
Unusual Events in GitHub Repositories

Christoph Treudea, Larissa Leiteb, Mauŕıcio Anichec

aSchool of Computer Science, University of Adelaide, Adelaide, Australia
bUniversitat Politècnica de Catalunya, BarcelonaTech, Barcelona, Spain

cSoftware Engineering Research Group, Delft University of Technology, Delft, the
Netherlands

Abstract

In large and active software projects, it becomes impractical for a developer
to stay aware of all project activity. While it might not be necessary to know
about each commit or issue, it is arguably important to know about the ones
that are unusual. To investigate this hypothesis, we identified unusual events
in 200 GitHub projects using a comprehensive list of ways in which an artifact
can be unusual and asked 140 developers responsible for or affected by these
events to comment on the usefulness of the corresponding information. Based
on 2,096 answers, we identify the subset of unusual events that developers
consider particularly useful, including large code modifications and unusual
amounts of reviewing activity, along with qualitative evidence on the reasons
behind these answers. Our findings provide a means for reducing the amount
of information that developers need to parse in order to stay up to date with
development activity in their projects.

Keywords: awareness, unusual events, GitHub

1. Introduction

As part of their work, software developers create, modify, and delete many
artifacts in any given day. While some of these artifacts follow regular pat-
terns (e.g., an issue is closed by a new commit addressing the issue, or a
pull request is merged quickly after a few code review comments), others are
unusual: A difficult issue might take a particularly long time to address, a

Email addresses: christoph.treude@adelaide.edu.au (Christoph Treude),
larissaleite@gmail.com (Larissa Leite), m.f.aniche@tudelft.nl (Mauŕıcio Aniche)

Preprint submitted to Journal of Systems and Software June 19, 2018

ar
X

iv
:1

71
0.

01
94

3v
2 

 [
cs

.S
E

] 
 3

0 
A

pr
 2

01
8



controversial pull request might attract an unusually large number of com-
ments, and a disruptive commit might add or delete a lot of files at once.

For any developer participating in a large and active software project,
it quickly becomes impossible to stay aware of all commits, issues, or pull
requests that are being created or edited. Arguably, it is also not necessary
to be aware of all details happening in a codebase or issue tracking system,
and tools such as dashboards [1] or event feeds [2] have been designed to
abstract away some of the details. In addition to the high-level awareness
afforded by such tools, other tools have been proposed to bring developers’
attention to activities in a project that have the potential of impacting them
directly, such as Brun et al.’s Crystal [3] or WeCode [4] by Guimarães and
Silva. However, these tools are very specific and provide little information
about the project in general.

In a recent study [5] investigating the information that developers would
like to be kept aware of, unusual events emerged from our qualitative data
analysis as a major theme. In fact, we coded 121 out of 156 responses to be
related to unusual events or one of its sub-codes. Our work identified a few
anecdotal examples of such unusual events, namely an unusually long time
between commits by a particular developer, an unusual commit message, or
changes to a large number of files. Based on the answers (examples of unusual
events that developers are interested in), we hypothesize that developers are
interested in unusually large or small values for commit- and issue-related
metrics (by generalizing the examples). In this work, we provide a systematic
empirical investigation of the hypothesis that developers want to be kept
aware of such events in their repositories.

Given the amount of data available in repositories on hosting sites such as
GitHub, there is a large number of ways in which an artifact can be unusual.
For example, a commit might delete an unusually large number of lines of
code, an issue might have an unusually large number of labels, or a pull
request might have an unusually large number of commits associated to it.
In fact, in this work we found that more than half of all commits in a sample
of 200 GitHub projects could be considered as unusual according to at least
one metric, considering a comprehensive list of metrics that we defined based
on previous work and the data available through the GitHub API.

However, we do not claim that all the different ways in which an artifact
could be considered as unusual provide useful information to developers. In
contrast, the goal of this work is to enumerate the subset of unusual events
that developers consider useful to be kept aware of and to identify the reasons

2



why some types of unusual events are useful to know about and others are
not. We define an unusual event as an artifact that is unusual in at least
one way (e.g., a commit with an unusually large number of files added), and
an unusual event type as one way in which an artifact could be considered
unusual (e.g., unusually large number of files added in a commit). One
artifact could be unusual according to more than one unusual event type
at any point in time. In this work, we consider commits, issues, and pull
requests as artifacts, since they are the main artifacts on GitHub capturing
developer activity.

To achieve our research goal of identifying the set of unusual event types
that developers consider useful to be kept aware of, we presented 140 de-
velopers from 200 randomly sampled GitHub projects with a list of unusual
events we had detected in their projects and asked them to rate the useful-
ness of the corresponding information. Based on a total of 2,096 ratings of
different unusual events by the developers that were directly responsible for
and/or affected by these unusual events and their reasoning, we compiled a
list of types of unusual events that developers want to be kept aware of.

In particular, we investigated the following research questions:

RQ1 How are unusual events perceived by developers?

RQ1.1 Are unusual events perceived differently by developers?

RQ1.2 How do developers perceive artifacts affected by particular
types of unusual events?

RQ2 Which types of unusual events do developers find most useful and why?

RQ2.1 Which types of unusual events do developers find most useful?

RQ2.2 Why do developers consider types of unusual events useful or
not useful, respectively?

We found that information on unusual events in terms of number of lines
of code deleted, added, and modified in a commit was considered particularly
useful, along with the number of comments on issues and pull requests as
well as the duration for which an issue had been open. These are also the
types of unusual events that belong to artifacts perceived as difficult.

The contributions of this work are:

3



• a list of types of unusual events that developers want to be kept aware
of, based on empirical evidence,

• the reasons for including and excluding specific unusual event types
from this list,

• data from 200 randomly sampled GitHub projects about the frequency
of unusual events and their types, and

• an investigation to what extent different types of unusual events corre-
late with perceived difficulty and typicality of an artifact.

The remainder of this paper is structured as follows: Section 2 provides
motivating examples for this work. In Section 3, we detail our sampling
method for GitHub projects and we provide our definition of unusual events.
Section 4 provides empirical data on how frequently the various unusual
events occur in GitHub projects. Section 5 presents our research questions
and methodology, before Section 6 presents the findings which are discussed
in Section 7. Section 8 highlights the limitations, and Section 9 summarizes
related work. We conclude the paper and outline future work in Section 10.

2. Motivating Examples

RxSwift1 is a GitHub project that ports ReactiveX, an API for asyn-
chronous programming with observable streams, to Swift. When we down-
loaded its data, the repository contained 1,605 commits, 352 issues, and 443
pull requests. A typical issue on RxSwift is closed after being open for less
than 5 days (median: 4.65 days, first quartile: 21.74 hours, third quartile:
16.20 days). Considering these numbers, issue #206 is unusual: more than
10 weeks passed between the moment it was opened and the moment it was
closed. When we pointed this out to one of RxSwift’s contributors, they
stated: “I think the info is really useful actually, having a long standing
issue could [...] be an indicator of a difficult issue”.

Another project we analyzed for this work is LaTeXML,2 a converter for
LATEX to XML, HTML, and other formats. The corresponding repository con-
tained 4,520 commits, 675 issues, and 119 pull requests when we downloaded

1https://github.com/ReactiveX/RxSwift
2https://github.com/brucemiller/LaTeXML

4

https://github.com/ReactiveX/RxSwift
https://github.com/brucemiller/LaTeXML


its data. Out of the 675 issues, 21 were labeled with wontfix. These issues
usually did not attract much discussion: the median number of comments for
these 21 issues was 2, with the first quartile at 1 and the third quartile at 3.5.
Issue #724 is unusual in this regard with 13 comments. When we asked one
of LaTeXML’s contributors about this unusual event, they responded: “In
this case it indicates an interesting discussion that spans beyond the concrete
issue”.

Finally, the Elixir repository3 on GitHub hosts a dynamic, functional
language for building scalable and maintainable applications, with 11,548
commits, 2,402 issues, and 2,696 pull requests at the time of our data down-
load. Issue #3413 is unusual in terms of time between open and closed with
a duration of almost 11 months, considering all issues in this project assigned
to GitHub user josevalim. This user typically closes issues in less than 7 days
(median: 6.94 days, first quartile: 21.26 hours, third quartile: 36.21 days).
Given these numbers, one of his colleagues commented: “This information
is useful. Knowing José [...] closes issues quickly makes it appear that this
was a difficult problem”.

The goal of our work is to provide developers with useful insights such as
the ones illustrated in these examples through a systematic investigation of
different types of unusual events and their perceived usefulness.

3. Projects and definition of unusual

In this section, we explain our method for sampling GitHub projects and
the definition of unusual used in this work.

3.1. Project Selection

To systematically investigate awareness of unusual events, we randomly
selected 200 original projects (excluding forks) from GitHub, limiting our
sample to those projects that had at least 500 commits and at least 100
pull requests or 100 issues. The threshold of 500 commits had been used
in previous work (e.g., [6]) to filter out pet projects and small experiments
developers host on GitHub. The additional filter on the number of issues
and pull requests ensures that projects use at least one of these mechanisms
to manage their development work.

3https://github.com/elixir-lang/elixir

5

https://github.com/elixir-lang/elixir


Table 1: Descriptive statistics of the 200 GitHub projects

commits issues pull requests
total 426,133 65,008 56,037
minimum 509 0 0
first quartile 718 67 58
median 1,352 171 142
third quartile 2,436 352 267
maximum 13,004 6,340 4,126

To conduct the project selection, we randomly selected GitHub projects
from the entire population of GitHub projects until we had 200 projects that
fulfilled our criteria.4 During this process, we disregarded 129,860 projects
because they did not have enough commits and not enough issues or pull
requests, 118,873 projects because they were forks, 1,335 projects because
they did not have enough issues or pulls (but enough commits), and 350
projects because they did not have enough commits (but enough issues or pull
requests). In addition, we disregarded 94 projects that had been imported
to GitHub using GoogleCodeExporter (i.e., their issue information was from
Google Code rather than GitHub), we disregarded one project because it was
a book writing project rather than a software project, and we disregarded
one project because it was used for coordinating a political campaign rather
than software development. The final list of repositories is available in our
online appendix.5

Table 1 shows descriptive statistics of the 200 randomly sampled GitHub
projects. They account for a total of more than 425,000 commits, with the
most active project having more than 13,000 commits and the median project
having 1,352 commits. The projects also account for roughly 60,000 issues
and pull requests, with medians of 171 and 142, respectively.

3.2. Definition of unusual

To bootstrap our investigation of the importance of unusual events, we
defined a comprehensive list of unusual event types based on our previous

4We performed the random selection by randomly selecting GitHub project IDs between
1 and 70,000,000 and testing whether the corresponding projects fulfilled our sampling
criteria.

5http://tinyurl.com/unusual-events-github

6

http://tinyurl.com/unusual-events-github


Table 2: Number of unusual commits. The column called “project” shows how many
unusual events we identified using the entire project as context, whereas the remaining
columns show the number of unusual events created by context-specific types.

project label merge? committer
days between commits 50,333 6,963 43,850 45,387

12% 2% 10% 11%
number of LOC added 40,528 5,924 38,758 36,055

10% 1% 9% 8%
number of LOC deleted 45,553 6,986 44,286 41,223

11% 2% 10% 10%
number of LOC modified 40,572 6,142 38,858 36,289

10% 1% 9% 9%
message length 11,915 2,573 14,361 9,803

3% 1% 3% 2%
number of comments 4,876 1,103 4,873 4,242

1% 0% 1% 1%
number of files added 54,521 8,018 50,629 47,022

13% 2% 12% 11%
number of files changed 1,920 267 1,839 1,796

0% 0% 0% 0%
number of files deleted 17,917 2,699 17,830 17,216

4% 1% 4% 4%
number of files modified 32,162 5,421 31,685 30,406

8% 1% 7% 7%
number of files renamed 11,030 1,933 10,945 10,651

3% 0% 3% 2%
number of pull requests 25,515 5,406 27,445 22,679

6% 1% 6% 5%

7



Table 3: Number of unusual commits, when data is grouped by files and filetypes.

committer/ file file/ file/ file/ filetype
merge? merge? committer label

days betw. 41,701 109,406 72,657 55,245 10,143 61,742
commits 10% 26% 17% 13% 2% 14%

LOC added 33,488 99,686 83,411 60,826 10,001 55,904
8% 23% 20% 14% 2% 13%

LOC del. 39,104 108,537 92,020 67,044 10,653 66,559
9% 25% 22% 16% 2% 16%

LOC mod. 33,841 91,414 78,227 57,292 9,491 55,869
8% 21% 18% 13% 2% 13%

Table 4: Number of unusual issues. The column called “project” shows how many unusual
events we identified using the entire project as context, whereas the remaining columns
show the number of unusual events created by context-specific types.

project label assignee owner
body length 2,795 1,897 2,720 1,482

4% 3% 4% 2%
days betw. open and closed 4,521 2,596 4,142 1,890

7% 4% 6% 3%
number of comments 1,888 1,643 1,863 1,300

3% 3% 3% 2%
number of labels 2,670 2,192 3,452 1,635

4% 3% 5% 3%
number of master branch 4,367 3,579 4,098 1,863

commits 7% 6% 6% 3%
title length 391 305 391 306

1% 0% 1% 0%

8



Table 5: Number of unusual pull requests. The column called “project” shows how many
unusual events we identified using the entire project as context, whereas the remaining
columns show the number of unusual events created by context-specific types.

project label assignee owner merge
status

body length 2,434 971 2,364 1,765 2,418
4% 2% 4% 3% 4%

days betw. open 5,865 1,809 5,785 3,492 5,299
and closed 10% 3% 10% 6% 9%

days betw. open 4,144 754 3,982 2,722 4,144
and merged 7% 1% 7% 5% 7%

number of changed 3,966 1,521 3,839 2,239 3,824
files 7% 3% 7% 4% 7%

number of code 5,020 2,125 5,028 2,843 4,922
review comments 9% 4% 9% 5% 9%

number of 2,506 679 2,356 1,716 2,617
comments 4% 1% 4% 3% 5%

number of labels 1,392 769 1,344 770 1,290
2% 1% 2% 1% 2%

number of LOC 4,976 1,850 4,869 2,981 4,911
added 9% 3% 9% 5% 9%

number of LOC 5,972 2,381 5,794 3,576 5,810
deleted 11% 4% 10% 6% 10%

number of master 3,441 917 3,484 2,736 4,795
branch commits 6% 2% 6% 5% 9%

title length 67 20 78 152 89
0% 0% 0% 0% 0%

9



preliminary work on unusual events in SVN repositories [7], our past work
on awareness [1], productivity metrics [5, 8], other related work [9, 10, 11],
and the data available through the GitHub API [12]. It is important to
note that the goal of this comprehensive list of unusual event types was not
to identify types that we as researchers considered particularly useful, but
rather to follow a systematic and inclusive approach that would allow us to
ask developers about the usefulness of the different types of unusual events
while reducing the bias that we were bringing to this project. The next
section lists all unusual event types we considered in this work.

In order not to introduce bias due to different formulas being used for
different types of unusual events, we used the same definition of what we
consider as unusual for all types: the extreme outlier definition, also used by
Alali et al. [9], according to which x is an extreme outlier if x < Q1−3 ·IQR
or x > Q3+3 ·IQR, where IQR denotes the inter-quartile range between the
first quartile Q1 and the third quartile Q3 of the underlying distribution. In
other words, a value in a distribution is considered as an outlier if it is either
three inter-quartile ranges above the third quartile or three inter-quartile
ranges below the first quartile of that distribution.

An important dimension of unusual events is context since what is unusual
depends on many factors, including team size, work dynamics, software pro-
cess, development cycle, domain, product size, criticality, and development
model [7]. To account for that, some of the types of unusual events that
we defined use the complete set of artifacts (i.e., commits, issues, or pull re-
quests) in a project to compute the corresponding distributions while others
are context-specific. For example, the types of unusual events related to com-
mit message length take all commits in a project into account and consider
a commit as unusual if that commit’s message length is extremely short or
extremely long, according to the definition of extreme outliers given in the
previous paragraph. On the other hand, the unusual event types related to
commit message length for a particular committer look at the commits of
each committer in a project separately, and consider a commit as unusual
if that commit’s message length is extremely short or extremely long given
the set of commits authored by the particular committer. Since what it un-
usual depends on the particular project and development team, none of our
unusual event types take data from more than one project into account, i.e.,
all computations are project-specific.

10



4. Unusual event types and their frequency

In this section, we present the unusual event types considered in this
work along with empirical data on how frequently each type occurred in our
sample of 200 GitHub projects.

4.1. Commit-related types of unusual events

Tables 2 and 3 show all types of unusual events we defined for commits
along with how many unusual events each type yielded in the set of 200
GitHub projects. The column called project in Table 2 shows how many
unusual events we identified using the entire project as context, whereas the
remaining columns show the number of unusual events created by context-
specific types. For example, the first row in Table 2 indicates that 50,333
commits were considered unusual according to their message length when
using all commits from each project as context, totaling 12% of all commits
in our data. The next column indicates that 6,963 commits were considered
to be unusual when using labels as context. In this case, we split up all
commits in our data by project first and then by the labels that had been
applied to issues or pull requests linked to each commit.

We used various sources to construct this comprehensive list of types of
unusual events: the type related to the days between commits was inspired
by our previous work on unusual events in SVN repositories where partici-
pants mentioned this type of unusual event as a potentially useful piece of
information [7]. The types regarding lines of code (LOC) and number of
files were inspired by our previous work on developer productivity [8] which
indicated that code contribution metrics provide meaningful information to
developers. Counting the number of pull requests that include a particular
commit was inspired by the traceability data available through the GitHub
API [12], and taking commit message length into account was inspired by
Rozenberg et al.’s Repograms [11]. In terms of context, we use labels as
one way of categorizing commits in an attempt to capture the nature of the
task triggering the commit. For example, a large number of added files in
a commit related to an enhancement issue might be expected, but the same
event could be unusual if it occurred in a commit related to a bug fix [7].
We also consider whether the commit is a merge, based on its number of
parent commits. The committer is important since some contributors might
regularly perform large commits while others contribute small changes. As
Table 3 indicates, we combined some of the contextual information for cases

11



such as committer / merge? to be able to distinguish between merge com-
mits and regular commits of different developers. In addition, we consider
the files that a commit touched along with their filetype. These pieces of
contextual information were again inspired by our previous work [5] which
identified “time between commits to a particular file” as a potentially useful
piece of information. As Table 3 shows, we only considered file-level context
for some of the commit-related types of unusual events since the remain-
ing ones would not be sensible (e.g., combinations such as “number of files
deleted for a particular file”).

4.2. Issue-related types of unusual events

Table 4 shows the types of unusual events we defined for issues. The types
of title length, body length, number of comments, and number of labels were
inspired by the corresponding types of unusual events for commits while the
number of days between when an issue was opened and when it was closed
was inspired by previous work by Bissyandé et al. [10] who investigated what
they called “time-to-fix”. The number of master branch commits associated
to an issue is another type that takes advantage of the traceability between
different artifact types afforded by GitHub. In addition to the project as a
whole, we consider separately the issues that contain a specific label, have
a specific owner (i.e., the person who created the issue), or have a specific
assignee.

4.3. Pull request-related types of unusual events

The types we defined for pull requests shown in Table 5 largely follow
the same logic as the ones considered for commits and issues. In addition
to the number of days between when a pull request was opened and when
it was closed, we consider the time between when it was opened and when
it was merged. Since pull requests have source code attached to them, we
additionally consider the number of files changed as well as the number of
lines of code added or deleted. GitHub allows for two types of comments on
pull requests: general comments that are identical to issue comments, and
code review comments that are comments on a portion of the unified diff
associated with the pull request. We consider both types of comments in
our definition of types of unusual events for pull requests. In addition to
the different kinds of context we consider for issues, we added merge status
for pull requests. Arguably, pull requests that are merged should be treated
differently from those not merged.

12



4.4. Overlap between types of unusual events

As these tables show, we found instances of all types of unusual events in
the 200 GitHub projects. In general, file-specific types, such as the number
of days between commits to a particular file, account for a large number of
unusual events (26% of all commits), whereas types related to title length of
issues or pull requests have a much lower yield (at most 1% of all issues or
pull requests). Artifacts can be unusual in more ways than one. While less
than half of the issues (29.81%) and pull requests (46.22%) in our data are
unusual according to our list of types of unusual events, 58.81% of all commits
in our data are unusual in at least one way, with a maximum of 1,316 types
per commit. Note that this number includes many context-specific types of
unusual events, such as a different types for each file, filetype, or label.

A tool that detects more than half of all artifacts as unusual is arguably
not useful. In the next section, we describe the research method we followed
to narrow down the initial comprehensive list of types of unusual events to
the much smaller subset that developers consider useful.

5. Research Method

In this section, we present our research questions and the methods used
for data collection.

5.1. Research Questions

Our research is guided by the following research questions:

RQ1 How are unusual events perceived by developers?

RQ1.1 Are unusual events perceived differently by developers?

RQ1.2 How do developers perceive artifacts affected by particular
types of unusual events?

Our first research question explores developers’ perceptions of the unusual
events we detect. In particular, we are interested in determining whether de-
velopers find unusual events difficult or atypical, both of which are motivated
by our previous work [7] which found preliminary evidence that unusual com-
mits in SVN repositories were considered to be more difficult while results
on typicality were inconclusive. Note that our previous work did not define

13



unusual events in a systematic way. If unusual events are perceived differ-
ently from artifacts that are not detected as unusual by any of the unusual
event types, we can argue that being aware of such unusual events might be
useful.

The investigation of why developers want to be aware of unusual events
is the goal of our second research question:

RQ2 Which types of unusual events do developers find most useful and why?

RQ2.1 Which types of unusual events do developers find most useful?

RQ2.2 Why do developers consider types of unusual events useful or
not useful, respectively?

This research question aims at filtering the list of types of unusual events
down to those that developers consider to be most useful. In addition to
identifying this subset, we are interested in the reasons why certain unusual
event types are considered useful or not useful, respectively.

5.2. Data Collection

Developers’ opinions and perceptions are at the heart of our research
questions. Therefore, we created research instruments that enabled the col-
lection of data from developers on the various types of unusual events. While
general perceptions on different ways of detecting unusual events might be
helpful, it is arguably more valuable to ask developers about concrete un-
usual events that different types would yield in the projects that they are
currently working on.

We targeted as participants all developers that had contributed at least
one unusual commit in the first half of 2016 to one of the 200 GitHub projects
we analyzed in this work. We focused on this subset of developers for our
study since we assume that developers would not remember specifics about
unusual events from more than six months ago. The developers were con-
tacted in July and August of 2016. Out of the total of 2,634,265 unusual
event instances in our dataset, 380,080 happened in 2016, distributed over
176 of the 200 projects.6 After discarding developers with invalid email ad-
dresses and merging email addresses that linked to the same GitHub profile,
we identified 1,549 potential participants that we emailed a link to a dynamic

6We downloaded the relevant data from GitHub on July 18th, 2016.

14



Table 6: Survey excerpt—note that there were up to 12 instances of Question 5 and 6 in
each survey and that Question 6 only appeared after participants had answered Question 5

1 In how many different software development projects are you cur-
rently an active participant? (text box)

2 Is developing software part of your job? (yes/no)
3 What is your job title? (text box)
4 For how long have you been developing software (in years)? (text

box)
5 Take a look at pull request

https://github.com/BristolTopGroup/AnalysisSoftware/pull/201.
Would you consider this to be a typical pull request for this
project? Was it unusually difficult? (4 answer options)

6 The following statements about this pull request are true. Which
of these statements would you consider useful to be aware of?

6a This pull request is an outlier in terms of number of changed files
with a value of 72. Most pull requests with these characteristics
have values between 2.0 and 13.0 with a median of 6.0. (checkbox)

6b This pull request is an outlier in terms of number of master
branch commits with a value of 26. Most pull requests with
these characteristics have values between 2.0 and 6.0 with a median
of 3.0. (checkbox)

6c Why would you consider this information (not) useful? (text box)

survey instrument. After questions capturing demographic information, we
asked each participant about at most 12 different artifacts from their project:

• 3 artifacts (one commit, one issue, and one pull request) that they had
authored that were not unusual,

• 3 artifacts (one commit, one issue, and one pull request) that they had
authored that were unusual,

• 3 artifacts (one commit, one issue, and one pull request) that somebody
else on their project had authored that were not unusual, and

• 3 artifacts (one commit, one issue, and one pull request) that somebody
else on their project had authored that were unusual.

15



Table 7: Demographics about the 140 survey participants

min Q1 median Q3 max
years of
experience

1 4 10 15 35

current
projects

0 2 4 5 30

These 12 artifacts were chosen randomly and displayed in random order.
For some participants, we were not able to fulfil some of these criteria, for
example if their project did not use pull requests. In those cases, the survey
contained fewer than 12 artifacts. For each artifact, we asked the partici-
pants whether they would consider the artifact to be typical and/or difficult.
Questions 5 and 6 in Table 6 show examples of the questions asked for one
artifact from the AnalysisSoftware7 project on GitHub. After the participant
had indicated how typical or difficult the artifact was, additional questions
appeared asking about the usefulness of up to five types of unusual events,
as shown in Table 6 (Questions 6a and 6b). The information displayed con-
tained the name of the unusual event type (e.g., “number of changed files”),
the value for the artifact in question, and information about the underlying
distribution in terms of the first quartile, the median, and the third quartile.
Note that Question 6 was only visible after making a choice on Question 5. If
there were more than five ways in which an artifact was detected as unusual,
e.g., a pull request that is unusual in terms of number of comments, num-
ber of review comments, labels, title length, body length, and days between
opening and closing, the list of five types was chosen randomly. In addition,
we asked why participants considered the unusual event information to be
useful or not useful, respectively. All surveys were generated automatically
based on the data collected from the 200 GitHub projects.

We received 140 responses (response rate: 9.04%), accounting for a total
of 1,157 ratings for different artifacts. In addition to these ratings, we re-
ceived 2,096 ratings for types of unusual events linked to one of the artifacts
and 293 free text answers to the question “Why would you consider this
information (not) useful?”. Most participants were experienced in software

7https://github.com/BristolTopGroup/AnalysisSoftware

16

https://github.com/BristolTopGroup/AnalysisSoftware


development (median: 10 years—3 participants did not answer this question)
and involved in more than one project (median: 4—12 participants did not
answer this question, see Table 7). Our participants held different jobs in
industry and academia. The majority (66 participants) called themselves
“software developer” or “software engineer”. Our sample also contained con-
sultants (3), technical leads (7), directors (3), managers (5), students (11),
CEOs or founders (5), and researchers (7).

6. Findings

In this section, we present our findings along with the details on data
analysis.

6.1. Perception of unusual events by developers

To answer our first research question RQ1.1 on whether unusual events
are perceived differently by developers, we analyzed the 1,157 ratings that
we received for artifacts. 606 (52%) of these artifacts were unusual while
551 (48%) did not have any unusual event type associated to them. These
numbers are imbalanced because participants were not required to answer all
survey questions and because we were unable to find artifacts with certain
characteristics for some of the participants. 436 (38%) of the artifacts were
commits, 305 (26%) were issues, and 416 (36%) were pull requests. In ad-
dition, 437 (38%) of the ratings were made on artifacts that the participant
had created while 720 (62%) ratings were made on artifacts that belonged
to the same project as the participant, but the participant had not created
them. 117 (10%) artifacts were perceived as being unusually difficult and
317 (27%) were rated as atypical.

We calculated the odds ratios and corresponding confidence intervals to
analyze whether there was a significant association between whether artifacts
were unusual and the ratings they received for difficulty and typicality. In
addition to testing across all the ratings in our data, we performed sepa-
rate tests for artifacts owned by the participant, artifacts not owned by the
participant, commits, issues, and pull requests.

Figure 1 shows the odds ratios along with their 95% confidence intervals.
Confidence intervals wholly to one side of the no effect point (the value
1.0) indicate a significant result [13]. The odds of an unusual event being
perceived as difficult are 2.57 times higher than the odds of a regular artifact
being perceived as difficult (95% CI [1.81, 3.65]). The odds ratios for artifacts

17



0.5

1.0

2.0

3.0

5.0

10.0

o
d
d
s
ra
ti
o

(0
1

) 
u

n
u

su
a

l v
s.

 d
i�

cu
lt

(0
2

) 
o

w
n

 u
n

u
su

a
l v

s.
 d

i�
cu

lt

(0
3

) 
o

th
e

r 
u

n
u

su
a

l v
s.

 d
i�

cu
lt

(0
4

) 
co

m
m

it
 u

n
u

su
a

l v
s.

 d
i�

cu
lt

(0
5

) 
is

su
e

 u
n

u
su

a
l v

s.
 d

i�
cu

lt

(0
6

) 
p

u
ll

 r
e

q
u

e
st

 u
n

u
su

a
l v

s.
 d

i�
cu

lt

(0
7

) 
u

n
u

su
a

l v
s.

 a
ty

p
ic

a
l

(0
8

) 
o

w
n

 u
n

u
su

a
l v

s.
 a

ty
p

ic
a

l

(0
9

) 
o

th
e

r 
u

n
u

su
a

l v
s.

 a
ty

p
ic

a
l

(1
0

) 
co

m
m

it
 u

n
u

su
a

l v
s.

 a
ty

p
ic

a
l

(1
1

) 
is

su
e

 u
n

u
su

a
l v

s.
 a

ty
p

ic
a

l

(1
2

) 
p

u
ll

 r
e

q
u

e
st

 u
n

u
su

a
l v

s.
 a

ty
p

ic
a

l

Figure 1: Odds of artifacts being perceived as difficult and atypical (log scale). If the 95%
confidence interval does not contain the value 1.0, the association is statistically significant
at an alpha level of 0.05.

18



owned by developers other than the participant (3.27, 95% CI [2.10, 5.09]),
commits (3.31, 95% CI [1.42, 7.72]), and pull requests (4.97, 95% CI [2.61,
9.48]) are even higher than that. These results are a first indication that
one of the use cases of our approach is the detection of difficult artifacts, in
particular pull requests.

In contrast, the odds ratios for perceptions of typicality (06–12 in Fig-
ure 1) are much lower. None of the odds ratios is higher than 2, and in most
cases, the 95% confidence interval includes values below 1.0, rendering the
results inconclusive.

To investigate our research question RQ1.2 about developers’ perceptions
of artifacts affected by particular unusual event types, we calculated the odds
ratios for all project-wide unusual event types (second columns in Tables 2
through 5).8 Figure 2 shows the results. The top row shows the odds that
an artifact is perceived as being difficult if it is affected by an unusual event
type compared to the odds of being perceived as difficult if it is not affected
by that unusual event type. The bottom row has the corresponding data for
artifacts being perceived as atypical. The Figure shows unusual event types
related to commits, issues, and pull requests from left to right, and we only
compare commits to other commits, issues to other issues, and pull requests
to other pull requests.

With one exception each, all types of unusual events for commits and
pull requests present an odds ratio for difficulty greater than 1.0, even if
we take the 95% confidence interval into account. The highest odds ratio is
presented by the number of comments on pull requests: the odds of a pull
request that is unusual according to this particular type being perceived as
difficult are 11.29 times higher than the odds of other pull requests (95%
CI [5.22, 24.45]). Interestingly, this does not necessarily imply that the pull
request is perceived as atypical: As the bottom row of Figure 2 shows, many
of the odds ratios for perception of typicality are close to 1.0, with the 95%
confidence interval containing values on either side of 1.0.

Other noteworthy findings include that the number of labels on pull re-
quests does not appear to give information about difficulty (odds ratio: 1.42,
95% CI [0.39, 5.19]), whereas large pull requests in terms of number of lines of
code added are perceived as atypical (odds ratio: 6.18, 95% CI [2.59, 14.77]).

8For context-specific types of unusual events, we did not have enough data to calculate
reasonable confidence intervals.

19



1 2 3 5

1
0

3
0

1 2 3 5

1
0

3
0

1 2 3 5

1
0

3
0

1 2 3 5

1
0

3
0

commits: message length

commits: number of LOC added

commits: number of LOC deleted

commits: number of LOC modified

commits: number of files added

commits: number of files deleted

commits: number of files modified

commits: number of files renamed

commits: number of pulls

commits: time between commits

1 2 3 5

1
0

3
0

issues: body length

issues: number of labels

issues: number of master branch commits

issues: time between open and closed

1 2 3 5

1
0

3
0

pulls: body length

pulls: number of LOC added

pulls: number of LOC deleted

pulls: number of changed files

pulls: number of comments

pulls: number of labels

pulls: number of master branch commits

pulls: number of review comments

pulls: time between open and closed

pulls: time between open and merged

F
ig

u
re

2
:

O
d

d
s

o
f

artifa
cts

aff
ected

b
y

d
iff

eren
t

u
n
u

su
a
l

even
t

ty
p

es
b

ein
g

p
erceived

a
s

d
iffi

cu
lt

an
d

aty
p

ical
(log

scale).
T

h
e

to
p

row
sh

ow
s

th
e

o
d

d
s

ratio
s

fo
r

an
artifact

to
b

e
co

n
sid

ered
d

iffi
cu

lt
a
n

d
th

e
b

o
tto

m
row

sh
ow

s
th

e
o
d

d
s

ratios
for

an
artifa

ct
to

b
e

p
erceived

as
a
ty

p
ical.

If
th

e
95%

co
n

fi
d

en
ce

in
terva

l
d

o
es

n
o
t

co
n
ta

in
th

e
va

lu
e

1.0,
th

e
asso

ciation
is

statistically
sign

ifi
can

t
a
t

an
a
lp

h
a

lev
el

o
f

0
.0

5.
F

rom
left

to
rig

h
t:

co
m

m
its,

issu
es,

a
n

d
p

u
ll

req
u

ests.

20



Files being renamed is not a common event, which explains our lack of data
and the corresponding large confidence interval for this type of unusual event.
A long time between commits is not perceived as atypical (odds ratio: 1.04,
95% CI [0.57, 1.88]).

6.2. Usefulness of unusual events

To investigate our next research question RQ2.1 asking which types of
unusual events developers find most useful, we analyzed the 2,096 ratings for
the usefulness of different types of unusual events that we received from our
participants (see Questions 6a and 6b in Table 6). Our comprehensive list
contained 151 types of unusual events (see Section 3.2), 142 of which received
at least one rating in the survey. As a consequence of our comprehensive and
inclusive approach to creating the list of types of unusual events, most of the
ratings for specific types were negative: we received 414 (19.75%) positive
ratings and 1,682 (80.25%) negative ratings.

To identify the types of unusual events that received the most positive
ratings, we compared the yes/no ratings for each type. Table 8 shows the
six types of unusual events which were rated as useful at least half the time
and for which we received more than 5 votes in total. It is unrealistic to
assume that developers reach perfect agreement as to what information they
find useful. In fact, different stakeholders interested in software repository
data have been found to have very different information needs [14].

To understand why some types of unusual events are perceived as more
useful than others, two of the authors applied qualitative coding to the 293
answers that participants had given to the question “Why would you consider
this information (not) useful?”. We identified a total of 26 codes. The com-
plete list of answers and assigned codes is available in our online appendix.4

In the following, for each code that emerged in the qualitative analysis, we in-
dicate how many participants mentioned the particular theme in superscript
and we present a representative quote. Note that the numbers only indicate
how much evidence the data analysis yielded for each theme, they do not
necessarily indicate the importance of a theme since we did not explicitly
ask all participants about each theme specifically.

As our quantitative data suggests, the number of comments on an issue or
pull request is a useful metric(16): “When reviewing project history, reviews
with a lot of comments could be more interesting in terms of decisions”.
While not all participants echoed this opinion, there were only a couple that

21



Table 8: The most useful types of unusual events

artifact type positive votes
commits number of LOC modified 60%

the number of lines of code modified
in a commit

pull requests number of comments 57%
the number of comments
on a pull request

issues days between open and closed 53%
the time for which an issue was open

issues number of comments for label 50%
the number of comments on an issue,
for a particular issue label

commits number of LOC deleted 50%
the number of lines of code deleted
in a commit

commits number of LOC added 50%
the number of lines of code added
in a commit

22



voiced the opposite(2): “Comments are not really a good indicator of much
in and of them selves”.

The response time to pull requests and issues is also an important
metric(9): “The responsiveness of the repo owner is valuable when evaluating
using/contributing to an open source project”. A long-standing pull request
or issue could also indicate low priority(5): “It’s useful to see we have a long
outstanding documentation issue, as they tend to be neglected unless we are
reminded accordingly” or difficulty(1): “The open-closed time usually means
low priority, improper issue statement or something very difficult to fix”.
Seeing which issues have a long time-to-close can be useful(9): “Yes, seeing
which issues have been open the longest can be vital”, but is less useful after
the fact(1): “It would be good to know which issues have been outstanding for
a long time but once the issue has been addressed/closed, this information
becomes irrelevant”.

Another important metric is churn(3): “It is useful because it can specify
the amount the code that is modified, and might even help spot the problem
if anything goes wrong in the future”. In particular knowing about unusual
deletions can be useful(3): “LOC deleted relative to owner can be a good mea-
sure of difficulty of the pull request”, although one participant disagreed(1):
“Core developer deleting one file isn’t unusual”.

Knowing about gaps in the commit activity can also be useful(4): “Days
between commits for filetypes would be good to determine what kinds of things
are being worked on (code vs. assets vs. build scripts)”, similar to the number
of commits on a pull request(1): “Detect unusual PRs to have more people
check it”. Types of unusual events related to long commit messages or issue
and pull request bodies generally received low ratings(9): “Commit comment
length isn’t a useful metric unless its unusually short”, although some partic-
ipants saw value(4): “A longer message can indicate the why for the change
is not immediately obvious”.

In some cases, the insights extracted by our analysis helped developers
reflect on their projects: “I realized that code review comments rarely hap-
pened” and could possibly be used to gamify some aspects of the development
process(5): “Maybe the typical number of commits a user usually has would
be useful for encouraging developers to commit more often”. This theme is
echoed in related work [15].

Missing context was prevalent among the main criticisms of some types
of unusual events(5): “I need to see them in context. Adding 100 lines of
documentation probably doesn’t need as much attention as adding 100 new

23



functions”. Commit-related types were often affected by changes to the doc-
umentation or formatting(10): “It is a change in text. Not code. So there
are no changes”, and some commits were generated automatically(4): “It’s
a commit made by an automated system. Not interested in getting statistics
for these events”. Gaps in commit activity could be explained by exter-
nal reasons(8): “Open source projects are side-time for most of us”. More
advanced code metrics could be useful to address some of these issues(3):
“Displaying a raw complexity score may be useful”. Most of these limitations
can be traced back to our decision to keep the types of unusual events in-
dependent of a particular programming language in order to be applicable
to all GitHub repositories. Future work will have to investigate this tradeoff
further.

In other cases, the information provided by the types of unusual events
was too fine-grained(7): “I think splitting LOC metrics by file and label is
probably too granular”, and unusual events based on labels were generally not
seen as useful(4): “Different projects use GitHub labels for different purposes.
Some of them are not using label at all. It’s not significant”.

For types of unusual events outside of the six that we identified as being
the most useful, the information was often seen as not useful in a practi-
cal sense(26): “It’s interesting but not useful as a contributor”. In addition,
many participants used our survey to explain the unusual events rather than
indicate whether the information was useful(78): “It was just a small improve-
ment to run samples”, or they only answered whether the information was
useful without stating why(66): “Useful”, “Not useful”.

7. Discussion

In this section, we discuss our findings, in particular related to the de-
velopers’ perceptions of unusual events, the events’ verifiability, implications
for a user interface for displaying unusual events, and actions that developers
can take based on unusual events.

7.1. Perceptions of difficulty and typicality

When we limit the list of unusual event types to the six types that our
participants rated as being the most useful, we identify 15% of all commits,
8% of all issues, and 4% of all pull requests in the 200 GitHub projects
used in this study as unusual. Our findings provide evidence that these
unusual events are perceived as being particularly difficult by developers and

24



that awareness of such unusual events is considered useful. While developers
might be aware of difficult unusual events among their own artifacts, knowing
about difficult work of somebody else on the team can help prevent potential
problems early on, can encourage discussion where it is needed, and can give
important pointers to events in a project’s history to be reviewed when trying
to understand a project. Interestingly, our participants rated unusual events
among their own artifacts as less difficult compared to unusual events among
the artifacts of their team members.

The relationship between the unusual event information and whether an
artifact is considered atypical is much weaker, suggesting that there is a differ-
ence between observed typicality (via metrics) and perceptions of typicality,
and that developers do not view difficult tasks as atypical.

7.2. Verifiability

Our findings provide evidence that developers value simple and easily
understandable metrics over complex ones. With one exception, the unusual
event types that were rated as being most useful are based on project-wide
metrics that can easily be verified by looking at the raw data. While our
initial set of unusual event types contained more complex and context-specific
unusual event types, we found that developers generally did not find these
as useful as unusual event types based on project-wide data. In addition,
our findings indicate that awareness tools based on commit or source code
activity alone are not sufficient to communicate all the information developers
care about in a project: half of the six most useful unusual event types are
related to issues and pull requests.

We note that while the raw numbers can easily be verified, simply looking
at the metrics of a given commit, issue, or pull request will not tell developers
whether this artifact is unusual. To acquire this information, developers
have to download all data, calculate the metric values for each artifact, and
investigate the distributions of the different values—just as we did in this
work. In other words, while the raw numbers are verifiable, deciding what is
unusual requires a considerable amount of work that developers are unlikely
to undertake.

7.3. User interface

In terms of user interface, information about unusual events could be in-
tegrated into a developer’s workflow in various ways: an event feed could
be provided on a separate website or notifications could appear in an IDE.

25



A particularly promising approach would be the integration into commu-
nication tools through bots [16]. For example, the current integration of
GitHub events into the cloud-based team collaboration tool Slack creates a
notification for each action taken on GitHub. Arguably, it would be more
useful to generate these notifications only in cases where something unusual
happened that deserves attention. Our empirical investigation of different
unusual event types and their perceived usefulness provides the empirical
foundation for building such tool support.

7.4. Implications

Tool support which surfaces unusual events is useful for software devel-
opers and their managers. Unusual events have the potential to significantly
reduce the amount of information that developers and managers need to parse
to stay on top of everything that is going on in their projects. We found that
only 15% of all commits, 8% of all issues, and 4% of all pull requests in our
data set were classified as unusual. Having to only look at this small subset
of information will save developers’ time and make it less likely for them
to miss important events that require their attention. Notifications about
unusual events can trigger a wide range of actions by software developers
or managers. In our previous preliminary work on unusual events in SVN
repositories [7], we found that notifications about such events could serve as
a discussion starter or a meeting agenda. As one developer explained: “It
would be useful to be aware of unusual events from other developers. [...] If
I notice a strange modification or many modifications I can promptly talk to
the developer about it.” Unusual events can also play a significant role for
managers who are in charge of monitoring project progress: “As a manager,
it is a way to look closer to what newcomers are doing. [...] The informa-
tion would be useful in the meetings, since I could question and talk to them
about their tasks without being too passive and waiting for them to tell me
something” [7].

Based on these preliminary findings, in this work, we have conducted
a systematic exploration of different kinds of unusual events that can be
detected for GitHub projects, and we have identified the subset of unusual
events that developers find particularly useful. We have uncovered additional
use cases for unusual events, for example detailed in Section 2: An issue with
an unusually long time between when it was opened and when it was closed
can point to difficulties that might require support from other developers,
and an issue with an unusually large number of comments can indicate a

26



discussion that other developers should be aware of. While many artifacts in
a GitHub repository can be considered as unusual according to some metric,
the goal of our work was to identify those types of unusual events that de-
velopers find useful. These findings are also important for researchers who
are interested in developer awareness in general or GitHub repositories in
particular since they uncover a new category of events that developers care
about: unusual events related to commits, issues, and pull requests.

8. Limitations

In terms of construct validity (i.e., the degree to which a test measures
what it claims, or purports, to be measuring), while our initial list of types
of unusual events was designed to be comprehensive and based on related
work, there could be other important unusual event types that we did not
ask our participants about. Our definition of unusual, although based on
related work [9], is only one possible way of detecting unusual values in a
distribution. Other approaches may have led to different results, and we will
continue our empirical investigation into the impact of different definitions
on the results. However, our results provide a first systematic and empirical
exploration of the idea of unusual events, and without empirical evidence,
we cannot determine to what extent other approaches would have resulted
in different outcomes.

In terms of internal validity (i.e., the extent to which a causal conclusion
based on a study is warranted), even the most useful unusual event types that
we defined still received negative ratings. As our qualitative data shows, it is
unrealistic to assume that all developers agree on wanting awareness of the
same information. Our qualitative analysis may have introduced bias and
error into our interpretation of the developer responses. We mitigated this
threat by having two of the authors do the coding.

In terms of external validity (i.e., the extent to which the results of a study
can be generalized to other situations and to other people), we cannot gen-
eralize our findings to development platforms other than GitHub. However,
GitHub now hosts more than 19.4 million active repositories,9 making it a
good starting point for this research. To distribute our survey, we contacted
all developers that had contributed at least one unusual commit to one of

9https://octoverse.github.com/

27

https://octoverse.github.com/


the 200 projects in our sample within the last six months. However, the 140
individuals who contributed to this study were self-selected volunteers within
this sample. The general population on GitHub might have different charac-
teristics and opinions. Thus, we cannot claim that our results generalize to
all GitHub users or to the entire population of developers.

9. Related Work

Existing work on detecting unusual events in software repositories has
mostly focused on detecting specific unusual events, often focusing on bug
detection and prevention. Crystal [17], for example, can detect if a developer
has not committed for a long time, and if a developer has made changes
that conflict with other developers’ changes, break the build, or make a test
fail. WeCode [4] identifies the outcomes of merging all the developers’ code
at once. We take a broader approach by enumerating a large number of
unusual events that can happen in GitHub repositories, and by collecting
empirical data about their usefulness.

There is also a substantial body of work on the detection of buggy com-
mits. Kim et al. [18] employed machine learning to determine whether a
new software change is more similar to prior buggy changes or prior clean
changes. Eyolfson et al. [19] found commits submitted between midnight and
4am to be significantly more bug-prone than those submitted at other times,
and daily-committing developers to produce less buggy commits. The focus
of our work is not on bug detection, but rather on making developers aware
of unusual events in their repositories.

The detection of unusual events can be supported by visualizations of the
software process [20], the change history [21], or an individual commit [22].
While some of these allow for the identification of unusual events, they are
not as comprehensive as our unusual event types and do not include unusual
events on issues or pull requests.

Awareness tools for software developers have historically focused on
awareness at source code level. For example, Seesoft [23] maps each line
of source code to a thin row and uses colours to indicate changes. Au-
gur [24] extends the idea behind Seesoft by adding software development
activities to a Seesoft-style visualization, allowing developers to explore rela-
tionships between artifacts and activities. Palant́ır [25, 26] provides insight
into workspaces of other developers, focusing on artifact changes. Need-
Feed [27] models code relevance and highlights changes that a developer may

28



need to review. Relevant changes are determined using models that incorpor-
tate data mined from a project’s software repository. With FASTDash [28], a
developer can determine which team members have source files checked out,
which files are being viewed, and what methods and classes are currently
being changed. Going beyond source code, WIPDash [29] was designed to
increase awareness of work items and code activity. Similarly, the dashboard
component of IBM’s Jazz [1] is intended to provide information at a glance
and to allow for easy navigation to more complete information. Our work was
inspired by the dashboard component in Jazz, but using unusual events as
content rather than high-level summaries of artifact counts over time. With
its inherent transparency [30], GitHub affords group awareness in distributed
software development [31, 32], and external websites have started to aggre-
gate data from GitHub [33]. Our work adds to this body of knowledge by
exploring the concept of unusual event awareness on GitHub.

10. Conclusions and Future Work

To investigate our hypothesis that awareness of unusual commits, issues,
and pull requests on GitHub is important to developers, we created a com-
prehensive list of ways in which an artifact on GitHub could be considered
unusual. We surveyed 140 developers to capture their perceptions of the
unusual events we detected in their projects and the corresponding unusual
event information. Based on 2,096 answers, we identified the types of un-
usual events that developers consider particularly useful, including large code
modifications and unusual amounts of comments, along with qualitative evi-
dence on the reasons behind these answers. We found that artifacts affected
by unusual events are often perceived as being particularly difficult.

Building on these results, our future work consists of building the tool
support that our participants envisioned: a feed of unusual events that de-
velopers would like to be kept aware of. Such tool support will enable us to
investigate the impact of reducing the amount of information that developers
need to parse to stay on top of everything that is going on in their projects,
e.g., in the form of field studies. In addition, we plan to investigate the
extent to which project and developer characteristics influence the unusual
event information that is considered useful by developers, with the goal of
building a personalized unusual event awareness feed.

29



Acknowledgments

We thank all developers who participated in our survey for their partici-
pation.

References

References

[1] C. Treude, M.-A. Storey, Awareness 2.0: Staying aware of projects,
developers and tasks using dashboards and feeds, in: Proceedings of
the 32nd International Conference on Software Engineering - Volume 1,
2010, pp. 365–374.

[2] T. Fritz, G. C. Murphy, Determining relevancy: How software developers
determine relevant information in feeds, in: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, 2011, pp. 1827–
1830.

[3] Y. Brun, R. Holmes, M. D. Ernst, D. Notkin, Proactive detection of
collaboration conflicts, in: Proceedings of the 19th SIGSOFT Sympo-
sium and the 13th European Conference on Foundations of Software
Engineering, 2011, pp. 168–178.

[4] M. L. Guimarães, A. R. Silva, Improving early detection of software
merge conflicts, in: Proceedings of the 34th International Conference on
Software Engineering, 2012, pp. 342–352.

[5] C. Treude, F. Figueira Filho, U. Kulesza, Summarizing and measur-
ing development activity, in: Proceedings of the 10th Joint Meeting on
Foundations of Software Engineering, 2015, pp. 625–636.

[6] M. Aniche, G. Bavota, C. Treude, A. van Deursen, M. A. Gerosa, A
validated set of smells in model-view-controller architectures, in: Pro-
ceedings of the 32nd International Conference on Software Maintenance
and Evolution, 2016, pp. 233–243.

[7] L. Leite, C. Treude, F. Figueira Filho, UEDashboard: Awareness of
unusual events in commit histories, in: Proceedings of the 10th Joint
Meeting on Foundations of Software Engineering, 2015, pp. 978–981.

30



[8] J. Lima, C. Treude, F. Figueira Filho, U. Kulesza, Assessing developer
contribution with repository mining-based metrics, in: Proceedings of
the International Conference on Software Maintenance and Evolution,
2015, pp. 536–540.

[9] A. Alali, H. Kagdi, J. I. Maletic, What’s a typical commit? A charac-
terization of open source software repositories, in: Proceedings of the
16th International Conference on Program Comprehension, 2008, pp.
182–191.

[10] T. F. Bissyandé, D. Lo, L. Jiang, L. Réveillère, J. Klein, Y. Le Traon,
Got issues? Who cares about it? A large scale investigation of issue
trackers from GitHub, in: Proceedings of the 24th International Sym-
posium on Software Reliability Engineering, 2013, pp. 188–197.

[11] D. Rozenberg, I. Beschastnikh, F. Kosmale, V. Poser, H. Becker, M. Pal-
yart, G. C. Murphy, Comparing repositories visually with repograms, in:
Proceedings of the 13th International Conference on Mining Software
Repositories, 2016, pp. 109–120.

[12] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
D. Damian, The promises and perils of mining GitHub, in: Proceedings
of the 11th Working Conference on Mining Software Repositories, 2014,
pp. 92–101.

[13] D. Altman, D. Machin, T. Bryant, M. Gardner, Statistics with con-
fidence: confidence intervals and statistical guidelines, John Wiley &
Sons, 2013.

[14] R. P. L. Buse, T. Zimmermann, Information needs for software devel-
opment analytics, in: Proceedings of the 34th International Conference
on Software Engineering, 2012, pp. 987–996.

[15] L. Singer, K. Schneider, It was a bit of a race: Gamification of version
control, in: Proceedings of the 2nd International Workshop on Games
and Software Engineering: Realizing User Engagement with Game En-
gineering Techniques, 2012, pp. 5–8.

[16] B. Lin, A. Zagalsky, M.-A. Storey, A. Serebrenik, Why developers are
slacking off: Understanding how software teams use Slack, in: Proceed-

31



ings of the 19th Conference on Computer Supported Cooperative Work
and Social Computing Companion, 2016, pp. 333–336.

[17] Y. Brun, R. Holmes, M. Ernst, D. Notkin, Early detection of collabo-
ration conflicts and risks, IEEE Transactions on Software Engineering
39 (10) (2013) 1358–1375.

[18] S. Kim, E. J. Whitehead, Jr., Y. Zhang, Classifying software changes:
Clean or buggy?, IEEE Transactions on Software Engineering 34 (2)
(2008) 181–196.

[19] J. Eyolfson, L. Tan, P. Lam, Do time of day and developer experience af-
fect commit bugginess?, in: Proceedings of the 8th Working Conference
on Mining Software Repositories, 2011, pp. 153–162.

[20] A. Hindle, M. W. Godfrey, R. C. Holt, Software process recovery using
recovered unified process views, in: Proceedings of the International
Conference on Software Maintenance, 2010, pp. 1–10.

[21] F. Van Rysselberghe, S. Demeyer, Studying software evolution infor-
mation by visualizing the change history, in: Proceedings of the 20th
International Conference on Software Maintenance, 2004, pp. 328–337.

[22] M. D’Ambros, M. Lanza, R. Robbes, Commit 2.0, in: Proceedings of
the 1st Workshop on Web 2.0 for Software Engineering, 2010, pp. 14–19.

[23] S. G. Eick, J. L. Steffen, E. E. Sumner, Jr., Seesoft-a tool for visual-
izing line oriented software statistics, IEEE Transactions on Software
Engineering 18 (11) (1992) 957–968.

[24] J. Froehlich, P. Dourish, Unifying artifacts and activities in a visual tool
for distributed software development teams, in: Proceedings of the 26th
International Conference on Software Engineering, 2004, pp. 387–396.

[25] A. Sarma, Z. Noroozi, A. van der Hoek, Palant́ır: Raising awareness
among configuration management workspaces, in: Proceedings of the
25th International Conference on Software Engineering, 2003, pp. 444–
454.

[26] A. Sarma, A. van der Hoek, Towards awareness in the large, in: Proceed-
ings of the International Conference on Global Software Engineering,
2006, pp. 127–131.

32



[27] R. Padhye, S. Mani, V. S. Sinha, Needfeed: Taming change notifications
by modeling code relevance, in: Proceedings of the 29th International
Conference on Automated Software Engineering, 2014, pp. 665–676.

[28] J. T. Biehl, M. Czerwinski, G. Smith, G. G. Robertson, Fastdash: A
visual dashboard for fostering awareness in software teams, in: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems, 2007, pp. 1313–1322.

[29] M. R. Jakobsen, R. Fernandez, M. Czerwinski, K. Inkpen, O. Kulyk,
G. G. Robertson, WIPDash: Work item and people dashboard for soft-
ware development teams, in: Proceedings of the 12th International Con-
ference on Human-Computer Interaction: Part II, 2009, pp. 791–804.

[30] L. Dabbish, C. Stuart, J. Tsay, J. Herbsleb, Social coding in GitHub:
Transparency and collaboration in an open software repository, in: Pro-
ceedings of the Conference on Computer Supported Cooperative Work,
2012, pp. 1277–1286.

[31] F. Calefato, F. Lanubile, SocialCDE: A social awareness tool for global
software teams, in: Proceedings of the 9th Joint Meeting on Foundations
of Software Engineering, 2013, pp. 587–590.

[32] F. Lanubile, F. Calefato, C. Ebert, Group awareness in global software
engineering, IEEE Software 30 (2) (2013) 18–23.

[33] L. Singer, F. Figueira Filho, B. Cleary, C. Treude, M.-A. Storey,
K. Schneider, Mutual assessment in the social programmer ecosystem:
An empirical investigation of developer profile aggregators, in: Proceed-
ings of the Conference on Computer Supported Cooperative Work, 2013,
pp. 103–116.

33


	1 Introduction
	2 Motivating Examples
	3 Projects and definition of unusual
	3.1 Project Selection
	3.2 Definition of unusual

	4 Unusual event types and their frequency
	4.1 Commit-related types of unusual events
	4.2 Issue-related types of unusual events
	4.3 Pull request-related types of unusual events
	4.4 Overlap between types of unusual events

	5 Research Method
	5.1 Research Questions
	5.2 Data Collection

	6 Findings
	6.1 Perception of unusual events by developers
	6.2 Usefulness of unusual events

	7 Discussion
	7.1 Perceptions of difficulty and typicality
	7.2 Verifiability
	7.3 User interface
	7.4 Implications

	8 Limitations
	9 Related Work
	10 Conclusions and Future Work

