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Abstract

Model Driven Engineering relies on the availability of software models and of development tools supporting the transition from
models to code. The generation of code from models requires the unambiguous interpretation of the semantics of the modeling
languages used to specify the application. This paper presents the formalization of the semantics of the Interaction Flow Modeling
Language (IFML), a recent OMG MDA standard conceived for the specification of the front-end part of interactive applications.
IFML constructs are mapped to equivalent structures of Place Chart Nets (PCN), which allows their precise interpretation. The
defined semantic mapping is implemented in an online Model-Driven Development environment that enables the creation and
inspection of PCNs from IFML, the analysis of the behavior of IFML specifications via PCN simulation, and the generation of code

for mobile and web-based architectures.
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1. Introduction

Model Driven Engineering is the branch of Software Engi-
neering that emphasizes the use of models in the development
process <1>. Models are simplified descriptions of the appli-
cation that capture its essential aspects at a certain level of ab-
straction, e.g., independently of the platform for which the ap-
plication will be designed and of the technologies with which it
will be implemented.

In the state of the practice, models are frequently used in
the early stages of development, for reasoning about design al-
ternatives and for documenting high level design decisions.

However, models can be used also to automate, at least in
part, the production of the implementation. When the semantics
of the language used to express the model is known, models can
be automatically or semi-automatically transformed into im-
plementation artifacts, by means of model transformations that
progressively incorporate the details originally omitted from the
input models. A well-known and popular example is the auto-
matic mapping of Entity-Relationship conceptual diagrams into
logical database models implemented with the SQL Data Def-
inition Language <2>. Generative model-driven software de-
velopment is especially useful when the application contains
repetitive patterns, is expected to require frequent updates, or
must be produced for multiple software platforms <3>.

The key to enabling a generative approach to model-driven
development is the availability of a rigorous semantics for the
modeling language(s) employed. Whereas the use of models
for software documentation may tolerate imprecision, their use
as input to transformations requires that the syntactic validity
and intended meaning of each model be understandable unam-
biguously by a software component. A common way to express
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the semantics of high level software modeling languages is to
map them to a general-purpose, rigorous mathematical nota-
tion, whose semantics is determined exactly <4>.

Among the multiple perspectives under which an applica-
tion can be modeled, the user’s interaction aspect emerges as a
particularly interesting one for two reasons. On the one side, the
user interface is often the first concern tackled by developers, as
it stems naturally from the requirement analysis performed with
the stakeholders; thus, being able to model it and quickly pro-
totype the model in the target platform(s) may help reduce the
insurgence of early stage design errors. On the other side, the
technologies for the implementation of the user interface have
been proliferating with the advent of rich web and mobile appli-
cations, and it is often the case that the same application front-
end must be developed and maintained for multiple, and tech-
nically quite diverse, platforms and implementation languages.

In this paper, we concentrate on the model driven develop-
ment of the front-end part of web and mobile applications. As
a language for modeling this perspective, we consider OMG’s
Interaction Flow Modeling Language (IFML) <5>, an UML-
based language, part of the Model Driven Architecture (MDA),
expressly conceived for representing the structure and behavior
of the interface of interactive applications. The specifications
of IFML define the execution semantics informally, by means
of examples and natural language illustration. Model driven de-
velopment environments that implement code generation from
IFML models, e.g., WebRatio <6>, embody the language se-
mantics in the code generator, which makes it hard to check
that a correct implementation is produced for every valid input
model.

The focus of this paper is the formal specification of the se-
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mantics of IFML, with the aim of exposing the behavior of ap-
plications specified with IFML models, enabling the derivation
of a reference implementation of IFML models usable to verify
model driven code generation tools. As a collateral objective,
we also introduce an on-line Model Driven Development envi-
ronment for web and mobile applications that puts to work the
defined semantics.

1.1. Contribution of the paper

The contributions of the paper are as follows:

o We formalize the semantics of IFML by means of a rule-
based mapping to a variant of Petri Nets (Place Chart
Nets, PCN <7>). The semantic rules capture the orga-
nization of the front-end in terms of connected view con-
tainers comprising interdependent interface components,
the triggering and management of the events caused by
the user’s interaction or by the system, including the fir-
ing of business actions and their effect on the status of the
interface. The semantic rules can map a variety of real-
world front-end configurations: the organization of the
interface typical of classic web applications, where the
user’s interaction causes the update of the entire page;
the front-end structure of desktop and native mobile ap-
plications, where the GUI is hosted in a top-level con-
tainer, structured into nested sub-containers that are up-
dated and displayed selectively; and a mix of these two
configurations, which is typically found in Rich Internet
Applications.

e We exploit the semantic mapping to expose underspeci-
fied aspects of the IFML language and to highlight tool-
specific interpretations of IFML by commercial code gen-
erators.

e We showcase the power of the defined semantic rules by
implementing two model transformations:

— A model-to-model transformation from IFML to PCN,

which allows one to specify the model of the ap-
plication interface in IFML, produce the equivalent
PCN and inspect its behavior via event-driven sim-
ulation.

— A model-to-text transformation, which generates the

executable implementation code from the IFML model.

The transformation takes in input also the platform
specification (thin or fat client) and delivers the code
of a thin-client web application and/or of a cross-
platform fat-client mobile application. The model-
to-text transformation permits the customization of
the generated prototype also by non-programmers,
enabling early requirements validation. Note that

the model-to-text transformation starts from the IFML

model and thus does not directly exploit the model-
to-model transformation from IFML to PCN. How-
ever, the code generation rules are an indirect result
of the semantic mapping, because they reflect the

precise understanding of the behavior of IFML con-
structs gained with the specification of the model-
to-model rules.

Both transformations are implemented in an open source
on-line tool! offered to the software engineering com-
munity, usable for model driven engineering education
and for rapid prototyping of web and mobile applications
based on IFML.

The rest of the paper is organized as follows: Section 2 sur-
veys the related work; Section 3 provides a concise overview of
IFML; Section 4 presents the essential elements of PCN and the
mapping rules for the basic IFML constructs; Section 5 elabo-
rates on the PCN mapping rules that express the semantics of
complex interfaces; Section 6 illustrates the implementation of
the semantic mapping rules in the on-line MDD environment
IFMLEdit.org, which also showcase two code generators based
on the IFML semantics defined in the paper; Section 7 con-
cludes the paper with a discussion of how the formal semantics
helps formalize underspecified features of IFML and analyze
existing code generators; it also summarizes the limitations of
the proposed mapping rules and provides an outlook on the on-
going and future work.

2. Related Work

The literature on MDD is abundant; we focus the overview
of the related work to the topics more closely related to the pa-
per: the practical approaches for the MDD of application front-
ends and the translational methods for the specification of the
semantics of MDA models and DSLs.

2.1. Model-driven development of application front-ends

Several model-driven development approaches have been
proposed in the literature to address the generation of code for
web and rich clients applications <8>, and, more recently, for
mobile applications <3>. The use of MDD techniques is re-
ported to promote early detection of software defects, decrease
the effort needed for development and maintenance, increase
portability to new platforms <9>, and, possibly combined with
agile techniques, increment productivity and quality <10; 1;
11>.

2.1.1. MDD approaches based on MDA and UML

The OMG Interaction Flow Modeling Language (IFML)
<5> applies the MDA standards to the specification of inter-
active application front-ends, including mobile and rich client
interfaces; model-driven development based on IFML is im-
plemented by the commercial tool WebRatio <6>, which sup-
ports IFML diagram editing and full code generation of ready-
to-publish web and mobile applications.

Other MDA approaches adopt the UML standard diagrams
for modeling the front-end of mobile and web applications:
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<12> employs UML class diagrams and sequence diagrams
to represent mobile applications and to generate code for the
Android and Windows Phone platforms; Arctis <13> adopts a
small UML profile and UML activity diagrams and translates
such inputs into a state machine to obtain an executable An-
droid application; <14> employs UML state machine diagrams
to specify GUISs, transitions, and data-flows among application
screens, but the internal application logic needs to be coded
in JavaScript. Also the work in <15> models and generates
graphical interfaces for mobile cross-platforms applications us-
ing UML,; it expresses the transformation rules in ATL (Atlas
Transformation Language).

The above-mentioned approaches show the feasibility of
adopting the MDA standards and model transformations to gen-
erate the code of the user interface for mobile and rich client ap-
plications; our work proceeds in the same line, but starts from
an MDA standard expressly designed for modeling the front-
end and focuses on the formal specification of the modeling
language semantics, as a principled basis for the simulation of
models and the generation of code.

2.1.2. MDD approaches based on Domain Specific Languages

Other MDD solutions exploit Domain Specific Languages
(DSL). The authors of <16> survey model driven approaches
specifically targeted at the development of cross-platform mo-
bile applications: they show that proposals are mainly based
on textual DSLs, most works are in a prototypical status and
adopt a hybrid between coding and modeling, where MDD is
used for simple applications and is extended with coding for
the more complex functions. For example, mD? <17> is a pro-
totypical framework where models are specified with a textual
DSL, comprising two kinds of view elements: individual con-
tent and container; the former include abstract interaction wid-
gets such as labels, form fields, and buttons, grouped inside
containers, which can be organized in a hierarchy; to manage
complex navigation scenarios, a workflow can be defined to
specify the switch between view containers, possibly guarded
with conditions to be fulfilled before the user is allowed to pro-
ceed with the navigation. AXIOM <18> is another textual DSL
for the mobile application domain: it is based on it own abstract
model, specifying at the one side the composition of the appli-
cation’s screen and of its logical UI controls, and at the other
side the application’s behavior in response to user and system
events. Each view is seen as a state; transitions between states
are defined by means of attributes on UI controls. Transitions
may be optionally associated with guard conditions and actions.
AXIOM is completely generative and for each native platform
it produces complete implementations, without the need of pro-
grammers intervention. Among the on-line model-driven envi-
ronments, the system in <19> supports GUI design of mobile
applications, but only simple behaviors can be specified; the
RAPPT tool <3> generates only the scaffolding of a mobile ap-
plication based on a high level description specified with a tex-
tual DSL, and requires the insertion of manually written code
to express the application logic.

The approach described in this paper starts from an MDA
standard language, to favor the interoperability between the mod-
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eling language used to specify the front-end and the other lan-
guages of the same family usable for the MDD of the back-end.
Furthermore, besides the implementation of the model transfor-
mation rules for supporting generative development, the focus
of the paper is primarily on the formal specification of the mod-
eling language semantics.

2.1.3. Industrial MDD tools for multi-platform application front-
ends

In the industrial sector, trends described in Forrester <20>
and Gartner <21> research reports show an orientation towards
’low-code” development platforms, with Mendix <22> and Out-
systems <23> leading this segment of the software tool mar-
ket. Mendix <22> adopts proprietary graphical models to build
complex applications, relying on model interpretation; its ap-
plications exploit a hybrid web and mobile code, but can also
leverage device functions, thus achieving a near-native user ex-
perience. Outsystems <23> supports visual modeling and gen-
erates standard Java or .NET applications, connected with a
variety of back-end systems: specifications are built using the
entity-relationship model for data and a flow-chart notation for
the business logic; instead, a WYSIWYG approach is used for
the user interface. Finally, the already mentioned WebRatio
platform <6> adopts IFML as a modeling language, augmented
with an own language for describing back-end business actions,
and supports full code generation for web and cross platform
mobile applications. Advanced GUI features can be manually
programmed and incorporated into the IFML model, exploiting
the extension mechanisms of IFML, and then integrated in the
template-based rules of the code generator.

Although not comparable in robustness with industrial strength
products, our on-line implementation offers an open source,
lightweight MDD environment, grounded on a formally speci-
fied and verifiable semantics, which can be used as-is for pro-
ducing a reference implementation of IFML models, for pro-
totyping and developing rich web and mobile cross-platform
applications, and for supporting hands-on MDD education; the
tool can be easily extended, in the input modeling language, in
the semantic mapping rules, and in the code generation rules, to
enable a generative approach to GUI development for any input
language and execution platform.

2.1.4. Formal semantics of modeling languages

The semantics of many DSLs and MDA-based models is
described only informally; however, the automated analysis of
models and the effective development of tools, such as model
interpreters, debuggers, and testing environments, require the
formal specification of the language semantics <24>.

A common way of formalizing a modeling language is through
translation semantics <4>: the abstract syntax of the model-
ing language is mapped into an existing formal language, with
well-defined semantics, such as, e.g., Abstract State Machines
(ASM). This technique is adopted in <25>: the authors extend
AMMA, a framework for defining DSLs, with the specifica-
tion of behavioral semantics expressed by means of ASMs. In
<26> the authors introduce a transformational semantic frame-
work based on ASM for the expression of the executable se-



mantics of metamodel-based languages; they also discuss alter-
native methods, such as weaving, in which the execution se-
mantics is embedded within the abstract syntax of the mod-
eling language without resorting to an external formalism. In
this line, <27> proposes to extend meta-modeling languages
with the specification of behavioral semantics by means of the
UML2 standard action language, foundational UML (fUML)
<28>. Another example is presented in <29>, which inte-
grates formal methods with high-level notations (in particular
UML), to enhance model quality, detect possible defects, and
compute properties directly from models. Finally, the work
in <30> addresses the problem of specifying transformations:
transformation languages themselves can be modeled as DSLs.
For each pair of domains, the metamodel of the rules can be
(quasi-)automatically generated to create a language tailored to
the desired transformation. The authors showcase the proposed
approach on the mapping of Finite State Automata to Petri Nets.

In this paper, we have adopted a rule-based translational ap-
proach to the specification of the IFML semantics.

Among the possible target formal models, the event-driven
dynamics of the application front-end makes event and transi-
tion systems, such as UML State Machines and Petri Nets, a
natural choice. UML State Machines <31> offer several ad-
vantages: they have a precise semantics <32>, their integration
with a a subset of UML modeling constructs can be expressed
formally with f{UML <28>, and the Alf language <33> can be
used for the description of specific behavior. Furthermore, sev-
eral tools offer UML state machine execution. On the negative
side, the synchronous nature of State Machines limits their abil-
ity to express asynchronous behavior typical of mobile and rich-
client interfaces, and better fits the semantics of pure HTML-
HTTP web interfaces <34>. The capability of Petri Nets <35>,
and of their extensions <36>, to express asynchronous occur-
rences makes them particularly adequate for the representation
of behavior patterns found in rich-client and mobile front-ends,
such as the independent refresh of different parts of the view,
the treatment of push notifications from the server or from the
system <37>, and the workflows of client-server communica-
tion <38>. Among the generalizations of Petri Nets, Colored
Petri Nets (CPNs) are the most widely used formalism; they in-
corporate data, hierarchy, and time <36> and are supported by
CPN Tools <39>, which can be used for the design of complex
processes and their simulation. However, CPNs support hier-
archies at transition level, and not at place level. This allows a
CPN diagram to be structured in reusable modules but, even for
small applications, models tend to quickly become very com-
plex <38>. Place Chart Nets (PCN) <7> are an alternative
Petri Net extension, which incorporates some ideas from Stat-
eCharts: they add hierarchy on places and preemptive transi-
tions: a transition empties not only its input places but also all
descendant places of its input places. This feature enables the
modeling of both asynchronicity and of exception handling by
means of preemption, a capability extremely useful in the mod-
eling of mobile and rich-client applications, because it reduces
the exponential explosion of the number of transitions needed to
express the management of user’s interactions that affect mul-
tiple parts of the interface. Furthermore, PCNs, like PNs, can

be simulated, which allow designers to better understand their
application front-end and to predict the behavior of the system
produced from the models.

2.1.5. Cross-Platform development framework

A different approach to improve the efficiency of applica-
tion development, especially in multi-platform projects, relies
on the so-called cross-platform development tools, which en-
able the creation and distribution of applications to multiple
platforms. Examples of frameworks following this approach
are GTK <40>, which focuses on the User Interface, and QT
<41>, which provides abstractions for OS dependent primi-
tives. In the mobile environment, specific solutions exploit web
development skills and support cross-platform coding in lan-
guages such as JavaScript/Java/C#, CSS and HTMLS. Exam-
ples of such tools include Appcelerator Titanium <42>, IBM
MobileFirst Platform Foundation <43>, PhoneGap <44>, Rho-
Mobile <45>, Salesforce <46>, Telerik AppBuilder <47>, Xa-
marin <48>, Flutter <49> and many others: the developer writes
code only once and the tool derives the implementation for dif-
ferent target platforms, including native applications, standard
web applications (typically based on HTMLS5, JavaScript and
CSS), and hybrid applications (e.g., embedding HTMLS5 apps
inside native containers that provide access to native platform
features).

3. Background: the Interaction Flow Modeling Language

The Interaction Flow Modeling Language (IFML) <5> is
an OMG standard that supports the abstract description of ap-
plication front-ends for such devices as desktop computers, lap-
tops, mobile phones, and tablets. IFML uses a single type of
diagram, in which developers can specify the organization of
the interface, the content to be displayed, and the effect on the
interface of events produced by the user interaction or from sys-
tem notifications. IFML does not represent the business logic of
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Figure 1: IFML Metamodel.



the actions activated by the user interaction with the interface,
which can be modeled with the most appropriate UML diagram
(e.g., class diagrams for the object model structure, sequence
and collaboration diagrams for the behavior).

Figure 1 shows the essential elements of the IFML meta-
model.

Composing the Interface Structure. The essential [IFML
classifier for the specification of the application structure is the
ViewElement, which specializes into ViewContainer and View-
Component.

ViewContainers are the containers into which the interface
content is allocated; they support the visualization of content
and the interaction of the user. A ViewContainer can be in-
ternally structured in a hierarchy of sub-containers. For exam-
ple, nested ViewContainers can be used to model a rich-client
application, where the main window contains multiple tabbed
frames, which in turn contain several nested panes, as shown in
Figure 2a. Figure 2b shows an alternative organization, where
the user interface is split into different independent ViewCon-
tainers corresponding to page templates.

Mail ProductCategories

Messages

MessageSearch

ProductList Product
MessageManagement
ShoppingCart CustomerInfo
MailBox Settings
MessageWriter PaymentInfo Confirmation
(a) (b)

Figure 2: Different ViewContainers configurations expressing the interface or-
ganization

ViewContainers nested within a parent ViewContainer can
be displayed simultaneously (e.g., an object pane and a prop-
erty pane) or in mutual exclusion (e.g., two alternative tabs).
The alternate visualization of interface portions can be repre-
sented by means of a specialization of the generic ViewCon-
tainer classifier, the XOR ViewContainer. Such ViewElement
comprises two or more sub-ViewContainers, with the meaning
that its children are visualized one at a time. To make the ac-
cess to the parent XOR ViewContainer deterministic, one of its
children can be tagged as the default XOR child: this means
that it is displayed by default when the parent container is ac-
cessed. In Figure 3, the Mail top-level ViewContainer, tagged
with the XOR label, comprises two sub-containers, displayed
alternatively: one for messages and one for contacts. When
the top level ViewContainer is accessed, by default the inter-
face displays the Messages ViewContainer (tagged with the D
label).

The switch from one ViewContainer to another one can be

[ XOR]Mail

[D] Messages Contacts

Figure 3: Example of mutually exclusive sub-containers

expressed implicitly or explicitly, as shown in Figure 4. A
ViewContainer can be tagged as Landmark, denoted with an L
label. This property means that the ViewContainer is reachable
with a direct navigation step from all the others nested inside
the same parent, as explicitly represented in the right part of
Figure 4.

[XOR] Top

[XOR] Top

[L] One [L] Two

[L] Three [L] Four |

Figure 4: Landmark ViewContainers and explicit navigation

By convention, the whole IFML diagram, which represents
the entire application interface, is interpreted as a XOR View-
Container: the top-level ViewContainers of the diagram are dis-
played one at a time, in alternative (Figure 2b provides an ex-
ample).

A ViewContainer can include ViewComponents, which de-
note the actual content of the interface. The generic ViewCom-
ponent classifier can be stereotyped, to express different spe-
cializations, such as lists, object details, data entry forms, and
more.

Figure 5 shows the notation for expressing ViewCompo-
nents, stereotyped and embedded within ViewContainers: Search
comprises a MessageKeywordSearch Form, which represents a
form for entering data; MailBox includes a MessageList List,
which denotes a list of objects; finally, MessageViewer com-
prises a MessageContent Details, which displays the data of an
object. ViewComponents can have input and output parame-
ters. For example, a ViewComponent that shows the details of
an object has an input parameter corresponding to the identifier
of the object to display; a data entry form exposes as output
parameters the values submitted by the user; and a list of items
exports as output parameter the identifier of the selected item.

Events, Navigation and Data Flows. ViewElements (View-
Containers and ViewComponents) can be associated with Events,
to express that they support the user interaction. The effect
of an Event is represented by a NavigationFlow, represented
with an arrow, which connects the Event to the ViewElement
affected by it (as shown in Figures 4 and 6). The Navigation-
Flow specifies a change of state of the user interface: the target



Search MailBox MessageViewer
«Form» «List» «Details»
Message ;
KeywordSearch MessagelList MessageContent

Figure 5: Example of ViewComponents within view containers

ViewElement of the NavigationFlow is brought into view, after
computing its content; the source ViewElement of the Naviga-
tionFlow may remain in view or switch out of view depending
on the structure of the interface.

Figure 6 shows two examples of NavigationFlows between
ViewComponents. In Figure 6a, the NavigationFlow associated
with the SelectMessage Event connects its source (Message-
List, which displays a list of objects), and its target (Message-
Content, which displays the data of an object). When the Event
occurs, the content of the target ViewComponent is computed
so to display the chosen object, and the source remains in view
since it is in the same ViewContainer. In Figure 6b the source
and target ViewComponents are positioned within distinct top-
level ViewContainers (MailBox and Message); the triggering
of SelectMessage causes the display of Message, with the en-
closed ViewComponent, and the replacement of MailBox, which
gets out of view.

MailBox

«Details»

«List »
Messagelist

SelectMessage

Message
Content

(a) NavigationFlow between ViewComponent in the same ViewCon-
tainer

MailBox Message

«Details»

Message
Content

«List »
MessageList

SelectMessage

(b) NavigationFlow between ViewComponent in different ViewCon-
tainers

Figure 6: Example of NavigationFlow between ViewComponents

Figure 7 shows the DataFlow construct, representing an
input-output dependency between a source and a target ViewEle-
ment, denoted as a dashed arrow. In the example, Mail Viewer
includes three ViewComponents: the MailMessages List is de-
fined on the MailMessage entity, which is explicitly specified
in this example, and shows a list of messages; the Message-
Content Details is also defined on the MailMessage entity and
displays the data of a message; the Attachments List is defined
on the Attachment entity and shows a list of mail attachments.

To express data dependencies, links are associated with pa-

rameter binding elements that specify how data flow between
components. Parameter bindings, denoted by the ParamBind-
ing element in Figure 7, connect one or more parameters ex-
posed by a source component with corresponding parameters
accepted by a target component. In the example, the identifier
of the selected message is passed from MailMessages to Mes-
sageContent. The latter has a parametric ConditionalExpres-
sion: it denotes a filter condition used to query the data source
and extract the content relevant for publication; in the example,
it extracts from the data source the message with the identi-
fier provided as input to the component. Also Attachments has
a parametric ConditionalExpression, used to select for display
the attachments associated (through the AttachedTo relation-
ship) with the mail message provided as input to it.

[L] MailViewer

«List»
Attachments

«Details»
MessageContent

«List»
MailMessages

«DataBinding»
Attachment

«DataBinding»
MailMessage

«ConditionalExpression»

«ConditionalExpression:
MessagelD=Msg 1D

AttachedTo=Msg_ID

Y
«ParamBindingGroup»

\
«ParamBindingGroup»
SelectedMessage = Msg_ID DisplayedMessage = Msg_ID

Figure 7: Example of DataFlows

When the ViewContainer is accessed, the list of messages is
displayed, which requires no input parameters. The DataFlow
between MailMessages and MessageContent expresses a pa-
rameter passing rule between its source and target: even if
the user does not trigger the Select Event, an object is ran-
domly chosen from those displayed in the MailMessages List
and supplied as input to MessageContent, which displays its
data. Similarly, the DataFlow between the MessageContent and
Attachments specifies an automatic parameter passing rule that
supplies the parameter needed for computing the list of attach-
ments, independently of the user interaction. By triggering the
Select event associated with the MailMessages List the user can
choose a specific message from the list and determine the dis-
play of its content and attachments, thus overriding the default
content shown at startup.

Actions. An Event can also cause the triggering of a piece
of business logic, which is executed prior to updating the state
of the user interface; the [IFML Action construct, represented by
an hexagon symbol as shown in Figure 8, denotes the invoked
program, which is treated as a black box, possibly exposing
input and output parameters. The effect of an Event firing an
Action and the possible parameter passing rules are represented
by a NavigationFlow connecting the Event to the Action and
possibly by DataFlows incoming to the Action from ViewEle-
ments of the interface. The termination of the Action may cause
a change in the state of the interface and the production of input
parameters consumed by ViewElements; this is denoted by ter-
mination events associated with the Action, connected by Nav-
igationFlows to the ViewElements affected by the Action.



Figure 8 shows an example of Action, for the creation of a
new object.

Product Creation NewProductDisplay

« Details »
NewProductData

«Form=»

EnterProductData .

«SimpleField »Code: string
«SimpleField » Name: string
«SimpleField » Price: integer

CreateNewProduct

NormalTermination «DataBinding» Product

<« ParameterBindingGroup »
Code >  Product.code
Name > Product.name
Price =  Product.price

ExceptionalTermination

Error « ParameterBindingGroup »
Product.code - Prd_code
ErrorMessage

Figure 8: Example of Actions

ProductCreation includes a Form with SimpleField sub-ele-
ments for specifying the data entry of a new product. The
CreateNewProduct Event triggers the submission of the input
and the execution of the CreateProduct Action. A Parame-
terBindingGroup is associated with the NavigationFlow from
the CreateNewProduct Event, to express the parameter binding
between the Form and the Action. The Action has two termi-
nation Events: upon normal termination, the code of the new
product is emitted as an output parameter, used as input to cal-
culate the NewProductData Details within NewProductDisplay;
upon abnormal termination (e.g., a database connection error),
a distinct Event and NavigationFlow pair specifies that an al-
ternative ViewContainer is displayed, which contains an error
message ViewComponent.

4. Semantic Mapping of IFML

The semantics of IFML can be defined by mapping IFML
models to a language with known execution behavior. Given
the event-driven/asynchronous nature of the computation rep-
resented by IFML diagrams, Petri Nets offer the most natural
formalism for expressing their execution semantics. In this pa-
per, we exploit a generalization of Petri Nets, Place Chart Nets
<7>, which offers a modularization construct that reduces the
combinatorial explosion of states and transitions induced by the
mapping of IFML diagrams.

The proposed mapping focuses on structure and interac-
tion. Section 4.5 addresses the basic structure of an application,
which serves as a building block for all the other mapping rules.
Section 4.6 concentrates on simple ViewContainers and their
interaction with Events and NavigationFlows. Section 4.7 ad-
dresses ViewComponents, their life-cycle, their interaction with
Events, and the difference between the two types of Interac-
tionFlows (NavigationFlows and DataFlows). Section 4.8 in-
troduces the semantic rules for mapping Actions, their trigger-
ing, and their life-cycle. Finally, Section 5 extends the mapping
to the case of arbitrarily nested ViewContainers, enabling the
representation of complex, real-life application structures.

The illustrated mapping rules do not consider the type and
values of the data to be displayed, but express the logic that

governs the display of an element in the interface. The map-
ping rules for ViewComponent apply uniformly to all classes of
ViewComponents, denoted by the different stereotypes, such as
Details, List and Form, and are independent of the presence and
values of such IFML elements as DataBindings, Conditional-
Expressions and Fields. Similarly, the mapping rules for Inter-
actionFlows are independent from the nature, and even from
the presence, of ParameterBindings. These assumptions make
the semantic mapping data-independent, so that the behavior of
the application is predictable just by observing the structure of
the model.

4.1. Place Chart Nets

Place Chart Nets (PCN) <7> generalize Petri Nets (PN) to
allow the representation of hierarchy and of preemption, while
retaining the asynchronous nature of Petri Nets and their formal
properties.
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Figure 9: PCN Metamodel.

Figure 9 shows the essential elements of the PCN meta-
model. The base construct of a PCN is a place chart (PC),
which represents a hierarchy of places. A PC with no parent
nor children is called a place, because it is equivalent to a PN
place. A place with a parent, but no children is called a bottom
place chart. A place with children, but no parent is called a
top place chart. The number of tokens in a place chart with no
children is defined as in Petri Nets, while the number of tokens
in a place chart with children is defined as the maximum of the
number of tokens in its children. As in Petri Nets, transitions
remove tokens from a group of place charts and add tokens to
others. A transition is enabled when all the source place charts
have at least the number of tokens required. Removing a token
from a place chart with no children decrements the number of
tokens by one, while removing a token from a place chart with
children empties all of them. To avoid non-determinism, it is
possible to insert tokens only in place charts with no children.
However, as a convenient way to reduce the number of arcs in
a model, default arcs are introduced. A default arc connects a
parent place chart to one or more of its descendants. If default
arcs are defined from a place chart X to (a subset of) its descen-
dants Y; ...Y,, then an arc targeting X is equivalent to a set of
arcs targeting Yy ...Y,.

A formal definition of PCNs can be found in <7>. We
illustrate the benefits of their usage by means of an example,



which models the execution of a parallel search over replicated
databases. The search process is started on all the independent
copies and, when one database returns a result, query execution
at all the other copies halts.

Figure 10a shows a Petri Net that describes such process,
considering two database copies. The BeginSearch transition
removes a token from DBldle and initializes the parallel search,
which proceeds asynchronously. The completion of a search
is described by transitions Endl or End2, which add a token
to the Complete place. The EndSearch transition restores the
idle state of the system. To this end, it must remove all the
tokens from the net; however, due to the asynchronous nature
of the system, it is not known where the tokens are going to
be exactly. Thus, the PN enumerates all the possible configu-
rations and contains a transition that handles each possibility.
As shown in Figure 10a, even this simple scenario requires five
different EndSearch transitions. The proliferation of transitions
increases if the model must describe the execution of the query
more accurately, by refining the Processing places with a more
complex net, or if the system has more than two replicas.

Figure 10b describes the same process with a PCN. Each
parallel process is enclosed in a top place chart. The Begin-
Search transition initializes the two parallel top place charts
SearchDBI and SearchDB?2: a default arc connects them to the
first place of the nested net. The Complete place of the PN is
replaced by a Complete top place chart with a child (Count)
targeted by a default arc. The EndSearch transition removes a
token from SearchDB1, SearchDB2 and Complete and restores
the idle state of the system regardless of which database an-
swered first.

As the (small) example shows, PCNs describe complex mod-
els with less elements.

4.2. Notations

In the following subsections we show how to map the es-
sential IFML constructs to PCNs. We will adopt the following
notations and naming rules:

e IFML elements: they are denoted with italicized labels
or, if generic, with capital letters; the following naming
conventions for generic elements are used: ViewContain-
ers are represented as V, XOR ViewContainers as X, an-
cestor ViewContainers as A, child ViewContainers as C,
source ViewContainers as S, target ViewContainers as 7,
NavigationFlows as F, and events as e. For the sake of
brevity, sometimes we leave the NavigationFlow associ-
ated with an event implicit, as in the phrase “the target of
Event e”.

e PCN elements: they are denoted with sans-serifletters,
according to a naming convention that links the PCN ele-
ment to the IFML it maps. Place charts mapping generic
ViewContainers are represented as V, XOR ViewCon-
tainers as X, ancestor ViewContainers as A, child View-
Containers as C, source ViewContainers as S, target View-
Containers as T, transitions mapping events as e.
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Figure 10: Model complexity reduction of Place Chart Nets

4.3. Mapping Boolean variables

A recurrent problem in the mapping of IFML to PCN is
representing Boolean variables. A Boolean variable B can be
described by two places (or bottom place charts), labeled B and
B; the presence of a token in one of them represents the positive
or negative state of the variable. We can use transitions to move
the token from B to B or vice versa, changing the value of the
variable.

4.4. Running Examples

Throughout this section we will use a very simple mail client
application as a running example. Its interface shows the list of
received mails, the details of a selected email, and the list of its
attachments. The underlying data model includes a Mail entity,
associated with the Attachment entity representing mail attach-
ments; emails are also associated with a User entity. The aim
of this first example is to showcase the semantic mapping of
different models for computing and displaying content and of
several possible user interaction patterns. A second example,
a music application, is also introduced to explain the semantic



mapping of IFML actions. This application simply allows the
user to play and stop a song.

4.5. Mapping the Application
The simplest IFML model is the empty diagram: it can be
interpreted as an application that, as soon as opened, terminates,
neither displaying any interface nor performing any action.
Figure 11 shows the PCN corresponding to an empty IFML
model.

waiting
open
ViewApplication
lose
Viewapplication
Waiting Application

Figure 11: PCN of an empty application

It contains two places (Waiting and Waiting), a top place
chart (Application) with two children (Viewapplication and
mApp“cation). The Viewapplication bottom place chart is ini-
tialized by default from the parent. The PCN also contains
two transitions called open and close, which move a token be-
tween the Waiting Boolean variable and Application. The ini-
tial marking comprises one token in Waiting and one token in
mApp”cation, describing that a user can open the application,
which is initially not in view. The open transition removes and
adds a token from Application and moves a token from Waiting
to Waiting, disabling itself and enabling close. The close tran-
sition moves a token from Application to Viewapplication and

moves a token from Waiting to Waiting, disabling itself and
enabling open, thus resetting the application state to the default
initial marking.

The example of Figure 11 defines the first mapping rule:
Rule 1) AppLicarion The mapping of an IFML model pro-
duces a PCN that contains a Waiting and a Waiting place, an
Application top place chart with two children Viewappiication

and Viewapplication- VieWapplication 18 initialized by default from
the parent. The PCN also contains an open transition, which
moves a token from Waiting and Application to Waiting and
Application, and a close transition, which moves a token from
Waiting and Application to Waiting and Viewappiication-

4.6. Mapping the structure: View Containers

Figure 12a shows the second simplest scenario: an IFML
model with one top-level default ViewContainer (Mails, in the
example). This model corresponds to an application that shows
a blank screen at start-up.

Figure 12b shows its mapping®: the PCN of Figure 11 is
extended by introducing a place chart called Mails, child of

2In the following, the red color identifies the portions of a PCN affected
(inserted or updated) by the mapping rule that the example illustrates.
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Figure 12: Single, empty default ViewContainer Model

Application, which is initialized by the parent. The Mails place
chart has two children bottom place charts (View,js, initial-
ized by the parent, and View,js). The Boolean variable Viewpaiis
represents whether the ViewContainer is, or is not, in view. The
firing of the open transition now adds also a token to Viewajss,
meaning that the ViewContainer is displayed.

This example of Figure 12 defines two mapping rules:

Rule 2) TorVIEwCoONTAINER A top-level ViewContainer V maps
to a place chart child of Application named V, with two children
bottom place charts (Viewy and Viewy). Viewy is initialized by
default from the parent.

Rule 3) Deraurr TorVIEWCoNTAINER ~ The presence of the de-
fault property of a top-level ViewContainer V maps to an ini-
tialization arc from Application to V, denoting that the child
ViewContainer becomes visible by default when the parent ap-
plication opens.

Navigation between ViewContainers. Figure 13a shows the
elementary navigation step between top-level ViewContainers.
The IFML model comprises two top-level ViewContainers (Mails
and Contacts), an Event called contacts associated with the
Mails ViewContainer, and a NavigationFlow from such event,
targeting the Contacts ViewContainer.

Figure 13b shows the PCN that maps the IFML model of
Figure 13a. According to rule 2, the Application top place
chart contains two place charts Mails and Contacts, each one
with two children bottom place charts (Viewpmails, Viewmaiis,
VieWcontacts, Vi€WContacts). Based on rule 3, Mails is initialized
by Application, because Mails is the default top-level View-
Container; this causes the initialization by default of the Viewpaiis
place chart. Conversely, Contacts is not initialized as the de-

fault, but an initialization arc from Application targets the Viewcontacts

place chart, denoting that the Contacts ViewContainer is not in
view initially. The navigation between the two ViewContainers
is represented by a transition named contacts, which denotes
the change of the display status of the two ViewContainers. The
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Figure 13: Navigation between top-level ViewContainers

transition moves a token from Mails, Viewpmaiis and Contacts to
Contacts and View)ajis. Note that the apparently redundant in-
put place charts of the contacts transition (Mails, Viewpaiis) are
necessary to ensure that: 1) tokens are consumed also for the
possible children place charts of Mails; 2) the transition is en-
abled only when the Mails ViewContainer is actually in view.

This example of Figure 13a defines the following mapping
rules:

Rule 4) Non peraurr TorVIEWCONTAINER ~ The absence of the
default property in a top-level ViewContainer V maps to an ini-
tialization arc from Application to Viewy.

Rule 5) Top LEveEL NavicarionFLow A NavigationFlow from
an Event e associated with a top-level ViewContainer S and
targeting a top-level ViewContainer T maps to a transition e
that moves a token from S, Views and T to T and Views.

Landmark Navigation.

ViewContainers with the landmark visibility property represent
the target of implicit navigation flows from the other ViewCon-
tainers nested within their parent container. Figure 14a shows
an example of landmark ViewContainers (Contacts and Mails),
meaning that from one ViewContainer it is possible to navigate
to the other. The landmark visibility property is mapped into a
set of transitions, according to the following rule:

Rule 6) Lanomark VIEWCoNTAINER — The presence of the land-
mark property of a top-level ViewContainer V1 maps to a tran-
sition landmarky that moves a token from Application and
Viewapplication t0 ViewWappiication and V1. For each top-level View-
Container V2 different from V1, the landmarky transition adds
a token to Viewyo.

Note that the rule removes and adds a token to the parent of the
landmark ViewContainers (i.e., Application for top-level View-
Containers); this is because the navigation can be originated by
any of the sibling ViewContainers and thus the token must be
consumed at the parent level, which will cause the removal of a
token also from the place chart of all the ViewContainers within

it, including the one that was previously in view.

The model in Figure 14a maps into the PCN of Figure 14b:
the two transitions called landmarkmais and landmarkcontacts
check that the application is currently visible, by adding and re-
moving a token from Viewapplication, and remove a token from

it. Transition landmarkmaiis adds a token to Mails and Viewcontacts;

symmetrically, transition landmarkcontacts adds a token to Contacts

and Viewpmais. The effect of each transition is to initialize its
target top-level ViewContainer and set the status of all the other
ones to not in view.

4.7. Mapping the content: View Components

The examples discussed so far specify only empty inter-
faces without content. This section discusses the mapping of
models that include ViewComponents, whose content is com-
puted and rendered in the interface, possibly based on the value
of some input parameters.

The behavior of a ViewComponent can be regarded as the
result of the interplay between two parts:

o the model, representing the status of the interaction with
the data source providing content to the ViewComponent;

o the view model, representing the display of content in the
interface.

For example, in a pure HTML web application, the model could
be the data bean holding objects extracted from a database and
the view model could be the HTML rendition of such objects.
In an Android app, the model could be a Java object and the
view model the GUI widget bound to it.

The model part of a ViewComponent can be modeled by the
following states:
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Figure 14: Navigation using Landmarks



e (lear: the ViewComponent lacks some input in order to
be computed (e.g., the values of the parameters appearing
in its conditional expression), thus it cannot show any
content and remains empty.

e Ready: the ViewComponent is ready to be computed; this
happens in two cases: the ViewComponent does not re-
quire any input parameter or it has already received the
needed parameter values.

e Computed: the content of the ViewComponent has been
computed and the ViewComponent is ready to be dis-
played.

The change between these states are modeled by the following
transitions:

e Propagate: it changes the state from Clear to Ready and
represents the propagation of input parameters to the View-
Component;

e Compute: it changes the state from Ready to Computed
and represents the computation of the component’s con-
tent using the possibly received inputs; the content be-
comes available to the view model.

To represent the states of the model of a ViewComponent, two

Boolean variz@les In and Out, i.e., four PCN bottom place charts,
are used: In, In, Out and Out (for an example see Figure 15c).

The In variable denotes the availability of all the input data

necessary for the computation of the ViewComponent; the Out

variable describes the completion of the computation, which

makes the content available to the view model. The states of

the model part are therefore represented by the following con-

figurations:

e Clear: atoken in In and a token in Out;
e Ready: atoken in In and a token in Out;
e Computed: atoken in In and a token in Out.

Notice that, the fourth configuration (a token in both In and
Out) is not meaningful, since it represents the case where the
content has been produced, but the inputs necessary for such
computation have not been consumed.

Figure 15c shows the Compute transition, which is a transi-
tion internal to the ViewComponent. The Propagate transition
will be exemplified later (in Figure 17c¢): it is commanded by
an event external to the ViewComponent, like, for example, a
user interaction enabling parameter passing.

The view model part of a ViewComponent can be repre-
sented by two states:

o Invalid, denotes that the ViewComponent is not displayed.

e Visible, denotes that the ViewComponent has received
data from the model and therefore can be displayed.

A Boolean Variable models the two states, represented by two
bottom place charts View and View, respectively, as exempli-
fied in Figure 15c.
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The transition from the Invalid to the Visible state is mod-
eled by the Render transition, shown in Figure 15c: it represents
the copy of the content from the model to the view model and
the consequent rendering of the ViewComponent.

As an example, Figures 15a and 15b present a simple IFML
model with a top-level ViewContainer comprising only one View-
Component: an application that displays a list of mails. Fig-
ure 15¢ shows the PCN mapping of the IFML model®. A place
chart, child of Mails, named Maillist represents the MailList
ViewComponent, initialized from the parent. It contains two
child place charts ModelmaiiList and ViewModelyaiList repre-
senting the model and the view model part of the ViewCom-
ponent, respectively.

ModelmailList contains the four bottom place charts defined
earlier (InmailList, INMailLists OUtmailList and OutmajiList). Transi-
tion computey,iiist Fepresents the computation of the content:

3From now on, for brevity we omit the Application top place chart and the
Waiting Boolean variable from the PCN mapping of the IFML models.
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it removes a token from Inmaiist and adds a token to EMBE.LM,
denoting the consumption of the inputs; it also removes a token
from Outmaiiist and adds a token to OutpmaiList, denoting the
availability of the model content.

ViewModelmailList contains the two bottom place charts
ViewmaiList and ViewpmaiList. MaillList also contains a transition
describing the rendering of the view model, named renderpailList,
which removes a token from Viewpaiist and Outpaiise and
adds one token to ViewpmaiList and OutmailLise-

The MailList ViewComponent is initialized by default from
the Mails ViewContainer as follows: the model is set to the
ready state and the view model to the invalid state.

The example of Figure 15 introduces the rules:

Rule 7) Base ViEwCompoNeNT A ViewComponent C child of
a parent ViewContainer P maps to:

- a place chart C, child of P, initialized by default from P.

- two children place charts of C: Modelc and ViewModelc, ini-
tialized by default from C.

- four bottom place charts Inc, Ec, Outc and ﬁc, children of
Modelc.

- a transition compute., which removes a token from Inc and
mc and inserts a token into Ec and ﬂc-

- two bottom place charts Viewc and Viewc, children of
ViewModelc. Viewc is initialized by default from ViewModelc.
- a transition renderc, which removes a token from Viewc and
Outc and inserts a token into Viewc and Outc.

Rule 8) VIEWCOMPONENT INITIALIZATION - NO INCOMING DATA FLOWS
A ViewComponent V without incoming data flows is initialized
in the_ready state, i.e., with defaults arcs from Modely to Iny
and Outy.

Rule 8 specifies the initialization for all the ViewCompo-
nents, except those that have one or more input DataFlows, that
will be treated later by rule 10.

Note that the example of Figure 15c addresses the case of
a ViewComponent without input. The next example elaborates
on the mapping of ViewComponents with input parameters.
Events and Navigation Flows
Figure 16 extends the previous example with different events
and navigation flows:

e the mail list is interactive, enabling message selection
from the list and display in another interface component.
When the application starts, only the list is displayed; af-
ter the user selects one item from the list, its details are
shown.

The reload event allows the user to refresh the list of
mails;

The clear event enables flushing the Mail message visu-
alization.

Figure 16b illustrates the corresponding IFML model: a
NavigationFlow from MailList to Mail has a parameter bind-
ing that associates the currently selected mail in the list with an
input parameter in the filter condition of the Mail ViewCompo-
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Figure 16: Navigation betweenViewComponents: navigation flow

nent*. Each time the user chooses a mail message, the selected
event is fired, the ID of the chosen message is made available
as the new value of the input parameter of the Mail View-
Component, and the new model content is computed based on
such value; then, the view model part of the Mail ViewCompo-
nent is updated and displays the newly selected message. The
PCN of Figure 16c¢ illustrates the mapping of the IFML dia-
gram of Figure 16b. Now the place chart of the Mails View-
Container comprises two children place charts, corresponding
to the MailList and Mail ViewComponents, inserted based on
rule 7 and 8 (in particular, they are initialized to the ready state,
as per rule 8). Note that although the place chart associated with
the Mail ViewComponent is initialized to the ready state, its in-
put parameter initially has a null value because the user has not
selected a message yet; thus, the computation and rendering
transitions fire but the view model displays an empty (“null”)
content. The navigation flow from the selected event maps into

“4For brevity, in the IFML diagram we omit the SelectorCondition of View-
Components and the parameters in the ParameterBinding of the Interaction-
Flows, described in the text.



a transition (selected) that affects the Mail ViewComponent as
follows: the model place chart resets to the ready state and the
view model place chart resets to the invalid state; the compu-
tation and rendering transitions fire, causing the refresh of the
model content, based on the new value of the input parameter
(the message selected by the user) and the display of the view
model.

The reload and clear events do not have any parameter
binding, but their behavior is very similar: they reset the model
place chart to the ready state and the view model place chart
to the invalid state: as an effect, the previous content is inval-
idated and the model and view model are recomputed. Note
that the NavigationFlow of the clear event does not provide the
required input parameter to the Mail ViewComponent and thus
the “null” content is displayed, with the effect of clearing the
message interface area.

The example of Figure 16 introduces the rule:

Rule 9) SmvpLE NavicarionFLow A NavigationFlow from an
Event e, associated with a source ViewElement S and pointing
to a target ViewElement T, such that S and T are children of the
same ViewContainer or S is the parent of 7', maps to a transition
e that:

- removes a token from the place chart of T and adds a token to
it.

- removes a token from the place chart Views and adds a token
to it.

Note that rule 9 applies to ViewElements, i.e., to both View-
Containers and ViewComponents. A further example of Navi-
gationFlow with a ViewContainer as target element appears in
Figure 20.

Events and Data Flows

Figure 17 modifies the example of Figure 16, showing an al-
ternative design pattern. In Figure 16 the selection of a mail
message causes the immediate (i.e., synchronous) display of
the mail content. Conversely, in the IFML diagram of Fig-
ure 17b, Mail selection occurs in two steps: first the user can
(repeatedly) choose the mail message he wants to access, as
represented by the select event, which is local to the MailList
ViewComponent and has the sole effect of changing its output
parameter; then he can trigger the open event, which fetches
the present value of the output parameter, associated with the
DataFlow, and displays the currently selected message. Upon
such event, the Mail ViewComponent shows the content of the
message identified by the input parameter. In other terms, the
open event triggers the propagation of the parameter(s) sup-

plied to the target ViewComponent by its incoming DataFlow(s).

In this case, the model of the Mail ViewComponent is initially
in the clear state, waiting for input data from all the View-
Components on which it depends (in this example only from
MailList, but in the general case it may receive inputs from
several components); then, if all such ViewComponents are in
the visible state, the propagate transition can fire and changes
the Mail status from clear to ready, enabling the computation
and rendering transitions.

Instead the reload event behaves like in the previous case.

The mapping of the model of Figure 17 introduces the rule:
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Figure 17: Navigation betweenViewComponents: data flow

Rule 10) VIEWCOMPONENT INITIALIZATION - INCOMING DATAFLOWS
A ViewComponent V, target of a non empty set Fy of DataFlows,
maps into:

- initialization arcs from the parent that set the clear state of
its model place charts (one arc adds a token to Iny and one arc
adds a token to Outy). L

- a transition propagatey, that removes a token from Outy and
EV and adds a token to mv and Iny; for each DataFlow F;
in Fy, propagate,, also removes and adds a token into Views,,
where S; is the source ViewComponent of F;.

4.8. Mapping Actions

The last basic IFML element to map is the Action, which
models a piece of business logic invoked by the user’s inter-
action or by a system-generated event. Figure 18a shows an
example of usage.

A music application allows the user to play songs: the in-
terface consists of two top ViewContainers Playing, containing
a ViewComponent (PlayerPlaying) that shows the status of the
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Figure 18: Action interaction
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application when a song is playing; and the default Stopped
ViewContainer comprising a ViewComponent (PlayersS topped)
that shows the status of the application when no song is play-
ing. Three events control the evolution. The play event, associ-
ated with the PlayerStopped ViewComponent, starts the song;
it invokes the Play Action, which, upon termination, raises the
started event and visualizes the Playing ViewContainer. The
stop event, associated with the PlayerPlaying ViewComponent,
stops the song; it invokes the Stop Action, which, upon ter-
mination, raises the stopped event and visualizes the Stopped
ViewContainer. Finally, the ended event, associated with the
PlayerPlaying ViewComponent, signals that the song has fin-
ished and visualizes the S topped ViewContainer.

The mapping of Actions reuses some of the rules for map-
ping NavigationFlows and adds new ones for handling the speci-
ficity of Action execution.

Definition 1 identifies the smaller ViewContainer that sup-
ports the triggering of an Action. This ViewContainer can be
considered as the ancestor of the Action, in the definition of the
mapping rules.

Definition 1. ActioN orIGIN Given an Action K, with an in-
coming NavigationFlow F triggered by an event e associated
with a source ViewElement §, the Origin of K (Ok) is S, if §
is a ViewContainer, or the ViewContainer enclosing S, if S is a
ViewComponent.

In Figure 18a, the Origin of the Play Action is the Stopped
ViewContainer and of the S top Action is the Playing ViewCon-
tainer.

The execution of an Action is mapped by the following rule:

Rule 11) Action Execution Given an Action K, with an in-
coming NavigationFlow F, let Ogbe the Origin of K. K maps
to:

1) a place chart K child of O.

2) Two place charts Runningy and Runningy children of K.
Runningy is initialized by default from the parent.

3) An initialization arc from Okto Runningy.

Rule 11 maps the Action as a sub-state of its Origin, initial-
ized to the not in execution sub-state.

The activation and termination of an Action is mapped by
the following two rules:

Rule 12) Action acTivatioNn  Given an Action K, a Navigation-
Flow F targeting K and starting from an Event e related to the
ViewElement V. F maps to a transition e which removes and
adds a token from K and Viewy,.

Rule 13) Action TERMINATION Given an Action K, a Naviga-
tionFlow F targeting a top-level ViewContainer V and starting
from an Event e related to K, let Ogbe the Origin of K. F' maps
to:

1) a transition e that removes a token from Runningy and V and
adds one token to Runningy and V.

2) If V is not Ok, e removes also a token from Okand adds one
token to Viewog,.




5. Mapping Complex Interfaces

5.1. Mapping Interface Composition: Nested ViewContainers

IFML allows the description of complex interface composi-
tion patterns, in which ViewContainers are nested and displayed
selectively. To illustrate this capability, and its mapping from
IFML to PCN, Figure 19 extends the mail application example.
Now the user can access both the content and the list of at-
tachments of the currently selected email simultaneously. Fig-
ure 19b presents the IFML model, which exploits a Mail View-
Container nested within Mails. The selected event has an out-
going NavigationFlow that originates from the MailList View-
Component and targets the nested Mail ViewContainer, which
expresses a navigation between ViewElements of different types
directly enclosed in the same ViewContainer; the parameter
passing that enables the computation of the ViewComponents is
expressed by parameter bindings associated with the DataFlows
that connect MailList to MailContent and MailContent to
AttachList. The specific aspect of the example is that the oc-
currence of the selected event invalidates and recomputes the
whole content of the target ViewContainer and causes the dis-
play of all the ViewComponents comprised in it, i.e., of the mail
content and of the list of its attachments.

Figure 19c illustrates the PCN mapping and exemplifies the
treatment of nested ViewContainers.

The top-level Mails ViewContainer is mapped to the Mails
place chart, according to rule 2 and the MailList ViewCompo-
nent is mapped to the MailList place chart (rule 7 and rule 8).
The nested ViewContainer Mail maps into the Mail place chart,
embedded within Mails. The parent place chart (Mails) initial-
izes by default its child place chart (Mail); specifically, the ini-
tialization arc targets the View,j bottom place chart, denoting
that the nested ViewContainer gets into view at the same time
as its parent.

The content of the Mail ViewContainer is mapped as per
rules 7 and 10: two place charts named MailContent and
AttachList map the corresponding view components, and the
transitions propagatep,iicontent Ad propagatepitachiisc map the
DataFlows incoming to the MailContent and AttachList View-
Components, respectively. The selected Event and the Naviga-
tionFlow are mapped according to rule 9: a transition (selected)
removes and adds a token from/to Viewm,iiLise and Mail: it re-
sets Mail and the underlying PCN to its default configuration,
clearing the model and invalidating the view model of both the
MailContent and AttachList ViewComponents.

The example of Figure 19 introduces the rule:

Rule 14) Nestep VIEWCONTAINERS A ViewContainer C child
of another ViewContainer P maps to:

1) A place chart C child of the place chart P.

2) Two bottom place charts Viewc and Viewc within C.

3) An initialization arc from C to Viewc.

Rule 15) Non XOR Parent A ViewContainer C child of a non
XOR ViewContainer P maps to an initialization arc from the
place chart P to the place chart C.

Rule 15 expresses the fact that a child ViewContainer is dis-
played automatically when its parent gets into view. This may
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not be the case when the parent is a XOR ViewContainer, as
illustrated in the next section.

5.2. Advanced composition: XOR View Containers

IFML provides the concept of XOR ViewContainer, which
allows one to design interfaces that display different pieces of
content in alternative. XOR ViewContainers comprise other
sub-ViewContainers, of which at most one at a time is in view.



The combination of nested ViewContainers and XOR View-
Containers enables the representation of the complex compo-
sition of rich-client applications, in which the structure of the
interface is a hierarchy of views and components, displayed
based on the user events and according to complex visibility
rules.

Figure 20 shows an example of XOR ViewContainers. The
mail application of Figure 19 is changed so that the MailContent
and AttachList ViewComponents are computed and displayed
one at a time. Such design may be convenient e.g., for small
devices, to economize the screen space. To specify this behav-
ior, the IFML model embeds the MailContent and AttachList
ViewComponents within ViewContainers (Content and
Attachments) nested in a XOR parent ViewContainer.

Note that the default child of a XOR ViewContainer (Content
in the example) is the one shown when the parent is accessed;
if no default child is specified, no child ViewContainer is dis-
played initially and the choice of what to access first is left to
the user. A landmark XOR child ViewContainer is reachable
with one navigation step from any of the XOR sibling View-
Containers: in the example, the interface lets the user toggle
Content and Attachments into view.

Figure 20b shows the mapping of the IFML diagram of Fig-
ure 20a. Two place charts, nested within the Mail place chart,
map the Content and Attachments XOR children ViewCon-
tainers. According to Rule 14, they comprise the place charts
Viewcontent, VieWcontents VieWattachments and Viewattachments-
The Content ViewContainer is the default child of Mail, there-

fore a default initialization arc is inserted from Mail to Viewcontent.

Conversely, the Attachments ViewContainer is not the default
one and thus an initialization arc is inserted from the Mail place
chart to the Viewattachments place chart.

Both Content and Attachments are landmark ViewContain-
ers, therefore two transitions (landmarkceontent and
landmarkattachments) are inserted, which follow the same con-
figuration as for the rule of top-level landmarks (Rule 6): they
remove a token from Mail and Viewy,; and add a token to
Viewwmail. Furthermore, transition landmarkcontent adds a token

to Content and View attachments and transition landmark attachments

adds a token to Attachments and Viewcontent-
The example of Figure 20 introduces the rules:

Rule 16) XOR Deraurr CaiLp A default ViewContainer C child
of a XOR ViewContainer P maps to an initialization arc from
the place chart P to the place chart C. In Figure 20b the rule
inserts the arc from Mail to Content.

Rule 17) XOR Non Deraurr CHILD A non default ViewCon-
tainer C child of a XOR ViewContainer P maps to an initializa-
tion arc from the place chart P to Viewc. In Figure 20D the rule
inserts the arc from Mail to Viewattachments-

Rule 18) XOR Lanpmark CHiLb The presence of the land-
mark property of a ViewContainer C child of a XOR ViewCon-
tainer X maps to a transition landmarkcy that moves a token
from X and Viewyx to Viewx and C. For each ViewContainer
C; child of X different from C, the landmarkc transition adds a
token to Viewc,. In Figure 20b the rule inserts the transitions
landmarkcontent and landmarkattachments-
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Mapping navigation in deeply nested structures
The examples discussed so far illustrate the mapping of nav-
igation in quite simple interfaces, with at most one level of
structural nesting. Many real world applications, though, have a
more articulated composition; for example, the rich-client web
version of a popular mail program organizes content within an
interface comprising four levels of nested containers. As a fur-
ther example, we illustrate the mapping of IFML models fea-
turing arbitrarily nested interface structures. The rules we are
going to introduce generalize the previous ones, from the case
of flat or two-level composition structures to any mix of nested
ViewContainers and XOR ViewContainers. For the sake of uni-
formity in the specification of the rules, we consider the appli-
cation itself as a XOR ViewContainer, because it is the topmost
(albeit implicit) element of the model and its children top-level
ViewContainers are displayed alternatively. The aspect that is
affected by the presence of deeply nested structures is naviga-
tion, i.e., a NavigationFlow from a source ViewElement S to a
target ViewElement 7', with S and T positioned in arbitrary lo-
cations of the hierarchically nested structure of the application.
Figure 21a exemplifies a multi-level interface structure. The

application contains two top-level ViewContainers 7L0 and TL1.

T L1 contains two XOR ViewContainers X0 and X1, which com-
prise two children ViewContainers each: X0CO0, X0C1, X1CO
and X1C1. The model also comprises three events €0, el and
e2, with associated NavigationFlows.
Preliminary definitions
Before proceeding to the illustration of the mapping, we intro-
duce a number of auxiliary definitions.

Definition 2 identifies the smallest ViewContainer in which
an interaction, denoted by an Event and its associated Naviga-
tionFlow, operates.

Definition 2. InTErAcTION CONTEXT Given a NavigationFlow
F, with source S and target T, the Interaction Context of F (If)
is the ViewContainer V such that:

-V =38,if S is ancestor of T and is not a XOR ViewContainer;
-V =T,if T is ancestor of S and is not a XOR ViewContainer;
- V is the ancestor of S and T such that no descendant of V is
ancestor of S and 7, in all the other cases.

Intuitively, the interaction context of an event and of its as-
sociated NavigationFlow is the smallest portion of the applica-
tion that contains the source and the target of the interaction. In
the example of Figure 21a, the interaction context of the Nav-
igationFlow associated with €0 is Application, of the Naviga-
tionFlow associated with el is X0, and of the NavigationFlow
associated with e2 is TL1.

Definition 3 identifies the largest sub-elements of a View-
Container that comprise interface elements displayed in alter-
native.

Definition 3. Topmost XOR bpEsceNDANTS Given a non-XOR
ViewContainer V, the set of topmost XOR descendants of V
is the set of its descendant XOR ViewContainers that have no
ancestor XOR ViewContainers that are descendants of V.

Intuitively, given a portion of an interface, the topmost XOR
descendants identify the largest independent regions enclosed
in it that may display alternate content. In the example of Fig-
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ure 21a, the sets of topmost XOR descendants of 7L0, X0CO,
X0C1, X1CO0 and X1C1 are empty, whereas the set of topmost
XOR descendants of TL1 contain X0 and X1.

When an interaction causes a ViewElement to be displayed,
the nested structure of the interface may require other elements
to get into view as well. Definition 4 identifies the portion of
an interface element that gets into view when one of its sub-
elements is displayed.

Definition 4. Co-pispLAYED ANCESTOR Given a ViewElement
V, let X be a XOR ViewContainer ancestor of V; the co-displayed
ancestor of V inside X is the ViewContainer A such that:

- A =V, if Vis direct child of X.

- A is the child of X ancestor of V, otherwise.

Intuitively, the co-displayed ancestor of a ViewElement in-
side a region of the interface, or inside the whole application in-
terface, identifies the largest container that gets into view when
the ViewElement is displayed. In the example of 21a, the co-
displayed ancestor of X0CO inside Application is TL1 and the
co-displayed ancestor of X0CO inside X0 is X0CO itself.



The presence of XOR ViewContainers in the structure of the
interface produces another side-effect of navigation: the display
of a set of target elements may require hiding other elements,
which are replaced by the newly displayed ones. Definitions
5 and 6 help identify the portions of an interface element that
are activated by an interaction event and comprise content dis-
played alternatively.

Definition 5. XOR T1arGeTs ser  Given a NavigationFlow F,
with target 7', and a ViewContainer A ancestor of 7', the XOR
targets set of F inside A (7'?) contains the XOR ViewContain-
ers ancestors of T descendants of A.

Definition 6. Extenpep XOR TarGETs seT Given a Naviga-
tionFlow F with target T and a ViewContainer A ancestor of 7',
the extended XOR targets set of F inside A (7~ *’2) is defined as:
-T*% = T4 UlA), if A is a XOR ViewContainer

-T*% = T4 otherwise.

Intuitively, the XOR targets set of a NavigationFlow com-
prises all the ViewContainers that may display alternate content
after the interaction; such ViewContainers must be initialized
correctly, distinguishing their sub-elements that must be dis-
played or hidden.

In the example of 21a, the XOR targets set of €0 inside
Application contains X0 and the extended XOR targets set con-
tains X0 and A pplication; the XOR targets set of el inside X0 is
empty and the extended XOR targets set contains X0; the XOR
targets set of €2, inside TL1 contains X1 and the extended XOR
targets set is the same; finally, the XOR targets set of ¢2 inside
X1, is empty and the extended targets set contains X1.

Definitions 7 and 8 identify the portions of an interface ele-
ment that transition into view or out of view as a consequence
of an interaction.

Definition 7. DispLay seT Given a NavigationFlow F, with
target T, and a ViewContainer A ancestor of T, let 7*% be the
extended XOR targets set of F, inside A. The display set of
F, inside A, (Z)‘}) contains all the co-displayed ancestors of T’

. . A
inside each element in 7 *%.

Intuitively, after an interaction targeting a ViewElement T,
the target 7 becomes in view. Such activation propagates up-
wards in the interface hierarchy of containers to the relevant
co-displayed ancestors of 7.

In the example of 21a, the display set of €0, inside its in-
teraction context (Application), contains X0CO (the target) and
TL1 (a co-displayed ancestor in the interaction context); the
display set of el, inside its interaction context (X0), contains
XO0C1 (the target); the display set of ¢2, inside its interaction
context (T'L1), contains X1C1 (the target). Finally, the display
set of e2, inside X1, contains X1C1 (because the extended tar-
gets set inside X1 contains X1 itself).

Definition 8. Hme ser  Given a NavigationFlow F, with tar-
get T, and a ViewContainer A ancestor of T, let 7*4 be the
extended XOR targets set of F inside A and let I be the inter-
action context of F'. The hide set of F, inside A, ('Hjé) contains
all the ViewContainers not ancestors of 7' and children of an
element X; in T*‘}\{IF}.
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Intuitively, for an interaction targeting a ViewElement T,
the hide set identifies the interface elements that are displayed
in alternative to T and to its co-displayed ancestors; after the
interaction, these elements are out of view.

In the example of 21a, the hide set of €0, inside its inter-
action context (Application), contains X0OC1 (both the source
TLO and XOC1 get, or remain, out of view); the hide set of el,
inside its interaction context (X0), is empty; the hide set of €2,
inside its interaction context (7 L1), contains X1CO0. Finally, the
hide set of ¢2, inside X1, contains X1CO.

Mapping initialization

Based on the definitions above, the mapping from the IFML
model of a nested interface to an equivalent PCN can be de-
fined. The main difference with the case of flat interfaces oc-
curs when the XOR targets set of a NavigationFlow, within
its interaction context, is non empty, which means that there
are ViewContainers, other from the direct target, which are af-
fected by the interaction and may get into view; in this case, the
PCN mapping must initialize the children of XOR targets set
ViewContainers properly, so that the right ones are displayed.
Specifically, the default initialization should not be applied in-
discriminately to the ViewContainers of the XOR targets set,
but selectively to their children, not to override the effect of the
user’s navigation. The correct policy is to initialize by default
the ViewContainers in the display set, which should be com-
puted and rendered, remove from view the ViewContainers in
the hide set, and put into view the ViewContainers of the XOR
targets set. In the example of Figure 21a, the XOR target set
inside the interaction context of e0 contains the X0 ViewCon-
tainer. When e0 occurs, the correct behavior is not to initialize
by default X0, because this may override the user’s choice of
accessing a specific child ViewContainer (X0CO0). Instead, X0
should be set to the visible state, its explicitly targeted child
X0CO should be initialized by default, and the other XOR chil-
dren in the hide set (just XOC1 in the present case) should be
set to the not in view status. Conversely, the default initializa-
tion should be applied to the X1 XOR ViewContainer, because
this is not directly affected by the NavigationFlow (it does not
belong to the XOR targets set).

In other terms, as the example of Figure 21a shows, when a
ViewContainer (e.g.,7 L1) comprises one or more XOR descen-
dants (e.g., X0 and X1), there may be multiple ways to initialize
the XOR ViewContainers and their children, depending on the
actual target of an interaction; this behavior must be captured
by the mapping rules, as illustrated in the PCN of Figure 21b.

The alternative ways to initialize the XOR ViewContainers
and their children are specified by the following rule:

Rule 19) SeLecTive INntTiaLizatioN  Given a non XOR View-
Container V, each topmost XOR descendant X; of V maps to:
1) a place chart V/X; enclosing the place chart V; this denotes
that the ViewContainer V may be accessed by a navigation that
targets X; or one of its descendants; in Figure 21b, this clause
inserts the place charts TL1/X0 and TL1/X1.

2) An initialization arc from V/X; to Viewy; this means that be-
ing in V/X; implies being in V; this clause inserts the arc from
TL1/X0 and TL1/X1 to ViewT 4.



3) For all the children C; of V, such that C; # X; and C; is not
an ancestor of X;, an initialization arc from V /X; to Cj; this de-
notes that the ViewElements not affected by the navigation are
initialized by default; this clause inserts the arc from TL1/X0
to X1 and from TL1/X1 to XO0.

4) If an ancestor A; of X; child of V exists, an initialization arc
from V/X; to A;; since Rule 19 applies to all non XOR View-
Containers that enclose the XOR ViewContainer X;, this clause
denotes that if X; is nested inside V through a set of non XOR
ViewContainers {A;,...A;,}, where A, ; is child of V, A; j,|
is child of A;;, and A;, is father of X;, then there is a place
chart A;j/X; for each ancestor of X;, with an arc from A;/X; to
Aiji1/Xi, for j = 1...n— 1. This clause ensures that initializa-
tion is correctly propagated along nested non XOR ViewCon-
tainers and “stops” at the XOR ViewContainer.

The effect of rule 19 is to insert a place chart that makes ex-
plicit the access to a specific XOR-child of a ViewContainer
(e.g., the place chart TL1/X0 denotes that TL1 is accessed
through X0); such place chart is used to specify that the de-
fault initialization of the ViewContainer (e.g, of 7L1) does not
apply to one of its descendant XOR children (e.g., to X0).

Figure 21b shows the PCN mapping the IFML diagram of
Figure 21a°. As per rule 19, the place chart TL1 is enclosed
within the two auxiliary place charts TL1/X0 and TL1/X1,
with the initialization arcs inserted by the rule.

Mapping NavigationFlows

The rules that map a NavigationFlow from S to T, positioned
arbitrarily within a nested interface structure, distinguish two
cases:

1 The interaction context of the NavigationFlow is a XOR
ViewContainer (as in the case of the NavigationFlows as-
sociated with e0 and el): this means that S and T cannot
be visible at the same time. Specifically, S must be in
view, otherwise the event cannot be triggered, and T must
be out of view. The effect of the interaction does not de-
pend on the actual status of the interface: S gets out of
view and T becomes visible.

The interaction context of the NavigationFlow is a non
XOR ViewContainer, as in the case of e2: this means
that S and T may or may not be visible at the same time.
Specifically, S must be in view, otherwise the event can-
not be triggered, while T can be in view or not depending
on the current state of the interface, which depends on the
past interactions affecting T and possibly the ancestors of
T. Thus, the interaction can have different effects depend-
ing on the current visibility status of the target and of its
ancestors.

XOR Interaction Context. The case in which the interaction
context of a NavigationFlow is a XOR ViewContainer gener-
alizes the rules for the navigation between top-level ViewCon-
tainers described in Section 4.6. In this situation, the source of

5In the figure, we show by means of labels the specific rule or rule clause
responsible of inserting each relevant portion of the PCN.
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the interaction is in view and the target is out of view. There-
fore, the interaction must set the target to the visible state and,
differently from the flat interface case, also update the visibility
of the correct children of its XOR ancestors.

In the place chart of Figure 21b, the transition €0, instead
of adding a token to TL1, adds a token to the auxiliary place
chart TL1/XO0, thus avoiding to initialize by default X0. It also
adds a token to Viewyg, Viewxoci and X0CO, completing the
initialization of X0 with the correct active child. Note that the
transition mapping the NavigationFlow associated with the el
event follows the rule for top-level ViewContainers (rule 5), as
illustrated in Figure 13b, because there is no XOR ViewCon-
tainer between the common ancestor X0 and the target X0C1
(the XOR target set of el is empty).

The mapping of events like €0 introduces the following rules:

Rule 20) Generic NESTED NaviaTioN (XOR ContexT) Given a
NavigationFlow F associated with an event e and with target T,
whose interaction context I is a XOR ViewContainer, F maps
to:

1) A transition e that removes a token from the place chart of
the co-displayed ancestor of T child of /r; this empties all the
place charts contained within /. In Figure 21b this clause in-
serts the transitions €0 and e1, and the arcs from TL1 to e0 and
from X0C1 to el.

2) For each ViewContainer X; in the XOR targets set of F in-
side I, an arc from e to Viewy;; this sets to visible all the af-
fected XOR ViewContainers; this clause inserts the arc from €0
to Viewxg (the XOR target set of el is empty).

3) For each element H; in the hide set of F inside I, an arc
from e to Viewy;,; this sets the ViewContainers of the hide set
to invisible; this clause inserts the arc from e0 to mxoa (the
hide set of el is empty).

4) For each element D; in the display set of F' inside /5:

4.a) an arc from e to D;, if there does not exist a ViewContainer
topmost XOR descendant of D; and ancestor of T'; this maps
the case in which activation does not propagate upward along
the container hierarchy; this clause inserts the arc from e0 to
X0CO0 and from e1 to X0C1.

4.b) An arc from e to D;/A;, if there exists a ViewContainer A j
topmost XOR descendant of D; and ancestor of T'; this maps the
case in which other ViewContainers at higher levels of the con-
tainer hierarchy are activated; this clause inserts the arc from e0
to TL1/X0.

Rule 21) NEesTED NavigatioN FROM VIEWELEMENT (XOR coN-
TEXT) Given a NavigationFlow F from an event e with target
T associated with a ViewElement S, whose interaction context
Ir is a XOR ViewContainer, let A be the co-displayed ancestor
of § inside Ir. Then e (additionally) maps to:

1) an arc from Views to e; this ensures that the source is in view;
in Figure 21D this clause inserts the arc from ViewT g to e0 and
from Viewxgco to el

2) An arc from A to e; this ensures that the co-displayed ances-
tor of S is emptied; this clause inserts an arc from TLO to e0
and from X0CO to el.

3) An arc from e to Viewp, if T is not an ancestor of S; this
denotes that the co-displayed ancestor of the source gets out of




view, unless it is contained in the navigation target; this clause
inserts the arc from e0 to ViewT g and from e1 to Viewxoco.

Rule 20 and 21 insert in the PCN of Figure 21b the transi-
tions €0 and e1; both the mapped events have a XOR ViewCon-
tainer as navigation context.

Note that rule 20 addresses the general case, whereas rule

21 extends the PCN with arcs specific to the configuration in
which the event is associated with a ViewElement; a similar rule
(omitted for brevity, but implemented in the on-line system) is
defined for the case in which the event is associated with an
Action triggered by a deeply nested interface.
Non-XOR Interaction Context. This scenario is a general-
ization of the ones described for events and NavigationFlows
associated with ViewContainers (in Section 4.6) and ViewCom-
ponents (in Section 4.7). When the interaction context is a non
XOR ViewContainer, the source and the target may or may not
be in view at the same time and thus the interaction may have
different effects depending on the visibility status of the target
when the event occurs. More precisely, the effect of the interac-
tion does not depend on the current status of the application if
there are no XOR ViewContainers ancestor of the target within
the interaction context. If such XOR ViewContainers do exist,
the effect of the interaction depends on the currently in view
child in each of them. If all the “right” children are in view, the
target is already in view too, and needs only to be recomputed.
If instead a co-displayed ancestor of the target is out of view,
it must be activated, together with its descendants that are chil-
dren of a XOR ancestor of the target. e2 is an example of this
situation; the interaction context is a non XOR ViewContainer
(TL1) and there is a XOR ViewContainer (X1) ancestor of the
target X1C1. If X1C1 is already in view when the interaction
occurs, then it is just recomputed; if not, it must switch into
view, replacing its sibling ViewContainer X1CO0. Therefore, the
mapping from IFML to PCN inserts two different transitions:
the former changes the active child of X1 if X1C1 is not in
view; the latter recomputes X1C1, if it is already in view.

The case of non-XOR interaction context is addressed by
the following rule:

Rule 22) ConprrioNaL Navication  Given a NavigationFlow F,
associated with an event e and with target 7', whose interaction
context /ris a non XOR ViewContainer, F' maps to:

1) a transition e that removes/adds a token from/to T, and for
each ViewContainer A; ancestor of T and child of an element
in the XOR targets set of F inside /¢, an arc from Viewp, to e;
and an arc from e to Viewp,; the “refresh” transition e maps the
case in which the target is already in view: it causes the target
to be recomputed and leaves the rest of interface unchanged.
In Figure 21b, this clause inserts the transition e2 with the arc
to/from X1C1, and the arc from Viewxqcq to e2.

2) For each ViewContainer X; in the XOR targets set of F' inside
1 F- -
2.1) atransition e » X; that removes a token from X; and Viewa,
and adds a token to A;, where A; is the co-displayed ancestor of
T inside X;; each transition e » X; maps the case in which a
relevant sub-ViewContainer of X; is not in view: it causes the
computation and switch into view of the ancestors of the tar-
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get inside X;, or of the target itself if this is a direct child of
X;. This clause inserts the transition €2 » X1, the arc from X1
to e2 » X1, from Viewycq1 to €2 » X1, and from e2 » X1 to
X1CH1.

2.2) For each ViewContainer X; ; in the extended XOR targets
set of F inside X;, an arc from e » X to Viewxi‘j; this denotes
that each element X; and the XOR ViewContainers nested in-
side it become in view. This clause inserts the arc from e2 » X1
to Viewy;.

2.3) For each element D, ; in the display set of F inside X; such
that there exists a ViewContainer D; that is the topmost XOR
descendant of D;; and ancestor of T, an arc from e » X; to
Dij/Dix; if such D;; does not exist, the arc goes from e » X;
to D ;; this maps the computation of the elements of the display
set inside X;; this clause inserts the arc from e2 » X1 to X1C1.
2.4) For each element H; ; of the Hide Set of F inside X;, an
arc from e » X to VieWHiJ: this maps the switch out of view of
the elements of the hide set inside X;; this clause has no effect
because the hide set of €2 inside X1 is empty.

Rule 23) ConpiTioNAL NAVIGATION FROM VIEWELEMENT ~ Given a
NavigationFlow F from an Event e associated with a ViewEle-
ment S°® and with target T, whose Interaction Context /ris not
a XOR ViewContainer. F maps to:

1) an arc from Views to e; this denotes that the source must be
in view; this clause inserts the arc from Viewxgcy to e2.

2) an arc from e to Views, if T is not an ancestor of S ; this de-
notes that the source remains visible; this clause inserts the arc
from e2 to Viewxoci.

3) For each element X; in the XOR targets set of F inside I, F
also maps to:

3.1) an arc from Views to e » X;; this clause inserts the arc
from Viewxgcy to €2 » X1.

3.2) an arc from e » X; to Views, if T is not an ancestor of §S;
this clause inserts the arc from e2 » X1 to Viewxgcy.

We conclude the presentation of the mapping of IFML to
PCN by underlying that the adherence of the mapping rules to
the intended semantics of IFML 1.0 has been verified, albeit
only informally; indeed, the IFML 1.0 specifications describe
the behavior of the language only by means of examples de-
scribed narratively. For verifying the adherence of the proposed
mapping rules to the intended meaning of IFML constructs, we
have submitted them to an expert team led by the principal au-
thor of the IFML specifications <5>. The evaluation has been
conducted on 13 test cases.” The models used for verification
were designed as building blocks with increasing complexity,
so to progressively incorporate the features of IFML 1.0 ad-
dressed by the mapping rules. The expert team verified the
correspondence between the behavior expressed by the IFML
model and that embodied in the corresponding PCN chart, by
manually testing sequences of interaction events on both mod-
els.

6 A similar rule, omitted for brevity but implemented in the on-line system,
is defined for events associated with Actions.
"These sample models are published in the on-line tool IFMLEdit.org.
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(b) IFML model semantic mapping to PCN

Figure 22: Modeling

6. Tool Support

The described semantic mapping is implemented in IFM-
LEdit.org <50; 51>, an on-line web tool whereby developers
can create an IFML model and derive the equivalent PCN ac-
cording to the rules defined in Section 4. As a support to ver-
ification, IFMLEdit.org also offers a function to simulate the
generated PCN, easing the inspection of its dynamics in reac-
tion to an automatically created sequence of events.

From the IFML model developers can generate the imple-
mentation code for the web or for a cross-platform mobile lan-
guage, execute the obtained prototype, verify its compliance to
requirements and possibly perform multiple model & generate
iterations, until a satisfactory version is produced. As a last
step, the automatically generated code can be turned into a real
application, by customizing the look&feel and by replacing the
mock-up data access and action calls with real API calls.

Figure 23a shows the generated web prototype, running in
the web server emulated inside the browser. Figure 23b shows
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(b) Mobile

Figure 23: Examples of generated applications

the generated mobile prototype, running in the mobile emula-
tor embedded within the browser. In-browser emulation allows
the developer to test the current web or mobile release without
installing any web server and also in absence of the Internet
connection.

The generated implementation uses sample data collections
automatically created, to mimic the data binding of ViewCom-
ponents and populate the UI, allowing the developer to test the
interface without the need of loading content. For more realis-
tic tests, the developer can edit, add or remove entities from the
automatically generated sample database.

IFMLEdit.org can be used iteratively to evaluate alternative
application interface designs and interaction patterns. The code
of the generated prototype can be downloaded and refined to
produce the final application.

IFMLEdit.org is not the only free and open source IFML
editor. Another open source project®, based on the Eclipse

$http://ifml.github.com


http://ifml.github.com

Modeling Framework (EMF) <52> is available. Both tools are
based on IFML, but with different goals. IFMLEdit.org aims
at facilitating the approach of new users to the IFML ecosys-
tem, by providing an online tool which allows the developer to
learn IFML by examples and generate a functional prototype
of their application without programming and software instal-
lation. The project at ifml.github.com aims at providing a
specification-compliant building block, limited to model edit-
ing, which MDD software companies can exploit as a starting
point for the realization of a complete IFML IDE.

7. Discussion, Conclusions, and Future Work

Generative MDD approaches rely on the availability of mod-
eling languages supported by effective tools. A prerequisite
for code generation is that the language semantics be formally
specified, so that the outcome of code generation can be an-
ticipated by developers and models can be ported across tools
ensuring that the behavior of the generated implementation re-
mains consistent to the language semantics. This is not always
the case with commercial MDD tools, which either employ pro-
prietary notations whose semantics is not publicly available, or,
when they adopt a standard yet informally defined language
such as IFML, embed the interpretation of the language in the
code generation rules.

To put our definition of the IFML semantics to work, we
have examined two cases: 1) aspects of IFML underspecified
in the standard documentation <5>; 2) interpretations of IFML
constructs in the WebRatio commercial tool that embody un-
necessary restrictions or assumptions about the language se-
mantics.

The PCN mapping rules defined in this paper formalize and
refine the informal semantics described in <5> by means of ex-
amples and of an informal ViewElement computation algorithm
(contained in Section 9 of the specifications). The following
scenarios are clarified by the mapping from IFML to PCN:

e Navigation of nested interfaces: the IFML specifications
do not prescribe exactly what happens after a navigation
event (due to a NavigationFlow, a Landmark, or the ter-
mination of an Action) in nested ViewContainers. The
rules in Section 5 map the application behavior in re-
sponse to every possible event affecting an interface struc-
ture made of arbitrarily nested ViewContainers and XOR
ViewContainers. Specifically, the rules dictate which
ViewElement must be brought in view and out of view;
for those that are in view after the event, they show if
their content must be recomputed or just redisplayed.

e ViewComponent computation: Section 9 of the IFML
specifications provides an informal algorithm that describes
how the computation of an IFML-specified application
should proceed along linked ViewElements; the mapping
rules of Section 4.7 expose precisely the workflow for
computing the model and the view model parts of any
combination of connected or standalone ViewComponents;
such workflow is described explicitly in the PCN by means
of the Compute and Propagate transitions.
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e [ocal events: local events are events that affect only the
ViewComponent to which they are associated, such as the
Select event of Figure 17c. Our semantic mapping shows
that such events do not map to a state changing transition,
but only affect the output parameter of the ViewCompo-
nent.

The analysis of the code generator of WebRatio permitted
us to identify a few scenarios where the tool takes unnecessarily
restrictive interpretations of the language.

e DataFlow and NavigationFlow: WebRatio somehow blurs
the distinction between the two constructs and uses a non
standard feature (called automatic NavigationFlows) to
express patterns in which a ViewContainer comprises one
ViewComponent (e.g., a List ViewComponent) connected
to another dependent ViewComponent (e.g., a Details to
show an object from the list). WebRatio automatic Nav-
igationFlows are used to express that at the first access
to the ViewContainer the Details ViewComponent dis-
plays a (randomly chosen) object from the List View-
Component. This pattern can be expressed using only
the standard IFML constructs DataFlow and Navigation-
Flow, as shown e.g., in Figure 19. This is possible be-
cause the semantics of the two constructs has been better
separated: the DataFlow expresses the input-output data
dependency between the source and the target ViewEle-
ments, whereas the NavigationFlow expresses the trig-
gering of the (re)computation of the target ViewElement.

e Nested containers: in WebRatio a ViewContainer nested
within another ViewContainer has solely a presentation
purpose (e.g, the code generator may produce a separate
interface module for the embedded ViewContainer); con-
versely, the semantic mapping clarifies that nested View-
Containers can be used as first-class citizens of the IFML
model, to denote that the ViewElements contained in them
are selectively invalidated and recomputed after the oc-
currence of an event.

7.1. Limitations

The semantic mapping discussed in Section 4 and 5 focuses
on the essential features of IFML that determine the execution
behavior in reaction to events generated by the user, by the sys-
tem, or by the termination of business actions. Several elements
of the language, which are of practical use but do not influence
the way events are handled, have been omitted. These include,
e.g., several details about the ViewComponents, such as the dif-
ferent types of fields that can be added to a Form ViewCom-
ponent, the DataBinding element, which specifies the Domain
Model element used to retrieve the content displayed in a View-
Component, or the ConditionalExpression element, which is a
query associated with a DataBinding for retrieving the actual
content to display. Such omitted elements can be specified in
the IFMLEdit.org model editor and are exploited for the web
and mobile code generation, but do not influence the semantic
mapping from the IFML model to the equivalent PCN.


ifml.github.com

Furthermore, the algorithm that describes the IFML compu-
tation in Section 9 of the standard also considers two specific as-
pects of the IFML execution semantics that depend on the actual
values of the parameters: 1) the policy for resolving non deter-
minism when a ViewComponent receives multiple values of the
same parameter from different DataFlows or NavigationFlows;
2) the policy for deciding if the user’s choices accumulated in
previous interactions should be reused when re-computing the
content of a ViewElement. Also these aspects impact the values
shown in the interface, but not the way in which the application
reacts to event. Therefore, they do not affect the PCN map-
ping, but only the generation of the code. The web and mobile
code generators of IFMLEdit.org adopt the following choices,
among those declared as possible in the specifications:

e Parameter propagation adopts the non-deterministic choice:
one input parameter is chosen non-deterministically at
run-time among the available ones.

e Navigation history preservation adopts the policy to re-
compute the content of ViewComponents considering in-
put parameter values determined by previous interactions
with the same component.

7.2. Future work

The ongoing and planned future work addresses the follow-
ing improvements:

e Semantic mapping: we will extend PCN with value-based
tokens and a guard language, to allow the explicit repre-
sentation of IFML aspects not treated so far, such as the
behavioral properties of ViewComponents depending on
their DataBinding and on the value of input parameters.

e Model checking: we plan to apply PCN analysis meth-
ods, such as reachability and liveness analysis, to enable
the verification of IFML models thanks their semantic
mapping to a formal model.

e Simulation: we plan to lift the level of simulation from
the PCN to the IFML model, allowing developers not in-
terested in the semantic mapping to be able to test the
behavior of the front end on sequences of events automat-
ically generated by the underlying semantic PCN repre-
sentation.

e Code Generation: we plan to better encapsulate the parts
of the code that are mocked-up by the code generator and
thus require manual refinement, such as the API calls for
content retrieval and for executing the business logic of
Actions. The ultimate goal is to have the generator au-
tomatically merge the portions of code created automati-
cally and programmed manually, so that the regeneration
of the project preserves all the modifications made by the
developer.

e Case studies and practical validation: we have already
started using IFMLEdit.org in MDD educational programs
and we plan to conduct a case study comparing the types
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of development activities and the effort distribution across
the activities during the development of a sample appli-
cation by two groups of randomly allocated developers
using either the manual coding or the generative MDD
approach.
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