
ON THE USE OF REPLACEMENT MESSAGES IN

API DEPRECATION: AN EMPIRICAL STUDY

GLEISON BRITO BATISTA

ON THE USE OF REPLACEMENT MESSAGES IN

API DEPRECATION: AN EMPIRICAL STUDY

Dissertation presented to the Graduate
Program in Computer Science of the Fed-
eral University of Minas Gerais in partial
fulfillment of the requirements for the de-
gree of Master in Computer Science.

Advisor: Marco Tulio de Oliveira Valente
Co-Advisor: Andre Cavalcante Hora

Belo Horizonte

June 2016

© 2016, Gleison Brito Batista.
 Todos os direitos reservados

Ficha catalográfica elaborada pela Biblioteca do ICEx - UFMG

Batista, Gleison Brito.

B333o On the use of replacement messages in API deprecation:

 an empirical study. / Gleison Brito Batista. — Belo

 Horizonte, 2016.

 xviii, 57 f.: il.; 29 cm.

 Dissertação (mestrado) - Universidade Federal de

 Minas Gerais – Departamento de Ciência da Computação.

 Orientador: Marco Túlio de Oliveira Valente.

 Coorientador: André Cavalcante Hora

 1. Computação – Teses. 2. Software – Manutenção –

 Teses. 3. Software – Desenvolvimento –Teses. I.

 Orientador. II. Coorientador. III. Título.

 CDU 519.6*32(043)

Resumo

Como quaisquer sistemas de software, frameworks e bibliotecas evoluem ao longo do
tempo, assim como suas APIs. Consequentemente, sistemas clientes devem ser con-
stantemente atualizados para utilizarem APIs melhoradas. Para facilitar essa tarefa
e preservar a compatibilidade com versões anteriores, elementos de API devem ser
depreciados com mensagens de substituição. No entanto, na prática, existem evidên-
cias de que esses elementos são usualmente depreciados sem tais mensagens. Nessa
dissertação, são estudados um conjunto de questões relacionadas à adoção de men-
sagens de depreciação. O trabalho objetiva: (i) mensurar a utilização de mensagens de
depreciação e (ii) investigar a necessidade de uma ferramenta para recomendar essas
mensagens. Para tanto, foram verificados (i) a frequência de elementos depreciados
com mensagens de depreciação, (ii) o impacto da evolução de software nessa frequência
e (iii) as características dos sistemas com elementos depreciados corretamente. Para
alcançar esses objetivos, foi realizado um estudo com 622 sistemas Java e 229 sistemas
C#. Esse estudo mostrou que: (i) 66,7% dos elementos de APIs de um sistema são
depreciados com mensagens de substituição em Java; para C# esse valor é 77,8%, (ii)
em ambas linguagens há pouco esforço para melhorar as mensagens de depreciação
ao longo do tempo e (iii) sistemas que depreciam elementos de API corretamente são
estatisticamente diferentes em termos de tamanho, comunidade de desenvolvedores e
atividade. Também foi realizado um segundo estudo para avaliar a viabilidade de uma
ferramenta de recomendação capaz de inferir mensagens de substituição utilizando as
soluções adotadas pelos desenvolvedores. Como resultado temos que: (i) 73% das
recomendações sugeridas pela ferramenta correspondem de fato a mensagens de subs-
tituição reais de elementos de API depreciados e (ii) os percentuais de mensagens de
substituição cobertos pela ferramenta em três sistemas relevantes são 28,2%, 30,7% e
37,5%. Os resultados obtidos apontam que essa ferramenta pode oferecer sugestões
úteis para mantenedores de software.

Keywords: Depreciação de APIs, Evolução de software, Manutenção de software.

ix

Abstract

As any software system, frameworks and libraries evolve over time, and so their APIs.
Consequently, client systems should be updated to benefit from improved APIs. To
facilitate this task and preserve backward compatibility, API elements should be dep-
recated with clear replacement messages. However, in practice, there are evidences
that API elements are usually deprecated without such messages. In this dissertation,
we study a set of questions regarding the adoption of deprecation messages. Our goal
is twofold: to measure the usage of deprecation messages and to investigate whether a
tool is needed to recommend such messages. Thus, we verify (i) the frequency of dep-
recated elements with replacement messages, (ii) the impact of software evolution on
such frequency, and (iii) the characteristics of systems with API elements deprecated
in a correct way. To achieve these goals we perform an empirical study using 622 Java
systems and 229 C# systems. Our large-scale analysis shows that (i) 66.7% of the API
elements in Java are deprecated with replacement messages per system, and for C#
this value is 77.8%, (ii) there is almost no major effort to improve deprecation messages
over time in both languages, and (iii) systems that deprecate API elements in a cor-
rect way are statistically significantly different in terms of size, developing community,
and activity. In addition, we perform a second study to evaluate the feasibility of a
recommendation tool to infer replacement messages by mining solutions adopted by
developers. As result of this second study, we report that: (i) 73% of the recommenda-
tions provided by the tool correspond to the real replacement messages of deprecated
API elements and (ii) the percentage of replacement messages covered by the tool in
three relevant systems are 28.2%, 30.7%, and 37.5%. These results suggest that this
tool can provide real value to software maintainers.

Keywords: API deprecation, Software evolution, Software maintenance.

xi

List of Figures

2.1 APIs acting as interfaces between clients and a provider software en-
tity [Montandon, 2013]. 8

3.1 Distribution of number of stars, number of releases, and number of depre-
cated API elements in the selected systems. 14

3.2 Number of systems in library and non-library categories. 15

3.3 Distribution of the percentage of deprecated APIs with replacement mes-
sages in the top-30% and bottom-30% systems. 20

4.1 Absolute distribution of deprecated API elements with replacement messages. 24

4.2 Relative distribution of deprecated API elements with replacement messages. 25

4.3 Relative distribution of deprecated API elements with replacement messages
in library and non-library systems. 27

4.4 Absolute distribution of deprecated API elements with replacement mes-
sages over time. 28

4.5 Relative distribution of deprecated APIs with replacement messages over
time. 29

4.6 Relative distribution of systems where the percentage of replacement mes-
sages increased from the first to the last release. 30

4.7 Relative distribution of systems where the percentage of replacement mes-
sages decreased from the first to the last release. 31

4.8 Examples of systems in each evolution category. 32

4.9 Number of releases for each category of system. 33

4.10 Relative distribution of replacement messages in systems in the increase
category, comparing the first and last releases. 34

4.11 Relative distribution of replacement messages in systems in the decrease
category, comparing the first and last releases. 34

xiii

5.1 Deprecated type T without replacement message on the left and an example
of suggested replacement message on the right. 44

xiv

List of Tables

3.1 Regular expressions to identify API elements in C# 16
3.2 Number of deprecated API elements. 17
3.3 Frequency of replacement message guidelines in Java. 18
3.4 Frequency of replacement message guidelines in C#. 18
3.5 Metrics likely to impact API deprecation. 19

4.1 Number of deprecated API elements with replacement messages. 24
4.2 Number of systems in each evolution category 32
4.3 Metrics and their respective p-values and d on top and bottom systems.

Bold values mean p-value < 0.05 (statistically significant different), and
d > 0.147 (at least a small effect size). Level of significance for d-values: L
= large, M = medium, S = Small, N = negligible. Rel. = relationship: “+”
= top systems have significantly higher value on this metric. “-” = bottom
systems have significantly higher value on this metric. 36

4.4 Comparison between a top and bottom Java system. 38
4.5 Comparison between a top and bottom C# system. 38

5.1 Examples of evolution rules . 45

xv

Contents

Resumo vii

Abstract ix

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Motivation . 1
1.2 Proposed Work . 2
1.3 Publications . 4
1.4 Outline of the Dissertation . 4

2 Background 7
2.1 Application Programming Interfaces . 7
2.2 API Deprecation . 9

2.2.1 API Deprecation in Java . 9
2.2.2 API Deprecation in C# . 11

2.3 Final Remarks . 12

3 Study Design 13
3.1 Selecting Case Studies . 13
3.2 Extracting Deprecated API Elements 15
3.3 Extracting Replacement Messages . 17
3.4 Metrics Possibly Impacting API Deprecation 18
3.5 Extracting Metrics from Case Studies 20
3.6 Final Remarks . 21

4 Results 23

xvii

4.1 RQ1. What is the frequency of deprecated APIs with replacement mes-
sages? . 23

4.2 RQ2. What is the impact of software evolution on the frequency of
replacement messages? . 28

4.3 RQ3. What are the characteristics of software systems with high and
low frequency of replacement messages? 35

4.4 Threats to Validity . 37
4.4.1 Construct Validity . 38
4.4.2 Internal Validity . 40
4.4.3 External Validity . 40

4.5 Final Remarks . 41

5 Practical Implications 43
5.1 Motivation . 43
5.2 Study Design . 44

5.2.1 Dataset . 44
5.2.2 Research Questions . 46

5.3 Results . 47
5.4 Final Remarks . 50

6 Conclusion 51
6.1 Overview . 51
6.2 Related Work . 52

6.2.1 API Evolution Impact . 52
6.2.2 API Evolution Analysis . 53

6.3 Contributions . 54
6.4 Future Work . 54

Bibliography 55

xviii

Chapter 1

Introduction

This chapter introduces this master dissertation. Initially, we discuss the motivations
of the work in Section 1.1. Section 1.2 details the proposed study. Section 1.3 presents
our publications. Finally, Section 1.4 presents the outline of this study.

1.1 Motivation

Nowadays, it is a common practice to implement systems on top of frameworks and
libraries [Tourwé and Mens, 2003], taking advantage of their Application Programming
Interfaces (APIs). This practice provides several benefits to client systems, for example:

• Reduction of development costs and time [Moser and Nierstrasz, 1996];

• Increase focus on the essential system requirements, since developers do not need
to re-implement the services provided by an API [Konstantopoulos et al., 2009];

• Increase software quality by using well-adopted, tested and documented code
elements.

However, as any software system, frameworks/libraries and their APIs evolve
over time. Naturally, public types, methods, and fields provided by these APIs may be
renamed, removed or updated. Consequently, client systems should migrate to benefit
from improved API elements.

To facilitate client developers making the transition and preserve backward com-
patibility, API elements should be deprecated with replacement messages. Mechanisms
to support API deprecation are provided by most programming languages, such Java
and C#. For example, Java has two solutions to deprecate types, methods, and fields:

1

2 Chapter 1. Introduction

using deprecation annotations and/or deprecation Javadoc tags. Both annotations and
Javadoc tags are used to warn developers referencing deprecated API elements. How-
ever, the latter may be accompanied by replacement messages to suggest what to use
instead. Listing 1.1 presents an example of a deprecated method in Java. In this ex-
ample, the getPostParams method is deprecated with a @Deprecated annotation (line
4) and a Javadoc tag @deprecated (line 2). This tag contains a replacement suggestion
for the deprecated method, which is, in the presented example, the method getParams.

1 /**
2 * @deprecated Use {@link #getParams()} instead.

3 */

4 @Deprecated

5 protected Map<String, String> getPostParams() throws AuthFailureError {

6 //...

7 }

Listing 1.1. Deprecated method in Java - google/ioshed

In a similar way, the standard solution to deprecate API elements in C# consists
on using the Obsolete attribute accompanied by a replacement message. Listing 1.2
shows an example of a method deprecated with the Obsolete attribute (line 1). This
attribute includes a parameter with the deprecation message.

1 [Obsolete("Use GenerateAsync instead")]

2 public static void Generate(PythonTypeDatabaseCreationRequest request) {

3 //...

4 }

Listing 1.2. Deprecated method in C# - Microsoft/PTVS

In practice, previous studies indicate that API elements are often deprecated with
missing or unclear replacement messages. Robbes et al. [2012] perform a large-scale
study in order to investigate the impact of API deprecation in a large-scale software
ecosystem. In this study, the authors present preliminary evidences that APIs are
usually deprecated without replacement messages. Hora et al. [2015] investigate the
impact of API evolution also at an ecosystem level. Their results suggest that depre-
cation mechanisms should be more adopted. However, we are still unaware about the
scale of this phenomenon and whether it tends to get better (or worse) over time.

1.2 Proposed Work

In order to investigate the adoption of API deprecation messages, we analyse in this
master dissertation the following factors:

• The frequency of deprecated API elements with replacement messages;

1.2. Proposed Work 3

• The impact of software evolution on the frequency of replacement messages;

• The characteristics of systems which deprecate API elements in a correct way in
terms of popularity, size, community, activity, and maturity.

Our goal is twofold: to measure the usage of deprecation messages and to inves-
tigate whether a tool is needed to recommend such messages. Thus, we propose the
following research questions to support our study:

• RQ #1. What is the frequency of deprecated APIs with replacement
messages? In this research question, we analyse the frequency of deprecated
API elements with replacement messages, using a large dataset of Java and C#
systems. We detected that 66.7% of the API elements are deprecated with re-
placement messages per system in Java. For C#, this value is 77.8%;

• RQ #2. What is the impact of software evolution on the frequency of
replacement messages? In this research question, we analyse the frequency
of replacements messages by comparing (i) two releases in a first analysis and
(ii) multiple releases in a second one. Overall, we detect that, in both languages,
there is almost no major effort to improve such messages over time;

• RQ #3. What are the characteristics of software systems with high
and low frequency of replacement messages? In this research question, we
investigate whether system popularity, size, community, activity, and maturity
have an impact on the way developers deprecate API elements. We find that
systems that follow best deprecation practices are statistically significant different
from the ones that do not in terms of size, developing community, and activity.

These research questions are answered in the context of a large-scale analysis
based on 622 Java systems and 229 C# systems. In order to investigate the practical
implications of the main study, we also perform a second study to investigate the
feasibility of designing and implementing a recommendation tool that automatically
infers replacement messages by mining real solutions adopted by developers. To support
this second study, we investigate the precision and recall of such tool. In this context,
we computed a precision of 73%. That is to say, our practical implication analysis shows
that we are able to correctly infer missing replacement messages in almost 3/4 of the
cases. In order to evaluate recall, we restricted our analysis to three relevant systems.
Detected recalls are: 28.2%, 30.7%, and 37.5%. Therefore, these numbers suggest that
a recommendation tool targeting elements deprecated without replacement messages
is indeed possible to be implemented, with good precision and reasonable recall.

4 Chapter 1. Introduction

To conclude, the major contributions of this dissertation are summarized as fol-
lows:

• We provide a large-scale empirical study to better understand to what extend
APIs are deprecated using replacement messages.

• We provide evidences on the benefits of a recommendation tool to assist client
developers in the detection of missing replacement messages.

1.3 Publications

This master dissertation generated the following publications and therefore contains
material of them:

• Brito, G., Hora, A., and Valente, M. T. (2015). Um estudo sobre a utilização de
mensagens de depreciação de APIs. In III Workshop de Visualização, Evolução
e Manutenção de Software (VEM) (best paper)

• Brito, G., Hora, A., Valente, M. T., and Robbes, R. (2016). Do developers depre-
cate APIs with replacement messages? A large-scale analysis on Java systems. In
23rd International Conference on Software Analysis, Evolution and Reengineer-
ing (SANER) (Qualis A2)

1.4 Outline of the Dissertation

We organized the remainder of this work as follows:

• Chapter 2 covers central concepts related to this master dissertation. In the
first part, we explain the concept of Application Programming Interfaces. In the
second part, we describe how Java and C# systems deprecate API elements.

• Chapter 3 describes in detail the selection of case studies, the metrics used to
investigate API deprecation, the guidelines used to extract replacement messages,
and the metrics possibly impacting API deprecation, in order to answer the
proposed research questions.

• Chapter 4 answers and discusses the research questions proposed in this dis-
sertation. First, we discuss the frequency of deprecated APIs with replacement
messages. After, we investigate the impact of software evolution on the frequency

1.4. Outline of the Dissertation 5

of such messages. Finally, we describe the characteristics that impact on the way
developers deprecate API elements.

• Chapter 5 evaluates possible practical implications of the study presented in this
master dissertation. First, we explain the motivation of this study and present
the study design. Finally, we present preliminary results.

• Chapter 6 presents final considerations, including related work, a summary of
our contributions, and suggestions of future work.

Chapter 2

Background

In this chapter, we provide a general review of the central topics required to understand
the work presented in this dissertation. Section 2.1 explains the concept of API and
Section 2.2 describes how Java and C# systems deprecate API elements.

2.1 Application Programming Interfaces

In this dissertation, we define Application Programming Interfaces (APIs) as interfaces
used by software components to communicate with each other. Figure 2.1 presents a
software entity connecting with clients via its API. Examples of successful APIs include
Java API1, .NET Framework Class Library2, and Android API3. More specifically, we
define API elements as public/protected types, fields or methods. In addition, C#
provides properties, which contain a mechanism to read or write the value of a field.
Listing 2.1 shows an example of property. This example shows the declaration of an
integer property MaximumPendingSessions (line 1), where the methods get and set
are used to return and assign its value, respectively. In order to maintain compatibility
between the two languages, we consider properties as fields elements.

1 int MaximumPendingSessions

2 {

3 get;

4 set;

5 }

Listing 2.1. Example of property in C# - mono/mono

1https://docs.oracle.com/javase/8/docs/api/
2http://msdn.microsoft.com/en-us/library/gg145045.aspx
3http://developer.android.com/é-éreference

7

https://docs.oracle.com/javase/8/docs/api/
http://msdn.microsoft.com/en-us/library/gg145045.aspx
http://developer.android.com/� - � reference

8 Chapter 2. Background

Figure 2.1. APIs acting as interfaces between clients and a provider software
entity [Montandon, 2013].

APIs bring many benefits to modern software development [Konstantopoulos
et al., 2009; Moser and Nierstrasz, 1996] such as (i) reduction of costs and time, (ii)
increase focus on the essential system requirements, since developers do not need to
re-implement the services provided by an API, and (iii) increase software quality, since
APIs are usually developed by experts and are widely tested.

Listing 2.2 shows an example of API, which presents an excerpt of the Stack
class in package java.util for Java Platform Standard Edition4. In this example, the
methods push, pop, peek, empty, and search are public, therefore they are defined as
API elements. By contrast, serialVersionID field (line 18) is private, thus it is not an
API element. Furthermore, the class Stack is also an API element, because it is public.

1 public class Stack<E> extends Vector<E> {

2
3 public E push(E item) {

4 //...

5 }

6 public synchronized E pop() {

7 //...

8 }

9 public synchronized E peek() {

10 //...

11 }

12 public boolean empty() {

13 //...

14 }

15 public synchronized int search(Object o) {

16 //...

17 }

18 private static final long serialVersionUID = 1224463164541339165L;

19 }

Listing 2.2. Example of API elements in class java.util.Stack from Java

4http://www.oracle.com/technetwork/java/javase

http://www.oracle.com/technetwork/java/javase

2.2. API Deprecation 9

2.2 API Deprecation

Software systems evolve over time, changing their elements e.g., methods, fields, and
types, and so their APIs. When an API element changes, the impact propagates to
client systems. To mitigate the impact of these changes, libraries and frameworks
should use deprecation mechanisms, like messages to support developers. In fact, API
deprecation is a way to alleviate the impact of API changes.

In theory, before being removed, API elements should be annotated as depre-
cated to support client developers making the transition to new ones. Deprecated API
elements are kept in the system to preserve backward compatibility, but they should
not be used by developers because they may be removed in the future.

Many studies investigate the impact of API evolution. For example, through an
investigation on the Android ecosystem about adoption of API changes, McDonnell
et al. [2013] found that when changes occur rapidly, clients have difficulty in adopting
updates. In a large-scale study, Robbes et al. [2012] detected that some deprecation
of APIs have large impact on the Smaltalk ecosystem, finding evidence that APIs are
usually deprecated with missing and unclear messages. In addition, Hora et al. [2015]
investigated the impact of API replacement and improvement on a large-scale ecosys-
tem also written in Smalltalk. The results of this study confirm the large impact on
client systems, recommending that deprecation mechanisms should be more adopted.

2.2.1 API Deprecation in Java

The Java language, since J2SE 5.0, provides a mechanism to deprecate types, methods,
and fields, using the @Deprecated annotation. This annotation causes the compiler to
issue a warning when it finds references to deprecated API elements. Listing 2.3 shows
an example of a deprecated method using the @Deprecated annotation. In this example,
the Database method is deprecated with this annotation (line 1), but it is not included
any suggestion for a replacement.

1 @Deprecated

2 public Database(Context context) {

3 //...

4 }

Listing 2.3. Deprecated method in Java using @Deprecated annotation -
facebook/stetho

When an element is annotated with the@Deprecated annotation, the compiler will
issue a deprecation warning if the deprecated element is used (e.g., invoked, referenced,
or overridden). The compiler will complain as the message shown in Listing 2.4:

10 Chapter 2. Background

1 Note: Path\to\java\file.java uses or overrides a deprecated API.

2 Note: Recompile with -Xlint:deprecation for details.

Listing 2.4. Warning message caused by @Deprecated annotation

When using deprecation annotations, it is a good practice to document the rea-
sons for the deprecation and/or to recommend alternative API elements. In order
do support this practice, Java provides the Javadoc tag @deprecated (supported since
J2SE 1.1). The tag should also be used to warn developers about deprecated elements.
Listing 2.5 shows an example of a deprecated method using the @deprecated tag (line
3). The tag contains a deprecation message that suggests replacing the deprecated
method setFieldOrder (lines 6-8) by the method getFieldOrder.

1 /**
2 * Force a compile-time error on the old method of field definition

3 * @deprecated Use the required method getFieldOrder() instead to

4 * indicate the order of fields in this structure.

5 */

6 protected final void setFieldOrder(String[] fields) {

7 //...

8 }

Listing 2.5. Deprecated method in Java using the Javadoc tag @deprecated -
java-native-access/jna

More specifically, Java documentation recommends the use of two solutions to
deprecate elements with replacement messages, i.e., message to suggest developers
what to use instead, as follows:

• Javadoc 1.1 : This Javadoc version recommends to use the annotation @see to
indicate the replacement API.

• Javadoc 1.2 and later : These versions recommend to use the word use followed
by the annotation @link to indicate the replacement API.

Listing 2.6 presents an example of deprecated Java type using the Javadoc 1.1
guideline. In this example, the tag @deprecated (line 2) is used to generate documen-
tation in order to help the developers. The tag @see (line 3) reports the replacement
element. Furthermore, this tag is used to generate the See Also field in Javadoc doc-
umentation. We also note the use of @Deprecated annotation to show the deprecation
warning. The warning message is “since 1.4”.

Listing 2.7 shows an example of deprecated Java method, according to Javadoc
1.2 guideline. Like in Javadoc 1.1, the tag @deprecated (line 3) is used to provide
documentation in order to help the developers, but we also see the use for the use
keyword to indicate the replacement element. Notice the use of the @link tag to provide

2.2. API Deprecation 11

a link to the documentation of the replacement element. The warning message “Use
@link #ScriptSortBuilder(Script, String) instead” will therefore be presented when
developers compile a system that calls the deprecated method lang. This message
contains the suggestion for the replacement element and the link for its documentation.

1 /**
2 * @deprecated since 1.4

3 * @see org.apache.accumulo.core.client.IteratorSetting.Column

4 */

5 @Deprecated

6 public class PerColumnIteratorConfig {

7 //...

8 }

Listing 2.6. Deprecated type in Java using Javadoc 1.1 guidelines - spring-

projects/spring-framework

1 /**
2 * The language of the script.

3 * @deprecated Use {@link #ScriptSortBuilder(Script, String)} instead.

4 */

5 @Deprecated

6 public ScriptSortBuilder lang(String lang) {

7 //...

8 }

Listing 2.7. Deprecated method in Java using Javadoc 1.2 guidelines -
elastic/elasticsearch

Last but not least, Java deprecation guidelines are not mandatory; developers
may adopt other conventions to create replacement messages, or simply do not use
them at all.

2.2.2 API Deprecation in C#

The C# language proposes the attribute Obsolete to deprecate elements. Like @Dep-
recated annotations in Java, when an element has the Obsolete attribute, the C#
compiler issues a message if it is used. The attribute contains two arguments: (i) a
message to support developers and (ii) a parameter to define if the use of deprecated
element should cause a compiler error.

The Obsolete attribute can be used with no arguments, but it is recommended
to include an explanation of why the item is obsolete and what API element should be
used as a replacement.

Listing 2.8 presents an example of deprecated method in C#. The Obsolete
attribute is used with the message parameter. The error message is “Use ApiTaskAsync
instead.”. In this case the value default in compiler error parameter is true.

12 Chapter 2. Background

1 [Obsolete("Use ApiTaskAsync instead.")]

2 protected virtual void ApiAsync(HttpMethod httpMethod, string path, object

parameters, Type resultType, object userState)

3 {

4 //...

5 }

Listing 2.8. Deprecated method in C# using Obsolete attribute with a
replacement message - facebook-csharp-sdk/facebook-csharp-sdk

Listing 2.9 shows a second example of a deprecated property. The Obsolete
attribute is used with a message parameter and a compiler error parameter. The error
message is “Unused. Use ItemType property instead”. The value of the compiler error
parameter is true.

1 [Obsolete("Unused. Use ItemType property instead.", true)]

2 public string ItemGroupName

3 {

4 get;

5 set;

6 }

Listing 2.9. Deprecated property in C# using Obsolete attribute with
replacement message and warning parameter - Microsoft/msbuild

2.3 Final Remarks

This chapter presented essential concepts for understanding the empirical study de-
scribed in this master dissertation. Initially, we discussed the API concept. In our
study, we define API elements as public/protected types, fields or methods from a
class. We also consider the properties elements for C# as field elements, in order to
maintain the compatibility. We presented the concept of API deprecation, and how
Java and C# developers use this mechanism to deprecate API elements.

Chapter 3

Study Design

In this chapter, we describe our experiment design, which is organized as follow. Section
3.1 describes the selection of case studies. Section 3.2 presents the metrics used to
investigate API deprecation in this study. Section 3.3 describes the guidelines used
to extract replacement messages. Section 3.4 discusses the metrics possibly impacting
API deprecation. Section 3.5 describes the extraction of these metrics. Finally, Section
3.6 presents the final remarks.

3.1 Selecting Case Studies

We analyse Java and C# systems hosted on GitHub, a popular social coding platform.
We use three criteria to select these systems: number of stars, releases, and deprecated
API elements.

1. Number of stars. GitHub provides the stargazer button that allows users to
show interest on systems. We select systems with 100 or more stars in order to
consider real-world and popular systems only.

2. Number of releases. We select systems with three or more public releases
available on GitHub. We use this criterion to assess API deprecation evolution.

3. Number of deprecated API elements with replacement messages. We
select systems with at least one public/protected deprecated API element with
replacement message. We use this criterion to filter out systems without replace-
ment messages, which are not in the scope of our study.

Based on this filtering criteria, we selected 622 Java systems and 229 C#
systems. To better characterize such systems, Figure 3.1 presents the distribu-

13

14 Chapter 3. Study Design

tion of the three aforementioned measures. For Java systems, the number of stars
in the first quartile, median, and third quartile is 158, 280, and 593. For C#,
the number of stars in the first quartile, median, and third quartile is 162, 300,
and 719, respectively. The top-3 Java systems with more stars are elastic/elas-

ticsearch (12.4K stars), nostra13/Android-Universal-Image-Loader (9.7K),
and google/iosched (7.7K). For C#, the top-3 systems with more stars are dot-

net/corefx (9.2K), SignalR/SignalR (5.6K), and dotnet/roslyn (4.5K). For
Java, the number of releases in the first quartile, median, and third quartile is
12, 25, and 58, while for C# it is 10, 19, and 42. The top-3 Java systems with
more releases are JetBrains/kotlin (2.9K releases), rstudio/rstudio (2.1K), and
freenet/fred (1.9K), while for C# they are dnnsoftware/Dnn.Platform (3.9K
releases), Azure/azure-sdk-for-net (487), and mono/monodevelop (332). Fi-
nally, for Java systems, the number of replacement messages in the first quartile,
median, and third quartile is 2, 6, and 20, and for C# it is 2, 7, and 18. The
top-3 Java systems with more replacement messages are groovy/groovy-eclipse

(2K deprecated API elements with replacement messages), CyanogenMod/an-

droid_frameworks_base (859), and OpenGamma/OG-Platform (815); and
for C# they are dnnsoftware/Dnn.Platform (588 deprecated API elements with
replacement message), umbraco/Umbraco-CMS (500), and mono/mono (229).

300280

0

500

1000

1500

Java C#

st

ar
s

Stars

19
25

0

50

100

Java C#

re

le
as

es

Releases

76

0

10

20

30

40

50

Java C#

re

pl
ac

em
en

t m
es

sa
ge

s

Replacement Messages

Figure 3.1. Distribution of number of stars, number of releases, and number of
deprecated API elements in the selected systems.

In addition, in order to compare the difference between the relative value of
messages per system in libraries/frameworks and other systems, we manually classify
the selected systems in two categories: library and non-library. Library systems are
defined in this category after inspecting their description on GitHub. We also classify
frameworks in this category. Other systems are classified as non-library. We decide to
create a separate category for libraries because these systems are supposed to provide
more stable, relevant, and used APIs. As noticed in Figure 3.2, for Java, 342 systems

3.2. Extracting Deprecated API Elements 15

(54.98%) are libraries and 280 systems are non-libraries (45.02%). The values for C#
are 119 (51.97%) and 110 (48.03%).

54.98%

45.02%

0

100

200

300

Library Non−library

sy

st
em

s

Java
51.97%

48.03%

0

25

50

75

100

Library Non−library

sy

st
em

s

C#

Figure 3.2. Number of systems in library and non-library categories.

3.2 Extracting Deprecated API Elements

As a first step to support answering our research questions, we extract all API elements
(including types, fields, and methods) with deprecation annotations in Java and C#
systems. For Java, we extract their associated Javadoc and in C# we extract the Ob-
solete attribute. As presented in Section 2.2, Java API elements are deprecated using
the annotation @Deprecated and the Javadoc tag @deprecated. Listing 3.1 presents an
example of a deprecated method Java. In this example, the @deprecated annotation
(line 6) is used to deprecate a method called onModule. Additionally, a Javadoc anno-
tation is used to describe a replacement for the deprecated method instead of calling
onModule, elastic/elasticsearch developers should now call onIndexModule.

1 /**
2 * Old-style guice index level extension point

3 *
4 * @deprecated use #onIndexModule instead

5 */

6 @Deprecated

7 public final void onModule(IndexModule indexModule) {

8 //...

9 }

Listing 3.1. Example of obsolete method in Java - elastic/elasticsearch

16 Chapter 3. Study Design

C# API elements are deprecated using the Obsolete attribute. Listing 3.2
presents an example of deprecated method in C#. In this example, the Obsolete
attribute (line 1) is used to deprecate a type called IHashCodeProvider. Note that
the Obsolete attribute is used to suggest a replacement for the deprecated type. As a
substitute of calling IHashCodeProvider, Microsoft/CodeContracts developers
should now call IEqualityComparer.

1 [Obsolete("Please, use IEqualityComparer insteaded.")]

2 public interface IHashCodeProvider {

3 //...

4 }

Listing 3.2. Example of obsolete method in C# - Microsoft/CodeCon-

tracts

To find deprecated API elements in Java, we implemented a parser based on the
Eclipse JDT library to search for deprecation annotations and tags. In order to find
deprecated API elements in C#, we implemented an in-house tool based on lexical
analysis to detect deprecation attributes. This tool uses regular expressions to identify
methods, fields, and types and to check whether they are deprecated. Table 3.1 shows
the regular expressions used by the tool. As mentioned in Section 2.1, in our study we
consider property elements in C# as fields.

Table 3.1. Regular expressions to identify API elements in C#

Element Expression

Field (public|protected)\\s+"(\\w+)=(?:\")?
(.*?(?=\"?\\s+\\w+=|(?:\"?)\$))

Property (\S+(?:<.+?>)?)(?=\s\w+\s\{get;)

Method

((public|protected|static|final|native|
synchronized|abstract|transient)+\\s)+
[\\$_\\w\\<\\>\\[\\]]*\\s+[\\$_\\w]+\\
([^\\)]*\\)?\\s*\\{?[^\\}]*\\}

Type
"\\s*(public|protected)\\s+class\\s+
(\\w+)\\s+((extends\\s+\\w+)|
(implements\\s+\\w+(,\\w+)*))?\\s*\\{")

We restricted our analysis to public and protected API elements because they
represent the external contracts to clients. Table 3.2 shows the number of public/pro-
tected deprecated API elements.

3.3. Extracting Replacement Messages 17

Table 3.2. Number of deprecated API elements.

Language Deprecated
Types

Deprecated
Fields

Deprecated
Methods

All Deprecated
Elements

Java 5,814 4,521 26,727 37,062
C# 1,277 2,197 4,723 8,197

3.3 Extracting Replacement Messages

In Java, when an element is deprecated using the Javadoc tag, it may be accompanied
by a replacement message to help client developers. As presented in Section 2.2, Java
guidelines propose two solutions to create deprecation replacement messages: (i) using
the annotation @see, or (ii) using the word use and the annotation @link. However,
to detect alternative guidelines followed by Java developers, we extracted deprecation
messages with the support of the JDT library, and we manually inspected a subset
of these messages. As a result of this analysis, we detected, in addition to the word
use, seven frequent words/patterns to indicate replacement: refer, equivalent, replace*
(i.e., replace, replaced, replacement), see, moved, instead, and should be used. We also
confirmed that the two frequently adopted annotations are @link and @see.

Table 3.3 shows the frequency of each replacement guideline found in our manual
analysis, as well as message examples. The most adopted guideline is the word use,
with 17,810 cases (47.9%). In contrast, the least adopted guideline is should be used,
with 33 cases, (0.09%). Notice that some guidelines may co-occur in the same message.
For example, use commonly happens with @link. In total, 22,032 (59.4%) API elements
were deprecated with replacement messages out of the 37,062 elements considered in
this study.

For C#, when an element is deprecated with the Obsolete attribute, like in Java,
it may be accompanied by a replacement message to help client developers. In contrast
to Java, we could not find guidelines to define replacement messages for C#. For this
reason, we also performed a manual analysis to detect these guidelines in C#. First, we
extacted deprecation messages in deprecated API elements. We looked for occurrences
of the attribute Obsolete and we manually inspected a subset of these messages. As a
result, we detected three frequent words/patterns that are used to indicate replacement:
use, replace* (i.e., replace, replaced, replacement), and instead.

Table 3.4 presents the frequency of each identified replacement guideline in C#,
with real examples of replacement messages. The most common guideline is the word
instead, with 3,118 cases (51%). In contrast, the least adopted guideline is replace*,
with 422 cases (8%). In total, 5,268 (64.3%) API elements are deprecated with re-

18 Chapter 3. Study Design

Table 3.3. Frequency of replacement message guidelines in Java.

Guideline Frequency Replacement Message Example

use 17,810 (47.9%) use encodeURL(String url) instead (Apache Tomcat)
replace* 2,171 (5.8%) Replace to getParameter(String, int) (Dubbo)

refer 1,070 (2.9%) property will be removed, refer
@link #getEncoded(boolean) (Actor Platform)

equivalent 166 (0.3%) The @link Iterable equivalent is
@link ImmutableSet#of() (Google Guava)

see 777 (2.1%) See servlet 3.0 apis like
HttpServletRequest.getParts() (Eclipse Jetty)

moved 224 (0.6%) deprecated since 2008-05-28. Moved to stapler
(Eclipse Hudson)

instead 14,173 (38.2%) Use KEY_LMETA instead (Facebook Nifty)

should be used 33 (0.09%) org.bukkit.entity.minecart.PoweredMinecart
should be used instead (Bukkit)

@link 14,852 (40%) Use @link #setController(DraweeController)
instead (Facebook Fresco)

@see 2,334 (6.3%) @see #getStartRequests (WebMagic)

Table 3.4. Frequency of replacement message guidelines in C#.

Guideline Frequency Replacement Message Example

use 2,686 (49%) Use static Add() method instead. (Mono Monomac)

replace* 422 (8%) Replace it with both GetSupportedInterfaceOrientations
(Redth/ZXing.Net.Mobile)

instead 3,118 (51%) This class is obsolete; use class Tree instead (Mono)

placement messages. This data is further explored in Research Question #1, and its
evolution is analysed in Research Question #2.

3.4 Metrics Possibly Impacting API Deprecation

To support answering Research Question #3, about the characteristics of systems
that deprecate API elements with replacement messages, we consider metrics in five
dimensions which are likely to affect deprecation practices: popularity, size, community,
activity, and maturity. The goal is to investigate whether such metrics have an impact
on the way developers deprecate API elements. These metrics are described next and
summarized in Table 3.5.

• Popularity. This dimension includes metrics that represent how popular is a
system in GitHub in number of stars, number of watchers, and number of forks.

3.4. Metrics Possibly Impacting API Deprecation 19

The rationale is that popular systems may have more clients, thus their developers
might have more concerns about their APIs.

• Size. This dimension includes metrics related to system size in terms of number
of files and number of API elements (i.e., sum of number of types, fields, and
methods). The rationale is that larger systems are harder to maintain, therefore
it might be more difficult to keep track of all API changes. In contrast, smaller
systems may be easier to control and to keep track of.

• Community. This dimension includes metrics that represent the system com-
munity, including number of contributors, average files per contributor, and av-
erage API elements per contributor. The rationale is that systems with larger
communities might be somehow easier to maintain, and to keep track of API
changes.

Table 3.5. Metrics likely to impact API deprecation.

Dimension Metric

Popularity
number of stars
number of watchers
number of forks

Size number of files
number of API elements

Community
number of contributors
average files per contributor
average API elements per contributor

Activity
number of commits
number of releases
average days per release

Maturity age (in number of days)

• Activity. This dimension includes metrics related to the system activity level
in terms of number of commits, number of releases, and average days per release.
The rationale is that systems with more activity might respond faster to client
complains. Therefore, they may be more likely to improve their APIs.

• Maturity. This dimension is about the system age, in number of days. The
rationale is that older systems are reliable, thus they may have stable APIs. In
contrast, it is natural to expect that newer systems have less stable APIs.

20 Chapter 3. Study Design

3.5 Extracting Metrics from Case Studies

We extracted the proposed metrics from two groups of systems: the ones deprecating
API elements in a correct way, i.e., by providing replacement messages to deprecated
API elements, and the ones not following this practice. Then, we assessed such groups
to verify whether they are statistically different with respect to the proposed metrics.
These two steps are detailed next.

Selecting systems and extracting metrics. We sorted all systems, in de-
scending order, based on the percentage of deprecated API elements with replacement
messages. We selected two groups, top-30% (i.e., systems with the highest percentage
of deprecated API elements with replacement messages) and bottom-30% (i.e.,
systems with the lowest percentage). For Java, each group has 187 systems and
for C# each group has 69 systems. Figure 3.3 shows the relative distribution of
deprecated elements with replacement messages in each group. In the Java systems,
the median percentage is 100% for the top systems and 17.8% for the bottom systems.
For C# systems, the median percentage is also 100% for the top systems and 42.5%
for the bottom systems. Finally, we extracted the metrics described in Section 3.4 for
the top and bottom systems.

17.8%

100.0%

0

25

50

75

100

Bottom−30% Top−30%

%
 r

ep
la

ce
m

en
t m

es
sa

ge
s

Java

42.5%

100.0%

0

25

50

75

100

Bottom−30% Top−30%

%
 r

ep
la

ce
m

en
t m

es
sa

ge
s

C#

Figure 3.3. Distribution of the percentage of deprecated APIs with replacement
messages in the top-30% and bottom-30% systems.

Assessing selected systems. We compare the values of each metric in top and
bottom systems. We first analyse the statistical significance of the difference between
the two groups by applying the Mann-Whitney U test at p-value = 0.05. To show

3.6. Final Remarks 21

the effect size of the difference between the two groups, we compute Cliff’s Delta (or
d). As in previous studies [Grissom and Kim, 2005; Tian et al., 2015; Linares-Vásquez
et al., 2013], we interpret the effect size values as small for 0.147 < d < 0.33, medium
for 0.33 < d < 0.474, and large for d > 0.474.

3.6 Final Remarks

This chapter presented the design of the experiment reported in this master disserta-
tion. First, we describe the selection of case studies. We use three criteria to select
the systems: systems with 100 or more stars in GitHub, three or more public releases,
and at least one public/protected deprecated API element with replacement messages.
At the end of the selection, we retrieved 622 Java systems and 229 C# systems. We
also classify the systems in two categories: library and non-library. For Java, the num-
ber of library systems is 343 (54.98%) and the number of non-library systems is 280
(45.02%). For C#, the values are 119 (51.97%) and 110 (48.03%), respectively. Next,
we presented the guidelines we followed to identify replacement messages. For Java,
the guidelines include the use of the expressions use, replace*, refer, equivalent, see,
moved, instead, should be used, and the annotations @link and @see. The guidelines
for C# include the expressions use, replace*, and instead. We also present metrics we
will use to investigate the frequency that developers deprecate API elements. These
metrics belong to five dimensions: popularity, size, community, activity, and maturity.
Finally, we proposed a division of the systems in two groups, top-30% and bottom-30%,
in order to contrast the values of the defined metrics.

Chapter 4

Results

In this chapter, we answer and discuss the three research questions proposed in this
study. Section 4.1 discusses the frequency of deprecated APIs with replacement mes-
sages. Section 4.2 investigates the impact of software evolution on the frequency of
such messages. Section 4.3 describes the characteristics that impact on the way devel-
opers deprecate API elements. Section 4.4 presents possible threats to the validity of
our study. Finally, in Section 4.5 we present some final remarks, as a conclusion to this
chapter.

4.1 RQ1. What is the frequency of deprecated

APIs with replacement messages?

In this first research question, we analyze the frequency of deprecated API elements
with replacement messages in the Java systems in the last release of the cases studies.
As presented in Table 4.1, 3,789 deprecated types (65%) contain replacement messages.
For deprecated fields and methods, these numbers are 2,675 (59%) and 15,568 (58.2%),
respectively. Considering all deprecated API elements in Java, 22,032 (59.4%) contain
replacement messages. We also present the frequency of deprecated API elements with
replacement messages in the C# systems. As noticed in Table 4.1, 613 deprecated
types (48%) in the C# systems contain replacement messages. For deprecated fields
and methods, these numbers are 1,401 fields (63.8%), and 3,254 methods (68.9%),
respectively. Considering all deprecated API elements in C#, 5,268 (64.2%) contain
replacement messages. Therefore, the results measured for Java and C# are very
similar, although C# systems have a slight tendency to include more replacement
messages, in relative terms.

23

24 Chapter 4. Results

Table 4.1. Number of deprecated API elements with replacement messages.

Language Types Fields Methods All

Java 3,789 (65%) 2,675 (59%) 15,568 (58.2%) 22,032 (59.4%)

C# 613 (48%) 1,401 (63.8%) 3,254 (68.9%) 5,268 (64.2%)

Next, we present the absolute and relative analysis per system. For both Java
and C# systems, we consider only the ones that have at least one deprecated type,
field, and method.

6

2 1

5

0

10

20

30

40

50

All Types Fields Methods

re

pl
ac

em
en

t m
es

sa
ge

s

Java

7

1 2

5

0

10

20

30

40

All Types Fields Methods

re

pl
ac

em
en

t m
es

sa
ge

s

C#

Figure 4.1. Absolute distribution of deprecated API elements with replacement
messages.

Absolute analysis. Figure 4.1 shows the distribution of the number of deprecated
API elements with replacement messages per system for Java and C#.

For types, in Java, the first quartile is 1, the median is 2, and the third quartile
is 6, while in C# we have 1, 1, and 4. Regarding fields elements, for Java the first
quartile, median and third quartile are 0, 1, and 5. For C#, these numbers are: 1, 2,
and 5. For methods, in Java, first quartile, median, and third quartile are 2, 5, and 16.
For C#, these values are 1, 5, and 15, respectively.

Therefore, methods are the most frequently deprecated elements with replacement
messages, both in Java and in C#, fields are the least ones in Java (median 1 per
system), while types are the least one in C# (median 1 per system). Considering all
API elements in Java, the first quartile is 2, the median is 6, and the third quartile is
20. For C#, the values are 2, 7, and 18, respectively.

4.1. RQ1. What is the frequency of deprecated APIs with
replacement messages? 25

66.7%
71.4%

50.0%

66.7%

0

25

50

75

100

All Types Fields Methods

%
 r

ep
la

ce
m

en
t m

es
sa

ge
s

Java

77.8%
75.0% 75.0% 75.0%

0

25

50

75

100

All Types Fields Methods

%
 r

ep
la

ce
m

en
t m

es
sa

ge
s

C#

Figure 4.2. Relative distribution of deprecated API elements with replacement
messages.

Relative analysis. Figure 4.2 presents the distribution of the relative number of
deprecated API elements with replacement messages per system.

In Java, for types, the first quartile is 25%, the median is 71.4%, and
the third quartile is 100%. There are 114 systems with 100% of their depre-
cated types with replacement messages, such as spring-projects/spring-android,
jenkinsci/github-plugin, and google/guava. In contrast, we found 57 systems
with types deprecated without replacement messages, e.g., caelum/vraptor, cym-

csg/UltimateAndroid, and spring-projects/spring-roo. For C#, the first
quartile is 21%, the median is 75%, and the third quartile is 100%. We found 61 sys-
tems with all deprecated types with replacement messages, such as apache/log4net,
elastic/elasticsearch-net, and dotnet/corefx, while there are 30 systems
with types deprecated without replacement messages, like mono/monodevelop,
ws/aws-sdk-net, and Microsoft/PTVS.

For fields, in Java, the first quartile is 0%, the median is 50%, and
the third quartile is 100%. We identify 74 Java systems with 100% of
their deprecated fields with replacement messages, like spring-projects/spring-

framework, hibernate/hibernate-orm, and apache/tomcat70. In oppo-
sition, we found 72 systems without replacement messages in fields, such as
goldmansachs/gs-collections, phonegap/phonegap-app-developer, and
spring-projects/spring-webflow. For C#, the first quartile, median, and third
quartile are 29.8%, 75%, and 100%, respectively. There are 26 systems with 100% of
fields with replacement messages, e.g., Azure/azure-storage-net, ServiceS-

26 Chapter 4. Results

tack/ServiceStack, and ASP-NET-MVC/aspnetwebstack. In contrast, we
detect 14 systems with fields deprecated without replacement messages, such as
nhibernate/nhibernate-core, Microsoft/msbuild, and mono/mono-tools.

For methods, in Java, the first quartile is 33.3%, the median is 66.7%, and the
third quartile is 100%. There are 160 Java systems with 100% of their deprecated meth-
ods with replacement messages, such as square/picasso, nostra13/Android-

Universal-Image-Loader, and eclipse/jgit. We also found 24 Java sys-
tems with no replacement messages, such as JPMoresmau/eclipsefp, spring-

projects/spring-data-neo4j, and hibernate/hibernate-validator. For C#,
the values of the first quartile, median, and third quartile are 50%, 75%, and 100%. We
found 63 systems with 100% of their deprecated methods with replacement messages,
like googlesamples/cardboard-unity, libgit2/libgit2sharp, and Signal-

R/SignalR. There are 20 systems in which methods are deprecated without replace-
ment messages, such as unitycontainer/unity, JohnnyCrazy/SpotifyAPI-

NET, and Microsoft/msbuild.
For Java, according to the median, types are the most deprecated elements with

replacement messages (median of 71.4%), followed by methods (66.7%) and fields
(50%). The third quartile at 100% for types, fields, and methods shows that 25%
of the systems always deprecate all elements with replacement messages. In contrast,
the first quartile at 0% for fields shows that 25% of the systems never deprecate fields
with replacement messages. For C#, like in Java, the third quartile is 100% for all
elements, and coincidentally, all three elements have the same median values (75%).

When considering all API elements, the first quartile is 33.3%, the median is
66.7%, and the third quartile is 100%, for the Java sytems. In other words, con-
sidering the median, around 2/3 of the API elements are deprecated with replace-
ment messages. In Java, there are 162 systems (26%) with 100% of their depre-
cated API elements with replacement messages, such as code4craft/webmagic,
google/guice, and bumptech/glide. For C#, the first quartile is 50%, the me-
dian is 77.8%, and the third quartile is 100%. This means that, considering the me-
dian, around 3/4 of the API elements are deprecated with replacement messages.
We found 64 systems (28%) with 100% of deprecated API elements with replace-
ment messages, like google/google-api-dotnet-client, apache/log4net, and
Azure/azure-sdk-for-net. In summary, C# systems, in relative terms, have a
slight trend to include more replacement messages, when compared to the Java sys-
tems in our dataset.

As described in Subsection 3.1, we classify the systems in two categories: library
and non-library. For Java, we found 342 library systems and 280 non-library systems.

4.1. RQ1. What is the frequency of deprecated APIs with
replacement messages? 27

These numbers for C# are 119 and 110 systems, respectively. In order to compare
the categories, we analyse the relative number of deprecated messages per system in
each domain. Figure 4.3 presents the distribution for the categories. For Java, the first
quartile, median, and third quartile are 40%, 71.2%, and 100%, for libraries. For non-
libraries, these values are 28.6%, 60%, 86.8%, respectively. For C#, the numbers for
libraries are 51.3%, 81.8%, and 97.2%. For non-libraries, these values are 50%, 73.7%,
and 100%. The difference between the median values of the two categories is 11.2%
(Java) and 8.1% (C#). In both languages, the percentage of replacement messages
for libraries is greater than for non-libraries (median-values). There is more effort and
concern to provide replacement messages in library systems than non-library systems.
We also analysed the statistical significance of the difference between the two groups
of systems, by applying the Mann Whitney Test at p-value = 0.05. For Java systems,
the p-value is < 0.001, while in C# the value is 0.596. In C#, we do not observe a
statistical difference between library and non-library categories.

71.2%

60.0%

0

25

50

75

100

Library Non−library

%
 r

ep
la

ce
m

en
t m

es
sa

ge
s

Java

81.8%

73.7%

0

25

50

75

100

Library Non−library

%
 r

ep
la

ce
m

en
t m

es
sa

ge
s

C#

Figure 4.3. Relative distribution of deprecated API elements with replacement
messages in library and non-library systems.

Summary: For Java systems, 66.7% of the API elements are deprecated with replace-
ment messages (median measures). This percentage is 71.4% for types, 50% for fields,
and 66.6% for methods, suggesting that developers are usually more concerned with
types and less with fields. For Java and C#, at least 25% of the systems deprecate types,
fields and methods with replacement messages in all elements. We also observe that
the number of replacement messages in library systems is greater than in non-library
for both languages. Overall, we could not find major differences when comparing the
results provided by the Java and C# analysis.

28 Chapter 4. Results

4.2 RQ2. What is the impact of software evolution

on the frequency of replacement messages?

In order to study the impact of software evolution on deprecation, we analyze the
frequency of deprecated API elements with replacement messages in two distinct
releases of the Java and C# systems. We compare the first publicly available release
with the last one (i.e., the same releases considered in the Research Question #1). In
Java, the number of deprecated APIs elements increases from 10,798 (first release)
to 22,032 (last release). In C#, these values are 2,341 and 5,268 API elements,
respectively. In addition, in the end of the section, we present a more detailed
comparison by taking into account several releases.

Absolute analysis. Figure 4.4 shows the distribution of the absolute number of
deprecated API elements with replacement messages per system for Java and C#, in
the analysed releases (first and last). For Java, in the first release, the first quartile is
1, the median is 3, and the third quartile is 17. In the last release, the first quartile is
2, the median is 6, and the third quartile is 20. The values for C# are 0, 2, and 9 (first
release). For the last release, we have 2, 7, and 18. Therefore, in both languages, there
is an increase on the values of first quartile, median, and third quartile measures, from
the first to the last considered releases. This is expected due to the natural evolution
of the systems, which tend to provide more features and API elements.

3
6

0

10

20

30

40

50

First Last
Releases

re

pl
ac

em
en

t m
es

sa
ge

s

Java

2

7

0

10

20

30

40

First Last
Releases

re

pl
ac

em
en

t m
es

sa
ge

s

C#

Figure 4.4. Absolute distribution of deprecated API elements with replacement
messages over time.

Relative analysis. Figure 4.5 presents the distribution of the relative number of

4.2. RQ2. What is the impact of software evolution on the frequency
of replacement messages? 29

58.7%

66.7%

0

25

50

75

100

First Last
Releases

%
 r

ep
la

ce
m

en
t m

es
sa

ge
s

Java

55.1%

77.8%

0

25

50

75

100

First Last
Releases

%
 r

ep
la

ce
m

en
t m

es
sa

ge
s

C#

Figure 4.5. Relative distribution of deprecated APIs with replacement messages
over time.

deprecated API elements with replacement messages per system, in the two analysed
releases. For Java, in the first release, the first quartile is 7.5%, the median is 58.7%,
and the third quartile is 95.3%. In the last release, these measures are 33.3%, 66.7%,
and 100%, respectively. Therefore, the median increases only by 8% between the
considered releases (from 58.7% to 66.7%). We can then infer that there is no major
effort from developers to provide deprecation messages. The third quartile also remains
almost stable, increasing only 4.7% (from 95.3% to 100%). In contrast, by analysing the
evolution of the first quartiles, we observe significant changes. This quartile increases
by 25.8% (from 7.5% to 33.3%), meaning that the bottom 25% of the systems are
increasingly adopting replacement messages.

For the C# systems, the values of first quartile, median, and third quartile are
0%, 55.1%, and 91.2%. In the last release, we have 50%, 77.8%, and 100%. Therefore,
the first release, 25% of the systems do not use replacement messages. This value
increases to 50% in the last release. In other words, 25% of the systems started to use
replacement messages. The median of the relative number of deprecated API elements
with replacement messages increases 22.7% (from 55.1% to 77.8%). Differently from
Java, this means that there was a major effort by developers to provide deprecation
messages. Similarly to Java, the third quartile keeps at very high percentage, increasing
8.8% (from 91.2% to 100%).

Overall, in Java, from the first to the last release, 121 systems (19.4%) increased
the relative number of deprecated API elements with replacement messages. For C#
this value is 46 systems (20.1%). Figure 4.6 shows the distribution of the relative

30 Chapter 4. Results

number of deprecated API elements with replacement messages in such systems. The
median increased from 19% to 64.3%. Examples of systems in this category include
spring-projects/spring-boot (increased from 0% to 55%) and Netflix/eureka

(increased from 0% to 64%). For C#, the median increases from 40.0% to 81.8%.
Examples of such systems include elastic/elasticsearch-net (increased from 50%
to 91.7%) and henon/GitSharp (increased from 0% to 66.7%).

19.0%

64.3%

0

25

50

75

100

First Last
Releases

%
 r

ep
la

ce
m

en
t m

es
sa

ge
s

Java

40.0%

81.8%

0

25

50

75

100

First Last
Releases

%
 r

ep
la

ce
m

en
t m

es
sa

ge
s

C#

Figure 4.6. Relative distribution of systems where the percentage of replacement
messages increased from the first to the last release.

In contrast, in 87 Java systems (14%) the number of deprecated API elements
with replacement messages decreased, while for C# this value is 23 systems (10%).
Figure 4.7 presents the distribution for such systems. In the Java systems, the me-
dian decreases from 84.1% to 53.3%. Examples of systems in this category include
aptana/Pydev (decreased from 91.6% to 50%) and spring-projects/spring-

framework (decreased from 98% to 68%). For C#, the median decreases from 91.3%
to 69.1%. Examples of systems facing a reduction in the number of replacement mes-
sages include dotnet/corefx (decreased from 82.7% to 52.5%) and Azure/azure-

storage-net (decreased from 97.1% to 69%).

Finally, in 414 Java systems (66.5%) the number of deprecated API ele-
ments with replacement messages remains stable, i.e., it is the same ratio from the
first to the last release. Examples include spring-projects/spring-batch and
mcxiaoke/android-volley, both with 100%. For C#, we find 160 stable sys-
tems (69.9%). Examples include mongodb/mongo-csharp-driver and mono/-

MonoGame, again with 100%.

4.2. RQ2. What is the impact of software evolution on the frequency
of replacement messages? 31

84.1%

53.3%

0

25

50

75

100

First Last
Releases

%
 r

ep
la

ce
m

en
t m

es
sa

ge
s

Java

91.3%

69.1%

0

25

50

75

100

First Last
Releases

%
 r

ep
la

ce
m

en
t m

es
sa

ge
s

C#

Figure 4.7. Relative distribution of systems where the percentage of replacement
messages decreased from the first to the last release.

Analysis using multiple versions. In addition to the previous analysis, where
we reported a comparison between two single releases, we provide a second analysis
by considering several releases in order to better understand the impact of software
evolution on the quality of deprecation messages. Starting from the first release, we
collected all the subsequent ones, considering an interval of at least two months. We
then classify the variation in the percentage of replacement messages of a given system
releases in four categories: (i) Decrease Trend: the percentage always decreases
in the analysed releases, (ii) Increase Trend: the percentage always increases, (iii)
Variant Trend: the percentage increases and decreases with no pattern, and (iv)
Stable Trend: the percentage of replacement messages is constant in all releases.
Figure 4.8 provides examples of systems in each of the categories.

Table 4.2 presents the number of systems in each category. For Java, 40 systems
(6%) are in the decrease category, 198 systems (32%) in the increase category, 245
systems (40%) in variant category, and 139 systems (22%) are stable. The values for
C# are 25 systems (11%) for decrease category, 59 systems (26%) for increase, 83
systems (36%) for variant, and 62 systems (27%) for stable. Therefore, most systems
are variant, while a small amount has a decrease trend in the percentage of replacement
messages. In both languages, only a minority of the systems lose the quality of their
deprecation messages over time (i.e., present a decrease trend in the analysed releases).

Figure 4.9 shows the distribution of the number of releases per category. We
performed such analysis to reveal the number of releases in the proposed categories
of evolution, i.e.,, to reveal how the number of releases impacts in the evolution of

32 Chapter 4. Results

●

●

●

●

40

45

50

55

60

Out−2014 Fev−2015 Jun−2015

%
 r

ep
la

ce
m

en
t m

es
sa

ge
s

Decrease Trend (apache/flink)

●

●

●

7

8

9

Ago−2014 Fev−2015 Ago−2015

%
 r

ep
la

ce
m

en
t m

es
sa

ge
s

Increase Trend (dotnet/roslyn)

● ● ●

79.6

79.8

80.0

80.2

80.4

Mai−2015 Jul−2015

%
 r

ep
la

ce
m

en
t m

es
sa

ge
s

Stable Trend (facebook/fresco)

● ●

● ●

● ● ● ●

● ● ● ●

●

● ●

0

25

50

75

100

Set−2012 Set−2013 Set−2014 Set−2015

%
 r

ep
la

ce
m

en
t m

es
sa

ge
s

Variant Trend (Azure/sdk−for−net)

Figure 4.8. Examples of systems in each evolution category.

Table 4.2. Number of systems in each evolution category

Language Decrease Increase Variant Stable

Java 40 (6%) 198 (32%) 245 (40%) 139 (22%)

C# 25 (11%) 59 (26%) 83 (36%) 62 (27%)

replacement messages. For Java, the values is 18 (decrease trend), 18 (increase trend),
48 (variant trend), and 14 (stable trend). The values in C# is 22 (decrease category), 14
(increase category), 40 (variant category), and 11 (stable category). In both languages,
stable systems have the lowest number of releases on the median, while variant systems
have the highest value. In fact, systems with more releases are more likely to change
their API elements, and consequently, they may show a variation in the percentage of

4.2. RQ2. What is the impact of software evolution on the frequency
of replacement messages? 33

their deprecation messages over time.

18 18
14

48

0

50

100

150

Decrease Increase Stable Variant

re

le
as

es

Java

22

14 11

40

0

25

50

75

100

125

Decrease Increase Stable Variant

re
le

as
es

C#

Figure 4.9. Number of releases for each category of system.

Figure 4.10 shows the distribution of the relative number of replacement mes-
sages for systems with an increase trend in the percentage of replacement messages,
comparing the first and last releases. The value of the first quartile, median, and third
quartile for the first release both in Java and in C# is 0%. For the last release in Java,
the values are 42.4%, 80%, and 100%. For the last release in C#, the values are 50%,
66.9%, and 97.2%. Considering just the median, Java systems increase 80% (from 0%
to 80%), and C# systems increase 67.1% (from 0% to 66.9%). Examples of Java sys-
tems in the increase category include Netflix/netflix-graph (increased from 0%
to 100%) and paypal/PayPal-Java-SDK (increased from 0% to 60%). For C#, ex-
amples include JohnnyCrazy/SpotifyAPI-NET (increased from 0% to 50%) and
mongodb/mongo-azure (increased from 0% to 100%). In summary, we note that in
the initial release there are no replacement messages at all in such systems. Over time,
these systems increase these numbers, meaning their the developers make the decision
to provide replacement messages.

Figure 4.11 presents the distribution for systems with a decrease trend, com-
paring the first and last releases. In Java, the first quartile is 61.3% for the first
release, compared to 32.7% for the last one. The median is 93.8% against 50%, and
the third quartile is 100% against 68.3%. Examples of systems in this category include
liaohuqiu/cube-sdk (decrease from 66.7% to 0%) and evernote/evernote-sdk-

android (decrease from 100% to 0%). For C#, the first quartile is 43.3% and 25%, for
the first and last releases. The median is 64.7% against 36.4%, and the third quartile is
85.7% against 58.6%. Examples of such systems include dotnet/corefx (decrease

34 Chapter 4. Results

0%

80%

0

25

50

75

100

First Last
Releases

%
 r

ep
la

ce
m

en
t m

es
sa

ge
s

Java

0.0%

66.9%

0

25

50

75

100

First Last
Releases

%
 r

ep
la

ce
m

en
t m

es
sa

ge
s

C#

Figure 4.10. Relative distribution of replacement messages in systems in the
increase category, comparing the first and last releases.

93.8%

50.0%

0

25

50

75

100

First Last
Releases

%
 r

ep
la

ce
m

en
t m

es
sa

ge
s

Java

64.7%

36.4%

0

25

50

75

100

First Last
Releases

%
 r

ep
la

ce
m

en
t m

es
sa

ge
s

C#

Figure 4.11. Relative distribution of replacement messages in systems in the
decrease category, comparing the first and last releases.

from 29.2% to 17.5%) and googlesamples/tango-examples-unity (decrease from
100% to 25%).

Summary: For Java, the relative number of deprecated API elements with replacement
messages remain almost constant over time (from 58.7% to 66.7%), showing that there
is no major effort to improve the ratio of deprecation messages. In C#, the value
increases 22.7% (from 55.1% to 77.8%), showing more concerns of developers with
deprecated elements. In Java, 23% of the systems increase the number of replacement
messages, while only 18.6% decrease. In C#, 20.1% of the systems increase this per-

4.3. RQ3. What are the characteristics of software systems with
high and low frequency of replacement messages? 35

centage, and 10% decrease. Considering several releases, we note that most systems
increase and decrease the percentage of replacement messages over time.

4.3 RQ3. What are the characteristics of software

systems with high and low frequency of

replacement messages?

In this research question, we investigate whether system popularity, size, community,
activity, and maturity have an impact on the way developers deprecate API elements, as
indroduced in Section 3.4. We perform this investigation by comparing top and bottom
systems; top systems have 100% of their API elements deprecated with replacement
messages, while bottom barely do that.

Table 4.3 presents the metrics and their respective p-values and d applied on top
and bottom systems, both for Java and C# (see Section 3.5). Metrics in bold have
p-value < 0.05, and d > 0.147, i.e., they are statistically significant different with at
least a small effect size in top and bottom systems.

For Java, the selected top and bottom systems are statistically significant different
with at least a small effect size in 7 out of the 12 metrics, including all size and
activity metrics as well as number of contributors and average files per contributor in
community. The effect size is large in one metric (number of commits), medium in
three (number of files, number API elements, and number of contributors), and small
in three (number of contributors, average files per contributor, and average days per
releases). Regarding the C# systems, eight metrics present statistical significance:
all popularity and size metrics, and number of contributors, number of commits, and
number of releases. The effect size is large in one metric (number of contributors),
medium in six (all popularity and size metrics, and number of commits), and small in
one (number of releases).

In the following we investigate each dimension.

• Popularity. In the Java systems, we detect that there is no difference in top
and bottom systems with respect to the popularity metrics. In contrast, for C#
systems, we note that all popularity metrics have statistical difference. According
to the relationship column, popular C# systems tend to provide less replacement
messages in deprecated APIs.

36 Chapter 4. Results

Table 4.3. Metrics and their respective p-values and d on top and bottom sys-
tems. Bold values mean p-value < 0.05 (statistically significant different), and
d > 0.147 (at least a small effect size). Level of significance for d-values: L =
large, M = medium, S = Small, N = negligible. Rel. = relationship: “+” = top
systems have significantly higher value on this metric. “-” = bottom systems have
significantly higher value on this metric.

Dimension Metric Java C#
p-value d-value Rel. p-value d-value Rel.

Popularity

number of
stars 0.674 0.142 (N) + 0.004 0.407 (M) -

number of
watchers 0.018 0.04 (N) + <0.001 0.454 (M) -

number of
forks 0.028 0.08 (N) + 0.003 0.447 (M) -

Size
number of
files <0.001 0.459 (M) - 0.034 0.419 (M) -

number of
API elements <0.001 0.374 (M) - <0.001 0.414 (M) -

Community

number of
contributors <0.001 0.376 (M) - 0.009 0.537 (L) -

avg. files
per contrib. <0.001 0.227 (S) - 0.648 0.160 (N) -

avg. API elem.
per contrib. <0.001 0.123 (N) - 0.303 0.110 (N) -

Activity

number of
commits <0.001 0.563 (L) - 0.009 0.342 (M) -

number of
releases 0.001 0.206 (S) - 0.014 0.244 (S) -

avg. days
per release 0.004 0.182 (S) - 0.201 0.292 (S) -

Maturity age (in number
of days) 0.253 0.009 (S) + 0.102 0.363 (M) -

• Size. For Java and C#, we observe that top systems are smaller than bottom
ones, as measured both in number of files and number of API elements (notice the
“-” on the relationship column). In fact, it is intuitive to consider that smaller
systems are easier to maintain and to keep track of API elements, which also
facilitates the provision of replacement messages.

• Community. We can see that top systems have less contributors than bottom
ones, in both Java and C#. This result is somehow related to the previous one: it
is expected that smaller systems have less contributors. When we check the ratio
of files per contributor, we notice that relative numbers are significant in Java
systems. On other words, Java systems with few contributors and API files per
contributor are more likely to have replacement messages. For C#, top systems

4.3. RQ3. What are the characteristics of software systems with
high and low frequency of replacement messages? 37

have fewer contributors than bottom ones. In opposite to Java, the ratio of files
per contributor has no significance. In both languages, the ratio of API elements
per contributor also does not have statistical significance.

• Activity. For the activity dimension, we observe that the top systems in Java
have less commits and releases than bottom ones. An explanation is that bottom
systems have more code changes, thus they may be more likely to degrade their
APIs. Like Java, number of commits and number of releases impact in the way
developers deprecate API elements in Java. We also note that Java systems
released in small time deprecate their APIs with replacement messages.

• Maturity. For Java and C#, we could not find relevant differences between
top and bottom systems with respect to their maturity (i.e., age in number of
days). Although, someone might expect older systems to be more stable and to
provide better APIs, in fact we concluded that system age has no effect on the
way developers deprecate API elements with replacement messages.

As examples, we present in Tables 4.4 and 4.5 comparisons between top and
bottom systems, for Java and C#, respectively. For Java, the top system is xiprox-

/ErrorView: it has 100% of its API elements deprecated with replacement messages
which corresponds to three elements. The bottom one is apache/maven: it has 24%
(48 from a total of 199) of its API elements deprecated with replacement messages.
In fact, size, community and activity aspects of both systems are clearly distinct:
xiprox/ErrorView is easier to manage when comparing to apache/maven. For
C#, the top system is GitTools/GitLink: it has 100% of its API elements depre-
cated with replacement messages. The bottom one is AutoFixture/AutoFixture:
it has 20% (30 out of 146) of its API elements deprecated with replacement messages.
Therefore, we can note that size, community and activity aspects of both systems are
divergent: AutoFixture/AutoFixture tends to be easier to administer than Git-

Tools/GitLink.

Summary: For Java, top systems are statistically different from bottom ones in 7 out
of 12 metrics. For C#, we found significance in 8 metrics. Top systems tend to be
smaller in terms of number of files and API elements, but have more contributors per
files. For C#, popularity impacts the way developers deprecate their APIs, while for
Java this metric has no significance. In both languages, system maturity has no effect
on the way developers deprecate API elements with replacement messages.

38 Chapter 4. Results

Table 4.4. Comparison between a top and bottom Java system.

Metric median
values

xiprox/ErrorView
(top system)

apache/maven
(bottom system)

number of files 668 67 1,934
number of API elem 4,901 101 8,601
number of contrib 18 2 45
avg. files per contrib 37.3 23.5 42.9
number of releases 25 4 44
number of commits 1,276 47 10,070
avg. days per release 54 42.5 99.3

Table 4.5. Comparison between a top and bottom C# system.

Metric median
values

GitTools/GitLink
(top system)

AutoFixture/AutoFixture
(bottom system)

number of stars 300 201 812
number of watchers 66 18 84
number of forks 119 27 143
number of files 35,543 7,123 72,029
number of API elem 4,270 242 6,257
number of contrib 22 19 38
number of commits 1,133 183 2,973
number of releases 19 8 175

4.4 Threats to Validity

We organize threats to validity in the following three categories:

4.4.1 Construct Validity

The construct validity is related to whether the measurement in the study reflects
real-world situations.

Classification of deprecation messages. One threat of our study is that depre-
cated API elements may be incorrectly classified as having or not having replacement
messages. In order to assess this threat, we performed two analyses in Java and C#
systems. For Java, we manually analysed 500 randomly selected deprecation messages
classified as denoting replacement messages. We detected 4 false-positives (<1%),
i.e., we classified the messages as replacement messages but they are not. Listing 4.1
shows an example of false-positive classification. In this example, the message used
in the Javadoc @deprecated tag (line 2) was classified as replacement message, but it

4.4. Threats to Validity 39

in fact does not suggest alternatives to the deprecated field. In this case the message
contains the keyword use, but does not suggest any replacement to the deprecated
field.

1 /**
2 * @deprecated Deprecated, do not use.

3 */

4 public static final int CU_DEVICE_ATTRIBUTE_CAN_TEX2D_GATHER = 44;

Listing 4.1. Example of false-positive message in Java - deeplearning4j/nd4j

Next, we manually analysed 500 randomly selected deprecation messages classi-
fied as not replacement messages. In this case, we detected 26 (5%) false-negatives,
i.e., the message were classified as not including replacement information, but they
indeed do include. Listing 4.2 presents an example of false-negative classification. In
this example, the message used in the Javadoc @deprecated tag (line 3) was incorrectly
classified as not including a replacement message, but it clearly includes. The message
does not contain the keywords used to define replacement messages, but suggest the
use of method getExceptions instead of deprecate method exceptionIterator.

1 /**
2 * @return The exception iterator.

3 * @deprecated in favor of #getExceptions

4 */

5 @Deprecated

6 public Iterator<Throwable> exceptionIterator() {

7 //...

8 }

Listing 4.2. Example of false-negative message in Java - spring-

projects/spring-integration

For C#, we perform the same analysis. We found 1 (<1%) false-positive replace-
ment message which is presented in Listing 4.3. In this example, the message used
in the Obsolete attribute (line 1) to deprecate the method GetMatch was classified
incorrectly as replacement message. The message contains the keyword use, but not
contains suggestion for replacement.

1 [Obsolete("do not use this method", true)]

2 public static bool GetMatch(CallSite site) {

3 //...

4 }

Listing 4.3. Example of false-positive message in C# - mono/mono

We found also 15 (3%) false-negatives. Listing 4.4 presents an example of false-
negative classification. In this example, the message used in the Obsolete attribute
(line 1) was not classified as a replacement message, but it indeed documents that the

40 Chapter 4. Results

property was moved to AuthFeature.MaxLoginAttempts. The message does not contain
the keywords used to indicate replacement messages, but informs that the property
was moved.

1 [Obsolete("Moved to AuthFeature.MaxLoginAttempts")]

2 public int? MaxLoginAttempts

3 {

4 get //...

5 private set //...

6 }

Listing 4.4. Example of false-negative message in C# -
ServiceStack/ServiceStack

Therefore, in both cases (false-positives and false-negatives), the risk of wrong
classification is low, so this threat is reduced.

4.4.2 Internal Validity

The internal validity is related to uncontrolled aspects that may affect the experimental
results.
Findings Validation. We paid special attention to the appropriate use of statistical
machinery (i.e., Mann-Whitney test, Cliff’s Delta effect size) when reporting our results
in Research Question 3. This reduces the possibility that such results are due to chance.

Correlation is not Causation. In Research Question 3, we examined whether there
are metrics associated with top and bottom systems. Notice, however, that correlation
does not imply causation [Couto et al., 2014]. Thus, more advanced statistical analysis,
e.g., causal analysis [Retherford and Choe, 2011], can be adopted to further extend our
analysis.

Java Parser Implementation. A possible threat is the possibility of errors in the im-
plementation of our AST parser, which detects deprecated API elements. However,
because this implementation is based on JDT (a library developed by Eclipse), the risk
of this threat is reduced.
C# In-house Tool Implementation. Another possible threat is the possibility of
errors in our C# in-house tool to identify deprecated elements. In order to fix
this threat, we manually analysed the precision and recall of the tool in three sys-
tems: facebook-csharp-sdk/facebook-csharp-sdk (26 deprecated elements),
Antaris/RazorEngine (62 deprecated elements) and Azure/azure-storage-

net (107 deprecated elements). For the three analysed systems, the tool founded
all deprecated elements. Thus, the risk of this threat is also low.

4.5. Final Remarks 41

4.4.3 External Validity

The external validity is related to the possibility to generalize our results. We focused
on the analysis on 622 Java and 229 C# open-source systems. Therefore, they are
credible and representative case studies. Such systems are hosted in GitHub, the most
popular code repository nowadays. Despite these observations, our findings cannot
be directly generalized to other systems, specifically to systems implemented in other
programming languages or commercial ones.

4.5 Final Remarks

In this section we summarize our findings regarding the three presented research ques-
tions. First, we found that 66.7% of the API elements in Java are deprecated with
replacement messages. This percentage is 77.8% for C#. We also concluded that de-
velopers are more concerned to provide replacement messages to types than fields for
Java systems. The percentage of replacement messages for types is 71.4%, while for
fields is 50%. However, in C# the percentage is the same for all API elements (75%).
Finally, we concluded that this percentage is greater in libraries than non-libraries. In
Java, the value is 71.2% for libraries and 60% for non-libraries. In C#, these values
are 81.8% and 73.7%, respectively.

In RQ #2, we investigate the impact of software evolution on the frequency of
replacement messages. The relative number of replacement messages increases more in
C# than in Java. The increase between the first and last considered releases in Java is
8%, while for C# is 22.7%. Therefore, we note a major effort in C# developers to pro-
vide replacement messages than in Java. We also note that systems with more releases
are more likely to change their API elements, consequently, they show a variation in
their percentage of replacement messages.

Finally, in RQ #3, we investigate the characteristics that have impact on the
way developers deprecate APIs. For Java, we founded statistical significance in all size
metrics, all activity metrics, number of contributors, and average files per contributor.
The significant metrics for C# are all popularity metrics, all size metrics, number of
contributors, number of commits, and number of releases. In both languages, maturity
has no impact on the way of developers use replacement messages.

Chapter 5

Practical Implications

In this chapter, we discuss possible practical implications of the main study described
in this master dissertation. In Section 5.1, we motivate a possible application for
this study. Section 5.2 presents our study design. Section 5.3 shows our preliminary
feasibility results. Finally, Section 5.4 presents concluding remarks.

5.1 Motivation

In the study described in Chapters 3 and 4, we note that:

• API elements are usually deprecated without replacement message (33.3% per
system in Java and 22.2% in C#, on the median);

• In Java, the percentage of deprecated API elements with replacement messages
barely increases over time (from 58.7% to 66.7%). For C#, the median per system
increases from 55.1% to 77.8%;

• The relative number of replacement messages increases in only 19.4% of the Java
systems. For C#, this proportion is 20.1%. This means that there is no major
effort to improve replacement messages in most systems.

Consequently, it might be possible to design and implement a recommendation
tool that automatically infers replacement messages by mining real solutions adopted by
developers. More specifically, even when there is no explicit replacement message, API
clients may take their own decisions to replace a deprecated API element by another
one. Therefore, a recommendation tool could be designed to learn such decisions
automatically, particularly when a common decision is followed by many clients.

43

44 Chapter 5. Practical Implications

For example, suppose that type T from an API A is deprecated without a replace-
ment message. Consider also that C1, C2, ..., Cn are clients of the API A that reference
to the deprecated type T . In this context, suppose also that along their version history
most clients Ci replaced the references from T to another type T ′. Therefore, in this
case a recommendation tool can suggest that a deprecated message like “use type T ′

instead” should be added to the declaration of T , as illustrated in Figure 5.1.

Figure 5.1. Deprecated type T without replacement message on the left and an
example of suggested replacement message on the right.

In this chapter, we investigate the feasibility of designing and implementing such a
tool. To this purpose, we rely on data provided by apiwave, which is a tool proposed
by Hora and Valente [2015] to assist client developers on evolving their systems to
newer or improved APIs. To support this activity, apiwave provides data about API
migration at type level, which is mined from the textual difference between two versions
of a type. More specifically, by mining the import statements of these versions, the
tool infers that a type T was replaced by a type T ′. The current version of apiwave

includes data about the evolution of top-1,000 most popular GitHub Java projects,
from which 320K frameworks/libraries, packages, and types are extracted. Finally,
the tool provides a ranking with the most commons API migrations, which is used to
support the feasibility study described in this chapter.

5.2 Study Design

5.2.1 Dataset

In order to support the proposed study, we collect the top-3,000 API migrations pro-
vided by apiwave. This data is organized as evolution rules in the following format:
T → T ′. This rule expresses that type T (left side) is commonly replaced by type T ′

(right side), in the 1,000 GitHub projects mined by apiwave. Table 5.1 shows several
examples of evolution rules, including both their left and right sides.

As presented in Table 5.1, some popular rules detected by apiwave are:

5.2. Study Design 45

Table 5.1. Examples of evolution rules

Left Side Right Side
junit.framework.Assert org.junit.Assert
org.neo4j.helpers.Function org.neo4j.function.Function
org.hibernate.criterion.Expression org.hibernate.criterion.Restrictions
com.sk89q.worldedit.data.DataException com.sk89q.worldedit.world.DataException
com.alibaba.dubbo.rpc.RpcConstants com.alibaba.dubbo.common.Constants
org.sonar.api.BatchComponent org.sonar.api.BatchSide

• junit.framework.Assert → org.junit.Assert. This is the most popular rule in
apiwave dataset. This migration occurred in junit-team/junit, on version
4.0. The type Assert was moved to package org.junit;

• org.neo4j.helpers.Function → org.neo4j.function.Function. This migration
occurred in neo4j/neo4j, on version 2.3.3. The type Function was moved to
org.neo4j.function;

• org.sonar.api.BatchComponent → org.sonar.api.BatchSide. This migration
happened on version 5.2 of SonarSource/sonarqube. The new type im-
proves some functions implemented by the deprecated one.

Among the top-3,000 evolution rules mined by apiwave, we found 720 rules
where their left side correspond to a type available in our original dataset of 622 Java
systems (considered in the study described in Chapters 3 and 4). These are exactly
the types investigated in this new study. For example, the apiwave dataset includes
the following rule: org.neo4j.helpers.Function → org.neo4j.function.Function, and
our dataset includes the type org.neo4j.helpers.Function, which matches the left side
of this rule.

Considering these 720 rules, there are 44 rules whose left side is a deprecated
type. For example, the apiwave dataset includes the following rule: org.apache.-
commons.logging.Log → org.slf4j.Logger, where org.apache.commons.logging.Log

is a deprecated type.
In other words, we do not consider types that are not part of our original dataset of

622 Java systems. In fact, apiwave may produce rules not related to API deprecation.
For example, the rule java.util.List→ java.util.Collection is discarded because java-
.util.List is not in our dataset, and it is clearly not in the context of API deprecation.

Considering the 44 evolution rules where the left side is a deprecated type, we
found that 32 types have a replacement message, while 12 types do not have such
messages. For example, the right side of the evolution rule org.hibernate.criterion-

46 Chapter 5. Practical Implications

.Expression → org.hibernate.criterion.Restrictions corresponds exactly to the re-
placement message founded in org.hibernate.criterion.Expression, as shown in List-
ing 5.1 (line 3).

1 /**
2 * Factory for Criterion objects. Deprecated!

3 * @deprecated Use {@link Restrictions} instead

4 */

5 @Deprecated

6 public final class Expression extends Restrictions {

7 //...

8 }

Listing 5.1. Example of replacement message (line 3) that matches an evolution
rule inferred by apiwave - hibernate/hibernate-orm

5.2.2 Research Questions

In this study, we assess whether a recommendation tool would be worth to design and
implement. Thus, we investigate two research questions:

RQ #1. What is the precision of a tool for recommending replacement mes-

sages?
As commonly adopted in the literature, we calculate precision as:

Precision =
TP

TP + FP

where,

• TP (True Positive): when a recommendation provided by apiwave matches
the replacement message from a deprecated type.

• FP (False Positive): when a recommendation provided by apiwave does not
match the replacement message from a deprecated type.

RQ #2. What is the recall of a tool for recommending replacement messages?
As commonly adopted in the literature, we calculate recall as:

Recall =
TP

TP + FN

where,

5.3. Results 47

• FN (False Negative): when a replacement message from a deprecated type is
not covered by apiwave data.

5.3 Results

RQ #1. What is the precision of a tool for recommending replacement messages?

We compute a precision of 73% for the recommendations provided by apiwave:
32 out of 44 recommendations are true positives. As an example of true positive, we
present the junit.framework.Assert case. The rule junit.framework.Assert→ org-
.junit.Assert is the most popular, as mined by apiwave. The replacement message
for this type matches the rule mined by apiwave, as shown in Listing 5.6 (line 4).

1 /**
2 * A set of assert methods. Messages are only displayed when an assert fails.

3 *
4 * @deprecated Please use {@link org.junit.Assert} instead.

5 */

6 @Deprecated

7 public class Assert {

8 //...

9 }

Listing 5.2. True positive example - junit-team/junit

As an example of false positive, we present the android.support.v7.app-
.ActionBarActivity case. apiwave shows that the rule android.support.v7.app.Ac-
tionBarActivity → android.app.Activity is also a popular migration. However, the
real replacement message for this type does not match the rule inferred by apiwave,
as shown in Listing 5.3 (line 2).

1 /**
2 * @deprecated Use {@link android.support.v7.app.AppCompatActivity} instead.

3 */

4 @Deprecated

5 public class ActionBarActivity extends AppCompatActivity {

6 //...

7 }

Listing 5.3. False positive example - android/platform_frameworks-

_support

As we can see in Listing 5.3, the developers who deprecated this type are sug-
gesting the use of the alternative type android.support.v7.app.AppCompatActivity,
while apiwave suggests to use the android.app.Activity type.

48 Chapter 5. Practical Implications

RQ #2. What is the recall of a tool for recommending replacement mes-

sages?

In order to compute the recall, we selected three popular systems with deprecated
types covered by apiwave: SonarSource/sonarqube, junit-team/junit, and
google/guava.

For SonarSource/sonarqube, the recall is 28.2% for the recommendations
provided by apiwave (apiwave provides recommendations for 13 out of 46 replace-
ment messages). In this context, we present examples of true positives as well as false
negatives.

As an example of true positive, we show the org.sonar.api.BatchComponent case.
The rule org.sonar.api.BatchComponent→ org.sonar.api.BatchSide is the most pop-
ular one for the org.sonar.api.BatchComponent type. The replacement message for
this type matches this rule, as presented in Listing 5.4 (line 3).

1 /**
2 * @since 2.2

3 * @deprecated since 5.2 use {@link BatchSide} annotation

4 */

5 @Deprecated

6 public interface BatchComponent {

7 //...

8 }

Listing 5.4. Example of true positive in SonarSource/sonarqube

As an example of false negative, we present the org.sonar.server.paging.Paging

case (Listing 5.5, line 2). For this type, apiwave did not find any rules.
1 /**
2 * @deprecated use {@link org.sonar.server.search.Result}

3 */

4 @Deprecated

5 public class Paging {

6 //..

7 }

Listing 5.5. Example of false negative in SonarSource/sonarqube

For junit-team/junit, the recall is 30.7% for the recommendations provided
by apiwave (apiwave provides recommendations for 4 out of 13 replacement mes-
sages).

As an example of true positive, we analyse the org.junit.matchers-
.JUnitMatchers case. The rule org.junit.matchers.JUnitMatchers → org.hamc-

5.3. Results 49

1 /**
2 * @deprecated use {@code org.hamcrest.junit.JUnitMatchers}
3 */
4 @Deprecated
5 public class JUnitMatchers {
6 //...
7 }

Listing 5.6. Example of true positive in junit-team/junit

rest.junit.JUnitMatchers is the most popular one for the org.junit.matchers-
.JUnitMatchers type. The replacement message for this type matches this rule ,
as presented in Listing 5.6 (line 2).

As an example of false negative, we show the org.junit.internal.matchers-
.ThrowableCauseMatcher case, presented in Listing 5.9 (line 2). For this type, api-

wave did not find any rule.

1 /**
2 * @deprecated use {@code org.hamcrest.junit.ExpectedException}

3 */

4 @Deprecated

5 public class ThrowableCauseMatcher<T extends Throwable> {

6 //...

7 }

Listing 5.7. Example of false negative in junit-team/junit

Finally, for google/guava, the recall is 37.5% (apiwave provides recommen-
dations for 3 out of 8 replacement messages).

As an example of true positive, we see the com.google.common.base.Objects.To-
StringHelper case. The rule com.google.common.base.Objects.ToStringHelper →
com.google.common.base.MoreObjects.ToStringHelper is the most popular one. The
rule matches the message, as presented in Listing 5.8 (line 3).

1 /**
2 * @deprecated Use {@link MoreObjects.ToStringHelper} instead.

3 */

4 @Deprecated

5 public static final class ToStringHelper {

6 //...

7 }

8 }

Listing 5.8. Example of true positive in google/guava

As an example of false negative, presented in Listing 5.9 (line 3), we show the
com.google.common.collect.MapConstraint case. For this type, apiwave did not find
rules.

50 Chapter 5. Practical Implications

1 /**
2 * @since 3.0
3 * @deprecated Use {@link Preconditions} for basic checks.
4 */
5 @Deprecated
6 public interface MapConstraint<K, V> {
7 //..
8 }

Listing 5.9. Example of false negative in google/guava

The application scenario presented in section shows promising results, with good
precision and recall. Notice, however, that the not so high recall can be justified by
the heuristic and dataset used by apiwave. More specifically, when comparing two
versions of a class, apiwave extracts evolution rules from cases where only one type
is removed and only one type is added in the import statements. The positive side of
this approach is that it is more likely to obtain rules with higher precision. However,
this comes at the cost of producing fewer rules (i.e., lower recall). Moreover, apiwave

mines a limited number of client projects, thus, naturally, it may miss some evolution
rules. Future studies may adopt different heuristic and increase the dataset in order to
produce higher recall.

5.4 Final Remarks

In this chapter, we investigated practical implications of the study presented in this
dissertation. Initially, we described the motivation of this new study and we motivated
the possibility of the implementing a tool to recommend replacement messages for
deprecated API elements. Next, we explained the study design, where we proposed
two research questions to assess precision and recall of such tool. We computed a
precision of 73% for recommendations provided by apiwave. For recall, we computed
this value for three popular systems. Recall, for SonarSource/sonarqube is 28%;
for junit-team/junit and google/guava the values for recall are 30.7% and 37.5%,
respectively. These numbers show promising results, suggesting that a recommendation
tool for elements deprecated without messages is indeed possible to be created, with
good precision. Future work may focus, for example, on increasing recall.

Chapter 6

Conclusion

We organise this chapter as follows. First, Section 6.1 provides a brief summary of
the dissertation. Section 6.2 discusses related work. Next, Section 6.3 reviews the
contributions of our research. Finally, Section 6.4 suggests further work.

6.1 Overview

First, this dissertation presented a large scale empirical study about the adoption
of replacement messages on deprecated API elements. We focused on three major
questions: (i) the frequency of deprecated API elements with replacement messages,
(ii) the impact of software evolution on such frequency, and (iii) the characteristics of
systems correctly deprecating API elements. The study was performed in the context
of 622 Java and 229 C# popular and real-world systems. We reiterate next the most
interesting findings from this first study:

• 66.7% of the API elements in Java are deprecated with replacement messages per
system (on the median). For C#, this value is 77.8%.

• The percentage of deprecated API elements with replacement messages does not
improve over time in Java systems. By contrast, for C#, we note a considerable
adoption of replacement messages.

• Systems that deprecate API elements in a correct way tend to be smaller and
they have proportionally fewer contributors. In contrast, system maturity has
no impact. For C#, we identify that popularity has a negative influence on the
percentage of messages.

51

52 Chapter 6. Conclusion

In addition to the main study, we perform a second study in order to evaluate
the feasibility of a recommendation tool designed to infer replacement messages by
mining solutions adopted by developers. In this study, we compute the precision and
recall of the proposed tool. For precision, we note that 73% of the recommendations
provided by the tool are true positives, i.e., correspond to the real replacement messages
of deprecated API elements. We compute recall for three relevant systems, i.e., the
percentage of replacement messages covered by the tool. The computed recall measures
are 28.2% (SonarSource/sonarqube), 30.7% (junit-team/junit), and 37.5%
(google/guava). These results suggest that the proposed recommendation tool can
be provide real value to software developers.

6.2 Related Work

We separate related work in two categories, the first one about the impact of API
evolution and second one in the context of API evolution analysis.

6.2.1 API Evolution Impact

McDonnell et al. [2013] investigate API stability and adoption on a small-scale Android
ecosystem. The authors found that Android APIs are evolving fast and client adoption
is not following the evolution pace. Also in the Android context, Linares-Vásquez et al.
[2014] analyze how API changes trigger questions and activity in StackOverflow. Their
results suggest that Android developers normally have more questions when the API
behavior is modified.

In a large-scale study, Robbes et al. [2012] investigate the impact of API depreca-
tion in an ecosystem, written in the dynamic typed programming language Smalltalk.
They detected that some deprecations have large impact on the ecosystem and that the
quality of deprecation messages should be improved. The authors provide evidence that
APIs are usually deprecated with missing and unclear messages. However, their focus
is on impact analysis, so they do not conduct on in-depth investigation deprecation
messages, as we performed in this dissertation.

In a recent work, Hora et al. [2015] studied the impact of API replacement and
improvement (i.e., not API deprecation) on a large-scale ecosystem also written in
Smalltalk. The results of this study confirm the large impact on client systems, and
hints that deprecation mechanisms should be more adopted.

6.2. Related Work 53

6.2.2 API Evolution Analysis

Several approaches were proposed to support API evolution and reduce the developers’
efforts. Henkel and Diwan [2005] propose CatchUp, a tool that uses a modified IDE
to capture and replay refactorings related to API evolution. Chow and Notkin [1996]
present an approach that is supported by API developers: they annotate changed
methods with replacement rules that will be used to update client systems. Hora et al.
[2014]; Hora and Valente [2015] propose APIEvolutionMiner and apiwave, which are
tools to support keeping track of API evolution and popularity.

Kim et al. [2007] propose a tool to automatically infer rules from structural
changes, computed from modifications at or above the level of method signature. Kim
and Notkin [2009] propose LSDiff, a tool to support computing differences between
two versions of one system. In this case, the authors take into account the body of
the method to infer rules, improving their previous work [Kim et al., 2007]. Nguyen
et al. [2010] propose LibSync, a tool that uses graph-based techniques to help develop-
ers migrate from one framework version to another. Dig and Johnson [2005] support
developers to better understand the requirements for migration tools. For instance,
they found that 80% of the changes that break client systems are refactorings.

Dagenais and Robillard [2008] present SemDiff, a tool that suggests replacements
for API elements based on how they adapt themselves to these changes. Schäfer et al.
[2008] propose to mine API usage change rules from client systems. Wu et al. [2010]
present AURA, an approach that combines call dependency and text similarity anal-
yses to produce evolution rules. Meng et al. [2012] propose a history-based matching
approach (named HiMa) to support framework evolution. In this case, rules are ex-
tracted from the revisions in code history together with comments recorded in the
evolution history of the framework. Hora et al. [2012, 2013] focus on the extraction
of API evolution rules that only make sense for a system or domain under analysis.
Using association rule mining algorithms, Borges and Valente [2015] mine 1,952 usage
patterns, from a set of 396 Android applications. They report that the Android API
has many undocumented and non-trivial usage patterns.

Finally, studies also address the problem of discovering the mapping of APIs
between different platforms that evolved separately. For example, Zhong et al. [2010]
focus on the mapping between Java and C# APIs while Gokhale et al. [2013] study
the mapping between JavaME and Android APIs.

54 Chapter 6. Conclusion

Summary : The aforementioned studies are intended to better understand API evolu-
tion and to propose solutions to API migration. None of them, study API evolution
in the context of API deprecation and their replacement messages.

6.3 Contributions

The contribution of this master dissertation are as follows:

• A large-scale empirical study about the adoption of replacement messages in
Java and C# systems. In this study, we analysed the frequency of deprecated
API elements with replacement messages, the impact of API evolution in this
frequency, and the characteristics of systems that deprecate their elements in a
correct way.

• We also provide preliminary evidence on the feasibility of designing a tool to
recommend replacement messages to deprecated API elements. This tool will
infer messages from the reactions of clients, i.e., the solutions they followed to
replace deprecated elements.

6.4 Future Work

In this dissertation, we presented a study about adoption of replacement messages in
Java and C# systems. This study can be complemented with the following future
work:

• We can extend our analysis to other programming languages with popular
projects in GitHub. For example, we can compare systems implemented in stat-
ically and dynamically typed languages;

• We can propose a categorization of the systems under analysis in different do-
mains to reveal and understand differences regarding API deprecation;

• As previously discussed, we can design and implement a recommendation tool to
assist client developers by automatically inferring missing replacement messages
in deprecated API elements.

Bibliography

Borges, H. and Valente, M. T. (2015). Mining usage patterns for the Android API.
PeerJ Computer Science, 1(1):1--13.

Brito, G., Hora, A., and Valente, M. T. (2015). Um estudo sobre a utilização de
mensagens de depreciação de APIs. In III Workshop de Visualização, Evolução e
Manutenção de Software (VEM).

Brito, G., Hora, A., Valente, M. T., and Robbes, R. (2016). Do developers depre-
cate APIs with replacement messages? A large-scale analysis on Java systems. In
23rd International Conference on Software Analysis, Evolution and Reengineering
(SANER).

Chow, K. and Notkin, D. (1996). Semi-automatic update of applications in response
to library changes. In International Conference on Software Maintenance, pages
359–368.

Couto, C., Pires, P., Valente, M. T., Bigonha, R., and Anquetil, N. (2014). Predicting
software defects with causality tests. Journal of Systems and Software, 93.

Dagenais, B. and Robillard, M. P. (2008). Recommending adaptive changes for frame-
work evolution. In International Conference on Software engineering.

Dig, D. and Johnson, R. (2005). The role of refactorings in API evolution. In Interna-
tional Conference on Software Maintenance, pages 389–398.

Gokhale, A., Ganapathy, V., and Padmanaban, Y. (2013). Inferring likely mappings
between APIs. In International Conference on Software Engineering, pages 82--91.

Grissom, R. and Kim, J. (2005). Effect sizes for research: A broad practical approach.
Lawrence Erlbaum Associates Publishers.

55

56 Bibliography

Henkel, J. and Diwan, A. (2005). Catchup!: Capturing and replaying refactorings to
support API evolution. In International Conference on Software Engineering, pages
274--283.

Hora, A., Anquetil, N., Ducasse, S., and Allier, S. (2012). Domain Specific Warnings:
Are They Any Better? In International Conference on Software Maintenance.

Hora, A., Anquetil, N., Ducasse, S., and Valente, M. T. (2013). Mining System Specific
Rules from Change Patterns. In Working Conference on Reverse Engineering.

Hora, A., Etien, A., Anquetil, N., Ducasse, S., and Valente, M. T. (2014). Apievolution-
miner: Keeping api evolution under control. In Software Maintenance, Reengineer-
ing and Reverse Engineering (CSMR-WCRE), 2014 Software Evolution Week-IEEE
Conference on, pages 420--424. IEEE.

Hora, A., Robbes, R., Anquetil, N., Etien, A., Ducasse, S., and Valente, M. T. (2015).
How do developers react to API evolution? the Pharo ecosystem case. In Interna-
tional Conference on Software Maintenance and Evolution.

Hora, A. and Valente, M. T. (2015). apiwave: Keeping track of api popularity and
migration. In International Conference on Software Maintenance and Evolution.
http://apiwave.com.

Kim, M. and Notkin, D. (2009). Discovering and Representing Systematic Code
Changes. In International Conference on Software Engineering, pages 309--319.

Kim, M., Notkin, D., and Grossman, D. (2007). Automatic inference of structural
changes for matching across program versions. In International Conference on Soft-
ware Engineering, ICSE ’07, pages 333--343. IEEE Computer Society.

Konstantopoulos, D., Marien, J., Pinkerton, M., and Braude, E. (2009). Best prin-
ciples in the design of shared software. In International Computer Software and
Applications Conference.

Linares-Vásquez, M., Bavota, G., Bernal-Cárdenas, C., Di Penta, M., Oliveto, R., and
Poshyvanyk, D. (2013). Api change and fault proneness: a threat to the success of
android apps. In Joint meeting on foundations of software engineering.

Linares-Vásquez, M., Bavota, G., Di Penta, M., Oliveto, R., and Poshyvanyk, D.
(2014). How do api changes trigger stack overflow discussions? a study on the android
sdk. In proceedings of the 22nd International Conference on Program Comprehension,
pages 83--94. ACM.

http://apiwave.com

Bibliography 57

McDonnell, T., Ray, B., and Kim, M. (2013). An empirical study of API stability
and adoption in the android ecosystem. In International Conference on Software
Maintenance, pages 70--79. IEEE.

Meng, S., Wang, X., Zhang, L., and Mei, H. (2012). A history-based matching approach
to identification of framework evolution. In International Conference on Software
Engineering, pages 353–363.

Montandon, J. (2013). Documenting application programming interfaces with source
code examples. Master’s thesis, UFMG.

Moser, S. and Nierstrasz, O. (1996). The effect of object-oriented frameworks on
developer productivity. Computer, 29(9).

Nguyen, H. A., Nguyen, T. T., Wilson, Jr., G., Nguyen, A. T., Kim, M., and Nguyen,
T. N. (2010). A graph-based approach to API usage adaptation. In ACM Interna-
tional Conference on Object Oriented Programming Systems Languages and Appli-
cations, pages 302--321.

Retherford, R. D. and Choe, M. K. (2011). Statistical models for causal analysis. John
Wiley & Sons.

Robbes, R., Lungu, M., and Röthlisberger, D. (2012). How do developers react to API
deprecation? The case of a smalltalk ecosystem. In International Symposium on the
Foundations of Software Engineering, pages 56:1--56:11. ACM.

Schäfer, T., Jonas, J., and Mezini, M. (2008). Mining framework usage changes from
instantiation code. In International Conference on Software engineering.

Tian, Y., Nagappan, M., Lo, D., and Hassan, A. E. (2015). What are the characteristics
of high-rated apps? a case study on free android applications. In International
Conference on Software Maintenance and Evolution.

Tourwé, T. and Mens, T. (2003). Automated support for framework-based software.
In International Conference on Software Maintenance.

Wu, W., Gueheneuc, Y.-G., Antoniol, G., and Kim, M. (2010). Aura: a hybrid ap-
proach to identify framework evolution. In International Conference on Software
Engineering, pages 325–334.

Zhong, H., Thummalapenta, S., Xie, T., Zhang, L., and Wang, Q. (2010). Mining API
mapping for language migration. In International Conference on Software Engineer-
ing, pages 195--204.

	Resumo
	Abstract
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Proposed Work
	1.3 Publications
	1.4 Outline of the Dissertation

	2 Background
	2.1 Application Programming Interfaces
	2.2 API Deprecation
	2.2.1 API Deprecation in Java
	2.2.2 API Deprecation in C#

	2.3 Final Remarks

	3 Study Design
	3.1 Selecting Case Studies
	3.2 Extracting Deprecated API Elements
	3.3 Extracting Replacement Messages
	3.4 Metrics Possibly Impacting API Deprecation
	3.5 Extracting Metrics from Case Studies
	3.6 Final Remarks

	4 Results
	4.1 RQ1. What is the frequency of deprecated APIs with replacement messages?
	4.2 RQ2. What is the impact of software evolution on the frequency of replacement messages?
	4.3 RQ3. What are the characteristics of software systems with high and low frequency of replacement messages?
	4.4 Threats to Validity
	4.4.1 Construct Validity
	4.4.2 Internal Validity
	4.4.3 External Validity

	4.5 Final Remarks

	5 Practical Implications
	5.1 Motivation
	5.2 Study Design
	5.2.1 Dataset
	5.2.2 Research Questions

	5.3 Results
	5.4 Final Remarks

	6 Conclusion
	6.1 Overview
	6.2 Related Work
	6.2.1 API Evolution Impact
	6.2.2 API Evolution Analysis

	6.3 Contributions
	6.4 Future Work

	Bibliography

