
The Exception Handling Riddle:

An Empirical Study on the Android API

Maria Kechagiaa,b,1, ,̊ Marios Fragkoulisa, Panos Louridasa, Diomidis
Spinellisa

aAthens University of Economics and Business,
76 Patission str., 104 34 Athens, Greece

bDelft University of Technology,
van Mourik Broekmanweg 6, 2628 XE, Delft, Netherlands

Abstract

We examine the use of the Java exception types in the Android platform’s
Application Programming Interface (API) reference documentation and their
impact on the stability of Android applications. We develop a method that
automatically assesses an API’s quality regarding the exceptions listed in
the API’s documentation. We statically analyze ten versions of the Android
platform’s API (14–23) and 3,539 Android applications to determine incon-
sistencies between exceptions that analysis can find in the source code and
exceptions that are documented. We cross-check the analysis of the Android
platform’s API and applications with crash data from 901,274 application ex-
ecution failures (crashes). We discover that almost 10% of the undocumented
exceptions that static analysis can find in the Android platform’s API source
code manifest themselves in crashes. Additionally, we observe that 38% of
the undocumented exceptions that developers use in their client applications
to handle API methods also manifest themselves in crashes. These findings
argue for documenting known might-thrown exceptions that lead to execution
failures. However, a randomized controlled trial we run shows that relevant
documentation improvements are ine↵ective and that making such exceptions
checked is a more e↵ective way for improving applications’ stability.

Keywords: exceptions, application programming interfaces, documentation

˚
Corresponding author

Email address: mkechagia@aueb.gr; m.kechagia@tudelft.nl (Maria Kechagia)
1
Part of this work was conducted in the Delft University of Technology.

Preprint submitted to Journal of Systems and Software February 18, 2018

*Manuscript
Click here to view linked References

1. Introduction

Exceptions aim to assist developers to program robust software with lim-
ited execution failures (crashes) [1, 2, 3]. Exception types vary based on
programming languages’ design and syntax. Two opposing historical cases
are C and Ada. C has no exception handling mechanism but error codes
that manifest at runtime when an application programming interface (api)
fails. On the other hand, Ada supports a mechanism that checks for excep-
tions at compile time. Modern programming languages, such as C++, C#,
Objective–C, and scripting languages (Python, Ruby, php) o↵er exception
handling mechanisms but without enforcing developers to handle exceptions.
However, Java, which we take into account in this paper, borrows parts
from both C and Ada’s design concept supporting unchecked, compile time
checked exceptions, and errors.

Checked exceptions refer to “exceptional conditions that a well-written
application should anticipate and recover from.”2 A method must mention
the checked exceptions that throws, in its signature. When compiling a
program, the compiler ensures that the callers of this method either catch
the exceptions or they explicitly mention, using the throws keyword, the
exceptions in their own method signatures (i.e. developers are always forced
to handle checked exceptions in their programs)[4].

On the other hand, unchecked exceptions are exceptional conditions
that can be either external (Error) or internal (RuntimeException) from
which applications usually cannot recover, resulting to crashes. In prac-
tice, api designers should explicitly throw unchecked exceptions, listing their
types in the api reference documentation, when the former believe that
client applications’ developers can overcome from particular execution fail-
ures [5, 6]. The usefulness of well-designed and documented unchecked excep-
tions is twofold. Either developers can catch unchecked exceptions to prevent
their applications from recoverable crashes or they can consider documented
unchecked exceptions in post-mortem analysis [7].

Theoretically, exception handling can improve applications robustness.
However, there are many arguments that confirm the challenges that are

2
https://docs.oracle.com/javase/tutorial/essential/exceptions/catchOrDeclare.html.

All links were accessed on the 2nd of August, 2017.

2

associated with these mechanisms, especially concerning Java apis. Briefly,
we refer some of them.

• It is impossible for api designers and clients to document and han-
dle, respectively, the right exceptions in order to prevent all possible
application crashes [8, 9].

• It is di�cult for developers to handle crash causes mainly associated
with generic exceptions (e.g. Exception, RuntimeException) [10, 11,
12].

• Exception handling code is buggy and of poor quality [13, 14, 15].

• Many caught exceptions can increase a program’s complexity [16, 17,
18].

In this context, we investigate: 1) the exception handling mechanisms of a
large Java api, the Android platforms’ api, to understand when and how api
designers use exceptions and 2) how api methods are used with exceptions
in Android applications’ source code. Our goal is to provide suggestions
about exceptions that should be listed in an api documentation reference.
We hope that our approach can simplify current exception handling practices
and improve client applications’ stability (i.e. executions with fewer failures).

To meet our objectives, we conducted an empirical study on the Android
ecosystem. Specifically, we processed: 1) ten versions of the Android plat-
form’s api (levels 14–23) to identify might-thrown exceptions, 2) more than
three thousand Android applications to find what exceptions client appli-
cations’ developers use to handle called api methods, and 3) a dataset of
almost one million stack traces from Android application crashes to cross-
check apis associated with execution failures. We applied static analysis
on the Android api and on client applications, as well as post-mortem root
cause analysis on the stack traces. Then, we pinpointed api methods that
can cause application crashes and we identified undocumented exceptions
that both api designers and clients can use to prevent client applications
from further execution failures related to those api methods. Finally, to
evaluate our approach and suggestions, we run a randomized controlled trial
on Android and Java programmers.

Overall, we discovered that almost 10% undocumented exceptions that
static analysis can find in the Android platform’s api source code manifest

3

themselves in crashes. Similarly, we observed that 38% undocumented excep-
tions that developers use in their client applications to handle api methods
manifest themselves in crashes. Even though these findings argue for docu-
menting known might-thrown exceptions that lead to execution failures, our
trial revealed that documentation (i.e. if an unchecked exception is docu-
mented or not) does not a↵ect developers on how they handle possible crash
causes. Taking into account related work [1, 19, 20, 21, 3] we also argue
that some exceptions (e.g. those related to invalid user inputs and erroneous
resource identifiers) should be converted to checked. Alternatively, the type
system [22] should be used to improve the robustness of modern applications
and the productivity of client applications’ developers.

Briefly, for the identification of uncaught exceptions in ml programs,
Kwangkeun and Sukyoung implemented static analysis [19] and Leroy and
Pessaux introduced type-based analysis [1]. Additionally, Endrikat et al. [21]
and Mayer et al. [20] conducted empirical studies on developers to evaluate
static systems. They found that these systems can act as implicit documen-
tation benefiting developers’ productivity based on the context. This is in
line with our observations from the controlled trial we conducted. Finally,
Zhang et al. [3] introduced the concept that an exception should be created as
checked based on the context and not on its type. Our findings also confirm
this argument.

Our research contributions are the following:

• an approach that suggests undocumented exceptions that risky api
methods might throw at runtime, and these exceptions should be listed
(i.e. be documented) in the api reference documentation,

• an analysis of the evolution of the Android platform’s api regarding its
exception handling mechanisms,

• an empirical study of the exception types that client applications’ de-
velopers catch when calling methods from the Android api,

• a randomized controlled trial for the evaluation of the e↵ectiveness of
di↵erent flavors of exceptions and api reference documents that may
help developers in writing better code and less crash-prone applications.

Our recommendations can advance the reliability of apis and the produc-
tivity of client applications’ developers. api designers can consider listing of

4

the suggested exceptions in the Android platform’s api. Client applications’
developers can handle api methods, such as those presented in Table 13,
using the exceptions we recommend to increase the robustness of their ap-
plications.

The structure of the remainder of the paper is organized as follows. Sec-
tion 2 presents related work and Section 3 demonstrates some motivating
examples of our study. Section 4 describes our experimental setup (data,
methods, and metrics), Section 5 presents our findings, Section 6 refers to
the method we used to evaluate our approach and findings, Section 7 lists
the threats to the validity of our research. Finally, Section 8 outlines our
conclusions and plans for future work.

2. Related work

Our study is related to previous work in the following areas: 1) exception-
flow analysis, 2) exception handling evaluation, 3) mining of crash data, 4)
api evaluation, and 5) software applications’ robustness.

2.1. Exception-flow Analysis
Many techniques and tools can be used for the identification of possi-

ble exceptions that a method can throw [23]. Robillard and Murphy imple-
mented a static analysis tool, called Jex, that provides information about the
exception types that might arise from Java systems at runtime [8]. Vallée-
Rai et al. developed the Soot Java byte code optimization framework that
can find might-thrown exceptions for api methods, using intra-procedural
analysis [24]. Fu and Ryder also presented an exception-flow static analy-
sis technique, based on Soot, that computes chains of semantically-related
exception-flow links for the understanding of the exception handling architec-
ture of a system [25]. Apart from static analysis, researchers have constructed
tools for finding might-thrown exceptions, based on dynamic analysis (Phos-
phor [26]) and model checking (Java PathFinder [27]). Here, we choose to
use the Soot framework [24] on a large scale analysis of Android applications
in order to identify might-thrown exceptions from the Android platform’s
api source code. We also implement an inter-procedural analysis approach
that Soot does not currently support (see Section 4.2.1).

2.2. Exception Handling Evaluation
Several works have surveyed developers regarding the understanding and

usefulness of exception handling mechanisms. Most of the studies show that

5

programmers resist to use exception handling because they found it di�-
cult [10, 11, 12]. Also, research findings reveal that exception handling code
is complex [16, 17, 18] and fault prone [13, 14]. Taking into account previ-
ous works, we make recommendations on specific documented exceptions to
help developers to improve their understanding of exception handling so that
they can write less crash-prone applications. To the best of our knowledge,
we are the first that conduct a randomized controlled trial to validate our
suggestions regarding e↵ective exception handling.

2.3. Stack Trace Mining

For stack trace mining, researchers have used heuristic methods, natu-
ral language processing, as well as machine learning. In particular, Dang et
al. presented a technique based on call stack matching [28]. This technique
measures the similarities of call stacks and assigns the reports to appropriate
classes or “buckets”. Also, Kim et al. proposed an approach based on crash
graphs to provide an aggregated view of the crashes [29] and Liblit and Aiken
studied the reconstruction of execution paths based on partial execution in-
formation like backtracks to find the root crash causes [30]. Recently, Coelho
et al. used heuristic rules to mine exceptions from issues on Android projects
that were hosted on GitHub and presented descriptive statistics based on
di↵erent exception types [31]. In our study, we use both “bucketing” and
heuristic rules to find method calls in the stack traces that lead applications
to crashes. Our techniques are based on a previous work where we mined
stack traces to classify the main reasons behind the execution failures of one
million Android application crashes [32].

2.4. API Evaluation

A large body of research is dedicated to the development of usable apis
for increasing developers’ productivity and client applications’ robustness.
Robillard et al. have published a survey on tools and mining techniques
regarding apis’ analysis [33]. In the following paragraphs, we list works
regarding the usability of modern apis and their documentation, discussing
the contributions of this paper.

2.4.1. API Usability
The assessment of apis’ usability is a popular topic within the software

engineering community. Caracteristically, Clarke developed a framework of
cognitive dimensions that can be used for the assessment of the usability of

6

large apis [34]. Recently, Scheller and Kühn designed a framework, called api
Concepts Framework, for the automated measurement of apis’ usability [35].

In this context, several works present techniques for assisting developers
to use apis. Zhong et al. implemented a tool called mapo to mine and
recommend api usage patterns [36]. Also, Buse and Weimer developed an
algorithm that synthesizes human-readable api usage examples [37]. In a
recent work, Santos and Myers presented a tool called Dacite that helps
developers to discover api elements and relationships among them [38]. Using
this tool api designers complement apis with design annotations, from which
code completion proposals regarding object creation and manipulation are
provided to the clients.

Additionally, many empirical studies have been conducted for the evalu-
ation of apis’ usability. Qiu et al. analyzed five thousand open source Java
projects to understand the use of Java and third-party apis [39]. For their
analysis they used abstract syntax trees and measured the usage of metrics,
such as frequency, popularity, and coverage. Furthermore, Endrikat et al.
run a controlled experiment and an exploratory study to compare the im-
pact of the usage of documentation and static or dynamic type systems at
software production level [21].

This paper is closely related to the concept of the work of Endrikat et
al. [21], because we also run here a randomized controlled trial and an em-
pirical study on a large api to improve the latter’s usability. However, we
evaluate the use of checked and documented unchecked exceptions.

2.4.2. Documentation Quality
Documentation quality is associated with developers’ productivity and

e↵ective software maintainability. Robillard and DeLine surveyed develop-
ers and found that an api’s reference documentation with code examples,
use scenarios, good formatting and presentation, can increase programmers’
productivity and help them to overcome apis’ documentation learning bar-
riers [40]. Similarly, Maalej and Robillard pinpointed knowledge patterns in
api reference documentation and grouped them into a taxonomy that can be
used for apis’ evaluation and content organization [41]. Also, Zhong and Su
developed an approach called DocRef that identifies documentation errors
(e.g. broken code names and obsolete code samples) to prevent developers
from reading misleading api documents [42].

Additionally, recent studies indicate that there is a gap between apis’
documentation and source code, confusing developers of client applications.

7

In particular, McDonnell et al. conducted a study on the co-evolution be-
havior of the Android api and dependent applications [43]. They found that
client applications slowly adapt with the pace of api’s evolution and that the
api usage adaptation code can lead to more defects. Taking into account
inconsistencies between apis’ source code and documentation, Dagenais and
Robillard proposed a technique for automatic discovery of documentation
patterns [44]. Their tool tracks source code changes and determines which
changes are significant enough to be documented.

Several tools have been also constructed for the identification of missing
or misleading information from apis’ documentation regarding exceptional
conditions. Buse and Weimer developed an automatic approach based on
symbolic execution and inter-procedural data flow analysis that identifies
might-thrown exceptions and their causes of manifestation [45]. The causes
can be used to generate more informative documentation about possible run-
time exceptions. Also, Saied et al. [46] examined the existence of variables’
constraints in the reference documentation of a set of Java apis and made
related design suggestions.

We add to the previously discussed works by statically identifying insuf-
ficient documentation about exceptions that are associated with recoverable
software crashes and we make relevant recommendations for re-documentation.
We also analyze several versions of the Android api as well as applications to
study how developers use apis, such as the Android one. However, we focus
on the examination of the design and use of exception handling mechanisms.

2.5. Android Applications’ Robustness

Software responsiveness and robustness are crucial features for modern
mobile applications’ user experience and success.

To improve applications’ stability, researchers have invented testing meth-
ods to predict possible execution failures. In particular, Machiry et al. de-
veloped a system, called Dynodroid, that generates inputs for event-driven
applications to find bugs [47]. Similarly, Moran et al. implemented an auto-
mated approach, called CrashScope, for testing Android applications using
generated user inputs to trigger, identify, and reproduce crashes [48]. Like-
wise, Yan et al. proposed a novel approach for systematic testing for resource
leaks in Android software [49] and Anand et al. presented a technique based
on concolic testing that generates sequences of events to show the e↵ective-
ness of mobile applications [50].

8

Several empirical studies refer to the assessment of the reliability of the
Android api itself, as well as its client applications’ robustness. For instance,
Felt et al. [51] applied static analysis on Android’s source code to identify
api permission leaks. In addition, Gorla et al. [52] used similar analysis’
techniques and found Android applications that perform di↵erent actions
from their descriptions (e.g. a weather application that sends messages).

Studies have been also conducted on the evolution of the Android api.
Linares-Vásquez et al. [53] examined the implementation of di↵erent An-
droid api versions and argued that bug fixes and changes in the api can
have negative impact on the ratings of Android third-party applications. Li
et al. analyzed several versions of the Android platform’s api and Android
applications to study accessible and inaccessible (hidden) apis [54]. The
authors searched how third-party applications adopt inaccessible apis and
they found that apis are di↵erently used among malicious and benign ap-
plications. Recently, Oliveira et al. [55] investigated the evolution of used
exception handling mechanisms in Java and Android applications. They ex-
amined the impact of these mechanisms’ changes on the robustness of the
analyzed applications. The core finding of that study is in line with the ob-
servations we present here, suggesting that current exception handling mech-
anisms should be improved to support developers’ attempts on maintaining
exception handing code and client applications’ robustness.

In this paper, we present an empirical study on the evolution of the
Android ecosystem, making suggestions on exception handling mechanisms
for the correct use of api methods. Contrary to the related work, we examine
di↵erent sources of data (apis, applications, and stack traces) to investigate
how the use of exception handling mechanisms impact client applications’
robustness. We hope that our suggestions can help in the improvement of
existing exception handling mechanisms, which are crucial for the stability
and responsiveness of client applications.

3. Motivating Examples

In this section, we illustrate a representative example of an unchecked
exception that is not listed in the documentation of an api method—even
though the exception is declared as might-thrown in the source code of this
method. If a developer is not careful enough to catch this exception, the
application will crash in case of an invalid method argument.

9

Listing 1: Source code snippet from the insert method
/**
* Inserts a row into a table
* at the given URL.
*
* If the content provider supports
* transactions
* the insertion will be atomic.
*
* @param url The URL of the table
* @param values The initial values
* for the newly inserted row.
* ...
* @return the URL of the newly created row.
*/
public final Uri insert(Uri url, ContentValues values) {

IContentProvider provider = acquireProvider(url);

if (provider == null) {

throw new IllegalArgumentException("Unknown URL" + url);

}

try {

...

return createdRow;

} catch (RemoteException e) {

// ...
return null;

} finally {

releaseProvider(provider);

}

}

Figure 1: Android api reference documentation for the insert
method

10

Listing 2: Stack trace caused by the insert method
1 dalvik.system.NativeStart.main

2 com.android.internal.os.ZygoteInit.main

3 com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run
4 java.lang.reflect.Method.invoke

5 java.lang.reflect.Method.invokeNative

6 android.app.ActivityThread.main

7 android.os.Looper.loop

8 android.os.Handler.dispatchMessage

9 android.view.ViewRootImpl.handleMessage

10 android.view.ViewRootImpl.processInputEvents

11 android.view.ViewRootImpl.handleMessage

12 android.view.ViewRootImpl.deliverPointerEvent

13 android.view.View.dispatchPointerEvent

14 com.android.internal.policy.impl.PhoneWindow$DecorView.dispatchTouchEvent
15 android.inputmethodservice.SoftInputWindow.dispatchTouchEvent

16 android.app.Dialog.dispatchTouchEvent

17 com.android.internal.policy.impl.PhoneWindow.superDispatchTouchEvent

18 com.android.internal.policy.impl.PhoneWindow$DecorView.
superDispatchTouchEvent

19 android.view.ViewGroup.dispatchTouchEvent

20 android.view.ViewGroup.dispatchTransformedTouchEvent

21 android.view.ViewGroup.dispatchTouchEvent

22 android.view.ViewGroup.dispatchTransformedTouchEvent

23 android.view.View.dispatchTouchEvent

24 com.example.onTouchEvent

25 com.example.methodA

26 com.example.methodB

27 com.example.methodC

28 android.content.ContentResolver.insert

29 !java.lang.IllegalArgumentException

Listing 1 shows a source code snippet from the method insert of the
Android api (level 15). When passing an unknown url to the method, an
IllegalArgumentException will be thrown. However, this information is
not documented in the javadoc comments of the insert method. There-
fore, as Figure 1 illustrates, in the online reference of the Android api the
IllegalArgumentException is not included (undocumented exception).
This means that the developer of a client application that uses the insert
method is not explicitly informed about a possible crash related to an illegal
url. Novice or careless developers could be totally unaware about this and
they will not guard their applications from such crashes—or they would apply
the bad practice of catching generic fault-prone exceptions like Exception
and Throwable [56].

Listing 2 shows the result of an application that has been crashed (the
stack trace is sanitized according to the methods presented in [32]) because

11

Figure 2: Android api reference documentation for the createView
method

of a wrong url (see lines 23, 27, 28). Looking at the stack trace (Listing 2)
and going back to the api reference (Figure 1), it is not straightforward for
one to understand the cause of the crash (the cause is not explained in the
documentation.) Thus, we argue, here, that exceptions that can be used
for recovering from an application crash should be explicitly declared in the
api reference; otherwise, the api reference documentation makes debugging
di�cult and leaves developers unaware of catching exceptions associated with
(recoverable) crashes.

In addition, we hypothesize that if an unchecked exception is worth doc-
umenting sometime, then, all known might-thrown unchecked exceptions
should be worth documenting. For instance, for the createView method,
in Figure 2, the unchecked exception InflateException is correctly listed
in the api reference (documented exception). On the contrary, for the
method insert, in Figure 1, the unchecked exception IllegalArgument-
Exception is missing from the api reference; however, it is mentioned in a
throw new statement (see Listing 1).

12

S: Might-thrown
exceptions that
static analysis can
find in API source
code

P: Exceptions
developers use in their
client programs to
handle API methods

C: Exceptions
manifested in
crashes

D

D

D

U

U

U

U

D

U

D

D

D D

U

D

U
U

U

U

U

U

D
D

D
D

D
DU UU U

U

UU
U

D

U

D: Documented exceptions

U: Undocumented
exceptions

U
U D

D

D

U
U

D
D

D

U

U

U U

D

D

D DU
U U

U

U
DD

U

D
U

U

Figure 3: Examined sets

4. Experimental Setup

In this section, we present the data, the methods, and the metrics we
used in our empirical study.

4.1. Data

For our study, we used three di↵erent data sources: 1) the Android plat-
form, 2) Android applications, 3) crash data from Android applications. Fig-
ure 3 illustrates our data sets (U and D are elements of the sets of Docu-
mented (D) and Undocumented (U) exceptions) and Table 1 explains the
elements (exceptions) of each set.

Regarding the Android platform, we used ten versions of the Android api,
from level 14 to level 23. We chose these api levels for three reasons: 1) these
versions were available through the Android sdk manager, 2) from version 14
the Android api di↵ers a lot from previous versions, and 3) the majority of

13

Table 1: Exceptions for Analyzed API Methods

Set Mined Exceptions
Documented (D) documented exceptions
Exceptions
Undocumented (U) undocumented exceptions
Exceptions
App Programs (P) exceptions (in try-catch constructs) used

for handling called api methods
in client programs (applications)

API Source (S) exceptions (in throw new statements) that
intra-procedural static analysis can find
in api source code and
propagated might-thrown exceptions that
inter-procedural static analysis can find
in api source code

Crashes (C) root exceptions in crash data and
api exceptions in crash data

our applications and crash reports were associated with the Android api level
14 or later. We selected the Android platform as the subject of our research,
because it is available as open source code and millions of developers around
the world use it to develop applications.

In total, from all the examined api versions, we analyzed 309,394 method
signatures from public classes (with embedded classes) that belong to the
android package of the Android source code. Table 2 lists the number of
analyzed methods per Android api level. In particular, we examined api
methods that have public and protected modifiers, as well as abstract
methods. However, we excluded native methods because we had limited
information about them. As far as exceptions are concerned, we took into
account all the types of the found exceptions (checked and unchecked).

Additionally, we used 3,539 Android applications that use Android api
versions from 14 to 23. We downloaded the applications (playdrone-apk-e8)
from Archive.org3 which hosts Android applications from Columbia Univer-
sity’s PlayDrone project [57]. We chose to analyze Android applications, in

3
https://archive.org/details/android apps

14

Table 2: Examined Android Versions

API level API
Methods
(#)

Abstract
Methods
(#)

Documented
Exceptions
(%)

Apps (#)

android-14 21,392 2,206 12.4 208
android-15 21,789 2,226 12.5 399
android-16 24,789 2,626 11.9 314
android-17 26,085 2,677 12.2 858
android-18 28,532 3,055 11.6 381
android-19 29,932 3,306 11.5 1,131
android-20 31,801 3,544 11.0 175
android-21 38,757 4,220 10.5 69
android-22 40,056 4,562 10.5 3
android-23 46,261 5,202 10.6 1

order to find possible crucial undocumented exceptions, because: 1) api de-
signers have to know how developers program client applications and 2) it is
easier for api designers to get access to client applications’ byte code rather
than to runtime crash data. Specifically, from the applications we isolated
application and third-party method calls to Android api methods.

Finally, to cross-check our analysis from the Android api and the client
applications, we used a set of 901,274 stack traces from Android applications
that have been crashed—the crash data set has been also used in our previous
work [32].

4.2. Methods

We extracted the sets shown in Figure 3, by: 1) statically analyzing the
Android platform’s api source code, 2) statically analyzing 3,539 Android
applications, 3) parsing Android javadoc comments (for Android api levels
14–23), and 4) applying heuristic rules to 901,274 stack traces from applica-
tion crashes. Finally, we applied set operations on the mined api methods
and exceptions.

The extraction and the analysis of the documented and undocumented
exceptions from the whole dataset of the .apk files took 11 hours and 36
minutes. The study run on an eight core (two four-core Intel Xeon E5-1410
processors operating at 2.80GHz machine with 12gb of ram, and five 1.8tb
disks attached through a 6Gb/s per h 710 pci Express raid controller,

15

Data Gathering

1. API reference
documentation, 2. API
source code, 3. client
apps, 4. crash reports

Specify particular
Javadoc elements

from the API

Extract API method
signatures and

exceptions

Exceptions
declared in
@throws javadoc
comments and
in throws
statement

Analyze methods
from the API
source code

Extract API
method signatures

and thrown
exceptions

Analyze
client

applications

Extract API methods
that developers call and

used exceptions for
handling these methods

Identify exceptions in
the API source code

and in client
applications

Identify
undocumented

exceptions

Analyze stack traces
from application

crashes

Extract API methods
and related
manifested
exceptions

Identify critical exceptions

Figure 4: Overview of the analysis

16

running the Debian gnu/Linux 8.6 (jessie) distribution. In the following
paragraphs, we present our methods in detail (see also Figure 4). We note
that we provide as open source the software we wrote for our automated
approach (named as eRec).4 Also, we have made the used datasets publicly
available (eRec–data).5

To evaluate the e↵ect of undocumented exceptions on applications’ sta-
bility, we need to know the exceptions that each api method can throw
at runtime. This can be generally achieved through testing, model check-
ing, and other static analysis methods, as well as dynamic analysis. In our
case, we consider only exceptions that can be found from static analysis,
since exceptions that dynamic analysis can give (e.g. OutOfMemoryError
and IllegalStateException) are dependent on the applications’ context
and such exceptions are not typically listed in the api reference—because
most of the times the crashes that these exceptions manifest themselves in
are unrecoverable.

4.2.1. Android API
For the static analysis of the source code of the Android platform’s api,

we wrote a script and added appropriate options to Soot in order to: 1) state
the analysis of the Android apis, 2) force the extraction of might-thrown
exceptions from each api method, and 3) determine the representation of
each examined api class. Then, Soot gave us jimple files including the
results of the intra-procedural analysis (i.e. exceptions that each method can
throw) for each apimethod. Given that Soot can apply only intra-procedural
analysis, we wrote a program in order to get exceptions from inter-procedural
analysis (i.e. propagated exceptions that can be thrown among api method
calls). Algorithm 1 presents the pseudocode of our technique.

In addition, to mine the Android platform’s api reference documentation
we wrote a program using the Java doclet api6 and we specified particular
javadoc elements for each api method [58].

In Table 1, S represents the exceptions we extracted for each api method,
from the .jimple files, using intra and inter-procedural analysis. The D
sign refers to documented exceptions listed in the Android platform’s api
reference documentation and the U sign refers to undocumented exceptions.

4
https://github.com/mkechagia/eRec.git

5
https://github.com/mkechagia/eRec-data.git

6
http://docs.oracle.com/javase/7/docs/jdk/api/javadoc/doclet/

17

Algorithm 1 Extract methods and exceptions from API source code
1: Input: Soot files (.jimple) for api
2: Output: pairs of api methods and exceptions
3:

4: procedure analyze code(api)
5: # graph for methods and exceptions
6: G “ nx.Graph()
7: # directed graph for the edges
8: DG “ nx.DiGraph(G)
9: for each line in file do

10: # in case of a new method signature
11: if (is new method) then

12: G.add node(method)
13: end if

14: # in case of throw new in method body
15: if (is throw new) then

16: G.node[method] – append(exception)
17: end if

18: # in case of a called api method
19: if (is called method) then

20: if called method not in G.nodes() then

21: G.add node(called method)
22: end if

23: DG.add edge(method, called method)
24: end if

25: end for

26: end procedure

4.2.2. Android applications
For the static analysis of the Android applications we used the Soot frame-

work [24] and its submodule, Dexpler [59]. Then, to extract api methods and
exceptions from client applications, we wrote a script in Python. Algorithm 2
presents the pseudocode of our algorithm. In Table 1, P refers to Android
api methods and exceptions that we extracted from the .jimple files (that
Soot produces). Figure 5 graphically represents the structure of a method
in a .jimple file. The graph shows that, the api method (applyBatch)
is called in the body of an application method, createContactEntry, at
label1. Then, the flow goes to label3 where there is a caught exception.
This means that the applyBatch method is handled in a try-catch con-
struct.

18

Algorithm 2 Extract API methods and exceptions from apps’ byte code
1: Input: Soot files (.jimple) for each app
2: Output: pairs of api methods and exceptions
3:

4: procedure analyze code(app)
5: # keys: label, values: api methods and exceptions
6: m dict
7: # initialize current label
8: label “ 0
9: for each line in file do

10: # in case of a new method signature
11: if (is new method) then

12: label “ 0
13: end if

14: # in case of a new label in method
15: if (is new label) then

16: m dict – m dict[label]
17: end if

18: # in case of a called api method
19: if (is api method) then

20: m dict[label] – append(api method)
21: end if

22: # in case of exception in the current label
23: if (is exception) then

24: m dict[label] – append(exceptions)
25: end if

26: # in case of catch clause
27: if (is catch) then

28: # update exceptions
29: locate labels in catch()
30: m dict[label] – append(exceptions)
31: end if

32: end for

33: end procedure

19

void createContactEntry()

$r0 := @this
$r3 = $r0.mContactNameEditText
$r6 = $r3.getText()
$r7 = $r6.toString()
...
$r14 = $r16.toString()
android.util.Log.i("ContactsAdder", $r14)

label1:
$r17 = $r0.getContentResolver()

label3:
$r1 := @caughtexception
$r18 = $r0.getApplicationContext()
$r14 = $r0.getString(2130968581)
$r19 = android.widget.Toast.makeText($r18, $r14, 0)
$r19.show()
$r16 = new java.lang.StringBuilder
specialinvoke $r16.<init>("Exceptoin encoutered while inserting contact: ")
$r16 = $r16.append($r1)
$r14 = $r16.toString()
android.util.Log.e("ContactsAdder", $r14)
return

$r17.applyBatch("com.android.contacts", $r2)

label2:
return

Figure 5: Control flow graph for an app method

20

4.2.3. Stack Traces
We received the stack traces from a private company, called BugSense

(now it is part of Splunk),7 which gathered crash reports through a cen-
tralized management system. Having a set of almost 1 million crash reports
from Android applications presented in [32] (di↵erent from the 3,539 Android
applications we analyze in Section 4.2.2, we associated risky api methods,
which had caused the crashes, with the manifested root exceptions of the
stack traces. In Table 1, C represents the associated exceptions with the
found api methods in the stack traces. We used these pairs of api methods
and exceptions to cross-check the found results from the Android platform’s
api and the client applications. Additionally, by analyzing the source code
and the documentation of the Android platform’s api, it was easy for us
to find, for each pair of api method and exception retrieved from the stack
traces, which of the manifested exceptions were not listed in the api reference
documentation of the failed apis.

To filter the stack traces, we applied the heuristic rules we present in [32].
Briefly, the stack traces we used consist of method call frames from the
Android framework that lead to an exception, through an application and
an api call. For the identification of risky api calls that lead to application
crashes, one needs to locate the last instance of a call from an application to
an api. By pinpointing such risky api calls we can find api methods that are
possibly responsible for application crashes. For instance, in Listing 3, the
interesting api call is that to the setContentView method, rather than the
one to the loop method. Then, taking also into account the root exception
and the exceptions from the remaining frames (for chained stack traces), we
can get the concise information regarding a crash cause.

4.3. Metrics

We have applied set operations on the sets of exceptions for the exam-
ined api methods (see Figure 3) to pinpoint exceptions that should be doc-
umented. For instance, PCSU (i.e. PCSU “ P X C X S X U) refers that
the same pairs of api methods and unchecked exceptions that appear in our
three sets: applications (P), crashes (C), and api source code (S), are not
in the api reference documentation (U).

When an exception for a specific api method belongs to set PCSU the

7
https://www.splunk.com/

21

Listing 3: Method calls sequence [58]

com . example . S e r i a l i z e$Loope r . run
android . os . Looper . loop
android . os . Handler . d ispatchMessage
com . example . S e r i a l i z eHand l e r . onMessage
com . example . app . Act iv i ty$1 . work
android . app . Ac t i v i t y . setContentView

Table 3: Java Libraries

API Methods (#) Documented Exceptions (%)
java–7 12,757 37.8
java–8 15,485 37.9
commons–io–2.5 849 55.6
commons–lang3–3.6 2,343 25.1
commons–collections–3.2.1 2,375 24.9
httpcomponents–client–4.5.3 1,146 23.3
groovy–2.4.5 1,502 6.5
felix–2.0.2 496 4.2
guava–19.0 3,050 25.7
guice–4.0 724 4.0

argument that the exception should be listed in the documentation of the
api method is strong, whereas, if an exception belongs only to one set (e.g.
PU “ P X U, CU “ C X U) the evidence that the exception should be
documented is less stronger. However, we assume that if an exception is
declared as might-thrown (in a throw new statement) in the api’s source
code (i.e. S), then, it is meaningful for the exception to be also documented.
Finally, it is more crucial for exceptions that belong to PSU or CSU to be
documented than for the exceptions that belong to SU alone—the exceptions
in PSU are also caught by developers and in CSU exceptions also manifest
themselves in crashes.

4.4. Validation

To show that our automated techniques, illustrated in Figure 4, can help
in the assessment of apis regarding exceptions, we validated our approach by
extending our experiments to cover other sets of Java apis. Table 3 lists the

22

publicly available software and data we used to demonstrate the generality of
the proposed technique. We selected popular Java libraries that stem from:
1) the Java api itself, 2) the Apache ecosystem (Commons, HttpComponents,
Groovy, and Felix), as well as from 3) Google (Guava and Guice).

Table 3 shows the percentages of api methods with documented excep-
tions listed in the documentation reference of the examined apis. We found
the reported percentages by using the doclet presented in Figure 4 and a
Python script to extract from the apis public api methods and documented
exceptions. In contrast to Android (see Table 2), we identified that more
than 35% methods in the Java api have documented exceptions, whereas for
popular third-party libraries, including Apache Commons and Google collec-
tions (i.e. Guava), the number of the documented exceptions drops to 25%.
Interestingly, the commons–io library has the highest number of documented
exceptions (more than 50%). This possibly occurs because exceptions, such
as the IOException are checked and they are always in the documentation.
The large variance in the results may indicate that the number of documented
exceptions depends on the application domain and architectural decisions,
such as the type of api methods.

Furthermore, we extended our experiments by applying our metrics (dis-
cussed in Section 4.3) on 182 Java projects to evaluate how developers handle
methods from the Java api. We examined 133 Java projects from the Maven
Repository8 and 49 projects from the DaCapo benchmark suite.9 Given that
we did not have stack traces from these projects, we used stack traces from
Android application crashes caused due to deficiencies associated with meth-
ods from the Java api. To validate our metrics, we concentrated on the Java
api for several reasons. First, because the Java api is comparable to the
Android one, in terms of magnitude, complexity, and popularity. Second,
because the Java api is the most widely used among the publicly available
Java libraries. Third, because we had su�cient available data (Java projects
and stack traces) to use as inputs in our method.

However, in order to show that our approach also works for third-party li-
braries, we analyzed four Java projects from our data set that use commons–
io, the most popular Apache Commons library. Through this exercise we
found undocumented exceptions that developers handle in their projects (see

8
https://mvnrepository.com/

9
http://www.dacapobench.org/

23

Table 4: Undocumented Exceptions (of the commons–io) Used in
Java Projects (PU “ P X U)

API Method Exception
output.ByteArrayOutputStream.toByteArray IOException
output.DeferredFileOutputStream.getFile IOException
output.ByteArrayOutputStream.toByteArray IllegalArgumentException
EndianUtils.swapInteger NoClassDefFoundError
EndianUtils.swapInteger IOException

Table 5: Undocumented Exceptions in Java Projects (P), Java API
Source Code (S) and Crashes (C), (PCSU “ P X C X S X U)

API Method Exception Crashes (#)
lang.String.substring StringIndexOutOfBoundsException 1,168
lang.StringBuilder.append OutOfMemoryError 1,102
lang.StringBu↵er.append OutOfMemoryError 112
lang.String.getBytes UnsupportedEncodingException 42
lang.String.charAt StringIndexOutOfBoundsException 23

Table 4). We are, also, planning to conduct a large-scale study on the depen-
dencies (Java and third-party libraries) of Java projects and related crashes
(e.g. extracted from Apache Jira).10

Table 6, summarizes the percentages of the undocumented exceptions
we found after applying the metrics presented in Section 4.3 on sets (see
Figure 3) from the Android and Java ecosystems (for all the api versions
examined here). In particular, we consider the undocumented exceptions
that belong in the PCSU set as documentation bugs. See Table 5 for Java
and Table 13 for Android apis.

5. Empirical Results

In the following paragraphs, we discuss the results we got by applying
the metrics described in Section 4.3 on the sets of Figure 3—S (api source
code), P (application programs), and C (crash data)—in order to reveal: 1)
what exceptions api designers list in the Android platform’s api reference

10
https://issues.apache.org/jira/secure/Dashboard.jspa

24

Table 6: Results from Android and Java APIs

Methods with Undocumented Exceptions
Set Android API (%) Java API (%)
SU 20.8 28.3
PU 81.2 91.6
PSU 6.2 6.1
SCU 49.7 26.3
PCU 38.4 21.8
PCSU 15.5 4.8

documentation, 2) what exceptions developers of Android client applications
catch to handle api methods, and 3) what exceptions actually manifest in
application crashes.

5.1. What Exceptions Do API Designers Document?

To find what exceptions api designers decide to include in an api reference
documentation, we analyzed the Android platform’s api reference documen-
tation and source code. Regarding the api documentation, we searched for
documented exceptions in @throws and throws statements in method signa-
tures. We extracted 84,421 distinct methods from the android package of
levels 14–23 of the Android api. From these methods, we used 52,465 valid
distinct non-private api methods from the android package of all the levels
14–23 of the Android api.

Table 2 lists the number of pairs of api methods and documented excep-
tions for each Android api level. We found that on average around 12% api
methods have documented exceptions among all Android api versions. As
api designers enhance the Android platform’s source code with new methods,
the number of the documented exceptions remains almost steady. In fact,
the percentage of the methods with documented exceptions drops 2%. This
possibly occurs for three reasons. First, most of the times, api designers
do not have stack traces from client applications, at their disposal, to list
the manifested exceptions into apis’ reference documentation. Second, api
designers are aware about the fact that developers of client applications use
development tools that make suggestions (based on the declared exceptions
in throws clauses) about the exceptions that called api methods might throw
and they possibly leave several exceptions undocumented. Third, this could

25

be related to the maturity of the apis (i.e. how often these apis have been
used and if there are reported issues associated with them.)

Figures 6 and 7 show the evolution of the exception types among the
examined versions of the Android platform’s api. We examine the api meth-
ods that have declared exceptions in @throws javadoc comments and in their
signature (next to the throws keyword). We note, here, that from the excep-
tion types we have considered in this analysis, we have excluded the generic
Exception, which we observed that it is mostly thrown (81.6% on average)
by test methods (5.7% on average) listed in the api reference documenta-
tion. Apart from the test methods, it seems that for the remaining methods
of the api reference documentation, api designers avoid to use the generic
Exception, which reveals a good design practice [12].

Figure 6 shows the evolution of the top ten exception types among the
versions 14–23 of the Android platform’s api reference documentation. As we
expected, there are checked exceptions among the top documented exceptions
(FileNotFoundException, IOException, NameNotFoundException, Remote-
Exception, and XmlPullParserException), since checked exceptions should
be always listed in method signatures. However, api designers also list spe-
cific types of unchecked exceptions (IllegalArgumentException, Illegal-
StateException, NotFoundException, SecurityException, Unsupported-
OperationException) in the api reference, as the api evolves.

Figure 7 presents the evolution of the listed checked and unchecked excep-
tions in the Android platform’s api. We can see that the most of the listed
exceptions are checked for all the api versions. However, the amount of the
documented unchecked exceptions is significant too. From these results, we
understand that api designers are interested in identifying and reporting the
exceptions api methods might throw at runtime. Thus, it seems that there
is a need for tools that can assist api designers in the systematic detection
of these exceptions.

We also examine changes in the exception interfaces of our sample of
api methods. Information about apis that change often can reveal risky
apis that may break client applications [53]. To conduct this analysis,
we tracked changes (added and removed exceptions) in the exception in-
terfaces (declared exceptions after the throws keyword in method signa-
tures [60, 61]) of the api methods found in the Android platform’s api source
code. Table 7 lists api methods, from the Android platform’s api, that
their exception interfaces have been updated, in a subsequent api version
of that of their first appearance in the Android platform’s api. For in-

26

1.63%
3.93%
2.48%

17.59%

4.23%
1.39%

20.86%

16.93%

13.12%

2.00%

1.63%
3.93%
2.48%

17.80%

4.24%
1.57%

20.88%

16.83%

13.08%

2.00%

1.49%
3.59%
2.32%

17.88%

3.86%
1.43%

19.48%

17.60%

12.64%

1.71%

1.37%
3.30%

2.69%

20.37%

3.56%
1.52%

18.33%

16.61%

12.60%

1.68%

1.31%
3.45%

2.63%

20.73%

3.41%
1.51%

18.10%

16.50%

12.94%

1.65%

1.20%
3.60%

3.11%

20.14%

3.20%
1.38%

17.07%

16.41%

13.78%

2.67%

1.20%
3.59%

3.10%

20.26%

3.19%
1.51%

17.07%

16.40%

13.74%

2.66%

1.62%

3.78%

3.06%

18.84%

2.88%

1.37%

14.78%

14.71%

15.14%

2.27%

1.60%

3.72%

3.01%

18.82%

2.87%

1.35%

14.57%

14.71%

15.42%

2.23%

1.82%

3.42%

3.01%

17.48%

2.82%

1.19%

13.21%

14.91%

15.88%

2.01%

0

500

1000

1500

2000

2500

API 14 API 15 API 16 API 17 API 18 API 19 API 20 API 21 API 22 API 23
APIs

D
oc

um
en

te
d

ex
ce

pt
io

ns
 (#

)

Exceptions
FileNotFoundException

IllegalArgumentException

IllegalStateException

IOException

NameNotFoundException

NotFoundException

RemoteException

SecurityException

UnsupportedOperationException

XmlPullParserException

Figure 6: Evolution of top exception types in the Android API

27

0%#

10%#

20%#

30%#

40%#

50%#

60%#

API 14 API 15 API 16 API 17 API 18 API 19 API 20 API 21 API 22 API 23

D
oc

um
en

te
d

E
xc

ep
tio

ns
 (%

)

API levels

Checked Exceptions Unchecked Exceptions

Figure 7: Evolution of checked and unchecked exceptions through-
out the versions of the Android platform’s API

stance, media.MediaCodec.createByCodecName(String) was added to the
api level 16, but the IOException was declared, in its exception interface,
in the api level 21. Here, we note that we wish to conduct, in the future,
a further analysis of the changes in the exception interfaces, and see how
these alterations may a↵ect the stability of client applications. However, our
current results show that the designers of the Android platform’s api do not
change the exception interfaces quite often. We could say that this is an
indicator of the high quality of the Android platform. It reflects designers’
care of testing their apis to find corner cases and declare, in the interfaces,
related exceptions, from the first time of the publication of the apis. Finally,
we note that we have manually validated that the changes listed in Table 7
have indeed occurred in the Android platform’s api.

Analyzing the Android platform’s api source code (levels 14–23), we pin-
pointed 3,347 undocumented exceptions for 2,442 non-private methods (i.e.
set SU “ SXU in Figure 3). From the undocumented exceptions, we revealed
6% checked and 94% unchecked exceptions. One would expect that since the
checked exceptions are always in the api reference documentation (throws

28

Table 7: Changes in Exception Interfaces for Android levels 14–23

API Method Changed Exception
15 net.NetworkStats.subtract(NetworkStats) ` NonMonotonicException
16 net.NetworkStats.subtract(NetworkStats) ´ NonMonotonicException
17 security.Credentials.convertFromPem(byte[]) ` CertificateException
18 drm.DrmManagerClient.finalize() ` Throwable

media.MediaExtractor.setDataSource(DataSource) ` IOException
media.MediaExtractor.setDataSource(FileDescriptor, long, long) ` IOException
media.MediaExtractor.setDataSource(String, Map) ` IOException

21 content.pm.PackageParser.collectManifestDigest(Package) ` PackageParserException
media.MediaCodec.createByCodecName(String) ` IOException
content.pm.PackageParser.collectCertificates(Package, int) ` PackageParserException
media.MediaDrm.openSession() ` ResourceBusyException

22 graphics.Bitmap Delegate.createBitmap(Bu↵eredImage, Set, Density) ´ IOException
system.Os.fcntlFlock(FileDescriptor, int, StructFlock) ` InterruptedIOException
graphics.Bitmap Delegate.createBitmap(Bu↵eredImage, boolean, Density) ´ IOException

Table 8: Examples of Undocumented Exceptions in the Android
Platform’s API Source Code (SU “ S X U)

API Method Exception

app.Fragment.startActivity IllegalStateException

graphics.Canvas.drawBitmap ArrayIndexOutOfBoundsException

graphics.Paint.getTextWidths IndexOutOfBoundsException

widget.ImageView.setImageResource NotFoundException

view.LayoutInflater.onCreateView InflateException

view.View.awakenScrollBars AndroidRuntimeException

location.Criteria.setPowerRequirement IllegalArgumentException

text.Layout.draw NullPointerException

content.ContentResolver.requestSync IllegalArgumentException

net.SSLCertificateSocketFactory.createSocket SSLPeerUnverifiedException

29

in method signatures) all the found undocumented exceptions would be
unchecked. However, our approach can indeed find undocumented unchecked
exceptions that are more specific than the already documented ones (as we
explain in the following) because our method applies inter-procedural analy-
sis (see Section 4.2.1). Table 8 shows ten representative pairs of api methods
and might-thrown exceptions that are undocumented. We also observed
that for some methods with checked exceptions, such as createSocket, the
api uses generic exceptions, such as the IOException for instance, whereas
from the inter-procedural analysis we can find more specific ones, such as the
SSLPeerUnverifiedException (child of IOException). Similarly to Kery et
al., we believe that when a specific type of might-thrown exception is known,
the use of specific exceptions is better for applications’ debugging [12].

Finally, we saw that api designers declare might-thrown unchecked ex-
ceptions in the api source code, but they do not always include them in
an api’s reference documentation. We also found that api designers rarely
document propagated exceptions, as Robillard and Murphy argue in another
work [8].

5.2. What Exceptions Do Developers Use?

To find what exceptions developers use to handle api methods, we stati-
cally analyzed 3,539 Android applications that use Android api levels 14–23.
From these applications, we identified, in 3,348 valid applications, pairs of
api methods (from the android package of the Android api) and exceptions.
In the following paragraphs, we present our results regarding sets PU “ PXU
and PSU “ P X S X U of Figure 3.

In our sample, developers handle 2,584 distinct api methods (with caught
documented and undocumented exceptions). From these methods, however,
only 12% (i.e. 322 api methods) have listed exceptions in their documen-
tation (for all the Android api levels 14–23). Figure 8 graphically shows
that developers mainly catch exceptions for api methods that belong to the
content, util, os, net, graphics, database, and media Android packages.
The percentages refer to the total number of api calls with caught exceptions
per package. We found that 118,027 api calls have undocumented caught ex-
ceptions and 8,456 api calls that have documented caught exceptions.

Table 9 lists the top ten types of undocumented exceptions that develop-
ers catch. The percentages in the table refer to caught exceptions of 2,536
unique calls to api methods. The unique calls’ exceptions come to 10,118.

30

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

ap
p

blueto
oth

co
nten

t

data
bas

e

gr
ap

hics

har
dwar

e

loc
ati

on

med
ia net os

sec
urit

y

su
ppor

t

tel
ep

hon
y

tes
t

tex
t

util

vie
w

web
kit

Undocumented exceptions

Documented exceptions

Figure 8: APIs for which developers mostly use exceptions

Table 9: Top Ten Undocumented Exceptions Used in Applications
(PU “ P X U)

Exception Frequency (%)
Exception 21.2
IOException 6.7
JSONException 5.5
NullPointerException 4.7
RuntimeException 3.9
IllegalArgumentException 3.8
IllegalStateException 3.1
FileNotFoundException 2.7
OutOfMemoryError 2.4
NameNotFoundException 2.2

Total 56.2

31

Table 10: Top Ten Undocumented Exceptions Found in Applica-
tions and API Source Code (PSU “ P X S X U)

API Method Exception Frequency in apps (%)
content.res.AssetManager.open FileNotFoundException 10.1
content.res.Resources.openRawResource FileNotFoundException 5.5
content.res.AssetManager.openFd FileNotFoundException 4.1
net.Uri.parse RuntimeException 2.7
database.sqlite.SQLiteDatabase.delete IllegalStateException 2.1
widget.TextView.setText RuntimeException 2.0
content.ContentResolver.query RuntimeException 2.0
content.res.Resources.getConfiguration() RuntimeException 1.8
view.View.findViewById RuntimeException 1.8
net.ConnectivityManager.getActiveNetworkInfo() RuntimeException 1.3

Total 33.4

For the top used api methods (more than 20%) with undocumented excep-
tions, client applications’ developers catch generic exceptions such as the
Exception.

Our result that Exception is the most significant exception for Android
developers agrees with Kery’s et al. findings when they investigated the use
of exception types in Java programs [12]. The broad use of the Exception
class reveals that programers need more guidance to prevent their applica-
tions from crashes. We argue that automatic assistance can derive from: 1)
specific exceptions that are documented in the api reference documentation,
2) static checking of exceptions, 3) programming language’s type system,
as well as 4) testing and debugging tools. In this paper, we mainly make
re-documentation suggestions for the Android platform’s api reference and
conduct a qualitative study on Android developers, in Section 6, to evaluate
documented exceptions’ e↵ectiveness.

We also investigated if there are common pairs of api methods and un-
documented exceptions in the source code of the Android platform’s api and
in client applications (PSU). We found 129 unique pairs of api methods and
exceptions. Table 10 shows the top ten pairs.

5.3. What Exceptions Do Actually Manifest at Runtime?

To find what undocumented exceptions, associated with api methods, are
actually manifested in application crashes, we used a data set of 901,274 crash
data [32] and we searched for common pairs of api methods and exceptions
in the stack traces (C), source code (S), and applications (P).

32

Table 11: Top Ten Undocumented Exceptions Found in API Source
Code and Crashes (SCU “ S X C X U)

API Method Exception Crashes (#)
app.Dialog.show RuntimeException 7,890
content.res.Resources.getDrawable FileNotFoundException 3,843
widget.Toast.makeText InflateException 902
database.AbstractWindowedCursor.getString CursorIndexOutOfBoundsException 639
graphics.Canvas.drawBitmap ArrayIndexOutOfBoundsException 628
text.Html.fromHtml RuntimeException 565
content.ContentResolver.insert IllegalArgumentException 552
support.v4.app.Fragment.getString IllegalStateException 450
support.v4.app.ListFragment.getListView IllegalStateException 346
database.sqlite.SQLiteDatabase.endTransaction IllegalStateException 268

Table 12: Top Ten Undocumented Exceptions Found in Applica-
tions and Crashes (PCU “ P X C X U)

API Method Exception Crashes (#)
app.Dialog.dismiss IllegalArgumentException 12,637
graphics.BitmapFactory.decodeResource OutOfMemoryError 8,766
graphics.Bitmap.createBitmap OutOfMemoryError 8,268
app.Dialog.show BadTokenException 7,890
graphics.BitmapFactory.decodeStream OutOfMemoryError 6,010
app.ProgressDialog.show BadTokenException 4,600
widget.ImageView.setImageResource OutOfMemoryError 4,506
hardware.Camera.open RuntimeException 3,862
content.res.Resources.getDrawable OutOfMemoryError 3,843
content.ContentResolver.query NullPointerException 1,836

From the analysis of the Android api’s source code application execution
failures, we found 201 unique pairs of apimethods and exceptions in the stack
traces and in the Android platform’s api source code (levels 14–23). However,
these exceptions are not listed in the Android’s api reference documentation
and we consider them as documentation bugs. Table 11 refers to the set
SCU “ S X C X U and lists top ten representative pairs of api methods and
exceptions that static analysis (intra and inter-procedurally) can locate in
the source code of the Android platform’s api.

We also compared pairs of api methods and exceptions that can be found
in applications and in the stack traces (PCU “ P X C X U), but again
these are undocumented in all the examined Android api levels (14–23). We
observed that developers tend to use exceptions they find in stack traces,

33

Table 13: Top Ten Undocumented Exceptions in Applications (P),
API Source Code (S) and Crashes (C), (PCSU “ P X C X S X U)

API Method Exception Crashes (#)
app.Dialog.show RuntimeException 727
text.Html.fromHtml RuntimeException 565
content.ContentResolver.insert IllegalArgumentException 552
database.sqlite.SQLiteDatabase.endTransaction IllegalStateException 251
app.Activity.onBackPressed IllegalStateException 198
app.NotificationManager.notify NullPointerException 148
content.res.Resources.openRawResource FileNotFoundException 117
content.ContentResolver.delete IllegalArgumentException 117
media.MediaScannerConnection.scanFile IllegalStateException 105
database.sqlite.SQLiteDatabase.beginTransaction IllegalStateException 103

since they can check what exceptions are manifested when an application
crashes; whereas, api designers have not always that information to add
related exceptions in the api. Specifically, in our sample, we found 610
distinct api methods that belong in client programs (P) and in crashes (C)
sets, and 234 of these methods that have undocumented exceptions (PCU).
Table 12 lists ten examples.

Finally, we searched for common pairs of api methods and exceptions in
the Android platform’s api source code (S), our Android client applications
(P), and the stack traces (C). We found 283 common api methods from
which we pinpointed 44 pairs of common api methods and (undocumented)
exceptions in the three sets. Table 13 shows the top ten undocumented
exceptions of the PCSU “ P X C X S X U set.

We note that the numbers of crashes mentioned in Tables 11, 12, and 13
refer to the sample of crashes presented in [32].

5.4. Discussion

Overall, our findings show that there is significant space for improvement
regarding how api designers build and maintain large apis (such as Android).
Here, we summarize the implications of the findings presented in Section 5
and we give guidelines regarding the right use of di↵erent types of exceptions.

Summary and implications. Concerning api designers, we discovered
that they do not document all the thrown exceptions declared in throw new
statements in the apis’ source code. We also confirmed related work’s insights
that api designers rarely document propagated exceptions [8]. The referred
findings maybe result from the fact that: 1) the majority of api designers lack

34

stack traces from client applications that have crashed—which the former
can consider in order to improve the reliability of their apis, and 2) there is
limited use of tools that can predict possible application crashes.

This study can help api designers to make the right design and imple-
mentation choices concerning risky api methods (see Table 13). Even though
this paper refers to the Android platform’s api, we present automated tech-
niques (see the algorithms in Section 4.2 and Figure 4) that can help in the
assessment (regarding exceptions) of other apis.

As far as client applications’ developers are concerned, we found that they
mostly use generic exceptions (° 20%). Also, only 12% of the exceptions they
use are documented. It seems that they mostly handle exceptions based on
the stack traces they get from their applications’ crashes.

Providing developers with more informative documentation and sugges-
tions for might-thrown exceptions related to risky apimethods, programming
can become more productive and flawless. Our goal is to inform client ap-
plications’ developers—at production level—about risky api methods that
can cause application crashes. We envisage that our approach can be in-
corporated in integrated development environments (ides), such as Eclipse,
so that developers can receive on the fly recommendations about possible
runtime exceptions that risky api methods can generate.

Guidelines. Table 18 lists might-thrown exceptions that eRec finds that
should be caught by developers for implementing robust applications. Taking
into account the types of the reported apis and the exceptions, one can
consider to protect similar apis by handling relevant exceptions. In the
following, we summarize our guidelines.

• api methods that may throw an exception when they run out of re-
sources should use checked exceptions, in resource-constrained systems
(i.e. mobile devices). This applies for instance in programs that deal
with bitmap images.

• An api method should document any exception (including propagated
exceptions [61, 8]) which it might throw.

• api methods that can potentially receive external inputs should be
declared with checked exceptions. For instance, consider when creating
a new URL and the input comes from the user. The value given by the
user could be malformed causing a runtime error. Here, the use of a
checked exception can prevent this error and recover the application.

35

Table 14: Study Design

Yate’s Notation Factor A Factor B
for treatment Exception Type Documentation
p1q ´ (unchecked) ´ (undocumented)
a ´ (unchecked) ` (documented)
{b} {`} {´}
ab ` (checked) ` (documented)

• api methods that receive statically checked inputs (e.g. constant liter-
als) should throw unchecked exceptions. The validity of such apis can
be verified at compile-time. For instance, consider when compiling a
pattern to a regular expression and the pattern is given by the devel-
oper. The developer can correct any invalid pattern before releasing
the software. Thus, there is no need for checked exceptions, which can
decrease code readability [13, 14, 15].

• Indexing-related apis can throw unchecked exceptions, which are typi-
cally resulted by programming errors. In such cases, Java conventions
call for throwing unchecked exceptions. However, these api methods
should be verified through unit tests, too.

• When apis interact with the environment (i.e. they are used to open
files, connect to databases, etc.) and synchronization issues can arise,
relevant api calls should be used with checked exceptions. We pro-
pose this in cases where: these api methods receive external inputs,
which can be possibly malformed, and possible related input errors are
recoverable.

6. Validation

In the previous section, we argued that the api methods mainly listed in
Table 13 should have documented exceptions in their api reference. Here,
we present a qualitative study we conducted to evaluate our arguments.

6.1. Experimental Design

We conducted a randomized controlled trial (rct) with a 2x2 (two-level)
factorial design. rct has been also used in related work for the testing of

36

Table 15: Descriptive Statistics of the Participants

Education Level Programming Experience Android Expertise
Degree N Years N Level N
BSc 15 <3 5 None 5
MSc 7 3 ´ 6 9 Medium 8
PhD 3 6 ´ 9 8 High 7
Other 0 >9 3 Professional 5

coding practices [21, 62]. We examine the e↵ect of two independent variables:
exception type (having as treatments unchecked and checked exceptions)
and api reference documentation (having as treatments documented and
undocumented exceptions) on the dependent variables of task completion
(successful built) and program robustness (in terms of handled excep-
tions). Table 14 graphically shows our design, using Yate’s notation [63].

Regarding the treatments in Table 14, combination p1q refers that all
factors are at their lowest values. Given that our values are not numerical,
p1q is our control with lowest values denoted with ´ (i.e. refers to undocu-
mented and unchecked exceptions). Each of the p1q, a, b, and ab represents
a combination treatment of the two independent variables.

Even though in Table 14 we have four treatments, we used the incom-
plete version of the 2x2 factorial design, because the b treatment (checked
and undocumented exceptions) is not applicable. Incomplete factorial de-
sign is a design proposed in cases where it is not reasonable, interesting,
and feasible for researchers to study all treatment combinations required in
a complete or fractional factorial design [64]. Thus, our experimental design
consists of three groups. All subjects were randomly assigned to one of these
three groups and, finally, each group had approximately the same number of
participants.

The participants of our study were 16 professionals and 9 students that
have experience in the development of Android and Java applications. Four
students (one undergraduate, two master, and one PhD student) took part
in a pilot experiment that we conducted to test our subjects’ tasks. Table 15
presents the demographics of the participants of our study. In particular,
with the term “Programming Experience”, we mean experience in writing at
least Java programs. Also, in the “Android Expertise” column, we define as
medium expertise, participants’ experience in writing small Android appli-

37

Figure 9: Android survey

Figure 10: Initial instructions of the survey

cations (e.g. in a programming course), whereas we state as high expertise,
participants’ experience that have developed and launched at least one An-
droid application. Finally, with the term professional expertise, we refer to
participants that work as Android software engineers in the industry. Our
trial took place from the 30th of September until the 15th of October, 2016.

6.2. Survey Tool

To conduct our trial, we developed an open source software web survey
tool11 where participants first signup to fill some demographic details and

11
https://github.com/mkechagia/android-survey

38

Table 16: Method Mapping

Real method Experimental method Experimental exceptions in (1), a Experimental exceptions in ab
drawText drawTxt IndexOutOfBoundsException InvalidArrayIndexException
insert insertData IllegalArgumentException InvalidUriException
setContentView setLayout InflateException Insu�cientMemoryForResourceException
findViewById findViewId NotFoundException MissingResourceException
setTextColor changeTextColor NullPointerException NullResourceException
query queryData RuntimeException UnauthorizedAccessException
setText editText IndexOutOfBounds InvalidArrayIndexException

then access the survey [65]. We implemented three versions of the same
survey, related to the treatments of Table 14. When one signs up, the sys-
tem randomly assigns them to one of the three survey types. All subjects
worked on a Java class (NoteEditor.java) from a simple Android application,
NotePad, where they were asked to handle seven experimental methods
through TODO comments (see Figure 9). We instructed the participants to
handle the experimental apimethods in a way that will ensure the robustness
of the given application (see Figure 10). The whole task for each participant
took almost 30 minutes.

The di↵erentiate factors of the survey for the three groups was the given
api reference documentation and the types of the exceptions that the subjects
could use to complete the Java code. To ensure that participants will only
use the given api reference, we invented seven experimental api methods
that resemble Android api’s methods and we added the methods to the
Android platform’s api source code. Then, we generated three di↵erent
javadoc references.

The first group received the current version of the Android platform’s
api reference documentation, with unchecked and undocumented exceptions,
the second group received an api reference documentation with documented
(listed) unchecked exceptions, and the last group received an api reference
documentation with checked exceptions. Table 16 presents the mapping be-
tween the real Android methods and the experimental methods and excep-
tions we gave to the participants. The selected methods and exceptions come
from the empirical results of Section 5 and mainly from the PSCU set.

To gather the metrics of our survey (presented in Table 17) we used
several techniques. First, we used timestamps to track when the subjects
switch the documentation pages (ds), such as listing in Figure 11. Also, we
gave to the participants the opportunity to build the program and resubmit
their answers until they got the successful build message (see Figure 12).

39

Figure 11: Generated documentation

Figure 12: Successful build of an Android application

40

Table 17: Study Results for sb: Successful Builds, ds: Documen-
tation Switches, ce: Caught Exceptions, te: Thrown Exceptions,
nc: Null Checks, and nhe: Number of Handled Exceptions

Groups p1q: Unchecked and Undocumented a: Unchecked and Documented ab: Checked
Subject (#) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
sb X X X X X X X X X X X X X X X X 7 7 X 7 7 7 7 X X
ds 0 25 0 35 1 38 8 20 0 0 37 0 3 13 4 0 0 0 18 14 20 0 0 0 6
ce 0 2 0 3 0 0 0 2 3 2 7 0 1 4 1 2 1 0 7 7 0 0 5 7 7
te 0 3 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
nc 0 0 0 0 0 0 1 1 3 0 0 0 0 0 0 0 3 0 0 0 0 0 1 0 0
nhe 0 5 0 3 0 0 1 3 6 3 7 0 1 4 1 2 4 0 7 7 0 0 6 7 7

Thus, we also counted the number of successful builds per participant (sb).
Finally, we used heuristic rules to automatically parse the submitted answers
to find where methods have been handled with exceptions.

6.3. Experiment Results and Observations

In Table 17 we present the results of the randomized controlled trial.
The dependent variables are: 1) sb: shows whether the built was successful
(task completion), and 2) nhe: represents the number of handled exceptions
(through catching and throwing other exceptions or using null checks).

Looking at the first metric, successful builds (sb), we can see that all
subjects from treatment p1q (undocumented and unchecked) and treatment
a (documented and unchecked) successfully built the application, whereas
only 33% of the subjects of treatment ab (checked exceptions) managed to
successfully built it. Even though most developers of the treatment involving
checked exceptions were not able to complete the task of handling them,
those who managed to successfully build the application also wrote the most
robust programs. Interestingly, two novice Android developers (one student
and one practitioner) who managed to build the application, said that they
liked that the compiler checked their programs’ exception handling so that
they can avoid related crashes at runtime.

To examine whether the subjects read the documentation, we used the
values of the ds (documentation switches) metric. We first applied one-
sample t-test to check if the true mean is equal to 0. We got a low p value
(0.0009) from the test and therefore rejected the null hypothesis. This result
implies that the subjects of our sample read the given documentation. In
addition, we used the two-sample Mann-Whitney-Wilcoxon test to check
if some groups read the documentation more often. For all tested group
combinations, the p value was greater than 0.05. Thus, we accept the null

41

hypothesis implying that developers read the same amount of documentation
in all groups.

Given that our experiment is based on a 2x2 factorial design, we could
use a standard analysis technique for this design, two-factor ANOVA [63].
Our two factors are: exception type and documentation (see Table 14). To
use two-way ANOVA, however, one needs to test two assumptions first: the
homogeneity of variance among the treatment groups and that the residuals
are normally distributed.

To validate the homogeneity of the three groups variances, we applied
on the values of the number of handled exceptions (nhe) metric the Levene
test [66]. The Levene test’s p value was 0.44 which is greater than 0.05, and
equal variances can be assumed. However, it is easily observable from the
values of nhe that the residuals of our sample are not normally distributed.
Thus, we decided to use the Kruskal-Wallis test for one-way analysis of vari-
ance [67]. This test does not assume that the groups should follow a normal
distribution and it can detect if the means of the values of di↵erent groups
are statistically similar.

The Kruskal-Wallis test gave p value 0.14 meaning that the three groups
of our experiment have equal means. In other words, no one of the treatments
have greater e↵ect on exception handling (i.e. nhe) that developers conduct
to prevent their programs from crashes.

One explanation for this could be that developers do not carefully read
the documentation for possible exceptions associated with the api methods
they call. In fact, one experienced Android developer told us that he handles
possible crash causes when the ide suggests it and he does not pay much
attention to the api reference documentation.

From the values of the metrics ds (documentation switches) and nhe
(number of handled exceptions) we can deduce that developers often ignore
the api documentation. Taking also into account the values of the sb (suc-
cessful builds) metric we observe that developers who caught all the crash-
causing exceptions and successfully built the application came from the third
group (those that were given checked exceptions). Accordingly, we must re-
vise our argument regarding the undocumented exceptions that we reported
in Section 5. We propose that exceptions that demonstrably lead to crashes
should become checked.

Based on previous works [3, 68, 69], we also think that applications’ ro-
bustness could increase even more if some exceptions that called api methods
can throw become checked. Here, we have already validated the exceptions

42

of methods in Table 16; i.e. one could convert the exceptions of column
Experimental exceptions in (1), a to checked (such as in the column Ex-
perimental exceptions in ab) to increase applications’ robustness. We rec-
ommend that all the exceptions in the PSCU set (the real methods listed
in Table 16 also come from this set) should become checked. Alternatively,
to handle these problems type systems can be extended using tools such
as the Checker Framework [70].12 This also agrees with the results of pre-
vious studies [20, 21] that consider static type systems a form of implicit
documentation. In such a case, further studies would be needed to investi-
gate how the proposed changes would a↵ect developer productivity and code
maintainability.

7. Threats to Validity

In this section, we discuss the internal validity of our techniques, the
external validity of our findings regarding the examined data sets and our
trial’s subjects, as well as the construct validity of our survey’s design and
the reliability of our study.

7.1. Internal Validity

Internal validity refers to possible issues of our techniques that can lead
to false positives and imprecision. We used specific Android api levels (14–
23), associated with the Android api versions that our Android applications
use. This implies that we have yet to analyze the remaining methods of the
Android api and relevant applications and crash data, so that we can paint
the whole picture of the evolution of the Android platform.

Also, given that we had only the .apk files of the client applications, we
analyzed only the .jimple files that Soot produces. This means that maybe
there are missing files from Android applications that we did not examine.
However, due to the volume of our applications, we think that we did not
lose precision in our results.

In addition, not all the methods that static analysis finds will actually
be called always. We recognize that this can lead to the over-approximation
of our results. To find, however, the most risky methods that should be
handled with specific exceptions, we used for validation a set of Android

12
https://checkerframework.org/

43

applications and a set of stack traces from application crashes. Furthermore,
in our analysis we did not consider dynamic reflection calls that can cause
execution failures, too. We aim to investigate such crashes in a future work.

Finally, the use of heuristic techniques to pinpoint critical exceptions im-
plies that there could be exceptions that our pattern-matching approaches
do not evaluate. To validate our results (i.e. found undocumented excep-
tions), we validated the Android api reference documentation and our results
manually. Thus, we could not exclude the possibility of human error.

7.2. External Validity

External validity refers to the extent to which the results of our study can
be generalized to other apis. As we examined the apis of a specific platform,
Android, and we used particular stack traces, from Android applications, our
results are related to the Android api. However, we argue that because we
conducted a large scale analysis on the Android ecosystem our guidelines (see
Section 5.4), which stemmed from our results, can be generalized for other
Java apis, too. We have also conducted an empirical study in Section 4.4 to
prove that our approach presented in Figure 4 can be applied on other Java
apis.

In addition, the number of subjects that participated in our trial can be
considered small. Nevertheless, as we have seen in related work [20, 21, 62],
such a number is common for studies where developers are asked to complete
programming tasks (e.g. to write a piece of code).

7.3. Reliability Validity

Reliability validity refers to the repeatability of our study. For this, we
have made our source code (eRec)13 and data (eRec-data)14 publicly avail-
able. However, we acknowledge that in contrast to the source code of the An-
droid api and the Android applications, we cannot provide the whole dataset
of the stack traces used in our study, because these data come from an in-
dustrial partner. Our methods are generic though, and they can be applied
on any data set of Java stack traces provided by the user. Finally, regarding
our developers’ survey, we have made the source code of our Android survey

13
https://github.com/mkechagia/eRec

14
https://github.com/mkechagia/eRec-data

44

tool15 publicly available for a possible study with more developers, in the
future.

7.4. Construct Validity

Construct validity refers to any possible bias in our experimental design.
Regarding the developers’ study (see Section 6) the reader should take into
account that our results are susceptible to the following two factors. First, our
trial is dependent on the expertise of our trial’s subjects. To limit any related
bias, we tried to have in our experiment developers from di↵erent levels
of expertise—from novice to experts—(see Table 15). Using our Android
survey tool, we wish to run similar trials on groups with di↵erent levels of
expertise, in the future, to further validate our results. Second, our trial could
be susceptible to the participants’ behavior (i.e. whether they all had the
same and right information for conducting the survey and so on). To avoid
any possible bias, we conducted an online survey and we asked from all the
participants of each group (see Figure 10) to use the provided experimental
api reference documentation and build a simple Android application.

8. Conclusions

In this paper, we investigated the exception handling of the Android
platforms’ api to understand when and how developers use exceptions, and
make suggestions on ways that can improve exception handling practices and
guarantee the robustness of client applications. We applied static analysis
techniques on three sets of pairs of api methods and exceptions that came
from: 1) the source code of the Android platform’s api, 2) applications, and
3) crash data from execution failures. For the validation of the findings of
our data-driven method we run a randomized controlled trial.

Overall, we found that almost 10% of the undocumented exceptions that
static analysis can find in the Android platform’s api source code can be
found in actual crashes. Similarly, we discovered that 38% of the undocu-
mented exceptions that developers use in their client applications to handle
api methods also manifest themselves in crashes. However, documenting
these exceptions does not seem to be a viable option, because our random-
ized controlled trial demonstrated that documentation does not a↵ect the

15
https://github.com/mkechagia/android-survey-tool

45

developers’ handling of exceptions. Consequently, we believe that exceptions
that result in crashes should be converted to checked or there will be im-
plemented type systems (e.g. for the checking of malformed user inputs and
erroneous codes of resources) in order to improve applications’ stability.

Admittedly, the findings from the randomized controlled trial run con-
trary to our initial expectations. This means that undertaking the trial was
a truly worthwhile exercise. Based on these results, in the future we would
like to investigate a) how reference documentation can better serve the de-
velopers, and b) the e↵ects of increasing the number of checked exceptions
on developer productivity and code maintainability.

Acknowledgments

The authors would like to thank the founders of BugSense (now acquired
by Splunk) Panos Papadopoulos and John Vlachogiannis for the data they
provided us, as well as the participants of our trial.

References

[1] X. Leroy, F. Pessaux, Type-based analysis of uncaught exceptions,
Transactions on Programming Languages and Systems 22 (2) (2000)
340–377. doi:10.1145/349214.349230.

[2] C.-T. Chen, Y. C. Cheng, C.-Y. Hsieh, I.-L. Wu, Exception handling
refactorings: Directed by goals and driven by bug fixing, Journal of
Systems and Software 82 (2) (2009) 333–345. doi:10.1016/j.jss.
2008.06.035.

[3] Y. Zhang, G. Salvaneschi, Q. Beightol, B. Liskov, A. C. Myers, Ac-
cepting blame for safe tunneled exceptions, in: Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI ’16, ACM, New York, NY, USA, 2016, pp. 281–295.
doi:10.1145/2908080.2908086.

[4] S. Drossopoulou, T. Valkevych, Java exceptions throw no surprises, De-
partment of Computing, Imperial College, London, 2000.

46

[5] J. Bloch, How to design a good API and why it matters, in: Companion
to the 21st ACM SIGPLAN symposium on Object-oriented program-
ming systems, languages, and applications, OOPSLA ’06, ACM, New
York, NY, USA, 2006, pp. 506–507. doi:10.1145/1176617.1176622.

[6] M. Henning, API design matters, Communications of the ACM 52 (5)
(2009) 46–56. doi:10.1145/1506409.1506424.

[7] A. Ganapathi, V. Ganapathi, D. A. Patterson, Windows XP kernel crash
analysis., in: LISA, Vol. 6, 2006, pp. 49–159.

[8] M. P. Robillard, G. C. Murphy, Static analysis to support the evolution
of exception structure in object-oriented systems, ACM Trans. Softw.
Eng. Methodol. 12 (2) (2003) 191–221. doi:10.1145/941566.941569.

[9] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, P. McDaniel, FlowDroid: Precise context, flow,
field, object-sensitive and lifecycle-aware taint analysis for Android apps,
in: Proceedings of the 35th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’14, ACM, New York,
NY, USA, 2014, pp. 259–269. doi:10.1145/2594291.2594299.

[10] H. Shah, C. Gorg, M. Harrold, Understanding exception handling: View-
points of novices and experts, IEEE Transactions on Software Engineer-
ing 36 (2) (2010) 150–161. doi:10.1109/TSE.2010.7.

[11] S. Nakshatri, M. Hegde, S. Thandra, Analysis of exception handling
patterns in Java projects: An empirical study, in: Proceedings of the
13th International Workshop on Mining Software Repositories, MSR ’16,
2016, pp. 500–503. doi:10.1145/2901739.2903499.

[12] M. B. Kery, C. Le Goues, B. A. Myers, Examining programmer practices
for locally handling exceptions, in: Proceedings of the 13th International
Workshop on Mining Software Repositories, MSR ’16, ACM, New York,
NY, USA, 2016, pp. 484–487. doi:10.1145/2901739.2903497.

[13] W. Weimer, G. C. Necula, Exceptional situations and program relia-
bility, ACM Transactions on Programming Language Systems 30 (2)
(2008) 8:1–8:51. doi:10.1145/1330017.1330019.

47

[14] F. Ebert, F. Castor, A. Serebrenik, An exploratory study on exception
handling bugs in Java programs, Journal of Systems and Software 106
(2015) 82–101. doi:10.1016/j.jss.2015.04.066.

[15] E. A. Barbosa, A. Garcia, Global-aware recommendations for repairing
violations in exception handling, IEEE Transactions on Software Engi-
neering PP (99) (2017) 1–1. doi:10.1109/TSE.2017.2716925.

[16] M. P. Robillard, G. C. Murphy, Designing robust Java programs with
exceptions, in: Proceedings of the 8th ACM SIGSOFT International
Symposium on Foundations of Software Engineering: Twenty-first Cen-
tury Applications, SIGSOFT ’00/FSE-8, ACM, New York, NY, USA,
2000, pp. 2–10. doi:10.1145/355045.355046.

[17] J. R. Kiniry, Exceptions in Java and Ei↵el: Two extremes in exception
design and application, in: C. Dony, J. L. Knudsen, A. Romanovsky,
A. Tripathi (Eds.), Advanced Topics in Exception Handling Techniques,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, pp. 288–300. doi:
10.1007/11818502_16.

[18] C. Marinescu, Should we beware the exceptions? an empirical study on
the eclipse project, in: 15th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing (SYNASC), IEEE, 2013,
pp. 250–257.

[19] K. Yi, S. Ryu, A cost-e↵ective estimation of uncaught exceptions in
Standard ML programs, Theoretical Computer Science 277 (1) (2002)
185–217. doi:10.1016/S0304-3975(00)00317-0.

[20] C. Mayer, S. Hanenberg, R. Robbes, E. Tanter, A. Stefik, An empirical
study of the influence of static type systems on the usability of undoc-
umented software, in: Proceedings of the ACM International Confer-
ence on Object Oriented Programming Systems Languages and Appli-
cations, OOPSLA ’12, ACM, New York, NY, USA, 2012, pp. 683–702.
doi:10.1145/2384616.2384666.

[21] S. Endrikat, S. Hanenberg, R. Robbes, A. Stefik, How do API docu-
mentation and static typing a↵ect API usability?, in: Proceedings of
the 36th International Conference on Software Engineering, ICSE 2014,

48

ACM, New York, NY, USA, 2014, pp. 632–642. doi:10.1145/2568225.
2568299.

[22] B. C. Pierce, Types and Programming Languages, 1st Edition, The MIT
Press, 2002.

[23] S. Sinha, M. Harrold, Analysis of programs with exception-handling
constructs, in: Proceedings of the International Conference on Software
Maintenance, 1998, pp. 348–357. doi:10.1109/ICSM.1998.738526.

[24] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, V. Sundaresan,
Soot: A Java bytecode optimization framework, in: CASCON First
Decade High Impact Papers, CASCON ’10, IBM Corp., Riverton, NJ,
USA, 2010, pp. 214–224. doi:10.1145/1925805.1925818.

[25] C. Fu, B. Ryder, Exception-chain analysis: Revealing exception han-
dling architecture in Java server applications, in: 29th International
Conference on Software Engineering, ICSE ’07, 2007, pp. 230–239.
doi:10.1109/ICSE.2007.35.

[26] J. Bell, G. Kaiser, Phosphor: Illuminating dynamic data flow in com-
modity JVMs, in: Proceedings of the 2014 ACM International Confer-
ence on Object Oriented Programming Systems Languages & Applica-
tions, OOPSLA ’14, 2014, pp. 83–101. doi:10.1145/2660193.2660212.

[27] K. Havelund, T. Pressburger, Model checking Java programs using Java
PathFinder, International Journal on Software Tools for Technology
Transfer 2 (2000) 366–381. doi:10.1007/s100090050043.

[28] Y. Dang, R. Wu, H. Zhang, D. Zhang, P. Nobel, ReBucket: a method for
clustering duplicate crash reports based on call stack similarity, in: Pro-
ceedings of the 2012 International Conference on Software Engineering,
ICSE 2012, IEEE Press, Piscataway, NJ, USA, 2012, pp. 1084–1093.

[29] S. Kim, T. Zimmermann, N. Nagappan, Crash graphs: an aggregated
view of multiple crashes to improve crash triage, in: Proceedings of
the 2011 IEEE/IFIP 41st International Conference on Dependable Sys-
tems&Networks, DSN ’11, IEEE Computer Society, Washington, DC,
USA, 2011, pp. 486–493.

49

[30] B. Liblit, A. Aiken, Building a better backtrace: techniques for post-
mortem program analysis, Tech. rep., Berkeley, Berkeley, CA, USA
(2002).

[31] R. Coelho, L. Almeida, G. Gousios, A. van Deursen, Unveiling excep-
tion handling bug hazards in Android based on GitHub and Google code
issues, in: Proceedings of the 12th Working Conference on Mining Soft-
ware Repositories, MSR ’15, IEEE Press, Piscataway, NJ, USA, 2015,
pp. 134–145.

[32] M. Kechagia, D. Mitropoulos, D. Spinellis, Charting the API minefield
using software telemetry data, Empirical Software Engineering 20 (6)
(2015) 1785–1830. doi:10.1007/s10664-014-9343-7.

[33] M. Robillard, E. Bodden, D. Kawrykow, M. Mezini, T. Ratchford, Auto-
mated API property inference techniques, Software Engineering, IEEE
Transactions on 39 (5) (2013) 613–637. doi:10.1109/TSE.2012.63.

[34] S. Clarke, Measuring API usability, Dr. Dobb’s Journal 29 (2004) S6–
S9.
URL http://www.drdobbs.com/windows/184405654

[35] T. Scheller, E. Khn, Automated measurement of API usability: The API
concepts framework, Information and Software Technology 61 (2015)
145–162. doi:10.1016/j.infsof.2015.01.009.

[36] U. Farooq, D. Zirkler, API peer reviews: a method for evaluating
usability of application programming interfaces, in: Proceedings of
the 2010 ACM conference on Computer supported cooperative work,
CSCW ’10, ACM, New York, NY, USA, 2010, pp. 207–210. doi:
10.1145/1718918.1718957.

[37] R. P. L. Buse, W. Weimer, Synthesizing API usage examples, in: Pro-
ceedings of the 2012 International Conference on Software Engineer-
ing, ICSE 2012, IEEE Press, Piscataway, NJ, USA, 2012, pp. 782–792.
doi:10.1109/ICSE.2012.6227140.

[38] A. L. Santos, B. A. Myers, Design annotations to improve API dis-
coverability, Journal of Systems and Software 126 (2017) 17–33. doi:
10.1016/j.jss.2016.12.036.

50

[39] D. Qiu, B. Li, H. Leung, Understanding the API usage in Java, Infor-
mation and Software Technology 73 (C) (2016) 81–100. doi:10.1016/
j.infsof.2016.01.011.

[40] M. Robillard, R. DeLine, A field study of API learning obstacles, Em-
pirical Software Engineering 16 (6) (2011) 703–732. doi:10.1007/
s10664-010-9150-8.

[41] W. Maalej, M. P. Robillard, Patterns of knowledge in API reference doc-
umentation, IEEE Transactions on Software Engineering 99 (PrePrints)
(2013) 1. doi:10.1109/TSE.2013.12.

[42] H. Zhong, Z. Su, Detecting API documentation errors, in: Proceedings
of the 2013 ACM SIGPLAN International Conference on Object Ori-
ented Programming Systems Languages & Applications, OOPSLA ’13,
ACM, New York, NY, USA, 2013, pp. 803–816. doi:10.1145/2509136.
2509523.

[43] T. McDonnell, B. Ray, M. Kim, An empirical study of API stability
and adoption in the Android ecosystem, in: 2013 IEEE International
Conference on Software Maintenance, 2013, pp. 70–79. doi:10.1109/
ICSM.2013.18.

[44] B. Dagenais, M. P. Robillard, Using traceability links to recommend
adaptive changes for documentation evolution, IEEE Transactions on
Software Engineering 40 (11) (2014) 1126–1146. doi:10.1109/TSE.
2014.2347969.

[45] R. P. Buse, W. R. Weimer, Automatic documentation inference for ex-
ceptions, in: Proceedings of the 2008 International Symposium on Soft-
ware Testing and Analysis, ISSTA ’08, ACM, New York, NY, USA,
2008, pp. 273–282. doi:10.1145/1390630.1390664.

[46] M. Saied, H. Sahraoui, B. Dufour, An observational study on API usage
constraints and their documentation, in: Software Analysis, Evolution
and Reengineering (SANER), 2015 IEEE 22nd International Conference
on, 2015, pp. 33–42. doi:10.1109/SANER.2015.7081813.

[47] A. Machiry, R. Tahiliani, M. Naik, Dynodroid: An input generation
system for Android apps, in: Proceedings of the 9th Joint Meeting

51

on Foundations of Software Engineering, ESEC/FSE 2013, ACM, New
York, NY, USA, 2013, pp. 224–234. doi:10.1145/2491411.2491450.

[48] K. Moran, M. Linares-Vsquez, C. Bernal-Crdenas, C. Vendome,
D. Poshyvanyk, Automatically discovering, reporting and reproducing
android application crashes, in: 2016 IEEE International Conference on
Software Testing, Verification and Validation (ICST), 2016, pp. 33–44.
doi:10.1109/ICST.2016.34.

[49] D. Yan, S. Yang, A. Rountev, Systematic testing for resource leaks in
android applications, in: 24th IEEE International Symposium on Soft-
ware Reliability Engineering (ISSRE), ISSRE ’13, 2013, pp. 411–420.
doi:10.1109/ISSRE.2013.6698894.

[50] S. Anand, M. Naik, M. J. Harrold, H. Yang, Automated concolic
testing of smartphone apps, in: Proceedings of the ACM SIGSOFT
20th International Symposium on the Foundations of Software Engi-
neering, FSE ’12, ACM, New York, NY, USA, 2012, pp. 59:1–59:11.
doi:10.1145/2393596.2393666.

[51] A. P. Felt, E. Chin, S. Hanna, D. Song, D. Wagner, Android permissions
demystified, in: Proceedings of the 18th ACM conference on Computer
and communications security, CCS ’11, ACM, New York, NY, USA,
2011, pp. 627–638. doi:10.1145/2046707.2046779.

[52] A. Gorla, I. Tavecchia, F. Gross, A. Zeller, Checking app behavior
against app descriptions, in: Proceedings of the 36th International Con-
ference on Software Engineering, ICSE 2014, ACM, New York, NY,
USA, 2014, pp. 1025–1035. doi:10.1145/2568225.2568276.

[53] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. Di Penta,
R. Oliveto, D. Poshyvanyk, API change and fault proneness: A threat
to the success of Android apps, in: Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2013,
ACM, New York, NY, USA, 2013, pp. 477–487. doi:10.1145/2491411.
2491428.

[54] L. Li, T. F. D. A. Bissyande, Y. Le Traon, J. Klein, Accessing inacces-
sible Android APIs: An empirical study, in: Proceedings of the 32nd

52

International Conference on Software Maintenance and Evolution, IC-
SME ’16, 2016, p. 12.

[55] J. Oliveira, N. Cacho, D. Borges, T. Silva, F. Castor, An exploratory
study of exception handling behavior in evolving Android and Java ap-
plications, in: Proceedings of the 30th Brazilian Symposium on Software
Engineering, SBES ’16, ACM, New York, NY, USA, 2016, pp. 23–32.
doi:10.1145/2973839.2973843.

[56] J. Bloch, E↵ective Java: A Programming Language Guide, Addison-
Wesley Java series, Prentice Hall, 2008, Ch. 9: Exceptions, pp. 209–240.
URL http://books.google.co.uk/books?id=ka2VUBqHiWkC

[57] N. Viennot, E. Garcia, J. Nieh, A measurement study of Google Play, in:
The 2014 ACM International Conference on Measurement and Modeling
of Computer Systems, SIGMETRICS ’14, ACM, New York, NY, USA,
2014, pp. 221–233. doi:10.1145/2591971.2592003.

[58] M. Kechagia, D. Spinellis, Undocumented and unchecked: Exceptions
that spell trouble, in: Proceedings of the 11th Working Conference on
Mining Software Repositories, MSR 2014, ACM, New York, NY, USA,
2014, pp. 312–315. doi:10.1145/2597073.2597089.

[59] A. Bartel, J. Klein, M. Monperrus, Y. Le Traon, Dexpler: Converting
Android Dalvik Bytecode to Jimple for Static Analysis with Soot, in:
ACM Sigplan International Workshop on the State Of The Art in Java
Program Analysis, 2012, pp. 27–38.

[60] J. Lang, D. B. Stewart, A study of the applicability of existing exception-
handling techniques to component-based real-time software technology,
ACM Trans. Program. Lang. Syst. 20 (2) (1998) 274–301. doi:10.1145/
276393.276395.

[61] I. Garcia, N. Cacho, eFlowMining: An exception-flow analysis tool for
.NET applications, in: Fifth Latin-American Symposium on Dependable
Computing Workshops, LADCW ’11, 2011, pp. 1–8. doi:10.1109/
LADCW.2011.18.

[62] P. M. Uesbeck, A. Stefik, S. Hanenberg, J. Pedersen, P. Daleiden, An
empirical study on the impact of C++ lambdas and programmer expe-
rience, in: Proceedings of the 38th International Conference on Software

53

Engineering, ICSE ’16, ACM, New York, NY, USA, 2016, pp. 760–771.
doi:10.1145/2884781.2884849.

[63] N. Salkind, Encyclopedia of Research Design, Vol. I, SAGE Publications,
2010, see p.p. 1245, 1648–1649.

[64] D. P. Byar, A. M. Herzberg, W.-Y. Tan, Incomplete factorial designs for
randomized clinical trials, Statistics in Medicine 12 (17) (1993) 1629–
1641. doi:10.1002/sim.4780121708.

[65] Survey: http://stereo.dmst.aueb.gr:5000/.

[66] T.-S. Lim, W.-Y. Loh, A comparison of tests of equality of variances,
Computational Statistics & Data Analysis 22 (3) (1996) 287 – 301. doi:
10.1016/0167-9473(95)00054-2.

[67] H. Bhattacharyya, KruskalWallis Test, John Wiley & Sons, Inc., 2004.
doi:10.1002/0471667196.ess1369.pub2.

[68] N. Cacho, E. A. Barbosa, J. Araujo, F. Pranto, A. Garcia, T. Cesar,
E. Soares, A. Cassio, T. Filipe, I. Garcia, How does exception handling
behavior evolve? an exploratory study in Java and C# applications,
in: 2014 IEEE International Conference on Software Maintenance and
Evolution, 2014, pp. 31–40. doi:10.1109/ICSME.2014.25.

[69] N. Cacho, T. César, T. Filipe, E. Soares, A. Cassio, R. Souza, I. Garcia,
E. A. Barbosa, A. Garcia, Trading robustness for maintainability: An
empirical study of evolving C# programs, in: Proceedings of the 36th In-
ternational Conference on Software Engineering, ICSE 2014, ACM, New
York, NY, USA, 2014, pp. 584–595. doi:10.1145/2568225.2568308.

[70] M. M. Papi, M. Ali, T. L. Correa, Jr., J. H. Perkins, M. D. Ernst, Prac-
tical pluggable types for Java, in: Proceedings of the 2008 International
Symposium on Software Testing and Analysis, ISSTA ’08, ACM, New
York, NY, USA, 2008, pp. 201–212. doi:10.1145/1390630.1390656.

54

Appendix

55

Table 18: Exceptions stemming from apps (P), api source code (S)
and crashes (C), (PCSU “ P X C X S X U)

Android API method Recommended exception
app.Dialog.setContentView RuntimeException
content.ContentResolver.update IllegalArgumentException
opengl.GLUtils.texSubImage2D IllegalArgumentException
content.res.Resources.openRawResource FileNotFoundException
app.Activity.startActivity RuntimeException
app.Activity.onBackPressed IllegalStateException
view.ViewGroup.addView RuntimeException
widget.TextView.setText IndexOutOfBoundsException
accounts.AccountManager.getAccounts RuntimeException
graphics.Canvas.setBitmap IllegalStateException
text.Html.fromHtml RuntimeException
os.Bundle.getInt RuntimeException
view.animation.AnimationUtils.loadAnimation RuntimeException
os.Handler.postDelayed RuntimeException
database.sqlite.SQLiteDatabase.execSQL IllegalStateException
content.ContentResolver.query RuntimeException
view.View.getLocationOnScreen IllegalArgumentException
database.sqlite.SQLiteOpenHelper.getWritableDatabase IllegalStateException
view.LayoutInflater.inflate InflateException, RuntimeException
graphics.Canvas.drawText IndexOutOfBoundsException
app.PendingIntent.getActivity RuntimeException
content.Intent.getStringExtra RuntimeException
database.sqlite.SQLiteDatabase.endTransaction IllegalStateException
widget.Toast.show RuntimeException
database.sqlite.SQLiteDatabase.delete IllegalStateException
database.sqlite.SQLiteDatabase.beginTransaction IllegalStateException
webkit.CookieManager.setCookie IllegalStateException
content.ContentResolver.bulkInsert IllegalArgumentException
view.View.setLayoutParams NullPointerException
content.res.Resources.getColor FileNotFoundException
app.NotificationManager.notify NullPointerException
support.v4.view.ViewPager.setAdapter IllegalStateException
content.ContentResolver.delete IllegalArgumentException
os.Bundle.getBoolean RuntimeException
content.ContentResolver.insert IllegalArgumentException
widget.TextView.setTextColor NullPointerException
content.Intent.getParcelableExtra RuntimeException
support.v4.app.Fragment.startActivityForResult IllegalStateException
media.MediaScannerConnection.scanFile IllegalStateException
webkit.CookieManager.getCookie IllegalStateException
graphics.Color.parseColor IllegalArgumentException
content.res.AssetManager.open RuntimeException, FileNotFoundException
graphics.Canvas.drawBitmap ArrayIndexOutOfBoundsException,

NullPointerException, RuntimeException

56

