v)}. The algorithm iterates until at least 80% of the

foreground region is covered by the combined maps or 5 maps have been selected.
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M < N images have now been selected from the focal stack for watermark

extraction.

3.4. Reconfigure images

The full-sized images, Ij , j = 1...M are filtered with a small Gaussian kernel,

the coefficient of which depends on the image distance to the camera. This is

done to smooth out artefacts that originate from the halftone printing process, as

shown in Fig.4. For the mobile phone used in the experiments, the coefficient was

selected experimentally to be 1/8 of the image distance to the lens in dioptres.

Figure 4: Smoothing effects of halftoning a) before blurring b) after blurring.

In order to speed up processing, the images are first scaled to 1/8th of the

size and features are calculated from these scaled images Îj , j = 1...M . Let us

call this scale matrix H.

3.5. Image registration

As the camera may have moved during shots, the images need to be registered.

The registration method should be robust to orientation changes and blurring,

because images are captured at various depths. Additionally, the method should

be fast to compute in order to run on a mobile device.

Accelerated-Kaze features (Alcantarilla et al., 2013) were selected for this

research. The AKAZE features are blur-invariant and significantly faster to

compute than, e.g. SIFT features (Lowe, 2004). The AKAZE features employ

Fast Explicit Diffusion (FED) framework (Grewenig et al., 2010; Weickert et al.,
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2016) and pyramidal approach to speed up non-linear scale space computations

and enable robustness against blurring. Additionally, Modified-local Difference

Binary (M-LDB) descriptors were used as recommended by the AKAZE devel-

opers (Alcantarilla et al., 2013).

The registration method requires few initial parameters. The parameters

were chosen as 4 octaves, 2 sub-levels and 0.002 as the detector threshold. Fig. 5

shows an example of a sub-stack of three (M = 3) images which are registered.

Figure 5: An example of a sub stack that has been registered with sharp regions on left,

middle and right, respectively. Corresponding parts are magnified and placed next to each

image.

The obtained features are then matched with a brute force matcher by se-

lecting the closest matches with Hamming distance. In order to obtain the

transformation matrices, the transformation between each image is calculated

with the help of the RANSAC (Random Sample Consensus) feature selection
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algorithm (Fischler and Bolles, 1981). Subsequently, registration matrix ap-

proximations R̂j , j = 1...M are obtained.

3.6. Image blending

After registration, the images are blended in order to obtain the final all-in-focus

image. Here, Laplacian pyramid blending (Burt and Adelson, 1983) with one

level is applied with a sharpness mask as an alpha mask.

The aforementioned sharpness mask is built by first applying Laplacian filter

to each registered image separately and taking the absolute value of the filtering

as in Eq. 3. These values are then smoothed with a 5× 5 averaging filter. For a

number of M registered and blurred images Îrj , sharpness mask Q is calculated

with

Q(x, y) = argmax
j∈M

Îrj (x, y), (7)

in which Îrj denotes jth registered image and the resulting mask Q has indices

1...M as its elements. Basically, the sharpness mask indicates which of the

images is the sharpest at each pixel after noise is filtered out with the averaging

filter. An example of the mask is shown in Fig. 6 when M = 3. An example of

the final blended image is shown in Fig. 7.

Figure 6: Sharpness mask in which the shade of each pixel indicates the index of the image

which was sharpest at that pixel.
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Figure 7: Final result after blending.

3.7. Rectifying the image and watermark synchronization

The next task is to locate the frame in the blended image. The frame is found by

first thresholding the all-in-focus image with an adaptive thresholding method.

The method calculates a threshold value t for each pixel by taking a weighted

sum (cross-correlation with Gaussian window) of a neighbourhood. Here, an

experimentally determined window size of 51 × 51 and standard deviation of

8 are used. Next, an elliptical structuring element of 11 × 11 is applied and

morphological closing operation is applied to the image so that small details are

removed.

Contours are found in the binary image with the algorithm by Suzuki and

Abe (1985). At this point, the center-most contours are selected and those con-

tours are ignored that have centers far off the image center. It can be assumed

that the user has aimed the watermarked image towards the center of the view

finder. The contours are simplified with Douglas-Peucker algorithm (Heckbert

and Garland, 1997) and the largest one with four corners is found to be the

frame. These image corners are then used in rectifying the image by assuming

affine transformation, as shown in Fig. 8, and a matrix T̂ for rectifying the

image is obtained.

3.8. Watermark extraction

In order to preserve watermark robustness, the original images Ij are reloaded.

Notably, only the selected images j = 1...M and not the whole focal stack. For
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a)
b) c)

Figure 8: a) Searching the contours and b) an example of the rectified image with a frame

and c) after the frame is removed.

watermark extraction, the obtained transformation matrices T̂ , R̂j and H are

combined and applied as in equation

p∗ = T̂ R̂jH
−1p, (8)

in which p denotes a pixel in the image Ij and p∗ denotes a pixel in the image Y ∗.

Therefore, the images Y ∗

j , j = 1...M are obtained from which the watermark

can be extracted.

The extraction method for one image (j = 1) is illustrated in Fig. 9. The

method is robust to a moderate amount of error in block division. If j > 1, each

image is divided blindly into k = 16 equal sized blocks, as in the embedding

phase, and for each block k, the sharpest image block from j blocks is selected

from which the watermark is extracted. The sharpness of a block is defined as

an average of the absolute values of the Laplacians of the block.

Each block k is processed separately. The first block is considered as a

synchronization block and is set to angle 0➦. When the message is extracted,

the angle of the fist block is used as a reference in correcting minor rotations of

the image.

The blocks are each first Wiener filtered in order to decrease the impact

of the cover image on the watermark. Each Wiener filtered block is then au-

tocorrelated so that the periodic patterns embedded are revealed. In order to
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Figure 9: Overview of the method for watermark extraction.

determine the angle at which the patterns have been embedded, the autocorre-

lation results are then thresholded to form a binary grid that shows the peaks of

the autocorrelation function. The thresholding limit is selected such that 99.7%

is below the threshold and the center of the autocorrelation is masked out in

computations as it contains mostly noise. Then Hough transform, that detects

the direction as lines, is calculated. The slopes of the two longest parallel lines

show the watermark message in angles that is further decoded into the original

message by quantization.
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4. Results

4.1. Watermark robustness

The tests were run on a laptop computer with a dual core 2.20GHz processor

and 8GB of memory. The digital camera used for comparison tests was a Canon

G7 with 10 Mpx resolution and Canon Hack Development Kit (CHDK) package

installed in the camera. The Android mobile phone has Qualcomm Snapdragon

800 (2,26 GHz) processor and 2Gb of memory, as well as 8 Mpx camera. Both

cameras stored the captured images in JPEG format although in the Android

camera the JPEG quality was set to 100 in order to minimize the effet of JPEG

compression.

The algorithms were implemented with C++ and Open Source Computer

Vision Library (OpenCV). This enabled us to run exactly the same code on

a computer and a mobile phone. On the computer, the code was run through

QT (2016) interface. The user interface for the mobile phone was built with

Android Java and connected with the C++ code with Native Development Kit

(NDK).

For testing robustness at various angles, the cameras were placed on a ro-

tating platform in turn. The cameras were then rotated around a printed and

watermarked image that was placed on the wall. The robustness was tested at

the angles of 0➦, 20➦, 40➦, 50➦, 60➦and 70➦ by capturing an image at the angles

and extracting the watermark. This was repeated with two different watermark

strengths and three different distances. Examples of how the images look in

each angle are illustrated in Fig. 10.

The six original images used for testing are illustrated in Fig. 11. All im-

ages were of the size of 512x512 pixels, including three well known test images

and three real world examples. Each image was watermarked by embedding a

message of 60 bits with (15, 8) Reed-Solomon error correction coding (Reed and

Solomon, 1960). The robustness was tested with two watermarking strengths,

δ1 = 100, δ2 = 10 and δ1 = 120, δ2 = 12 and the watermarked images were

printed out with HP Color LaserJet 4650 printer.
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a) b) c)

d) e) f)

Figure 10: Examples of captured images at a distance of 12.5 cm in a) 0➦, b) 20➦, c) 40➦, d)

50➦, e) 60➦ and f) 70➦, respectively.

a) b) c)

d) e) f)

Figure 11: Test images a) Lena, b) Baboon, c) Peppers, d) Scene, e) Cloudberry and f) Dog,

respectively.
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For image quality analysis, we measure mean structural similarity (MSSIM)

(Wang et al., 2004) with a method inspired by Eerola et al. (2009) and Eerola

et al. (2010) and explained in detail in Pramila et al. (2017). The watermarked

and printed images were scanned with 1200dpi and the half-toning pattern was

descreened with Gaussian low pass filter. The six images were tested with two

cut-off wavelengths, 0.1mm and 0.5mm, and the means of the obtained results

are shown in Table 1.

Table 1: Image quality by MSSIM in total

Strength δ1 = 100 δ1 = 120 δ1 = 100, δ1 = 120

δ2 = 10 δ2 = 12 δ2 = 10 δ2 = 12

Blur 0.1 mm 0.1 mm 0.5 mm 0.5 mm

MSSIM 0.91 0.90 0.95 0.95

The results are collected in Tables 2 and 3. The tests were conducted with

both mobile phone camera and digital consumer camera. Each image was cap-

tured at each angle once and the combined results of the six images are shown

in the tables.

Because of the differences in field of views, the methods were chosen to be

tested on different distances on different cameras. The distances were selected

such that the relative size of the watermarked image in each test case was the

same. Therefore, the mobile phone camera was tested with distances of 12.5cm,

14.5cm and 16.5cm. The digital camera distances were selected to be 15.0cm,

17.5cm and 16.5cm, respectively.

In the first table, Table 2, the results for WCAM algorithm are shown with

error correction coding. The results show that the method is rather robust even

with the 60➦ of rotation and only with minor errors in the 70➦.

The next table, Table 3, has the same test but without error correction

coding. In this, all the 60 bits were considered as message bits in contrast to

32 bits of message in the first table. It can be seen from the table that there
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Table 2: Bit Error Rate (%) of WCAM algorithm with Error Correction Coding

(a) Phone camera

cm
δ1 = 100, δ2 = 10 δ1 = 120, δ2 = 12

0➦ 20➦ 40➦ 50➦ 60➦ 70➦ 0➦ 20➦ 40➦ 50➦ 60➦ 70➦

12.5 0.0 0.0 0.0 0.0 0.0 3.6 0.0 0.0 0.0 0.0 0.0 1.6

14.5 0.0 0.0 0.0 0.0 0.0 4.2 0.0 0.0 0.0 0.0 0.0 1.0

16.5 0.0 0.0 0.0 0.0 0.0 7.3 0.0 0.0 0.0 0.0 0.0 7.8

(b) G7

cm
δ1 = 100, δ2 = 10 δ1 = 120, δ2 = 12

0➦ 20➦ 40➦ 50➦ 60➦ 70➦ 0➦ 20➦ 40➦ 50➦ 60➦ 70➦

15.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 0.0 0.0 0.0 0.0 0.0

17.5 0.0 0.0 0.0 0.0 0.0 9.9 0.0 0.0 0.0 0.0 0.0 0.0

20.0 0.0 0.0 0.0 0.0 0.0 5.2 0.0 0.0 0.0 0.0 0.0 8.9

were few errors at the angles of 50➦ and below but those are fixed by the error

correction algorithm.

Furthermore, image related performance differences are illustrated in Fig. 12.

The image shows image specific values from Table 3a. That is, each data point

in the images consists of the average BER of the specific image at the three

distances. It is clear from the figure that there are differences between the

images. The images ”Peppers” and ”Dog” seem to perform the worst, whereas

”Cloudberry”, ”Lena” and ”Abisko” perform the best.

4.2. User tests

To show that the method works also in more realistic settings, five volunteers

were asked to take pictures of a watermarked image with a mobile phone with

the developed application installed. The users were asked first to take a few
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Table 3: Bit Error Rate (%) of WCAM algorithm without Error Correction Coding

(a) Phone camera

cm
δ1 = 100, δ2 = 10 δ1 = 120, δ2 = 12

0➦ 20➦ 40➦ 50➦ 60➦ 70➦ 0➦ 20➦ 40➦ 50➦ 60➦ 70➦

12.5 0.0 0.0 0.0 0.0 1.9 10.6 0.0 0.0 0.0 0.0 0.3 5.6

14.5 0.0 0.0 0.0 0.0 2.2 13.3 0.0 0.0 0.0 0.0 0.8 5.6

16.5 0.0 0.0 0.2 0.6 5.0 16.9 0.0 0.0 0.0 0.0 1.9 15.6

(b) G7

cm
δ1 = 100, δ2 = 10 δ1 = 120, δ2 = 12

0➦ 20➦ 40➦ 50➦ 60➦ 70➦ 0➦ 20➦ 40➦ 50➦ 60➦ 70➦

15.0 0.0 0.0 0.0 0.0 0.8 6.9 0.0 0.0 0.0 0.0 1.4 3.1

17.5 0.0 0.0 0.0 1.1 1.7 9.2 0.0 0.0 0.0 0.8 0.6 3.3

20.0 0.0 0.0 0.3 1.9 2.5 9.7 0.0 0.0 0.0 0.0 0.0 10.6

Figure 12: Comparison of image performance. (WCAM without ECC, camera phone images,

distances combined).

images in order to familiarize themselves with the software, and then they were

asked to test the limits of the application following the rules. These rules were:
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1. The frame must be visible in the viewfinder.

2. The camera must be kept still. (The method is built to withstand naturally

occurring hand movements but not if the camera is deliberately moved

around.)

3. Distance should not exceed a predefined limit of approximately 30cm.

In the end, there were 24 sets of images, with average BER of 0.7%. When

error correction was not used, the BER was 2.6%. The results are shown with

more detail in Table 4. In the table, the only deviation seems to be on the last

user. By looking at the images taken it can be seen that the images were taken

at the further end of the predefined limit and there were some involuntary hand

movements causing the errors reported. Some of the images taken by various

users are collected in Fig.13.

Table 4: Bit Error Rate (%) of WCAM algorithm in user tests

User Amount of with without

images taken ECC ECC

1 4 0.0 1.7

2 3 0.0 0.6

3 7 0.0 1.1

4 7 0.0 0.8

5 3 5.2 8.9

Total 24 0.7 2.6

4.3. Performance of the algorithms

The performance of the algorithms was tested on the computer and the mobile

phone and results were collected in Table 5. The algorithms were tested by

selecting a sub-stack size of 1 or 3 images. The algorithm by Pramila et al.

(2017) was re-implemented but tested only on the computer as it was deemed

too slow for mobile phone use.
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a) b) c)

d) e) f)

Figure 13: Examples of pictures the users took from which the watermark was read success-

fully.

Table 5: Performance of the algorithms

Sub-stack size

Pramila et al. (2017) WCAM WCAM

on comp. on comp. on phone

1 3 1 3 1 3

handling images 0.10s 0.10s 0.10s 0.10s 0.37s 0.36s

sub-stack 0.01s 0.01s 0.01s 0.01s 0.07s 0.04s

reconfigure images 0.10s 0.25s 0.09s 0.26s 0.37s 1.23s

registering - 4.19s - 0.04s - 0.30s

blending - 1.17s - 0.02s - 0.14s

synchronization 0.29s 0.28s 0.01s 0.02s 0.23s 0.28s

extract watermark 0.37s 0.37s 0.37s 0.38s 2.63s 2.73s

Total 0.87s 6.37s 0.58s 0.83s 3.69s 5.08s

The results show that with the WCAM method, the registration is no longer

an issue. The method by Pramila et al. (2017) was implemented for reference
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because part of the speed gain occurred due to the update of the OpenCV

library. AKAZE features have been included in the library thus affecting the

implementation of the method. However, the WCAM algorithm is still multiple

times faster. In WCAM method, most of the time is spent on extracting the

watermark and memory accessing, as the ’reconfigure images’-stage includes

reloading of the full sized images in memory.

5. Conclusion

Although it is often assumed in literature addressing print-cam robust methods

that the user is able to take a picture perpendicularly to the watermark, this

is rarely the case in real-life. The print containing the watermarked image, like

in a poster, could be placed on suboptimal height or the image is placed in

a magazine to be held on a table or in hand. In this paper, a method that

is highly robust to geometrical distortions occurring when the user takes the

picture in an angle is proposed. The method is based on optimizing a focal

stack and building an all-in-focus image from the stack. In the process, the

inherent features of the watermarking method are taken advantage of to speed

up the processing times. The method is implemented on a mobile phone and

proven fast and ready for real-life applications. Results are reported with full

robustness to capturing angles of <60➦ and further confirmed with user tests

with voluteers.

The method consists of two relatively separate parts, namely, the all-in-focus

imaging method and the watermarking method. Thus, it would be possible to

replace either part with some other existing method although the outcome could

be seen as a new method and the research is thus left for future work. In addi-

tion, as a future work, it would be advantageous to study watermark extraction

from curved surfaces. This would make the method even more robust for real life

applications, like reading the watermark from a magazine with different layouts

and also make it usable in a wider scope of applications.
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