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Abstract

In this paper, we introduce the concept of a virtual machine with graph-
organised memory as a versatile backend for both explicit-state and abstraction-
driven verification of software. Our virtual machine uses the LLVM IR as its
instruction set, enriched with a small set of hypercalls. We show that the pro-
vided hypercalls are sufficient to implement a small operating system, which
can then be linked with applications to provide a POSIX-compatible verifica-
tion environment. Finally, we demonstrate the viability of the approach through
a comparison with a more traditionally-designed LLVM model checker.
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1. Introduction

Applying verification to real-world programs is undoubtedly desirable – it
can increase code quality while cutting costs at the same time. Model checking
is one of the approaches that can provide robust correctness guarantees without
introducing false positives. This precision, however, does not come for free –
model checking, especially in the context of software, is computationally very
expensive. Nonetheless, as our previous work shows [1], a combination of state
space reduction techniques, compression and of a tailored approach to test case
construction makes model checking a genuinely useful programming aid. For
example, we have successfully applied this approach in development of scalable
concurrent data structures [2] in C++.

1.1. Application Area

The main area we are aiming at in this paper is verification of C and C++
programs that do not explicitly interact with their environment and in partic-
ular, do not read data from uncontrolled outside sources. As an example, it is
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permissible for the program to read from a fixed file, in the understanding that
the content of the file is treated as part of the program, not as variable (arbi-
trary) input. Implicit interactions are, however, allowed: thread scheduling is
taken to be arbitrary, as are various failure scenarios like an “out of memory”
condition during a malloc call.

Typically, computer programs are made from components of various size,
ranging from individual functions and classes, through units and libraries to
frameworks and complete applications. At the highest levels, static analysis
can process large amounts of code in bulk, pointing out possible problems, with
varying levels of precision. At the lowest level, a small number of well-isolated,
well-defined and highly critical functions can be subjected to rigorous treatment
via automated theorem proving or exhaustive symbolic model checking. In this
paper, we are primarily concerned with the mid-low part of the component
spectrum: the unit level. Units are collections of coupled functionality and data
structures. It is common practice that individual units of a program are tested
separately, often by writing unit tests: those are small, self-contained programs
that exercise the functionality provided by a single unit (and indirectly also the
functionality of its dependencies).

These unit tests very often exactly reflect the constraints outlined above:
their interaction with the outside world is, by design, very limited. However,
implicit interactions – thread scheduling, memory pressure and similar effects
– are usually very hard to control in a testing environment. This makes an
explicit-state model checker, which can defeat these remaining sources of non-
determinism, an extremely valuable tool.

Explicit-state model checking is, however, not the only application area of
the research presented in this paper; it is merely the primary one, as it is
the one that is best understood. Abstraction-driven and symbolic approaches
to software verification are a hot research topic, and the contributions of this
paper can be combined with advances in those areas. We fully expect that such
a combination will also work at higher levels of abstractions: complete libraries
and applications (see also Section 6.3).

1.2. Goals

Our main goal is to design an abstract machine (DiVM), that is, a low-level
programming language, with these two properties:

i. The machine should be a suitable target for compiling C and C++ pro-
grams, including system-level software (an operating system kernel and
system libraries like libc).

ii. An efficient implementation of the semantics of this abstract machine
should be possible. It should be easy to store and compare states of
the machine and to quickly compute the transition function.

It is typical of contemporary software verification tools to include ad-hoc ex-
tensions of the C language. The reason for this is that system-level software (per
our first criterion) needs additional facilities, not available in the C language.
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In other words, C as a language is incomplete: system-level software cannot
be expressed in the C language alone (same is true of C++ and many other
languages). We would like to take, instead, a principled approach: provide an
abstract machine with sufficient expressive power.

1.3. Contribution

We present an abstract machine (called DiVM), based on the widely-used
LLVM IR1 with a small number of extensions. Both criteria outlined in Sec-
tion 1.2 are fulfilled by the proposed machine: it is possible to express all the
usual constructs – such as threads, processes, memory management and (simu-
lated) input and output – as routines running on the machine, Moreover, since
the machine is based on LLVM IR, standards-compliant C and C++ compilers
are readily available targeting the machine. Additionally, we provide ports of
crucial system libraries: the C and C++ standard libraries, and a meaningful
subset of the POSIX interface. In particular, POSIX threads and POSIX file
system APIs are available.

Moreover, there are established methods for efficient implementation of lan-
guages built around the concept of instructions which act on the state of a
machine. This is, after all, how computers operate on the hardware level. Like-
wise, compilation of high-level, expression-based languages with structured con-
trol flow (like C and C++) into low-level, instruction-based languages (such as
LLVM) is a well researched topic, and high-quality implementations are available
as off-the-shelf components.

What we show in this paper is that addition of graph memory has no detri-
mental effect on those established properties, and that, in fact, it makes opera-
tions on the state of the machine more efficient. Likewise, while the semantics
are not, strictly speaking, simplified by the addition of graph memory, it does
make certain properties of the program much easier to express. It is, therefore,
our opinion, that the addition of graph memory makes the machine and its se-
mantics more expressive in a meaningful way. The details of the graph structure
of the machine’s memory are covered in Section 3.

Finally, a reference implementation is available under a permissive, open-
source licence. All the source code relevant to this paper, along with additional
data and other supplementary material is available online.2

1.4. Analysis and LLVM

LLVM is, primarily, a toolbox for writing compilers. Among other things,
this means that it is not a complete virtual machine, merely an intermediate rep-
resentation suitable for static analysis, optimisation and native code generation.
In particular, it may not always be possible to encode an entire program in LLVM

1Intermediate Representation. The LLVM IR is used across the majority of the LLVM
toolchain and is an abstract counterpart of the machine-level assembly language. Unlike
machine-level languages, the LLVM IR is easy to transform and optimise automatically.

2https://divine.fi.muni.cz/2017/divm/
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alone: compilers often work with individual units, where undefined references
are common and expected. When the program is linked (whether statically
or at runtime), these unresolved references are bound to machine code, which
may or may not be derived from LLVM bitcode. A common example of such
non-LLVM-derived code would be the syscall interface of an operating system,
which is usually implemented directly in platform-specific assembly. At this
level, cooperation of code from various sources is facilitated by machine-level
calling conventions that live below the level of LLVM bitcode.

An important consequence is that analyses that require complete knowl-
edge of the entire system cannot rely entirely on LLVM bitcode alone. Different
LLVM-based tools approach this problem differently. The most common solu-
tion is to hard-wire knowledge about particular external functions (i.e. functions
that usually come from system-specific libraries that are not available in pure
LLVM form, like pthread create or read) into the tool. This ad hoc approach
is suitable for experiments and prototypes, but is far from scalable – cover-
ing functionality commonly required by simple programs entails hundreds of
functions. To combat this problem, we propose a small extension to the LLVM
language, based on a small set of hypercalls (a list is provided in Table 1). Un-
like pure LLVM, the DiVM language is capable of encoding an operating system,
along with a syscall interface and all the usual functionality included in system
libraries.

Table 1: A list of hypercalls provided by DiVM.

Hypercall Description

obj make Create a new object in the memory graph of the program
obj free Explicitly destroys a object in the memory graph
obj size Obtain the current size of an object
obj resize Efficiently resize an object (optional)
obj shared Mark an object as shared for τ reduction (optional)
trace Attach a piece of data to an edge in the execution graph
interrupt mem Marks a memory-access-related interrupt point
interrupt cfl Marks a control-flow-related interrupt point
choose Non-deterministic choice (a fork in the execution graph)
control Read or manipulate machine control registers

1.5. Explicit-State Model Checking

Past experience has repeatedly shown that a successful explicit-state model
checker needs to combine a fast evaluator (the component which computes suc-
cessor states), partial order [3] and/or symmetry reductions [4] and efficient
means to store the visited and open sets [5, 6]. The virtual machine (VM) we
propose covers the evaluator, but it also crucially interacts with the remaining
parts of the model checker.

Moreover, as outlined above, the verifier also interacts with the system under
test (SUT). For our purposes, the SUT is not the user program alone, but it also
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Figure 1: Evolution of model checking. White boxes are built into the model checker itself,
shaded areas are part of the model (partially supplied by the user, partially by the tool).

includes all libraries it is linked to (including system libraries like libc) and an
operating system (OS). This OS is, at least to some degree, bound to the VM
it is executing in and relies on its particular capabilities. In the case of DiVM,
this includes the interfaces related to verification, i.e. the hypercall interface.
To a lesser degree, these may also be used by libraries which are part of the
OS (typically libc and related low-level code, eg. a thread support library).
Overall, while the OS itself is not very portable (running it on a typical hardware
platform would require extensive changes), it can host programs which work on
other systems, often without any modifications to the program.

From the semantic point of view, the VM comprises an abstract machine,
and its semantics should be such that it is possible to (sufficiently faithfully)
map C semantics3 onto the semantics of the VM. The abstract machine executes
a program, which is composed of functions (routines), which are composed of
instructions – in our case, an instruction is either from the LLVM instruction
set [7] or it is a hypercall invocation. Instructions manipulate the state of the
abstract machine: under our proposed scheme, the state consists of two parts, a
small, fixed set of control registers and of graph-structured memory (the heap).4

The nodes of the memory graph – heap objects – are byte arrays. Whenever a
numeric representation of a pointer is stored in a node (at an arbitrary offset),
an edge is created in the graph, directed towards the heap object designated

3Or, to be more precise, the semantics of a C program executing in an operating system
which provides additional facilities, like memory management.

4The state is made available to the verifier via an interface of the virtual machine. The
verifier is free to modify the state as needed, in particular, it can easily store the state (say,
in a hash table) and reset the VM to that particular state later.
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by the numeric pointer. A set of root pointers is stored in the control registers:
only objects reachable from this set are included in the state. The semantics are
then, of course, given by a function which assigns, to a state and an instruction,
a new state.

Our focus in this paper is twofold: first, design the hypercall interface of the
VM – that is, describe the semantics of the abstract machine which is realised
by the VM and how they relate to semantics of C programs; second, analyse the
consequences of the chosen interface on the various components of the verifier
and the SUT.

1.6. Design Motivation

There are three main advantages in the proposed approach to separation of
components. First, components adhering to a small and well-defined interface
can be much more easily re-used: for example, the OS part can be re-used with a
different model checker, saving a substantial amount of work and thus reducing
the barrier for achieving practicality for new tools. The pthread library alone
comprises more than 100 functions which can be shared by multiple tools as
long as they expose the same 10 basic hypercalls described in this paper. The
same applies to hundreds of syscalls available in a modern Unix-like OS.

Virtual Machine

source.c libc

Syscall Interface

Thread Scheduler Virtual File System

Operating System

Program

Figure 2: Scheme of the execution and/or verification environment.

Secondly, a small interface between the VM and the OS makes it quite
easy to write special-purpose operating systems. The OS only needs to provide
two fairly simple functions, boot and a scheduler. This makes the model
checker very flexible and easily adaptable to new needs, besides verification of
C and C++ programs. Many modelling languages, including DVE, ProMeLa or
Simulink, can be easily translated into C code, and with addition of a suitable
miniature OS, can be verified by using our VM approach.

Finally, the virtual machine can remain comparatively simple, which is very
important from reliability standpoint: bugs in the virtual machine will quietly
cause incorrect verification results. However, the OS is executed by the virtual
machine and subject to the same strict checking that is applied to the user
program. Problems caused by the OS will therefore be detected by the virtual
machine and reported to the user, reducing the risk of falsely positive verification
result.
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2. Related Work

The idea to use a virtual machine for model checking is not new – it is the
natural middle ground between compiling the model all the way to a natively
executable successor function (as in SPIN [8] and many later explicit-state model
checkers) and a fully interpreted system (like UPPAAL [9] or earlier versions of
DIVINE [10]).

One can obtain a suitable virtual machine for use with model checking in
two basic ways: either choose (and possibly adapt) an existing VM with existing
infrastructure (compilers, debuggers, etc.) or design a new one and re-target
an existing compiler, or even create a new one. Of the newly-designed virtual
machines (and their corresponding instruction sets), the most notable is NIPS
VM [11]. Along with other similar designs that emerged from the model check-
ing community, its focus is on fixed-layout, explicitly finite-state processes en-
riched with non-determinism and synchronisation/communication. VMs of this
type are more suitable for specification-level verification and for verification of
embedded software where use of dynamic memory and dynamic structures in
general is limited.

Successful adaptations of pre-existing instruction sets for use in model check-
ers include the Java PathFinder [12] and the LLVM-based DIVINE 3 and later.
The main difference between the two is that the JVM (the virtual machine un-
derlying Java) is a memory-safe architecture, while the LLVM instruction set is
designed primarily as a target for compilation of unsafe languages such as C and
C++. Our current effort is an evolution of the design used in DIVINE 3, with
emphasis on separation of concerns and a clean interface. We were able to move
large amounts of code from the virtual machine proper into the (virtualised)
OS, as a consequence of the improved set of primitives (hypercalls) provided by
the virtual machine.

2.1. Language-Neutral Model Checking

Many model checkers provide some degree of interoperability with multiple
specification languages. Those efforts are related to DiVM in the sense that
DiVM can also be thought of as an interoperability framework. In explicit-state
model checkers, the lowest common denominator is the functions for enumerat-
ing the state space: initial and successors. At this level, it is usually quite
easy to connect existing unrelated model checking tools: for example, take the
successors function of the Murϕ model checker and use DIVINE 3 to explore
the state space. DIVINE 2 and DIVINE 3 both provided interfaces at this level.
A more powerful (but also more complex) alternative is the PINS [13] inter-
face provided by the LTSmin [14] model checker. The idea behind PINS is
to partition the successors function based on transition groups (where some
groups can be, for example, entirely independent of each other). This addi-
tional semantic information is exposed by the PINS interface, allowing state
space reductions and more efficient search strategies to be implemented in the
host model checker. Nonetheless, static analyses mostly remain specific to the
particular specification language. An additional downside of the PINS method
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is that it relies on the state representation being relatively static. This makes
PINS inconvenient to use with extremely dynamic languages, like those typically
used in software development.

In contrast, the DiVM language fully embraces the dynamic structure of
program states. The model checker interface of DiVM is, however, nearly the
simplest possible: obtain the initial and successor states. The only addition on
top of the bare minimum is edge labelling, which can be used to record and
present counterexamples. In the PINS approach, the additional structure is
exposed to the model checker and the model checker makes use of the facilities
provided by the model interpreter or compiler. With DiVM, the situation is
reversed: the VM exposes its extended functionality to the SUT instead and
maintains a trivial interface with the model checker. This way, static and semi-
static analyses and transformations can work at the level of LLVM intermediate
representation, which is already used by many tools.

2.2. LLVM-Based Model Checking
Besides DiVM, other approaches to LLVM-based verification exist. Our pre-

vious work on DIVINE 3 [10] is largely subsumed by the current VM-based ap-
proach as presented in this paper.

In [15], the author presents an extension for LTSmin based on LLVM and
PINS, for model checking parallel algorithms under the partial store order mem-
ory model. Due to its focus on verification of algorithms and data structures,
system-level software is not considered and LLVM is primarily used as convenient
means of verifying algorithms given in the form of C code.

In addition to explicit-state approaches, symbolic, and in particular SMT-
based, tools that build on the LLVM IR exist. A prime example in this category
is LLBMC, which works, essentially, by translating LLVM bitcode into an SMT
formula which describes the transition function of the original LLVM program.
In this case, neither parallel programs nor system-level code5 is considered.
An additional restriction derives from the fact that the background SMT the-
ory is decidable, and therefore loops with unknown bounds must be artificially
bounded (i.e., LLBMC is a bounded model checker).

A different tool, VVT [16], extends the approach of LLBMC in two direc-
tions. First, it adds support for concurrency in the input program. Second,
it takes a different approach to encoding the undecidable LLVM program into
a decidable background theory, based on k-induction (and IC3 in particular).
However, system-level interfaces are not considered in VVT either.

3. Graph-Organised Memory

In DiVM, the state of the program consists of memory (which is organised
as a graph) and of control registers (described in Section 4.1). The semantics

5To clarify, LLBMC can be used to verify C code that is part of system-level software: in
fact, a typical use-case for symbolic model checkers is analysis of device drivers (where the
actual device is modelled as a completely non-deterministic black box).
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of an instruction of the DiVM language is, therefore, described by its effect on
the machine’s memory and registers. In this section, we will first describe and
justify the graph encoding, then we will describe the semantics of the memory-
related hypercalls (as listed in Table 1) and finally, we will discuss the finer
details and consequences of this approach.

A traditional computer treats memory as an array of bytes. Instructions exist
to read data from and store data to a given memory location by using simple
integer indices. Pointers (pieces of data that describe a location in memory)
are, from the point of view of the CPU, really just integer values. That is,
the machine language is untyped and a pointer can be added to, multiplied or
divided just like any other number. Due to memory virtualisation in basically
every modern CPU, which indices are valid is not determined by the size of the
physical memory (as one would expect if the available memory locations were
numbered from 1 to some n), but are allocated to a given process by the OS.

Moreover, practically no programs (other than certain parts of operating
system kernels) directly use a flat memory space. Instead, they usually take ad-
vantage of a higher-level interface for management of dynamic memory, based
on the malloc C function. The malloc function takes care of obtaining unstruc-
tured memory from the OS and divides it in into chunks which can be requested
by the program on an as-needed basis.

node 1

1

next node 2

1

next

node 3

2

next

node 4

3

next

node 5

5

next

Figure 3: A circular linked list, an example of a common data structure which is often em-
bedded in a heap, taking advantage of malloc-style memory management.

The use of malloc-style memory management is so pervasive in programs
that it is sensible to abstract memory at the level of malloc-managed objects
instead of the more universal, machine-level flat address space. This is espe-
cially true for programs where concurrency can cause the physical layout of the
malloc-managed heap to vary substantially due to thread interleaving. How-
ever, when we treat the memory as a graph, heap configurations from different
interleavings result in identical graphs. Hereafter, we will not make a distinction
between heap as referring to the malloc-managed portion of memory and the
graph memory structure which exists in the virtual machine (even though the
latter is, in some sense, a superset of the former).

The only requirement of LLVM with regards to memory representation is
that pointers need to be fixed-width arithmetic types. It is, however, neither
memory safe nor are memory access instructions type safe. This poses chal-
lenges for model checkers in general and for graph-based memory organisation
in particular. Due to this lack of a static type system, the virtual machine has
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no choice but to impose a runtime (dynamic) type system of its own. The very
least that the runtime type system must do is maintain the distinction between
pointers and non-pointers: otherwise, the graph structure of memory cannot be
recovered. Of course, when such a type system is already in place, it can be
used for other purposes, like tracking uninitialised values. We will discuss this
in more detail in Section 3.2.

Finally, with currently available data structures, large heaps (that is, heaps
which store a large number of objects, regardless of their size) are appreciably
more expensive to access and compare. For this reason, static data is kept in a
small number of large objects. For example, all constant data is kept in a single
object, and so is the program code (text in traditional UNIX terminology) and
static data (global variables). Since all the relevant pieces (text, constants, static
and dynamic memory) are part of the heap, they are accessed and represented
uniformly by the virtual machine.

3.1. Memory Management Hypercalls

Since LLVM bitcode is not tied to a memory representation, its apparatus
for memory management is quite limited. Just like in C, malloc, free, and
related functions are provided by libraries, but ultimately based on some lower-
level mechanism, like, for example, the mmap system call. This is often the case
in POSIX systems targeting machines with a flat-addressed virtual memory
system: mmap is tailored to allocate comparatively large, contiguous chunks of
memory (the requested size must be an integer multiple of hardware page size)
and management of individual objects is done entirely in user-level code. Lack
of any per-object protections is also a source of many common programming
errors, which are often hard to detect and debug.

It is therefore highly desirable that a single object obtained from malloc

corresponds to a single VM-managed and properly isolated object. This way,
object boundaries can easily be enforced by the model checker, and any viola-
tions reported back to the user. This means that, instead of subdividing memory
obtained from mmap, the libc running in DiVM uses obj make to create a sep-
arate object for each memory allocation. The obj make hypercall obtains the
object size as a parameter and writes the address of the newly created object
into the corresponding LLVM register (LLVM registers are stored in memory, and
therefore participate in the graph structure; this is described in more detail in
Section 4.2). Therefore, the newly created object is immediately and atomically
connected to the rest of the memory graph.

The standard counterpart to malloc is free, which returns memory, which
is no longer needed by the program, into the pool used by malloc. Again, in
DiVM, there is a hypercall – obj free – with a role similar to that of standard
free. In particular, obj free takes a pointer as an argument, and marks the
corresponding object as invalid. Any further access to this object is a fault
(faults are described in more detail in Section 5.1). The remaining hypercalls in
the obj family exist to simplify bookkeeping and are not particularly important
to the semantics of the language.
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3.2. Runtime-Typed Memory

Even when the VM has a complete knowledge of the objects residing in
program memory, which can be derived through the API described above, this
alone is not enough to reconstruct the graph structure. The other necessary
component is the knowledge of all pointers stored in the objects.

At first sight, it may seem that the static type system used by the SSA
portion of LLVM (which is easily enforced) could be used to recover pointer
information. The memory portion (that is, non-SSA), however, is completely
untyped, and as such makes it trivial for a program to circumvent any protection
afforded by the type system. The existence of type casting instructions therefore
does not weaken the type system any further. Since recovering type information
statically is very hard and often quite imprecise, a runtime type system is the
only viable solution. Of course, this does not preclude the use of static analysis
to improve evaluation efficiency.

Fortunately, in a virtual machine, it is easy enough to track type information
through any and all operations performed by the program. The only limitation
is that offsets within a single object should remain unaffected by the addition of
type information. As described in [17], the solution to this problem is to store
the type information in a shadow image of the entire address space. The model
checker can keep, in addition to the byte array visible to the SUT, additional
memory associated with each object, in such a way that this additional (shadow)
memory can be easily looked up.

In our implementation of the abstract VM proposed in this paper, we also use
the type system to track whether a particular byte of memory is defined, that is,
whether a value has been stored at this address. The main motivation is that
with this information, the model checker can report suspicious and probably
unintended uses of such undefined values. Due to their low-level nature and
focus on execution speed, both C and C++ elide initialisation code whenever
possible. This elision is, however, not foolproof and can easily lead to unintended
consequences: in some cases, compilers can spot this and emit a warning. In
others, they cannot. The virtual machine can, however, detect inappropriate
uses on all the paths that it explores.

3.3. Pointer Representation

The virtual machine mandates that pointers are represented as tuples, where
the object identifier is separate from the offset within the object. In our im-
plementation, this is achieved by splitting the 64 bit pointer into two 32 bit
numbers, which are then treated separately. Moreover, while not strictly re-
quired, our implementation stores the offset part in the least significant bits
of the pointer. This somewhat simplifies implementation of arithmetic instruc-
tions when one of the operands is a (converted) pointer. A strict requirement,
however, is that when the pointer’s offset overflows, the pointer becomes per-
manently invalid – the offset must not wrap to 0 independently of the object
identifier, since the pointer would become accidentally valid.

Additionally, our implementation also guarantees that the object identifiers
are stable along an execution path: that is, pointers to a particular object will
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always use the same numeric object identifier. However, we acknowledge that
in some circumstances, this limitation may be impractical (see also Section 6.2)
and may be lifted at the expense of banning certain pointer-value-dependent
operations in the program.

Besides regular heap pointers, there are 3 additional pointer types: global,
constant and code pointers. While all data (as opposed to code) is stored on the
heap, it is not the case that each global variable or each constant would reside in
a separate heap object. The virtual machine instead uses slot-based allocation
for these types of data, that is, there is a single heap object for global variables,
another for constant data. A global or a constant pointer (distinguished from
heap pointers by a 2-bit type tag) refer to slots within the designated globals
heap object. Slot boundaries are enforced just like object boundaries.

The distinction between heap pointers and other pointer types is important
when the OS wishes to implement fork()-like semantics: with slot-based global
variables, different processes can share the same code (and constants). The OS
can set a control register (see also Section 4.1) to tell the virtual machine which
heap object currently holds global variables. The situation is illustrated in
Figure 4.

control registers

call stack

globals globals

42

"some string"

...

constants

constants

0

-1

"constant string"

...

frame

main()

caller

pc

[global 2 7]

[const 3 8]

...

_start()

caller

pc

...

Figure 4: Different pointer types. Dashed lines represent indirect relationships: the value of
the respective register is used when dereferencing such indirect pointers. The first number in
an indirect pointer identifies the slot, the second the offset within the given slot.

3.4. Memory Protection

The VM we propose does not have a traditional, page-based MMU (Mem-
ory Management Unit). Nonetheless, since the execution is strictly controlled,
there is a different mechanism which can be employed to enforce address space
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separation: if a particular process does not posses a pointer to a given object,
this object cannot be accessed. This is because the virtual machine enforces
object boundaries, therefore, it is impossible to construct a valid pointer by
overflowing a pointer to a different object (when the offset part of the pointer
overflows, the pointer becomes invalid; likewise, if any operation changes the
numeric value of the object identifier, the value ceases to be a valid pointer).
The only way to access a particular object is, therefore, by obtaining a pointer
to this object, which can be easily prevented by the OS.

The only pitfall of this approach is in the implementation of inter-process
communication (IPC). That is, the enforcement of memory protection depends
on the ability of the OS to invalidate pointers which are sent to other processes
via IPC. If the OS wishes to preserve pointers that are sent through IPC to
another process and then returned the same way while also enforcing process
isolation, it must provide a translation mechanism. Similar caveats apply to
shared memory segments which may contain pointers to themselves, or to other
such segments. This scenario is illustrated in Figure 5.

shared memory

process 1

process 2

operating system

process table

frame globals

frame globals
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Figure 5: Example heap with OS memory, 2 processes and 2 shared memory segments. Dashed
arrows represent indirect pointers (see also Figure 4). The dotted arrow represents a hazardous
pointer (violating memory protection constraints) – this pointer must be flipped between the
two possible values when processes are switched. When process 1 executes, it should point
into the memory of process 1, otherwise it should point to the (shared) placeholder object.
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4. Control Flow

In addition to the standard array of features related to control flow (which
are directly inherited from LLVM), our virtual machine also needs to provide
features that are more-or-less specific to verification environments. These in-
clude a tightly-controlled scheduling policy, non-deterministic choices and ex-
plicit atomic sections. Additionally, when compared to a standard, execution-
focused VM, there are differences in how activation frames (that is, the call
stack) are represented, and there are specifics pertaining to control registers.

4.1. Machine Control Registers

In addition to the (structured) memory, the virtual machine maintains a set
of control registers. Together, these form the entirety of the execution state of
the machine (in other words, the effect of any given instruction is entirely deter-
mined by these two components). The registers can be read and manipulated
through a single hypercall, control, the interface of which is documented in
more detail in our technical documentation [18].

The important distinction between the heap and the registers is that registers
are not part of the persistent state of the program: their values are not taken into
account when comparing or storing program states. They do, however, influence
the execution within a single state space transition (and after evaluation of a
given transition is finished, the values in those registers are cleared).

4.2. Activation Frames

Unlike traditional hardware-based implementations of C, our VM does not
use a continuous stack. The present virtual machine takes the approach of
DIVINE 3 one step further: the execution stack is no longer a special structure
maintained by the model checker itself, but instead is entirely allocated in the
graph-based memory, as a linked list of activation frames. These frames are
fixed in size, as is common when interpreting LLVM bitcode, since they only
contain statically-allocated registers, not variable-sized objects. The latter are
always allocated through the alloca LLVM instruction, which in our virtual
machine obtains an appropriately-sized memory object from obj make. Besides
LLVM registers, the frame contains a pointer to the caller frame (forming the
linked-list structure of the stack) and a slot for storing the value of the program
counter across calls.

Frames are automatically allocated by call and invoke instructions, but
can also be constructed and populated “manually” by the OS when needed.
Likewise, the ret instruction deallocates the current frame, along with all its
alloca-obtained memory.

There are 2 main advantages in this stack representation. First, it means that
all the required bookkeeping is done by the graph memory subsystem (frames are
not special in this regard). Second, this interface naturally allows a high degree
of introspection in the SUT. The OS can, for example, construct an activation
frame for the main() function by using the existing make obj hypercall, instead
of requiring additional functionality from the VM.
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    pthread_join( ... )
    return 0;
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void *thread( void * )

{
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    return NULL;
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Figure 6: Interaction of activation frames and the operating system scheduler. In this snap-
shot, pthread create is about to return; as soon as an interrupt happens, the OS will update
the active frame of thread 1 to point to main, as shown by the dotted arrow. The now-orphaned
frame is destroyed by the virtual machine.

4.3. Scheduling

In a traditional software model checker, threads are first-class, verifier-
managed objects. In our virtual machine design, this does not need to be the
case: it is possible for threads to be implemented within the virtualised OS in
terms of the hypercall interface. Like other design choices in our approach, this
simplifies the VM by moving responsibility into the OS layer, where functional-
ity is easier to implement and its correctness is less critical.

In particular, the OS running in the virtual machine is responsible for pro-
viding a scheduler routine which decides what to execute in what order, and the
virtual machine uses interrupts to return control to the scheduler whenever the
user code executes a possibly visible action. Visible actions must be explicitly
marked in the bitcode. Since visible actions are explicit, the exact semantics
of what is or is not visible is not part of the VM interface: for the VM, an
explicit hypercall, either interrupt cfl or interrupt mem is the definition of
a visible action.6 The difference between those two interrupt types is described
in Section 6.1.

The variables local to the scheduler routine or any functions it calls are
not retained across multiple entries into the scheduler. Moreover, the scheduler
cannot access global variables either. Besides the transient local variables, all

6In a realistic implementation, these explicit interrupt points are inserted automatically
by the bitcode loader in suitable locations. For a formalism with shared memory, accesses to
memory locations that may be shared would constitute visible memory actions. Likewise, a
formalism where invariant loops are possible, all loops that may be invariant need to contain
a visible control flow action.
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its state must be stored in explicitly allocated heap objects. One such object
is called the scheduler state and a pointer to this object is stored in one of the
control registers. The scheduler can therefore read the value of this register
to access and modify its internal data structures. Other than the limitations
mentioned above, the OS is entirely free to organise the state information any
way it likes.

From the point of view of the state space that is being constructed, the
scheduler decides what the successors of a given state are. When the verifier
needs to obtain successors to a particular state, it executes the scheduler in that
state; the scheduler decides which thread to run (usually with the help of the
non-deterministic choice operator, see Section 4.5) and transfers control to that
thread, by instructing the virtual machine to execute a particular activation
frame (a pointer to which is stored for this purpose in the scheduler state).

4.4. Atomic Sections

In the present design, support for explicit atomic sections in the virtual
machine is not strictly necessary. Since the virtual machine supports standard
atomic memory access instructions, it is possible to implement mutual exclusion
on top of these. However, this is inefficient: it is, in general, impossible to
recover the relationship between atomic operations or explicit locks and the
memory accesses they guard (this is one of the reasons we need a model checker
in the first place). This would make a system that does not make use of atomic
sections substantially less efficient when running in the virtual machine, due to
a large number of extra interrupts.

Additionally, when static analysis can prove that a particular section of code
is protected by a mutual exclusion device (that is, all relevant memory locations
it accesses), it can insert an explicit atomic section, making subsequent verifi-
cation more efficient. Likewise, this ability of the virtual machine can be used
to implement adaptive-precision model checking, where certain operations are
assumed to be thread-safe, again making the verification process less demanding.

4.5. Non-deterministic Choice and Counterexamples

It is often the case that the behaviour of a program depends on outside
influences, which cannot be reasonably described in a deterministic fashion and
wired into the SUT. Such influences are collectively known as the environment,
and the effects of the environment translate into non-deterministic behaviour.
A major source of this non-determinism is thread interleaving – or, equivalently,
the choice of which thread should run next after an interrupt.

In our design, all non-determinism in the program (and the operating sys-
tem) is derived from uses of the choose hypercall (which non-deterministically
returns an integer between 0 and a given number). Since everything else in the
SUT is completely deterministic, the succession of values produced by calls to
choose specifies an execution trace unambiguously. This trait makes it quite
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simple to store counterexamples and other traces in a tool-neutral, machine-
readable fashion. Additionally, hints about which interrupts fired can be in-
cluded in case the counterexample consumer does not wish to reproduce the
exact interrupt semantics of the given VM implementation.

Finally, the trace hypercall serves to attach additional information to tran-
sitions in the execution graph. In particular, this information then becomes part
of the counterexample when it is presented to the user. For example, the libc

provided by DIVINE uses the trace hypercall in the implementation of standard
IO functions. This way, if a program prints something to its standard output
during the violating run, this output becomes visible in the counterexample.

5. Property Specification

An important aspect of a verifier is the specification of desirable properties
of the program. In our design, this task is largely delegated to the OS. How-
ever, there are 2 aspects of property specification that require support from the
VM. First, there are many circumstances in which the VM can detect prob-
lematic behaviour in the program that would be impractical to detect by other
means. This includes out-of-bounds memory accesses, use of undefined values,
mismatches between formal and actual arguments in call instructions and so
on. For maximal flexibility, these conditions are not directly exposed as pro-
gram properties, but are instead signalled to the OS by invoking a fault handler.
This fault handler is then free to decide how to respond to this particular fault
and whether to signal a property violation or not.

The other area where the virtual machine must be involved is the communi-
cation of the operating system with the verification algorithm. That is, the OS
must be able to signal the fact that a particular transition is an error transition
(or an accepting transition, in case of ω-regular properties). For this purpose,
a pair of bits is reserved in one of the machine state registers, corresponding
to either an error or an accepting transition. In turn, the verifier obtains this
information from the VM to inform its decisions.

5.1. Faults

When the program attempts to execute an illegal instruction, the virtual
machine will enter a designated fault handler instead of continuing execution.
The reasons why the instruction is deemed illegal are various, but they roughly
correspond to conditions checked by standard CPUs, which on POSIX systems
translate to signals. The checks done by the VM are, however, stricter than the
corresponding checks in normal execution environments. This includes more
granular information about objects, impossibility to overflow a pointer from
one object into another, tracking of undefined values, checks on correct use of
variadic function arguments, immutability of constant data, validity of target
addresses in branch instructions and strict checking of validity of heap opera-
tions. Additionally, all uses of the hypercall interface are strictly checked for
conformance with the specification.
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Faults are, in principle, not fatal: the fault handler may choose to continue
execution despite the raised error. For this reason, the VM passes a continua-
tion7 to the fault handler, which it may choose to invoke; alternatively, the fault
handler may abort execution and report the error to the verifier, and through
that, to the user. This mechanism is especially important when a fault arises
due to a control flow instruction – typically, the target of a conditional branch
instruction could depend on an undefined value. In this case, the continuation
is chosen as if the value was defined and had the specific value observed at the
point of the fault.8

5.2. Monitors and LTL

Thanks to the flexible scheduler design, it is very easy to implement prop-
erties as monitors, that is, additional finite-state automata which synchronise
with the executing program to observe its behaviour. These automata can then
either flag error transitions (for safety verification) or mark accepting transitions
(for liveness verification). Classical algorithms for automata-based LTL model
checking can then be used to verify LTL properties translated into monitors.

6. Reduction and Abstraction

In our earlier work [17], we described a number of reduction techniques tai-
lored toward verification of LLVM bitcode. Many of these can be recovered in
the new VM-based approach without significant semantic changes. However,
some of the technical solutions are rather different. In the case of τ+reduction,
we have opted to insert interruption points (instructions) explicitly into the
program, instead of co-opting memory access instructions for this purpose. The
advantages are two-fold: it substantially simplifies tools which work with coun-
terexamples, since they do not need to know anything at all about τ reduction
– the trace from the verifier can, without significant expense, include the infor-
mation whether a given interrupt fired or did not fire. This way, replaying the
counterexample involves simplified implementations of both choose and of the
interrupt * family of hypercalls, where they simply read the next entry in the
counterexample trace to either obtain the return value or to decide whether an
interrupt should fire.

6.1. τ -Based Reductions

Within the verifier, the implementation of interrupt mem and
interrupt cfl are where most of the τ reduction logic is implemented.
The interrupt mem hypercall signals to the VM that a memory operation is

7This consists of the code pointer and the frame where execution would continue if the
instruction succeeded.

8All undefined values come into existence with 0 as their as if defined value, but may be
combined with other (defined) values to obtain undefined but non-zero values. For example,
for int a, b = a + 7 the value of b would be undefined 7.
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about to be executed, along with the affected address and type of memory
access. On the other hand, interrupt cfl signals that a loop in the program
state space may have formed. In a simple implementation, both these hyper-
calls could simply cause an unconditional interrupt, without compromising
correctness in any way. The additional information (the type of interrupt – cfl

vs mem – and the memory location and access type in the latter) is provided in
order to improve efficiency. Clearly, if an interrupt can be safely suppressed,
fewer distinct program states need to be stored, saving both time and space.

In our current version, the control flow interrupts are treated as described
in [17], that is, the VM keeps track of program counter values that execution
passed through, and only causes an interrupt if the particular instruction was al-
ready evaluated once within the given state space transition. In addition to [17],
the new implementation only stores program counter values that correspond to
interrupt cfl calls, reducing evaluation overhead for other instructions.

Likewise, memory interrupts can often be suppressed: first, multiple inde-
pendent loads can be all coalesced until a store instruction is encountered, or
until a load from an address that was already used is repeated [19]. That is, an
interrupt is only performed for store-type instructions, or for repeated load

instructions.
Second, some stores and some repeated loads are also invisible; in particular,

when a memory location is only reachable from a single thread, all interrupts
related to that location can be suppressed [17]. We say that a memory object is
thread private when no other thread is in possession of a pointer to this object.
Since only one thread can access the memory, changes in this memory cannot be
observed by any other thread. Since the VM maintains the entire memory as an
oriented graph, a simple heuristic can be used to suppress interrupts related to
such non-observable memory operations. In particular, the VM can maintain a
set of shared objects – those that are not thread private. The invariant property
of the set of shared objects is that it is closed under reachability along pointers
(edges of the memory graph). When the program starts, global variables (which
are accessible from any thread) are initially included in this set. Likewise, when
a new thread is created and is given access to some objects, those objects are
included in the set. All other operations simply maintain the invariant: when a
pointer to object A is written to B and B is shared, all objects reachable from
A (including A itself) are added to the shared set.

Since the VM has no concept of threads, it is the responsibility of the OS
to inform the VM when new objects become shared via thread creation. That
is, when a pointer to a previously private object is written directly to another
private object, owned by a different thread, the operating system must call the
obj shared hypercall on this pointer. Outside of the operating system, the only
way to share new objects is by writing their addresses into an already shared
memory location.

6.2. Symmetry-Based Reductions

Like equivalent thread interleavings in τ reductions, heap symmetry is an
important source of redundancy in the state space. Since the virtual machine
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has access to the graph structure of memory, it can easily compute a canonic
form for comparison purposes. One simple approach is to execute DFS from the
root object (that is, the object corresponding to the state of the scheduler) and
sequentially assign numbers to objects in pre-order, adjusting pointers along the
way. Another is to use a mark-and-copy garbage collector to compact the entire
memory into a contiguous chunk and store this chunk in a hash table – this is
basically the approach DIVINE 3 uses. Both these approaches have an important
problem though: the meaning of values derived from pointer-to-number conver-
sions and the pointer ordering are not preserved during execution. In some
cases, like hash tables with pointer-based keys, this can cause incorrect results.
Therefore, the recommended way to implement heap symmetry reduction is to
only use the canonic form for comparison purposes, but for successor generation,
store a particular non-canonic form. This way, continuity of pointer-derived val-
ues can be guaranteed along any given execution. Of course, more sophisticated
– and more efficient – approaches based on partial hashes are possible.

Additionally, since all persistent data in the program are now stored uni-
formly in the graph structure, the benefits of symmetry reduction also extend
to stacks, global variables and other auxiliary data structures. This effect there-
fore also makes it possible to avoid exploring states where multiple instances of
the same thread only differ in order of execution among themselves.

6.3. Abstractions and Symbolic Data

In addition to compatibility with important state space reductions, the
proposed virtual machine works seamlessly with transformation-based abstrac-
tions [20]. While in theory, all the environment-induced non-determinism is the
same, reading a number from the environment causes non-deterministic branch-
ing of a very high degree (corresponding to the number of distinct values that
can be represented by a given data type, say 232 for a typical int value). This is
clearly impractical. For this reason, it is important that our virtual machine can
be co-opted for abstraction-based model checking. Since the method described
in [20] works by transforming code ahead of time, there are only two require-
ments on the virtual machine: first, it needs to support non-deterministic choice,
since abstracted operations could have indeterminate results; second, it must
be able to provide machine-readable counterexamples (ideally in a form that is
easy to process). Both these requirements are easily fulfilled in the proposed
design (see also Section 4.5).

Finally, formula- or decision-diagram-based symbolic data can be repre-
sented as a type of abstract domain, and as such is subsumed by the above.
The difference is that when symbolic data is used, this must be reflected in
the decision procedure – at minimum, state comparison must be altered to use
semantic formula equivalence on the symbolic portion of the state, instead of
structural comparison used for explicitly-represented portions of memory. This
translates to an additional requirement for the virtual machine, that is, the in-
terface with the verification core needs to support a sufficiently simple method
to read and interpret the heap. However, this is a purely technical problem:
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nothing in the semantics of the VM prevents such interface, and our reference
implementation in DIVINE 4 does provide this access.

7. Implementation & Evaluation

Besides providing the specification of the interface and (informal) semantics
of the virtual machine, we also make available the source code of a reference
implementation.9 While the DiVM language is, in principle, based on the LLVM
instruction set and therefore our implementation relies on LLVM for C and C++
compiler frontends and for code transformation, in principle, the hypercall in-
terface could be adapted to other instruction sets. This is because it is fully
possible to realize the hypercall interface as C functions, and as such, it could
be combined with a different instruction set and used from any C-compatible
programming language. In addition to the VM itself, we provide a C++ imple-
mentation of a small, verification-focused operating system, DiOS.10 The main
focus of DiOS is to support verification of C and C++ programs written using
POSIX APIs.

There is an additional implementation-related benefit of DiVM. Namely, the
virtual machine itself does not depend on LLVM libraries. Since LLVM does not
provide a stable interface and constitutes a substantial dependency, not linking
to LLVM makes the resulting code more portable and easier to build. The com-
piler and transformation passes of course still require the LLVM infrastructure,
but these can be kept separate from the model checking tool itself.

7.1. Benchmarks

To evaluate the work presented in this paper, we have used a set of 1045
benchmarks – each of is a C or a C++ program. Out of those programs, the
majority (926) is correct, while 119 contain an error. Most of the programs are
C++, with the exception of the “svc-pthread”, “pt-w32” and “libc-std” cate-
gories, which are written in standard C (and they make use of POSIX threads,
outside of the “libc-std” category). The “alg” category includes sequential al-
gorithmic and data structure benchmarks, the “courses” category contains unit
tests for student assignments in various C++ courses, including concurrent data
structures and other parallel programs, “libcxx” contains a selection of the
libc++ testsuite, “bricks” contains unit tests for various C++ helper classes,
including concurrent data structures, “llvm-bench” category contains programs
from the LLVM test-suite and the “svc-pthread” category includes pthread-based
C programs from the SV-COMP benchmark set. The “libc-std” category con-
tains tests of libc functionality, while pt-w32 test the POSIX threading API.
The “other” category is a selection of programs which did not fit any other
category.

9Instructions for downloading the source code can be found at http://divine.fi.muni.

cz/download.html. The code is covered by the ISC (simplified BSD) open-source licence.
10Available from the same source repository.
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In most of the programs, it was assumed that malloc and new never fail,
with the notable exception of part of the “bricks” category unit tests.

7.2. Results

We have executed all the benchmarks described in Section 7.1 with 4 tools.
The approach of the present paper is represented by DIVINE 4, an explicit-state
model checker based on DiVM. Our primary comparison was with DIVINE 3,
which is an earlier version of this tool, in some sense a predecessor to our
current approach based on DiVM. Two variants of DIVINE 3 were used, because
in the course of evaluation, it was discovered that DIVINE 3 in its original version
suppresses certain valid thread interleavings. Since this omission did not lead to
any false negatives on the benchmark set, we include both the original results
(with the interleaving incorrectly suppressed) and a fixed version (marked as
“D3+p” in the comparison tables).

The results are very promising: we did not see any substantial regression
caused by the higher abstraction level and increased isolation of components in
DIVINE 4. Quite to the contrary, in many cases, the new approach is substan-
tially more efficient, which we ascribe to better isolation of components: smaller
and simpler components are usually easier to optimise than large, complex ones.

The verification time and state count for DIVINE 4 for all models are sum-
marised in Table 2. This is the baseline to which all other tools are compared.

Table 2: Benchmark results for DIVINE 4, an explicit-state model
checker based on DiVM.

tag models D4 search D4 states

bricks 295 3:07:18 7233 k
courses 28 33:30 5399 k
libcxx 461 42:37 2182 k
libc-std 81 26:53 3787 k
pt-w32 10 22:30 1680 k
llvm-bench 22 2:42:44 10.7 M
svc-pthread 17 15:40 1685 k
other 12 4:29 298.8 k
total 926 8:15:44 33.0 M

7.3. Comparison to DIVINE 3

The previous version of DIVINE is based on a custom LLVM bitcode inter-
preter, with an ad-hoc set of extensions. Unlike DiVM, it has a built-in notion
of threads based on asynchronous execution and special operations for thread
creation and management, on which a pthread-compatible API is built. Like
DIVINE 4, it is an explicit-state model checker and also contains a large subset
of standard C and C++ libraries. However, its libraries are less complete, which
is part of the reason more than a half of the models could not be verified with
DIVINE 3.
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Comparison of verification time and the number of states explored is shown
in Table 3. In this case, we can see that DIVINE 4 is much faster in all benchmark
categories with the exception of “svc-pthread” and “pt-w32” which both focus
on threaded programs and are written in plain C. Additionally, DIVINE 4 reduced
the state spaces more successfully, with the sole exception of “pt-w32”.

As outlined above, the difference in performance with thread-heavy models
was tracked down to an omission of a particular set of interleavings in DIVINE 3.
When this problem is corrected, the time and state space size difference in “pt-
w32” is reversed (with 2 models now running out of memory in DIVINE 3). The
results of this comparison are shown in Table 4.

Table 3: Comparison of DIVINE 4 and DIVINE 3. Out of the 926
error-free models, it was only 457 possible to verify 457 with DI-
VINE 3, typically due to incomplete standard libraries.

tag models D4 search D3 search D4 states D3 states

courses 1 0:00 0:02 57 287
libcxx 344 20:15 5:48:12 787.4 k 4190 k
libc-std 76 0:51 1:27 33.7 k 54.1 k
llvm-bench 3 2:11 27:17 306.6 k 2351 k
pt-w32 10 22:30 6:53 1680 k 542.7 k
svc-pthread 16 15:24 27:15 1658 k 4123 k
other 7 4:03 9:22 263.4 k 302.6 k
total 457 1:05:17 7:00:33 4729 k 11.6 M

Table 4: Comparison of DIVINE 4 and modified DIVINE 3, where
additional interleavings were taken into account (original DIVINE 3
did not allow newly starting threads to be delayed).

tag models D4 search D3+p search D4 states D3+p states

courses 1 0:00 0:02 57 287
libcxx 342 17:08 4:20:52 687.8 k 3605 k
libc-std 76 0:51 1:29 33.7 k 54.1 k
llvm-bench 2 1:31 17:18 306.5 k 808.4 k
pt-w32 8 4:54 11:44 414.9 k 849.3 k
svc-pthread 12 0:56 0:50 113.9 k 183.2 k
other 7 4:03 9:23 263.4 k 302.6 k
total 448 29:27 5:01:40 1820 k 5803 k

7.4. Comparison to ESBMC 4.1

The other tool we have chosen for comparison is ESBMC, an SMT-based
symbolic model checker with support for C++. Part of the reason for this
choice was that many of our benchmarks are C++, and most tools, even those
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based on LLVM, can only handle C. Unfortunately, the C++ support in ESBMC
is incomplete, and only supports older C++ revisions (C++98, but C++11 is
already in widespread use). Likewise, the support for standard C++ library is
quite limited in ESBMC, since it was only able to verify 42 out of over 400 tests
in the “libcxx” category. Another major problem we encountered in ESBMC is
inefficient support for threads, which can be seen in the very large time difference
in the “svc-pthread” category. Overall, it was possible to verify only a small
number of models and the models that could be verified often took much longer
in ESBMC than they did DIVINE 4.

Table 5: Comparison of DIVINE 4 and ESBMC 4.1.

tag models D4 search ESBMC search D4 states

libcxx 42 0:23 0:07 217
libc-std 6 0:03 0:03 322
llvm-bench 5 8:18 1:56:37 1819 k
pt-w32 1 0:00 0:00 7
svc-pthread 4 1:35 46:43 280.8 k
other 2 0:01 0:08 390
total 60 10:22 2:43:39 2101 k

8. Conclusion

We have shown that many features expected in an explicit-state model
checker are readily recovered in the proposed virtual-machine-based approach.
In many cases, the solutions are simpler and cleaner and without a substantial
performance penalty, as demonstrated in experiments. Additionally, both the
greater overall simplicity and the fact that a large portion of verification-related
code can be executed in the strict, error-checking virtual machine, contribute
to appreciable improvements in robustness.

Rather importantly, the proposed virtual machine interface is compatible
with all the important techniques that improve efficiency of explicit-state model
checking – including reductions based on partial orders and path compression
(τ -reductions) and reductions based on heap configuration symmetries. Like-
wise, it can be easily combined with abstraction techniques based on program
transformation.

References
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