The Journal of Systems & Software 144 (2018) 22-40

journal homepage: www.elsevier.com/locate/jss

Contents lists available at ScienceDirect

The Journal of Systems & Software

SOFTWARE

Improving software design reasoning—A reminder card approach™)

Antony Tang™*, Floris Bex", Courtney Schriek®, Jan Martijn E.M. van der Werf”

@ Swinburne University of Technology, Melbourne, Australia

® Department of Information and Computing Science, Utrecht University, Utrecht, The Netherlands

€ Deloitte, Utrecht, The Netherlands

Check for
updates

ABSTRACT

Software designers have been known to think naturalistically. This means that there may be inadequate rational
thinking during software design. In the past two decades, many research works suggested that designers need to
produce design rationale. However, design rationale can be produced to retrofit naturalistic decisions, which
means that design decisions may still not be well reasoned. Through a controlled experiment, we studied design
reasoning and design rationale by asking participants to carry out a group design. As treatment, we provided 6
out of 12 student teams with a set of reasoning reminder cards to see how they compare with teams without the
reminder cards. Additionally, we performed the same experiment with 2 teams of professionals who used the
reminder cards, and compared the results with 3 teams of professionals. The experimental results show that both
professionals and students who were equipped with the reasoning reminder cards reasoned more with their
design. Second, the more a team discusses design reasoning, the more design rationale they find.

1. Introduction

Software design is typically a group activity where many people
participate in discussions, exchange ideas and make decisions. In a
software team, members can have different levels of technical and do-
main experience, personalities, biases and relationships with each
other. The group collectively makes decisions based on some rationale
that is sometimes tacit. The reasoning and argumentation behind design
decisions may not be explicitly stated. It has been shown that decisions
can be performed in a naturalistic manner without conscious awareness
of reasoning (Zannier et al., 2007).

In the past decades, software engineering researchers noticed that
design reasoning is a key process in design. In the 90’s, issue-driven
design methods such as gIBIS and QOC were proposed to guide de-
signers to focus on design issues and criteria to judge design decisions.
From 2000 onwards, many models and techniques were proposed to
make use of design rationale and knowledge management in software
decision making (Burge and Brown, 2000; Capilla et al., 2016; Falessi
et al., 2013). Much of this research focuses on the means to improve the
design process by providing a process or a software tool. One of the
problems of such methods and tools is the cognitive overload that re-
sults from having to learn and use such tools at the same time as having
to discuss and think about complex software designs

(Buckingham Shum and Hammond, 1994). Furthermore, not much of
the research on design reasoning has empirically investigated which
techniques and how much information designers use in design rea-
soning, which information is missing, and how the use of design rea-
soning techniques affects design discussions and eventually the quality
of design discourse.

Based on our previous work, there are reasons to believe that it is
advantageous to use design reasoning techniques — techniques that can be
applied to elicit information and reasoning about a design — during
design discussions (Razavian et al., 2016). Conversely, incomplete and
implicit design information can limit the communication and under-
standing of design issues between team members and hamper design
argumentation (Borte et al., 2012). In a study, it was found that by
asking novice designers to verbalize their options and their justifica-
tions, the quality of a design improved (Tang et al., 2008). If we can
find a way to help designers, novice as well as professionals, to ex-
plicitly carry out design reasoning techniques it may help us better
tailor software engineering methods to assist designers. The focus of
such an approach would be to provide a reminder method to help de-
signers think better during the process of design.

The aim of this research is to investigate whether a simple, reflective
method based on a set of reasoning reminder cards could actively
trigger the use of design reasoning techniques and verbalize explicitly

* This journal article is an extension of our work based on C. Schriek, J. M. E. M. van der Werf, A. Tang, and F. Bex, "software architecture design reasoning: a card game to help novice

designers," in software architecture: 10th European conference, ECSA 2016.
* Corresponding author.
E-mail address: atang@swin.edu.au (A. Tang).

https://doi.org/10.1016/j.jss.2018.05.019

Received 14 April 2017; Received in revised form 21 February 2018; Accepted 17 May 2018

Available online 18 May 2018
0164-1212/ © 2018 Elsevier Inc. All rights reserved.

http://www.sciencedirect.com/science/journal/01641212
https://www.elsevier.com/locate/jss
https://doi.org/10.1016/j.jss.2018.05.019
https://doi.org/10.1016/j.jss.2018.05.019
mailto:atang@swin.edu.au
https://doi.org/10.1016/j.jss.2018.05.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2018.05.019&domain=pdf

A. Tang et al.

more design rationale, that is, the design issues, design decisions and
rationales behind these decisions. Part of the research is purely de-
scriptive: which techniques and information do designers use in design
reasoning? We also have a normative goal: the reasoning reminder card
approach prescribes a (lightweight) method and suggests designers to
use design reasoning techniques. We test if such an approach would
improve reflective thinking during the design discourse without putting
an extra cognitive burden on the designers. Consistent with our pre-
vious research works (Tang and Lau, 2014; Schriek et al., 2016), the
goal is to enable the creation of design methods to facilitate design
reasoning and the generation of design rationale during design dis-
course. We differentiate our approach with the traditional software
architecture inspection and evaluation approaches in that our approach
focuses on reasoning during design discourse, whereas the traditional
architecture evaluation approach evaluates the completed design, ty-
pically after most of the design discourse has completed and design
ideas may have been well anchored.

Our starting point is to design a set of reasoning reminder cards, or
reminder cards in short, based on the design reasoning process, tech-
niques and rationales that are documented in the literature (Razavian
et al., 2016; Poort and v. Vliet, 2011; Kazman et al., 1998; Dorst and
Cross, 2001). We have created seven cards, where each card represents
an aspect of design reasoning. The card system is visual and simpler
than the method reported in (Razavian et al., 2016). We conjecture that
it can remind the participants to reason more. We observed 12 teams of
students and 5 teams of professionals solving the same design problem
(Petre and Van Der Hoek, 2013). The 17 teams were divided into two
groups: the treatment or test group consisting of teams who used the
reasoning reminder cards, and a control group, being the design teams
without any cards. We postulate that the reasoning reminder card ap-
proach could help design teams in the test group to apply more design
reasoning techniques than the teams in the control group, which allows
them to communicate more explicitly the design rationale in a design
discourse.

The research results presented in this paper extend our previous
research paper (Schriek et al., 2016). In our previous work, we found
that students who used the reminder cards used more reasoning tech-
niques and found more design rationale. In this extended work, we have
added a number of new findings. Firstly, we added five teams of pro-
fessionals and investigated how professionals and students differ when
using the card system. Secondly, we investigated in more depth the
relationships between card play and the identification of design ratio-
nale. Thirdly, we analysed how the use of reminder cards encouraged
designers to engage in more discussions.

In this extended research, we found that the teams in the test group,
both students and professionals, used more reasoning techniques and
found more design rationale with the aid of the reminder card ap-
proach. This result shows that the reminder cards have impacts on
design discourse and the design outcomes. Teams that were equipped
with the reasoning reminder cards reasoned significantly more than
teams that use a naturalistic approach. It appears that the reminder
cards have provided a structure with which designers can use to gen-
erate and reason with design ideas. As such, more design discussion was
observed and more design rationale was found. We have also shown in
this research a relationship between reasoning and design rationale, the
more reasoning is discussed, the more design rationale is discovered.

The remainder of the paper is structured as follows. The next section
discusses design reasoning and rationale, explaining the current state of
the art in literature. Section 3 describes the research approach we fol-
lowed to design the reasoning reminder cards, and how these cards
were used as treatment in the controlled experiment we performed. The
results of the experiment are presented in Section 4, and the results are
discussed and analysed in Section 5. Possible threats to validity are
discussed in Section 6. Last, Section 7 concludes the paper.

23

The Journal of Systems & Software 144 (2018) 22-40

2. Software decision making related work

Software design is described as wicked by many (Vliet, 2008; Dutoit
et al.,, 2006). One of the issues is wicked problem characterization
(Rittel and Webber, 1973). Unknown issues in the problem space and
the solution space create complexities in software decision making.
During design, there is no definite formulation to solve a design pro-
blem. There is no stopping rule to tell when an acceptable solution is
being reached. It is difficult to tell if a design truly works or not, at least
not before implementation. Resolving one design issue can give rise to
other related design issues (van Vliet and Tang, 2016). These phe-
nomena make the act of software design complex.

Adding to the complexity of software design, humans do not always
make rational and objective decisions because of many decision-making
limitations. One of these limitations is cognitive bias. A cognitive bias is
a systematic distortion of human ability to reason (Kahneman and
Tversky, 1972). This issue has been shown to have affected economic
reasoning (Kahneman, 2003; Tversky and Kahneman, 1986). If the
cognitive biases that have been identified in everyday economic ac-
tivities also exist in software design activities, then this is problematic
for the software engineering discipline. We need to also ask how we
may detect, prevent and correct these biases. Another decision-making
limitation is satisficing, Tang and Vliet (Tang and van Vliet, 2015)
showed in a study that designers, both students and professionals, do
not reason much before they decide. Designers tend to be satisfied with
a good enough solution without thorough reasoning. Much of the de-
cision making is based on gut feeling, or naturalistic decision making
(Zannier et al., 2007). The possible result is sub-standard decisions.

2.1. Design reasoning processes, techniques and rationales

To combat the above-mentioned “wickedness” and the tendency
towards common reasoning biases in the software design process, many
methods and techniques have been proposed. Based on the seminal IBIS
work from the late 70’s, methods such as gIBIS and QOC have been
proposed to focus designers on the central issues, questions, and ra-
tionales (Conklin and Begeman, 1988; Maclean et al., 1996; Conklin
et al., 2001; Buckingham Shum et al., 2006). These methods are cen-
tered around issues in the design, for which options (or positions) can be
proposed. These options can be sup ported or attacked by arguments pro
and con, respectively. Furthermore, it is suggested to identify individual
constraints on the design, risks involved with the design, and assumptions
underlying the design.

From 2000 onwards, many more models and techniques were pro-
posed to make use of design rationale in software decision making, such
as risk analysis, trade-offs, assumption analysis and problem structuring
(see (Capilla et al., 2016) for a brief overview). Problem structuring, for
example, is used to identify the problem space by asking questions re-
lated to the problem, such as what are the key issues. Option generation
is a technique specifically directed at the problem of anchoring by de-
signers: the designer is forced to consider the different available options
to solve a design problem (Dorst, 2006; Tang et al., 2010). Both pro-
blems and solution options co-evolve as the problem and solution
spaces are explored by designers (Dorst and Cross, 2001; Wiltschnig
et al., 2013). Constraint analysis looks at the constraints exerted by the
requirements, context and earlier design decisions and how they impact
the design (Tang et al., 2010; Zimmermann et al., 2009). Risk analysis is
a technique to identify any risks or unknowns and their impact that
adversely affect the design (Poort and v. Vliet, 2011; Boehm, 1991).
Assumption analysis is a technique to question the often implicit as-
sumptions underlying other elements of the design discourse, such as
issues and constraints (Lago and van Vliet, 2005). Finally, trade-off
analysis is a technique to help assess and make compromises when
design issues or design options conflict. It can be used for prioritization
of problems and to weigh the pros and cons of a design (Kazman et al.,
1998; Bass et al., 2012). We call these techniques design reasoning

A. Tang et al.

Identifying
relevant
Context and
Requirements

Design
Reasoning
Process

Design Problem

structuring

Reasoning
Techniques

Design
Reasoning
Outcome

Option
generation

Formulating &
Structuring
Design
Problems

Constraint
analysis

The Journal of Systems & Software 144 (2018) 22-40

Creating
Solution
Options

Making
Design
Decisions

Trade-off
analysis

Assumption

. Risk analysis
analysis

Trade-off
Argument
(Pro-Con)

Fig. 1. Interaction between design reasoning process, techniques and rationales.

techniques. Design reasoning using these techniques differ from design
rationale models in that they emphasize on the reasoning process in-
stead of the outcomes (i.e. design rationale).

On the basis of Design Association Theory proposed in (Tang and
Lau, 2014), (Razavian et al., 2016) proposed a general model for re-
flective design reasoning process, consisting of identifying context and
requirements, formulating and structuring design problems, creating solution
options and making design decisions. The contexts and requirements help
define the design problems. The identification of design problems helps
designers to frame potential solution options. The solution options are
evaluated through trade-off analysis to decide on the most appropriate
solution. Subsequent contexts and problems are created as partial so-
lutions.

As can be seen in the above literature overview, there are many
models and reasoning techniques to help generate design rationale.
Fig. 1 shows a conceptual model summarising the three aspects of de-
sign reasoning:

1. Design reasoning process: the general stages of reasoning in a design
process (Tang and Lau, 2014).

2. Design reasoning techniques: the specific reasoning techniques and
methods applied in the design reasoning process (Tang et al., 2010).

3. Design reasoning outcomes: the outcomes of the discussions in
which reasoning techniques have been applied; the explicit doc-
umentation of the issues, decisions and rationales behind these de-
cisions (Buckingham Shum et al., 2006; Tyree and Akerman, 2005).

Note that we make a clear distinction between the design reasoning
process and the techniques applied in this process on the one hand, and
the design reasoning outcomes, the end product, on the other hand. For
example, during the reasoning process designers perform assumption
analyses (design reasoning technique), which produces the various as-
sumptions (design reasoning outcomes) underlying the design. A con-
ceptual model such as the one presented in Fig. 1 is a useful tool in
depicting the elements of design reasoning. In itself, it does not help
designers to reason systematically with a design, nor could it overcome
issues such as cognitive biases, satisficing and cognitive limitations.
However, it provides a framework in which methods can be created to
help designers to reason with a design. These methods are discussed
below.

2.2. Software architecture evaluation

Traditional approach to evaluating software design is typically

having a separate evaluation team to assess an end-design or software.
It was found that software inspection and evaluation benefit software
quality (Kollanus and Koskinen, 2009). There are many such techni-
ques. Examples of software architecture evaluation techniques are:
Scenario-Based Analysis of Software Architecture (SAAM)
(Kazman et al., 1996), Architecture Tradeoff Analysis Method (ATAM)
(Bass et al., 2012), SARA Report (Obbink et al., 2002), Lightweight
Architecture Alternative Assessment Method (LAAAM)
(Carriere, 2005), Tiny Architectural Review Approach (TARA)
(Woods, 2012), Scenario-Based Architecture Reengineering (SBAR)
(Bengtsson and Bosch, 1998) and Cost Benefit Analysis Method (CBAM)
(Kazman et al., 2001). Many of these works proposed to review inputs
and outcomes, and some of them provide a checklist for assessments.
They generally assume that a design is available for evaluation and
reason with a design outcome. However, some of them do not improve
design reasoning and design thinking during design construction.
Checklists and scenarios can also be useful (Abowd et al., 1997). They
can prompt designers to consider the specific situations but they are
also context dependent. We do not know if they improve design rea-
soning.

The difference between evaluating a design and evaluating a design
discourse is that the latter is about self-reflection and reasoning, and the
focus is on the design discourse. Designers are steered to be cognisant of
the reason they put forward when they consider a design. If a design is
reasoned carefully and thoughtfully, we suggest that many of the design
errors can be avoided before the software architecture evaluation stage.

2.3. Reflection and reasoning reminders

It is recognised that cognitive biases can influence the judgment of a
designer (Stacy and MacMillan, 1995; Zalewski et al., 2017). For in-
stance, a software designer can fixate or anchor on a solution that first
came to his mind and as a result ignores other options. One way to
counter such a cognitive bias is by way of reflection and challenge
(Reymen, 2001). Lockyer et al. adopted a model of reflection in which
reflection comprises external feedback and self-distillation
(Lockyer et al., 2004). Schon pointed out that a designer must consider
the situations that he or she is faced with, and reflect on it to obtain new
ideas (Schon, 1983). Reflection can be considered as a conversation
about the thinking process. Reflection is close to the agile philosophy
and can be treated as practices integrated into the agile software con-
struction process (Babb et al., 2014). Reflection in design sessions
(Reymen, 2001), in software development (Babb et al., 2014; Bull and
Whittle, 2014) and in agile development (Schwaber and Beedle, 2002;

24

A. Tang et al.

Table 1
Reflective questions (adapted from (Razavian et al., 2016)).

The Journal of Systems & Software 144 (2018) 22-40

Design contexts and requirements

Design problems

Design solutions

Assumption analysis ~ What assumptions are made?

problem?
Risk analysis What are the risks that certain events would
happen?
Constraint analysis What are the constraints imposed by the
contexts? problems?

Trade-off analysis What contexts can be compromised?

Do the assumptions affect the design
How do the risks cause design problems?
How do the constraints cause design

Can a problem be framed differently?

Do the assumptions affect the solution option?
How do the risks affect the viability of a solution?
How do the constraints limit the solution options?

What are the solution options? Can a solution option be
compromised?

Lamoreux, 2005) have been advocated.

Razavian et al. show that having an observer present during a de-
sign session to reflect can help improve design discourse quality
(Razavian et al., 2016). Reflection requires a higher and deliberate level
of thinking (Van Manen, 1977), but this is difficult as people tend to
think naturalistically (Zannier et al., 2007; Moe et al., 2012).

The current issue for facilitating design reflection and reasoning is
to find a suitable method that reminds designers to carry out that de-
liberate mode of thinking and reasoning. Reymen proposed to add re-
flective moments at the beginning and end of a session to discuss both
the design situation and performed design activities (Reymen, 2001).
To apply reflection in a software design practice and to remind de-
signers to reason, Razavian et al. used a list of reflective questions
aimed at improving design reasoning (see Table 1) (Razavian et al.,
2016). These reflective questions were meant to be generic. Razavian
et al. performed a case study in which they involved groups of students
in 1 h practical sessions about a software design project. The test groups
were asked reflective questions (see Table 1) by the lecturer, whereas
for the control groups the lecturer was only passively present to answer
technical questions the students might have had. It was concluded that
active, externally induced reflection improves the quality of design
reasoning.

The questions in Table 1 list the different reasoning techniques and
associated reflective questions. The study by Razavian et al. has yielded
encouraging results that reflective questions have a positive impact on
the quality of design discourse (Razavian et al., 2016). However, some
of the participants found the questions difficult to use as there are many
of them. In order to remind designers to reflect on certain aspects of
design without a complex list of questions, such as those listed in
Table 1, we propose a simpler representation, a card system, to test its
reflective power on designers and its impacts on design discourse.

3. Research method

The aim of our research is to find out if, and how, the use of rea-
soning reminder cards, based on common reasoning techniques, can
influence and support design reasoning. This leads to our main research
questions:

Q1) Does a reminder card approach influence designers and their
reasoning in software architecture?

Q2) In what ways does the reminder card approach impact on de-
sign reasoning?

To answer these questions, we designed a set of reasoning reminder
cards following the design science principles (Von Alan et al., 2004).
The reasoning reminder cards simplify the reflective questions proposed
by Razavian et al. (2016) into a set of cards. Instead of asking specific
questions like 'Have you considered encrypting this communication
channel?’, we use seven symbols representing seven types of design
rationale that we seek. By playing the reasoning reminder cards, the
idea is that designers prompt each other: 'Have we considered such
reasoning?'. The main reason why we simplify the questions in Table 1

25

into reasoning reminder cards, is the potential reduction of cognitive
overload. When the participants are trying to familiarize with a com-
plicated method (Sweller, 1988) they may not be able to focus on the
design problems at the same time when applying the reflection
methods.

Next, we set up a treatment experiment (Wohlin et al., 2012) to find
if the cards prompt designers to reason more and find more design
rationale using the reminder cards. In the experiment, teams of soft-
ware designers need to collaborate to design a traffic light simulator
(Petre and Van Der Hoek, 2013). Similar to the original setting, we
assume that our subjects are capable of reasoning with this design
problem despite their difference of experience and domain expertise.
This assumption is made based on the nature of the problem situation.
Traffic light and cars are familiar to most people but designing a
technical solution to simulate this is a novelty to most designers
(Petre and Van Der Hoek, 2013)

To investigate the effect of the reminder card approach, the parti-
cipants are divided into two groups: a test group that uses the cards as
treatment, and a control group without any treatment (Wohlin et al.,
2012). The teams in the control group serve as baseline for comparison.
To measure the effect of the card game, we recorded, coded and ana-
lysed each design session on reasoning and rationale techniques applied
by the participants.

3.1. Treatment design: reasoning reminder cards to prompt reflective
reasoning

We develop and test a simpler design reasoning method that
prompts designers to reflect with less cognitive loading. Instead of
having a lecturer or other external expert ask the reflective questions
(e.g. as in (Razavian et al., 2016)), we use simple reasoning cards based
on the reflective questions from Table 1, and include explicit “reflective
moments” in the design discussion during which designers are en-
couraged to wuse these cards and reflect on their reasoning
(Reymen, 2001). The first reason for this has to do with practical ap-
plicability of the method: we want a simple tool that software architects
can easily be familiar with, and which does not depend on having
specific experts in a design session as in the Razavian et al. experiments,
or using special software, as is the case for many of the issue-based
design rationale methods (Conklin et al., 2001). Reasoning reminder
cards are a logical choice as it may stimulate creativity (IDEO 2015),
stipulate learning about an architecture (Decisions, 2016), or perform
planning (Grenning, 2012). The second reason for choosing a reminder
card approach is to avoid the influence of an experienced person such as
a lecturer whose knowledge and timing of asking relevant reflective
questions may steer the student design groups to perform better. Fi-
nally, with the combination of (i) reminder cards that capture familiar
design elements and; (ii) structured design sessions with reflective
moments we intend to capture both aspects of Reymen's design method
(Reymen, 2001), namely (i) the systematic analysis of design and (ii)
reflective design sessions.

To design the cards, we follow the principles for design science
(Von Alan et al., 2004). In a first iteration, we design the cards based on

A. Tang et al.

the available literature on design rationale in software architecture. As
a next step, we validate the cards with a pilot group. Based on these
outcomes, we design the final reasoning reminder cards which are used
as treatment in the experiment.

In the first prototype, we designed 15 reasoning cards, three main
cards representing the design activities (context, problem and solution),
and one for each combination of design activity and design technique
(context constraint, context assumption, problem constraint, problem
assumption, and so on). With the prototype cards, we performed a pilot
test. In this test, we gave two MSc students the 15 cards and the asso-
ciated questions from Table 1, and asked them to design a simple traffic
flow simulator based on the UCI experiment (Petre and Van Der
Hoek, 2013). The students were told that they could play the cards at
any time to start a relevant discussion on aspects of the design.

The main finding of the pilot session is that the cards were hardly
played, and that their use tapered off over time. The participants
mentioned that it was unclear exactly when to play the cards.
Furthermore, it turned out that 15 cards were too many, and that the 12
combinations of design activities and techniques were too specific and
hindered the design discourse — at one point the students themselves
started discussing whether a particular constraint was a problem con-
straint or a solution constraint. The cards did have an influence on the
design discussion as the designers immediately started using the terms
used on the cards, such as assumption and constraint, to refer to points
in their discussion. Summarizing, the students mentioned that they
found the cards to be nice as a checklist, but distracting in use.

In order to simplify, we redesigned the approach into a deck of 7
cards, where each design activity and technique was represented by a
separate card (Fig. 2). Furthermore, reflective moments were added
into the design session to ensure that the cards were played, without
restricting the full discussion to only the cards.

3.2. Experiment design

Given our main research questions, the objective is to find if the
cards indeed prompt designers to reason more and find more design
rationale, that is, whether the reminder card approach has a positive
impact on the design reasoning process. This idea is reflected in our
hypothesis:

The cards and the reflective moments used in a design session could
improve the number of reasoning techniques used, and the number of
design rationales found, by the designers.

We conducted an experiment to evaluate this hypothesis. The ex-
periment was run with two different populations of designers, i.e. stu-
dents and professionals. Participants need to collaborate in teams to
design a traffic flow simulation program (Petre and Van Der

Solution

Problem

Context

© & & O

Constraint Assumption Risk Trade-off

Fig. 2. The card deck of the reminder card approach.

26

The Journal of Systems & Software 144 (2018) 22-40

Hoek, 2013) in a two-hour design session. Each population is divided
into two groups: a test group who used the reasoning reminder cards
during the design session as treatment, and a control group who de-
signed without treatment. Each design discussion was recorded, tran-
scribed and coded, and the use of the cards by the teams in the test
group was logged.

After the design session, we asked the individuals of the test group
to fill in a questionnaire, in which the participants were asked to
evaluate the perceived usefulness on the use of the reasoning reminder
cards, with questions like “Were the cards helpful during your discus-
sion?”, and “Did the cards help you think of design issues and solutions
you otherwise wouldn't have come up with?”. A detailed description of
the experimental materials can be found in (Schriek, 2016).

3.2.1. Participants: students and professionals

For the experiment, we worked with two different populations of
designers: students in a software architecture course at Utrecht uni-
versity in the Netherlands and professional software designers in the
United States and Australia. The student experiment involved 12 teams
of students, with most having three designers; two teams had two de-
signers, and one team had four designers. To divide the teams over the
test and control group, we applied stratified sampling (Wohlin et al.,
2012), to ensure both groups have an equal level of experience. For
stratifying, the results of a previous software architecture assignment
were used. As all students followed the same classes on modelling in
software architecture, we controlled in this way the factors experience
and familiarity with the subject as much as possible. Both the test and
control group consists of 6 teams.

The experiment with the professional population involved 5 teams
of 2 professionals each. The teams forming the control group were se-
lected from the original Irvine experiment of which the transcripts were
available (Petre and Van Der Hoek, 2013). These 3 teams consisted of 2
professionals each: Adobe (13.5 years average experience), Amberpoint
(23 years average experience) and Intuit (13 years average experience).
Details of the teams can be found in (Petre and Van Der Hoek, 2013).
The design sessions of these three teams were conducted in the USA.
The design task and the length of the design sessions are the same as the
student control groups. For the test group, we recruited 2 professional
test teams of 2 designers each in Australia from two software compa-
nies. The experiments were conducted in Melbourne Australia. One of
the companies serves the financial sector (7 years average experience)
and the other company serves the government sector (10 years average
experience).

We justify using the control groups from the Irvine experiment be-
cause the experimental setup of our control groups is exactly the same
as for the Irvine experiment: design a traffic simulation program in 2 h
without any further special rules or guidelines. As such, we are able to
analyse the transcript to work out what design rationale and how much
design rationale they found without prompting by the card system. The
results from the control groups can then be used to compare with the
test groups in which participants were asked to use the card system.

3.2.2. Assignment and experimental procedure

The designers in our experiments were tasked with designing a
traffic flow simulation program for a professor who teaches civil en-
gineering (see (Petre and Van Der Hoek, 2013)). The professor wants to
use the simulation to teach their students about traffic signal timing.
Students must be able to create a visual map of an area by laying out
roads, describe the behaviour of the traffic lights at each of the inter-
sections, and change and simulate traffic flows on the map. The de-
signers have to focus on the interaction that the students will have with
the system, and to describe the system's runtime functional elements.

The designers worked in teams for 2 h on the assignment, during
which they had to discuss and design the traffic simulator. The teams in
the control group were given no specific instructions on exactly how

A. Tang et al.

The Journal of Systems & Software 144 (2018) 22-40

Table 2
Coding scheme for the design discussion transcripts.
Category Code Description
Design reasoning techniques
Problem structuring PROB Identifying and discussing the key issues of the design
Trade-off analysis TA Weighing the pros and cons concerning the design to come to a decision
Option generation 0G Discussing the options available for design solutions
Assumption analysis AA Questioning the premises of the requirements and context, the validity of arguments
Constraint analysis CA Identifying constraints in the design and how these constraints influence the design
Risk analysis RA Identifying risks in the design and how to mitigate those risks
Design reasoning outcomes
Design rationale
Pro PRO Argument for a proposition
Con CON Argument against a proposition
Constraint C A restriction on the condition of the design
Assumption A A supposition that is taken for granted or questioned to determine the validity
Risk R An aspect of the design which is identified to be a threat to achieving the system goals
Other design reasoning outcomes
Option DO A solution option
Issue DI A design problem
Decision DD Evaluating solution options to make a decision

they should behave during the design session. The participants in the
test group each received a desk with the seven rationale reminder cards
(Fig. 2) as treatment, and were told to use the cards during the design
discussions. The students in the test group were also presented with the
table of reflective questions (Table 1) as a reference. There were no real
rules for playing the reminder cards, but it was mentioned that the card
could be played during discussion — for example, when you mention a
risk you can play the risk card. The control groups were given the same
exercise without any additional instructions. The design discussions
were recorded and transcribed, and the use of cards by the teams in the
test group was logged.

To validate the setup of the experiment, we performed a pilot with a
team of three students. The pilot showed that the students in the heat of
discussion forgot to play the rationale reminder cards. To stimulate the
use of the cards, we decided to add three reflective moments when the
teams were specifically asked to play the cards, following the design
method proposed by Reymen (2001). The three reflective moments are
spread out across the two-hour design session, at 15 min, 45 min and
1h and 45 min into the session.

3.3. Analysis of the design sessions

Of each design session the audio was recorded and afterwards
transcribed by two students. These recordings and transcripts form the
basis of our analysis. Additionally, each team in the test group logged
when a card was placed or removed from the session, and by whom.
The raw recordings and transcripts would give us design session length,
cards played, design reasoning terms used and design rationale created. The
design session length is based on the length of the recordings, and the
number of cards played follow from the logs of the student test teams.
One of the authors logged the cards played by the professional teams.

A first method to analyse the design reasoning terms used by the
different teams, is to count the frequencies of the exact terms from the
cards in the transcripts, such as “context”, “constraint”, “assumption”
and so on (see Fig. 2). Additionally, we looked for “assume” and “rule”
as synonyms for “assumption” and “constraint”, respectively. The term
frequency could simply be counted in the transcripts. Counting the
design reasoning terms used does not tell the whole story, as a group
may be talking about a constraint without explicitly mentioning the
word “constraint”. For example, if a designer states “The simulator
should be able to simulate traffic flows on a map”, the designers are
performing constraint analysis (i.e. a design reasoning technique),
without mentioning the technique explicitly. One result of applying
design reasoning techniques is to generate design outcomes. This out-
come can be a specific constraint, which is an example of design

27

rationale, or other design outcomes such as design solution options.
When encoding the transcripts, we were cognisant that the speaker may
or may not mention the exact word or a synonym. It is for this reason
that we encoded the transcripts as design reasoning technique or design
rationale outcome, based on the meaning of the speaker.

Although we asked the test teams to use the context card, we do not
analyse this aspect in this research, as the concept of contexts is com-
plex and not so obvious to the participants. In the coding, we interpret
context as the basic information that drives a decision. Examples in-
clude requirements and any environmental factors. Preliminary work
on defining context as a viewpoint has recently been published in the
software architecture field (Bedjeti et al., 2017). In our experiment, we
focus mainly on the analysis of design reasoning and design rationale.

The transcripts of each team's design discussion were coded by two
separate coders using the NviVo 10 qualitative data analysis software
(Bazeley and Jackson, 2013). For coding the transcript, a coding
scheme was used in which both design reasoning techniques and design
rationale were included (see Table 2). We imposed several coding rules
to ensure coding consistency between the coders: (i) a design decision
follows a design issue; (ii) a design issue is not a requirement, but a
stated problem that needs to be solved; (iii) option generation needs at
least two options; and (iv) a trade-off analysis needs at least one pro and
con.

Given the coded transcripts we analyse and compare the number of
design reasoning techniques used and design rationales mentioned by
the test and control groups. This allows us to test the following null
hypotheses:

Hay: The number of design reasoning techniques applied is not
higher for the test groups, than for the control groups.

Hag can be tested for each of the individual techniques — assumption
analysis, constraint analysis, risk analysis, problem structuring, trade-
off analysis and option generation — as well as for the total number of
techniques used.

Hby: The number of distinct design rationale mentioned is not
higher for the test groups, than for the control groups.

Hb, can be tested for each of the individual types of rationales —
assumption, constraint, risk, issue, decision and trade-off arguments
(i.e. pro and con)- as well as for the total number of rationales.

In the test group, the reminder card approach does not involve
specific rules on how the cards should be used in the discussions or
during the reflective sessions; the participants were simply told they

A. Tang et al.

could discuss their design “using the reminder cards”. Thus, in the event
that hypotheses Ha, or Hb, can be rejected, the question is whether the
increase in design reasoning techniques used and/or rationales men-
tioned is due to the fact that test groups actually played the cards. It may
be that even though they did not play any cards, they still used more
techniques. It may be that the mere presence of the reminder cards in
front of them encouraged participants to reason more. We test this
correlation in Hcp.

Hco: The number of cards played during design sessions is not po-
sitively correlated with the number of design reasoning techniques
applied.

The practice of reasoning techniques may or may not generate the
desired outcomes that help the course of design. We postulate that the
more reasoning techniques the designers apply, the more design ra-
tionale can be generated. Repeated mentioning of the same design ra-
tionale is not very useful, so we are interested in the distinct design
rationale outcomes. We test the following hypothesis to evaluate
whether design reasoning is positively correlated with the generation of
distinct design rationale.

Hdy: The number of reasoning techniques applied is not positively
correlated with the distinct design rationales.

In addition to hypotheses testing, we also use descriptive statistics
and qualitative analysis to analyse how the teams in both groups reason
with their designs.

4. Research result

The design session of each team has been transcribed. Two re-
searchers coded the resulting transcriptions. To ensure that the inter-
pretation of the design reasoning techniques and design rationales was
consistent among the coders the inter-coder agreement was checked by
calculating Cohen's Kappa (Cohen, 1968), which varied between tran-
scripts (lowest 0.6, highest 0.76). The average Kappa was 0.64, in-
dicating substantial agreement between the two coders.

4.1. Design session length and word count

All teams were each given two hours to complete their design ses-
sion. For each of the teams, we measured the time taken for the design
sessions (Appendix A). Of the teams in the control group, four groups
spent around 2 h (m = 1:36 h, sd = 0:23 h), while three teams spent
between 1 and 1.5 h and one team spent just below one hour. The teams
in the test group spent on average almost the full time available on the
assignment (m = 1:55h, sd = 0:17h). Only one team finished far be-
fore the two-hour limit (1:23 h), but from the transcripts it became clear
that this was due to miscommunication in the team about how much
time they had left. The difference between the times of the teams in the
test and control group is not significant (p = 0.0833, Mann-Whitney
test).

The teams in the test group were told to have a reflective moment at
0:15h, 0:45h and 1:45 h. The two professional test teams PT1 and PT2
and student test teams ST1, ST5 and ST6 used the three moments.
Student teams ST2 and ST3 used only two reflective moments (even
though ST3 spent two hours on the assignment), and ST4, who spent
2:24h on the assignment, had four reflective moments. In addition to
measuring the time we also measured the word counts of the student
team transcripts as an estimate of how much has actually been said
during the design sessions (Appendix A). Teams in the test group
(m = 13,299, sd = 1762 words) talked more than teams in the control
group (m = 8581, sd = 2382 words), and this difference is significant
(p = 0.0021, Mann-Whitney test). We further discuss these results in
Section 5.4.

28

The Journal of Systems & Software 144 (2018) 22-40

4.2. Card play frequencies

Focusing on the teams in the test group, and how these teams play
the cards, we can see that Assumption card was generally the most
popular card, followed by Problem card. Solution card was mainly used
by student team ST4, who often paired the card with Problem. Each
professional team played all cards at least once, whereas most student
teams tended to ignore one or more cards (only ST5 and ST6 used all
cards). Furthermore, the professional teams played more cards
(Mpror = 43.5; mgq = 11.7), but there was a big difference between the
two professional teams: one team played 20 cards, while the other
played 67 cards (sdp.or = 33.2). The students were generally more
consistent, with totals number of cards played ranging from 6 to 16
(sdstua = 4.5). Fig. 3 shows the descriptive statistics of cards played by
all test teams.

4.3. Design reasoning terms used

The explicit design reasoning can be observed when the participants
used particular terms that were introduced to the teams in the test
group, through the introduction and the reminder cards. The teams in
the control group were not exposed to these terms. We examine the use
of these terms during design discourse. Fig. 4 shows that the teams in
the test group use reasoning terms from the cards more frequently,
whereas teams in the control group hardly use any of the terms. It
shows that the cards appeared to invite the designers to directly use
those terms. The only terms mentioned by the teams in the control
group are constraint and assumption. Constraint was mostly used by the
student teams in the control group (20 out of 28 mentions), and as-
sumption was mostly used by the professional teams in the control group
(27 out of the 30 mentions).

4.4. Design reasoning techniques

The use of reasoning terms is a reflection of using the design rea-
soning techniques. However, when a design reasoning dialogue takes
place, many terms can be used. For instance, while discussing the so-
lution for traffic simulation, team SC6 (Fig. 5) addresses several options
and assumptions, without mentioning these terms explicitly. This shows
that in reasoning, sometimes several reasoning terms can be used in
reasoning with one issue, and sometimes reasoning can take place
without using an exact term. To determine which reasoning techniques
took place, we encoded the design dialogues of all the teams (see
Table 2).

After coding the transcripts with the codes from Table 2, we counted
the design reasoning techniques from all the teams used during their
session. The totals of all teams in the same group for each type of
techniques are shown in Fig. 6.

In total, the six student teams in the test group used the techniques
340 times and the six student teams in the control group used the
techniques 194 times. The two professional teams in the test group used
the techniques 134 times in total, and the three professional teams in
the control group used the techniques 128 times in total. Table 3 shows
the means and standard deviations for the student and professional
teams for each reasoning technique. We tested hypothesis Ha, for each
of the difference of the use of reasoning technique between the teams in
the test and control group. Analysing the data shows that the data is not
normally distributed, and that there are outliers. We therefore decided
to perform non-parametric Mann-Whitney U tests (a = 0.05) to de-
termine whether the use of reasoning techniques between the test and
control group are statistically significant, as this test makes few as-
sumptions about the distribution of the data, and reduces the effect of
outliers and heterogeneity of variance. Furthermore, we only performed
statistical testing for the student teams (6 test and 6 control) but not the
professional teams as there were too few professionals teams (i.e. 2 test
and 3 control groups), and they were unequally distributed.

A. Tang et al.

18
16
14
12

o N B O

1|II|.|||...||||II‘|.
ST1 ST2 ST3 ST4 ST5 ST6 PT1 PT2

The Journal of Systems & Software 144 (2018) 22-40

W Context

M Problem
Solution

W Assumption

M Constraint
Risk

M Trade-off

Fig. 3. Reminder cards played by test groups.

60)
W Assumption

50
40 H Constraint
30 Risk
20 I I I W Trade-off
10

. -]

Student test Student Professional Professional

control test control

Fig. 4. Total design reasoning terms used by all teams.

The results of the tests indicate that there are noticeable differences
between the student teams in the test and control group: on average, all
reasoning techniques are performed more by the teams in the test
group, who used the reminder cards, than by the teams in the control
group. We accepted the null hypothesis for constraint analysis and
option generation, meaning that there is no significant difference be-
tween the student teams in the test and control group. We rejected the
null hypothesis for all the other reasoning techniques, meaning that
there is a significant difference between the number of reasoning
techniques used by teams in the test and control group (see column
P,,_w in Table 3). Table 3 also shows the means and standard deviation
of each technique used.

For the student teams there is a significant difference between the
test and control group for the amount of assumption analysis, risk
analysis, trade-off analysis and problem structuring undertaken. These
reasoning techniques are used significantly more by teams in the test
group than by teams in the control group. For constraint analysis and
option generation there is no significant difference. Because on four of
the six reasoning techniques the teams in the test group score sig-
nificantly higher, we also find significant results when comparing the
total number of techniques used by each team.

For the professional teams, we see that the average amount of
reasoning techniques used is fairly high. The professional teams in the
test group have the highest average of all the types of teams, with a
fairly low standard deviation. The professional teams in the control
group have a higher average for all the reasoning techniques when
compared to the student teams in the control group. Whilst these results
are not statistically tested and thus we cannot generalise, they appear
promising when considering the application of the reminder cards in a
real design setting.

4.5. Design reasoning outcomes

We analysed the transcripts to reveal that design discussions are
typically overarching. It means that the outcome(s) such as those
classified in Table 2 may take place in multiple discussions, and one
discussion may cover multiple outcomes. Thus, even though one team
may have carried out many design reasoning techniques, they may not
generate more design reasoning outcomes or design rationale if they

SC6 0:16:40

traffic
P1: That’s true, what-

they

emerge-
just keep
this

realistic.

P2: No it- we’re now thinking about it, how are you going to spread the vehicles- | mean
P1: Yeah, these are goals too, and two and three right. So you have some to manage the lights and you have to manage the

P3: But if you do, the more [inaudible] they do the less they control the traffic. Of course
P3: If we do nothing random, and we let them just decide everything, then we have no random factor whatsoever and then

have full control. | mean they can always type a random number but
P2: Yeah you're right, they should be able to simulate the traffic flows on the map. The traffic flow should be conveyed visually,

P3: Now, | think it’s easier with the boxes and then just say, percentage left, percentage right, percentage straight, and then
counting up. That you always have to start from one side and then you say, these many vehicles are starting from this side, and
many vehicles form this side, and then if you keep adding up | think it will be- should come out in the end. But | don’t know how

| mean, because normally you have also people, like you say, who end somewhere on the map.

Fig. 5. Extract of transcript SC6.

A. Tang et al.

160
140
120
100
80
60
40
2

o

Student test Student control
test

Professional

The Journal of Systems & Software 144 (2018) 22-40

B Assumption analysis
B Constraint analysis
Risk analysis

B Trade-off analysis

sli_nm H Option generation
Professional Problem structuring
control

Fig. 6. Total design reasoning techniques used by all groups.

keep repeating the same thing. To study whether more design rationale
was created through reasoning, we only counted the distinct pieces of
design rationale, so if, for example, a team discusses the same constraint
three times at different points during the two-hour assignment, this was
only counted once. The total numbers of distinct design rationale are
shown in Fig. 7.

Table 4 shows the means (m) and standard deviations (sd) of the
distinct design outcomes, for both the test and control group of the
student and professional teams. We performed non-parametric Man-
n-Whitney U tests (o = 0.05) to see if the student teams in the test
group are statistically different from the student teams in the control
group. The p-values in Table 4 shows that the teams in the test group
yielded significantly more design outcomes than the teams in the con-
trol group, except for constraints, pros, issues and options. We therefore
reject the null hypotheses Hb, for design rationale assumption, risks
and con. This result mirrors the differences in the application of as-
sumption analysis and risk analysis by the student teams in the test and
control groups (cf. Table 3). Similarly, the number of distinct constraints
mentioned was not significantly higher for the student teams in the test
group, which matches the earlier finding that there is no significant
difference in the use of constraint analysis for the student teams in the
test and control group.

Trade-off analysis was used significantly more by the student teams
in the test group. Trade-off analysis requires evaluating multiple pro
and con arguments. When looking at the total number of arguments (pro
and con), we see that the student teams in the test group put forth
significantly more arguments than the teams in the control group.
However, there is a difference in the use of pros and cons between the
student teams in the test and control groups. For the cons, the difference
is statistically significant but not for the pros.

Looking at design issues, options, and decisions (Table 4), we see that
while these design outcomes are on average higher for the student
teams in the test group, the differences are not significant. Finally,
when we examine the total number of design outcomes mentioned, we
see that the student teams in the test group outperform the teams of the
control group, but the difference is not statistically significant
(p = 0.055).

Table 3

60

50
B Assumption

40
= .
30 Constraint
20 Risk
W Pro
10
I m Con
0

Student test Student Professional Professional

control test control

Fig. 7. Total number of distinct design rationale identified by all teams.

4.6. Correlation between cards played, the use of reasoning techniques and
design rationale

We test Hey and Hd to understand if the cards played are correlated
with the number of design reasoning techniques applied; and whether
the number of design reasoning techniques applied is correlated with
the number of distinct design rationale generated. Fig. 8 shows a scatter
plot depicting the cards played by the teams and the reasoning tech-
niques applied in their design discourse (notice that some data points
overlap). The scatter plot indicates that the design reasoning techniques
and cards played are not correlated. Similarly, Fig. 9 shows a scatter
plot of the reasoning techniques applied and the design rationale.

We use Spearman's rank correlation for the statistical analysis due to
the nature of the data, which is not normally distributed and contains
outliers (see Table 5). We accept the null hypothesis Hc, for the overall
cards played correlated with reasoning techniques. There is no corre-
lation between the total cards played per team and the total number of
design reasoning techniques (r = 0.594, p = 0.121). We accept all of
the null hypotheses for the cards played and reasoning techniques used
except for assumption. We interpret this result in Section 5.

There are correlations between the number of design reasoning
techniques applied and the number of distinct design rationale for some

Comparing design reasoning techniques used by teams in the test and control groups.

Student groups

Professional groups

Miest Sdtest Mecontrol sdcontrol Pmw Miest Sdtest Meontrol sdcontrol
Assumption Analysis 8.17 3.19 1.83 1.17 0.004 12.00 2.83 4.33 2.08
Constraint Analysis 7.17 2.79 6.50 2.07 0.380 9.50 3.54 6.67 2.08
Risk Analysis 5.67 0.82 2.50 1.05 0.004 11.00 7.07 6.00 5.20
Trade-off Analysis 2.67 1.51 1.00 1.10 0.045 4.00 2.83 1.33 1.53
Option Generation 8.67 5.85 5.00 2.90 0.260 10.00 5.66 5.33 1.15
Problem structuring 24.33 4.97 15.50 3.02 0.008 20.50 2.12 19.00 1.00
Total 56.67 13.94 33.50 4.89 0.004 67.00 3.50 42.67 8.33

30

A. Tang et al.

Table 4
Comparing distinct design outcomes generated during design discourse.

The Journal of Systems & Software 144 (2018) 22-40

Student groups

Professional groups

Myest Sdiest Meontrol sdcontrol Pm-w Myest Sdiest Meontrol sdcontrol
Assumptions 7.8 3.6 2.3 1.5 0.005 9.5 0.7 4.7 2.3
Constraints 7.0 1.5 7.0 2.0 0.631 7.5 2.1 7.7 2.1
Risks 6.2 3.7 2.5 1.0 0.004 9.0 5.7 4.3 3.2
Arguments 18.3 9.2 8.2 5.6 0.025 30.0 17.3 9.0 5.3
Pro 7.7 5.3 5.0 3.6 0.378 8.7 45 3.3 3.5
Con 8.0 3.7 2.2 1.6 0.016 16.0 9.8 4.3 3.1
Issues 15.7 7.5 11.7 5.7 0.423 22.7 10.6 12.3 3.1
Options 24.7 12.0 15.8 7.7 0.200 40.7 21.6 19.7 7.6
Decisions 15.3 7.7 12.3 5.7 0.689 18.0 7.9 11.7 3.5
Total 84.8 26.5 50.5 20.8 0.055 109.5 50.2 69.3 18.7
reasoning techniques (see Table 5). For the teams in the test group, both 20
for the student and professional teams, we rejected the null hypotheses P
Hd, for assumption and trade-offs. The test for risk is marginally re- g 60 -]
jected. It shows that when the teams in the test group discussed more § 50
about the assumption, risk and trade-offs, they found more distinct °
design rationale. When we analysed the correlation between the use of £ 40 m
- . - . - c
design reasoning technique and design rationale for both the test and 2 30 .. ‘.. M Test groups
control group, we found that the correlation between them are strong 3
. = 20 .‘ @ Control groups
for all types of design rationale except constraint. We interpret this g []
result in Section 5. > 10 g
o
0
0 20 40 60

4.7. Participant questionnaires

We provided a questionnaire to all the participants in the test group (17
students and 4 professionals). The first question was “Did the questions
table help you understand the cards meaning, or did you not use it at all?”.
Of the participants, 7 students and 2 professionals answered with “yes”, 7
students said they only used in sometimes or in the beginning, and 3 stu-
dents and 2 professionals said they did not use the table at all.

The second question was “Were the cards helpful during your dis-
cussion?” In total, 10 students and all 4 professionals indicated they
found the cards helpful for different reasons (e.g. “thought more deeply
about problems”, “helped lower tension in discussion”, “helped struc-
ture the discussion”). 3 students indicated they did not find the cards
helpful. Of the participants that found the cards helpful, 4 students
indicated they only found them helpful in the beginning or only for
some cases.

The third question was whether the cards felt like they were getting
in the way. 8 students and 1 professional felt this was the case, saying
things such as “When we were forced to use them the discussion stalled
a little”, “[cards] got in the way and slowed down process” and “[cards]
became restrictive later”.

60
50
40
30
20
10

Cards played

0 10 20 30

Design reasoning techniques

Fig. 9. Scatter plot of design reasoning techniques and design rationale.

The fourth question was “Did the cards help you think of design
issues and solutions you otherwise wouldn't have come up with?”. 5
students and 1 professional answered with an unequivocal “yes”, 7
students and 2 professionals indicated that the cards helped them come
up with issues and solutions, but only in the beginning or for some types
of rationales (e.g. risks or assumptions), and 5 students and 1 profes-
sional indicated the cards did not help them to come up with any new
issues or solutions.

The fifth question was “Do you have any suggestions to improve the
Design Support Card game?”. Only 6 students and 1 professional an-
swered this question, 4 students and the 1 professional indicating that it
would be good to have more rules for the game (e.g. on when to use
which cards), 1 student indicating that he would have liked more time,
and 1 student would have liked the cards to be integrated into the
discussion more naturally.

Student teams

@ Professional teams

40 50

Design reasoning techniques

Fig. 8. Scatter plot of cards played and design reasoning techniques (darker shade indicates more than one team with same results).

A. Tang et al.

Table 5

The Journal of Systems & Software 144 (2018) 22-40

Hypotheses testing results: cards played and design reasoning techniques used, design reasoning techniques used and design rationale found.

Correlations between cards played and
reasoning techniques used (all test groups)

Correlations between reasoning techniques used and
distinct design rationale found (all test groups)

Correlations between reasoning techniques used and
distinct design rationale found (both test and control
groups)

Assumption 0.835 (p = 0.010) 0.855 (p = 0.030)
Constraint 0.604 (p = 0.113) 0.704 (p = 0.118)
Risk —0.076 (p = 0.857) —0.026 (p = 0.961)
Trade-offs 0.154 (p = 0.716) 0.849 (p = 0.033)
Overall 0.594 (p = 0.121) 0.319 (p = 0.537)

0.987 (p = 0.000)
0.644 (p = 0.084)
0.932 (p = 0.007)
0.501 (p = 0.311)
0.858 (p = 0.029)

5. Analysis and discussion

The main lesson learned from this study is that the reminder card
approach influences design reasoning and design discourse. In this
section, we analyse the results presented in Section 4.

5.1. How reminder cards influences design discourse

5.1.1. Use of reasoning techniques by test and control groups

We used statistical analysis to check if the cards made any difference
to the use of design techniques during design discourse. The average
reasoning techniques used by the teams in the test group are higher
than the teams in the control group. Student teams in the test group
used the techniques, on average, 56.7 times versus the teams in the
control group 33.5 times. The professional teams in the test group used
the reasoning techniques on average 67 times versus 42.7 times by the
teams in the control group. There is a difference in the way the two
groups discussed design. The reminder cards have changed the way
design discourse was conducted in terms of the use of reasoning lan-
guage. To a different extent, this kind of changes of how designers work
have been observed in other research works as well (Tang et al., 2008;
van Heesch et al., 2013). Works such as (Lytra et al., 2015; Van Heesch
et al., 2012) used architecture knowledge, viewpoints, etc to induce
design reasoning and better decision making, and they also made si-
milar observations that methods can help designers to reason better.

Statistical testing on the difference of use of reasoning techniques
between the teams in the test and control groups (Ha) shows that
overall there is a significant difference in the general use of reasoning
techniques, i.e. when all techniques are counted. This indicates that
during design discourse, student teams in the test group are more
cognisant of design reasoning. We tested the significant difference for
each of the reasoning techniques individually. Most reasoning techni-
ques are significantly different, except for constraint and option gen-
eration. From the transcript, we have hints that the student teams in the
test group discussed constraints based on requirements. So the identi-
fication of constraints was mainly based on requirements. As such, their
reasoning in this regards was not statistically different from the teams
in the control group. The student teams, both in the test and control
group, were also not very effective in generating solution options (see
Table 4), even though the student teams in the test group talked more
about design options (see Table 3).

5.1.2. Impact of reminder cards on design reasoning techniques

We tested hypothesis Hc, to see if there is any correlation between
the number of times cards are played, and the reasoning techniques that
are used. As shown in Table 5, except for assumptions, there are hardly
any correlations between cards played and reasoning techniques used.
This does not mean that the reminder cards have no effect. From the
transcript, it appears that the participants use the cards mentally in-
stead of physically. During the experiments we observed that the con-
cepts of the cards, the techniques they refer to, are increasingly in-
corporated into the discussion even when the reminder cards were not
played physically. The participants simply looked at the cards to serve
as a visual reminder. We did not count that as card played. This is a

32

plausible argument explaining why no correlation could be found
quantifying the significance of the cards played. The rejection of hy-
pothesis Ha, together with accepting hypothesis Heg clearly indicates
that the reminder cards have an impact, except that the participants do
not necessarily play the cards physically.

5.1.3. Design dialogue and questionnaire feedback

From the analysis of the transcripts, we learned that the reminder
cards directly influence the design discourse in two ways. Firstly, the
reminder cards provide inspirations for participants to investigate a
certain reasoning topic. Secondly, the students use the reminder cards
to reassess their previous discussion by classifying it in card terms, e.g.
a system rule is later identified as having been a constraint. Examples
like the extract from ST3 show how these cards are used for inspiration
(Fig. 10). Person 2 was looking over the cards searching for issues to
discuss and came up with a risk, which needed to be clarified for the
other person. This risk made the designers reconsider an earlier as-
sumption, that the program is a web-based application, which later
turned into a nearly 5 min long trade-off discussion. Excerpts from ST2
show us that the cards were being used for classification (Fig. 10). Here
they discussed a problem and found a solution for it. But when they
reassessed the discussion as a problem, they realized that in order to
solve the problem, there were other risks and assumptions as well.

Additionally, we asked the participants in the test group to fill in a
questionnaire after the design exercise to study how they perceived the
reminder cards (Section 4.7). The professionals of both teams in the test
group are mostly positive about the use of the reminder cards and
perceived them as being helpful during discussions to remind the de-
signers what to look out for, as they all indicated that they found the
cards helpful as reminders or goto points in the discussion. Opinions
among the professionals in the test group were mixed on whether the
cards helped to find more design issues. Two professionals (one from
PT1 and one from PT2) stated that the cards prompted them to look for
issues which might otherwise not have been looked at, but the other
two stated that the issues found were things they always looked at, even
without the reminder cards.

Of the students, the majority perceived the cards as being helpful,
especially in the beginning, for structuring the discussion and thinking
more deeply about the problems (10 out of 17 students), whereas only 3
students said they did not find the cards helpful. About half of the
students also felt that the current structure with the reflection moments
in which they were forced to use the cards interrupted the natural flow
of discussion. On the other hand, four students wanted more structure
and rules in the use of the reminder cards, such as a mandatory rule to
use all the cards at least once. Finally, the majority of students (12 out
of 17) indicated the cards helped them find issues they would not
otherwise have found, at least for some types of issues.

The positive and more negative students are mostly evenly dis-
tributed among the five different student teams. Interestingly, the best
performing student team in terms of techniques used and outcomes
found (ST1 with 84 techniques used and 156 distinct outcomes found)
were least positive as a team - not one of the three team members
indicated that they really found the cards helpful, and they only played
8 cards in total. However, the members of ST1 were very clear in that

A. Tang et al.

The Journal of Systems & Software 144 (2018) 22-40

ST3 (0:20:31-0:21:10)

[inaudible] right?
PERSON [: What do you mean exactly? For example.

for it. For example. So, on the other hand —

ST2 (0:28:14-0:28:28)

PERSON 1: So this was a problem
PERSON 3: This was a problem
PERSON I: Yeah

PERSON 2: Yeah. Because [inaudible]
PERSON 1: And a risk right

assumption right or-

PERSON 2: HTML 5 yeah? Information would of course [inaudible] constraints or risk or trade-offs, we have to
make- a risk might be of course that- of course there is a [inaudible] so while you are travelling. For example, when
you have an older device that could be a problem of course. So then you couldn’t use the navigation maybe, the- well,

PERSON 2: Yeah well, for example, if you are travelling and you want to use the
application. You want to use the traffic simulator, then of course that might be the case that your device is not suitable

PERSON 2: A constraint? Yeah but it was also like an assumption that you have a minimum length. That is our

PERSON 3: Yeah we created that now, and that’s ok because it’s our own system

Fig. 10. Reasoning discussions using the cards.

they used the provided table with questions (cf. Table 1) intensively
during the discussion, indicating that while their discussion was not
guided by the cards themselves, they did reflect on the concepts of the
card game.

5.2. Design rationale

The main purpose of the reminder cards is to prompt designers to
consider design reasoning and uncover more design rationale. If the
reminder cards make any impact, we should be able to detect the results
by measuring the amount of design rationale outcomes that are pro-
duced. If the reminder cards have a positive impact, then the teams in
the test group should produce more design rationale. The results of the
experiment have shown that the teams in the test group discussed risks,
assumptions and trade-offs much more than teams in the control group,
for both students and professionals. As a result, the teams in the test
group found more distinctly identified risks, assumptions, and pros and
cons. Pros and cons are qualifications of different solution options when
making trade-offs (Table 4).

Except for constraints, professional teams in the test group identi-
fied many more design rationale than the teams in the control group. In
the testing, we accept Hb, for constraints (i.e. insignificant difference),
and reject Hb, for all other design rationale, i.e. the difference is sta-
tistically significant. Professional teams in the test group found more
distinct risks, assumptions or pros/cons (Table 4). The professional
teams in the test group also identified many more distinct risks, as-
sumptions and pros/cons than all student teams and professional teams
in the control group. Without the reminder cards the professional teams
in the control group identified 72% more risks than the student teams in
the control group. This may be attributed to experience. With the re-
minder cards, the professional teams in the test group identified 45%
more risks than the student teams in the test group. This result appears
to suggest that (a) the reminder cards alone help to generate more
design rationale; and (b) the reminder cards and professional experi-
ence combined have a greater effect on the generation of design

Table 6
Improvements on design issues and solution options identified.

rationale.

Assumption is clearly not what the teams in the control group
considered consciously. This is shown by their low number of identi-
fication as compared to the teams in the test group (Table 4). We ob-
serve that the reminder cards played a significant role in reminding the
teams in the test group to check their assumptions, resulting in many
more assumptions identified.

We tested hypothesis Hd, to see if there are correlations between
design reasoning and design rationale. We tested this hypothesis for all
teams in the test group as well as for all teams combined (see Table 6).
With all teams in the test group (i.e. 6 student test groups and 2 pro-
fessional groups), we found that only assumptions and trade-off ana-
lysis are correlated with their corresponding design rationale. However,
when we test the correlation between the use of design reasoning
techniques and design rationale for all teams (i.e. 8 teams in the test
group and 9 teams in the control group), we see significant correlation
in all design reasoning techniques. This means that the more reasoning
techniques are used, the more distinct design rationale outcomes are
generated.

Two reasoning techniques are not correlated with the design ra-
tionale outcomes, being constraints and risks. We observed that the
professional teams in the test group discuss more on constraints than
professional teams in the control group, but that discussions did not
result in identifying more constraints. Despite the difference in the
amount of constraint statements made by the professional teams in both
the test and control groups, the distinct number of constraints identified
by professional teams (both in the control and test groups) are about the
same (Table 4). The amount of discussions for the student teams in the
test and control groups is almost the same (Table 3). This raises the
question why the reminder card approach does not improve constraint
analysis. One possible explanation for this is the very nature of con-
straints, being defined as a limiting condition that a design concern
imposes upon the outcome of a design decision (Holyoak and
Simon, 1999). In our experiment, constraints are initially bound to the
requirements. The subjects of the experiments have not had prior

Improvement between student test and control groups

Improvement between professional test and control groups

Average problem structuring technique used 56.7%
Average solution option technique used 74%
Average distinct problems identified 34%
Average distinct solution options identified 563%

7.9%
88.7%
84%
106.5%

33

A. Tang et al.

experience with designing such a simulator. When thinking about this
design and what this system must accomplish, designers think about
what is required and what is not required. The constraints initially
come from the given requirements. All teams from the test and control
group identify constraints as things that are not allowed or rules that
the system must follow stated by the design briefing. What is interesting
here is that all teams identify many of the same constraints, of which
many are directly taken from the design briefing, even using the same
wording. We find that teams both in the test and control group fre-
quently used the literal requirements presented in the text as con-
straints. The use of constraints for reasoning may be more noticeable if
the design teams had the opportunity to delve more into the technical
and implementation design.

The correlation between risk reasoning and identification of risk are
significant for all teams (control and test combined) but insignificant
for the teams in the test group only. This may be due to few data points
available for the test group, as shown in the scatter plot depicted in
Fig. 11 (notice that some data points overlap). It may also be because
that there are differences in the capabilities of the teams in the test
group in employing reflection and reasoning. An example is the dif-
ferences of non-unique reasoning terms between PT1 and PT2 (see
Appendix C). PT1 is more verbose with risk and trade-offs than PT2.

The extract of ST4 discussion shows part of a larger trade-off ana-
lysis they did. Several options were heavily discussed, mostly to have
either a standalone program, or one which is cloud or web-based
(Fig. 12). In this discussion, person 1 mentioned that a pro for a cloud
based program would be that you can update every hour, but that a con
is that a powerful but costly server is required. The person then pro-
ceeded to suggest another option, for the user to pay for the usage of the
server. This was not well-received and person 1 admitted that this op-
tion would still be a very expensive one and gave a pro to their first
option, to use a local standalone version to which the others agreed.
Even though the team eventually went with their first option, they took
the time to explore multiple options and critically assessed them by
providing both pros and cons. Teams in the control group did not do
this often.

The amount of reasoning and distinctive risks, assumptions and
trade-offs is an indication that the design discourse engages reasoning,
and produces more design rationale outcomes. In this regard, the re-
minder card approach promotes more objectivity, analysis and thoughts
during a design discourse. However, it does not necessarily assure that
the quality of a design is high. In other words, discussing more risks or
assumptions does not necessarily mean that the identified risks or as-
sumptions are relevant or important to the final design. Good designers
still need to have the knowledge and insights to find those relevant and
important risks and assumptions that are meaningful to a design.

14
12 {]

10

B Test groups

@ Control groups

Design reasoning outcomes
]

10 15 20

Design reasoning techniuges

Fig. 11. Scatter plot of the risk analysis technique and the risk design rationale
outcome.

34

The Journal of Systems & Software 144 (2018) 22-40

5.3. Problem identification and solution option generation

One of the reasoning aspects is to consider more design problems
that need solving, and to explore more potential options. With the re-
minder cards, more discussions on design problem were notable. The
amount of improvements of design problem reasoning of the student
teams in the test group over the student teams in the control group is
56.7%, whereas the improvements of the professional teams in the test
group over teams in the control group is only 7.9% (see Table 6). This
could be due to a number of reasons: (a) professionals can naturally
think of the design problems without the help of this reminder card; (b)
the problem reminder card gives little stimulation on problem thinking
for the professionals; or (c) problem discussion is difficult to use. In
(Tang and Lau, 2014), it was found that professionals sometimes create
solutions without articulating problems. So it seems to point to the fact
that the reminder cards as a reminder is not as effective to stimulate
problem exploration. Discussions on solution options appear effective
for both student and professional teams, with an increase of 74% and
88.7%, respectively (Table 6). In (Tang et al., 2008), we found similarly
that by asking the participants to state their design options, junior de-
signers performed better. There was no effect on the more experienced
participants. The experiment in (Tang et al., 2008) was to design a user
interface. Their exercise was much simpler than the exercise in this
experiment. It appears that the use of the Option card in this exercise
stimulated much more discussions on options, for both students and
professionals. In both experiments, it appeared that a reminder system
to the designers to consider options had an effect on option con-
siderations. When a problem is more complex, such a reminder can
benefit even the professionals.

We also checked the distinct problems and solution options identi-
fied. The average improvements between control and test group for
both students and professionals are notable as well. Despite a marginal
increase of only 7.9% by the professional teams in the group to ex-
plicitly verbalise that problems need to be discussed, the professional
teams in the test group produced 84% more distinct problems than their
peers in the control group. The student teams in the test group, on the
other hand, produced only 34% more distinct problems. Whilst students
are reminded of exploring problems, their experience could limit what
they can think of as new problems. In terms of solution options, both
professionals and student teams in the test group found more options
than the teams in the control group. This shows that the reminder card
approach has a positive impact on both problem identification and
solution option generation.

5.4. Combating satisficing behaviour

Satisficing is a behaviour where a decision maker makes a decision
that is good enough to satisfy the goals (Simon, 1987). A satisficing
decision maker seeks a somewhat satisfactory solution rather than an
optimal one. The reasons for making such decision making are cogni-
tive limitations and time constraints. In software development, de-
signers were found to exhibit satisficing behaviours. Zannier et al. show
that designers use this strategy to evaluate if design cues are better or
worse, rather than quantifying the right or wrong of design cues
(Zannier et al., 2007). Tang and Vliet evaluated designers’ satisficing
behaviour by the limited amount of reasoning and limited amount of
time spent on reasoning before making decision judgments (Tang and
van Vliet, 2015).

In the current experiment, we looked at the time that the teams
spent on the assignment (Section 4.1 and Appendix A). Although teams
in the test group spent on average almost 20% more time on the ex-
ercise, the difference between the test and control group is not statis-
tically significant. Furthermore, all teams received specific instructions
to spend 2 h on the assignment, and the teams in the test group were
instructed to have a reflective moment at 1 h and 45 min, which might
have influenced the time taken by the teams as well.

A. Tang et al.

The Journal of Systems & Software 144 (2018) 22-40

ST4 (1:25:13-1:26:05)

simulation or for every hour of simulation.
PERSON 2: I don’t think so.

cheaper and easier to have local stand-alone version.
PERSON 2: Yeah.
PERSON 3: Yeah.

PERSON 1: So that’s the trade-off. The other side is good to have in the cloud because you can easily push a new
update every hour if you want but you need really really strong server for all this simulations. Now professor did not
say how much money she has. So it can be also. There can be also an option to pay for usage of this server for every

PERSON I: There can be an option. But it can be also very expensive so when I think about everything I think that is

Fig. 12. Excerpt discussion on Trade-offs.

An interesting finding is that the student teams in the test group
used significantly more words in their discussions than the student
teams in the control group, on average about 55%. While some people
might simply be more verbose, this large and significant difference
between the test and control group at least means the teams in the test
group had more explicit discussions during which they vocalised their
opinions about the design. Furthermore, the average of reasoning
techniques applied by student teams in the control group were 33.5
times compared to 56.7 times for the student teams in the test group
(Table 3). The reminder cards may have given the teams in the test
group more ideas to explore and so there are more discussions. This
result plus the rejection of Ha, for some reasoning techniques mean that
the student teams in the test group used more design reasoning tech-
niques than the student teams in the control group. It infers that the
control group reached their design conclusions using less reasoning
than the test group. Also, the student teams in the test group found on
average 84.4 design reasoning outcomes versus an average of 50.5 for
the student teams in the control group (

Table 4). Again combining this with the rejection of Hb, for some of
the design reasoning outcomes, we can say that the teams in the test
group found more design reasoning outcomes than the teams in the
control group.

The above results indicate that the reminder card approach — con-
sisting of the reasoning cards and the reflective moments — appears to
encourage the designers to reason, discuss and explore their design in
more detail. In support, the transcripts show that the teams in the test
group exhibit less satisficing behaviour when making decisions. We can
see this difference of attitude in the transcripts. These teams mention
how they have run out of time before they are completely satisfied with
their design. As can be seen in the extract of ST5 (Fig. 13), a new design
issue is mentioned, but there is no time to solve it. In contrast, the teams
in the control group do not look exhaustively for every potential solu-
tion to a problem but typically go with the first solution that is sa-
tisfactory. The transcripts show that the teams in the control group,

especially those that did not discuss much or reach the two hour mark
simply ran out of issues to resolve. An example is illustrated in the
extract of SC5 (Fig. 13). Team SC5 was touching on design issues that
they needed to solve, but they convinced themselves that what they had
was good enough (satisficing). They did not go further into details to
explore more about that decision but instead they ended the discussion.
These observations show signs that the teams in the control group are
more partial to satisficing behaviour.

The comparisons of the number of reasoning statements and the
time spent by teams in the control and test group suggest that due to the
cards, the test group was reminded to explore the reasoning topics, and
systematically explore more about the design. The results support our
finding that the reminder card approach leads to applying more rea-
soning techniques and it combats the natural instincts of satisficing.

5.5. External reflection and reminder cards

This study is based on the concept of reflection developed in
(Razavian et al., 2016). Whilst the basis of both studies are the concept
of reflection, there are differences between our study approach and the
Razavian et al. approach. First, the subjects in our study used the card
system to generate their own reflections. The study of external reflec-
tion in (Razavian et al., 2016) relied on an external person to prompt
the students by asking questions such as “What are your design issues
for this service?”. Second, the participants of our study were all peers in
the design team and anyone can offer a card to start reasoning, and no
one played a specialized devil's role. Third, in this study, we assume
that all designers have sufficient reasoning capabilities to tackle the
given design problem in our experiment, without the need of prior
domain knowledge. In the Razavian et al. experiment, the designs were
industrial and different for each group. Some students lacked the
knowledge and experience to tackle the problems, thus making them
more reliant on the external reflector.

The results of the Razavian et al. experiments show that external

ST5 (1:52:06-1:52:15)

connected to intersection.

SC5 (1:16:38 1:17:19)

how we include the notation and such, because-

PERSON 3: Mm
PERSON I: It’s just use UML notation, for all
PERSON 2: For all?

PERSON 2: Perhaps petri net. Ok, shall we- shall I just?
PERSON 1: Yeah
PERSON 2: Ok

PERSON 2: So we have we got everything. I think maybe only the traffic light is not taken into account and that’s

PERSON I: Yeah. Definitely need to be there just make it here. And do we also model dependencies.
PERSON 2: Okay I think we don’t have the time to put in. Maybe we can sketch it.

PERSON 2: Oh ok. Do we have to say something more? Are we done actually? Or do they actually also wanna know

PERSON 1: No they also get the documents, so they can see
PERSON 2: Yeah ok, but maybe how we come up with the- I don’t know. No? isn’t necessary?

PERSON 1: No, and lifecycle model, and petri net. No, no petri net

Fig. 13. Extracts of transcripts ST5 and SC5: willingness to explore more - satisficing or not.

A. Tang et al.

reflection can help to prompt the students to reason, when they omitted
to reason or when they dealt with a problem that they had little domain
knowledge. External questions can provide hints. The card system relies
on the cards to remind the subjects to reason. Both studies showed that
by asking more questions (i.e reminders), more reasoning is performed
(i.e. result of reflection) and the quality of the design discourse im-
proves. From the controlled experiment in this study, we further show
the extent of improvements in certain kinds of design rationale given
the preset design exercise. Furthermore, the simplified reflective
questions in terms of cards have positive effects on reasoning, just as an
external reflector. So the future research question is “what is the ap-
propriate set of reminder questions to help designers reflect and
reason?”. Both studies point out the importance of reminders and re-
flections in design and both demonstrate that its method can improve
design discourse and improve design reasoning.

6. Research validity
6.1. Internal validity

Internal validity is about the validity of the research based on the
research setup and interpretation of findings. First, this research makes
use of the Irvine assignment which was designed to allow researchers to
observe design behaviour (Petre and Van Der Hoek, 2013). The design
assignment provides a new and unfamiliar domain such that the de-
signers cannot rely on past experience to solve the design problems. Yet
this design assignment is relatively small and cannot represent all kinds
of software design. As such, the interpretation of how our subjects carry
out this assignment has limitations for its applicability to other kinds of
software design assignment. Second, student participants were selected
from the software architecture class in the Netherlands. Professional
participants in the test group were from Australia, and the professionals
in the control group were from the U.S.A. We assume the compatibility
of these people culturally and technically. This seems a reasonable as-
sumption. With the professional teams, there were differences such as
years of experience, domain knowledge and modelling and design ex-
pertise amongst the subjects. These factors may influence the results.
With such as assumption, we have found convincing results to show
that the reminder card approach had affected our participants in similar
ways. This may be because the participants are capable of finding the
design rationale, and the main variable is them being mindful of rea-
soning. We studied the use of the reminder cards on seven different
types of reasoning. The experiments provided convincing results to
show that the reminder cards had a profound effect generally on the
way design reasoning were carried out, for both professionals and
students. The questionnaire, as another information source, confirms
that our participants agree that the approach has changed the way they
think design.

We used discourse analysis on the transcripts. We interpreted what
our participants were saying, which in itself is subjective and reliant on
the view of the researcher (Horsburgh, 2003). This risk exists but in
some ways mitigated when the participants responded positively to the
reminder card approach through the questionnaire. Overall, we argue
that the risks do not impose a major threat to the interpretation of the
evidence that the cards have a positive effect on design reasoning.

6.2. External validity

External validity is about the extent to which the results from a
study can be generalized. This study is to experiment with the reminder
card approach to test if it makes a difference to how software designers
reason. Although the population of our experiment was limited, which
threatens generalizability of our findings, the results of our study are in
line with previous studies on improving design rationale. A number of
similar experiments and studies have been done previously to test if a
stimulus of some sort can help designers’ to reason more. Van Heesch

36

The Journal of Systems & Software 144 (2018) 22-40

et al. tested decision documentation (van Heesch et al., 2013). Keil
et al. studied the use of checklists on decision making (Keil et al., 2008).
Razavian et al. studied the use of reflective questions on design rea-
soning (Razavian et al., 2016). These studies all pointed out that some
external stimulus such as checklists or prompting can help designers to
reason more.

Our results did not show a difference between the test and control
group on constraints. There may be two explanations. First, a require-
ment is a natural constraint, our designers were trying to grasp the
interpretation of the requirements and what they mean to the design
itself. Second, there was not enough time to explore the implementation
in enough depth to start exploring constraints in details. As the con-
straint card did not have much impact on the test group, we cannot
conclude its impact on constraint reasoning.

Whilst we have encouraging signs to indicate that the reminder card
approach not only improves reasoning discussions, it also increases the
identification of design rationale, problem identification and solution
options. However, we also saw that experience come into play.
Professionals could identify more risks and problems, even though they
did not mention that they were doing it. This factor would mean that
there are other factors at play when we interpret the results.
Unfortunately, for this kind of study, we cannot isolate these influences.

In this work, we do not measure the impact of reasoning on the
quality of design. This is because we have no measures to judge if the
outcome of one design is better than another. Although based on re-
search such as this one, we may claim that more reasoning can have a
positive impact on design discourse, there are other factors such as
domain knowledge that influence the end quality of a design. We did
not isolate these factors in this study. As shown in (Tang et al., 2008),
we are unable to show that teams in the test group would come up with
more superior designs than teams in the control group.

6.3. Reliability

Reliability is about ensuring that the results found in the study are
consistent, and would be the same if the study is conducted again. To
ensure that the coding of the transcripts is reliable it was tested for
inter-reliability using Cohens kappa coefficient (Cohen, 1968) to mea-
sure the level of agreement between coders. The transcripts were each
coded by two researchers using Nvivo 10. The average kappa coefficient
of each of the transcripts was above 0.6, which is considered to show a
good level of agreement. The average of all transcripts combined is
0.64. We performed Mann-Whitney tests to see if the test and control
groups are statistically different from each other. We also used
Spearman ranked test to test correlation of events. We recognize that
the power of these tests is limited as we only have limited samples.

7. Conclusion and future work

Our research goal was to test the hypothesis if a reminder card
approach can improve designers’ reasoning and improve the amount of
design rationale they can find. We designed the reminder cards based
on design reasoning concepts (Razavian et al., 2016). We simplified the
reflective questions from (Razavian et al., 2016) and used seven cards
to represent the reasoning concepts. This research is an empirical re-
search in the form of an experiment involving an example assignment
from the UCI experiment. The assignment was given to both students
(12 teams) and professionals (5 teams). There are several dimensions in
the analysis: (a) participants cooperated in teams which were divided
into a control group and a test group; (b) participants were students and
professionals; and (c) analysis was based on the six types of reasoning.
We measured the amount of reasoning performed as well as the number
of distinct design rationale found.

We observe that the reminder card approach improved reasoning
carried out by both students and professionals, and generally enable
them to provide more design rationale. The contributions of this study

A. Tang et al.

are significant in two ways. First, using the reminder card approach, we
have shown that both professionals and students found significantly
more design rationale, except for constraints, when designing. The test
group spent more time and were more willing to explore the intricacies
of the design. The significance of this finding are: (a) A previous study
(Tang et al., 2008) found that reminders can help novice but not pro-
fessionals. This study shows that it can also benefit professionals as well
as novice; (b) the reminder cards provide a flexible structure to prompt
designers to discuss reasons. This structure appears to have encouraged
designers to verbalise their ideas. As a result, the test group exhibits less
satisficing behaviour than the control group.

Second, we observed a correlation between the use of design rea-
soning techniques and the generation of design rationale. We found that
the use of reminder cards stimulated the use of reasoning techniques,
and that in turn helps to generate more design rationale. This finding
shows for the first time how the use of design reasoning techniques can
affect the generation of design rationale.

There are a number of things that warrant future investigations.
There are differences between the performance of the students and the
professionals. For example, student teams in the test group found more
distinct design rationales than the professional teams both in the test
and control group (Fig. 7). Furthermore, the improvement of the test
versus the control group is quite different for students and professionals
(Table 6): students perform more problem structuring whereas the
improvement of the professionals is more on the other techniques. It
would be interesting future research to systematically compare the

Appendix A. Time and word count of the design discussions.

The Journal of Systems & Software 144 (2018) 22-40

influence of the reminder card approach on designers with different
experience levels. After the experiment, some participants mentioned
that it would have been useful to provide guidance on how to use the
cards during the design session, perhaps a structured approach or a
method to prompt for reasoning and reflection and to guide design
discussions may be useful. On the other hand, quite a few participants
indicated that the reminder card approach interrupted the natural flow
of the discussion. As such, it is worthwhile to further research into how
a reminder system and a structured discussion method may help or
hinder reasoning in a group design environment.

In the current research, we are interested in how a reminder card
approach influences the design reasoning process. What we do not di-
rectly examine is whether the amount of explicit reasoning performed
by the designers leads to better end-results, i.e. a better overall design.
Here it should be noted that explicit design rationale is often seen as an
integral part of an architectural design (ISO/IEC/IEEE, 2010), so having
a better, more reasoned and explicit design rationale enables designers
a better chance, but not a guarantee, of better quality design. A study
(Tang et al., 2008) shows that performing explicit design reasoning
improves software quality, and we have recently performed a study
(de Jong, 2017) in which the designs of architects using guidelines
comparable to the reminder cards were consistently rated better by
both external experts and peers. These are promising results, but more
research is needed to find out how and why any kind of design rea-
soning methods, techniques or tools would improve the quality of the
overall final design.

Control group Duration of recording Word count Test group Duration of recording Word count
SC1 1:43 5197 ST1 2:01 14,743
SC2 1:57 7283 ST2 1:23 12,893
SC3 1:22 9291 ST3 1:59 13,925
SC4 1:13 8791 ST4 2:24 14,392
SC5 1:17 7369 ST5 1:54 9937
SC6 2:05 11,332 ST6 1:51 11,514
PC1 0:59 5805 PT1 1:49 13,977
PC2 1:53 12,190 PT2 2:00 15,013
PC3 1:52 9969
Appendix B. Cards played by the test groups.

ST1 ST2 ST3 ST4 STS ST6 PT1 PT2
CONTEXT 1 0 1 0 1 2 1 3
PROBLEM 2 2 0 6 3 5 11 3
SOLUTION 2 2 1 7 3 2 4 1
ASSUMPTION 3 1 2 1 3 2 17 8
CONSTRAINT 1 3 1 0 2 1 10 2
RISK 0 0 1 1 2 4 14 2
TRADE-OFF 0 1 0 1 1 1 10 1
TOTAL 9 9 6 16 15 16 67 20

Appendix C. Terms used by the test groups.

ST1 ST2 ST3 ST4 ST5 ST6 PT1 PT2
ASSUMPTION 8 12 14 5 12 23 36 42
CONSTRAINT 6 3 1 18 12 21 15 17
RISK 8 19 12 0 5 11 27 4
TRADE-OFF 6 1 9 4 11 20 22 5

A. Tang et al.

Appendix D. Terms used by the control groups.

The Journal of Systems & Software 144 (2018) 22-40

SC1 Sc2 SC3 SC4 SC5 SC6 PC1 PC2 PC3
ASSUMPTION 0 0 0 3 0 0 6 16 2
CONSTRAINT 0 1 4 5 10 0 0 0 8
RISK 1 0 0 0 0 0 0 0 0
TRADE-OFF 0 0 0 0 0 0 0 0 0
Appendix E. Reasoning techniques applied by the test group.
ST1 ST2 ST3 ST4 ST5 ST6 PT1 PT2
ASSUMPTION ANALYSIS 14 6 9 5 8 7 10 14
CONSTRAINT ANALYSIS 7 9 2 7 8 10 12 7
RISK ANALYSIS 6 7 6 5 5 5 16 6
TRADE-OFF ANALYSIS 5 2 2 4 2 1 6 2
OPTION GENERATION 19 2 11 6 6 8 14 6
PROBLEM STRUCTURING 33 19 24 25 20 25 22 19
Appendix F. Reasoning techniques applied by the control groups.
sc1 sc2 sc3 sc4 scs e PT1 PT2 PC1
ASSUMPTION ANALYSIS 2 0 2 3 1 3 10 14 5
CONSTRAINT ANALYSIS 4 6 10 7 7 5 12 7 5
RISK ANALYSIS 2 2 3 4 1 3 16 6 3
TRADE-OFF ANALYSIS 1 1 0 3 0 1 6 2 1
OPTION GENERATION 1 3 4 6 9 7 14 6 4
PROBLEM STRUCTURING 15 20 18 12 15 13 22 19 18
Appendix G. Design reasoning outcomes of the test teams.
ST1 ST2 ST3 ST4 ST5 ST6 PT1 PT2
ASSUMPTION 15 6 6 5 8 7 10 9
CONSTRAINT 8 8 4 7 8 7 9 6
RISK 6 6 5 7 7 6 13 5
PRO 17 4 10 8 4 3 9 4
CON 10 2 8 13 9 6 19 5
DESIGN ISSUES 29 10 17 17 8 13 21 13
DESIGN OPTIONS 42 9 33 28 18 18 43 18
DESIGN DECISIONS 29 10 17 17 8 11 15 12
Appendix H. Design reasoning outcomes of the control groups.
SC1 sc2 SC3 SC4 SC5 SC6 PC1 PC2 PC3
ASSUMPTION 2 1 2 5 1 3 6 6 2
CONSTRAINT 4 8 9 5 8 8 7 6 10
RISK 2 2 3 4 1 3 2 8 3
PRO 2 4 5 12 3 4 3 7 0
CON 1 2 0 4 2 4 1 5 7
DESIGN ISSUES 3 8 13 19 16 11 9 13 15
DESIGN OPTIONS 5 10 14 18 25 23 11 23 25
DESIGN DECISIONS 4 9 13 20 17 11 8 12 15

38

A. Tang et al.

References

Abowd, G., Bass, L., Clements, P., Kazman, R., Northrop, L., 1997. Recommended Best
Industrial Practice for Software Architecture Evaluation. Carnegie-Mellon Univ
Pittsburgh Pa Software Engineering Inst.

Babb, J., Hoda, R., and Norbjerg, J., "Embedding reflection and learning into agile soft-
ware development," 2014.

Bass, L., Clements, P., Kazman, R., 2012. Software Architecture in Practice, third ed.
Addison Wesley, Boston.

Bazeley, P., Jackson, K., 2013. Qualitative Data Analysis With NVivo. Sage Publications
Limited.

Bedjeti, A., Lago, P., Lewis, G., de Boer, R.C., Hilliard, R., 2017. Modeling context with an
architecture viewpoint. In: Presented at the 1st International Conference on Software
Architecture. Gothenburg, Sweden.

Bengtsson, P., Bosch, J., 1998. Scenario-based software architecture reengineering. In:
Proceedings of Fifth International Conference on Software Reuse, pp. 308-317.
Boehm, B.W., 1991. Software risk management: principles and practices. IEEE Softw. 8,

32-41.

Borte, K., Ludvigsen, S.R., Mgrch, A.L, 2012. The role of social interaction in software
effort estimation: unpacking the “magic step” between reasoning and decision-
making. Inf. Softw. Technol. 54, 985-996.

Buckingham Shum, S., Hammond, N., 1994. Argumentation-based design rationale: what
use at what cost? Int. J. Hum. Comput. Stud. 40, 603-652.

Buckingham Shum, S., Selvin, A.M., Sierhuis, M., Conklin, J., Haley, C.B., Nuseibeh, B.,
2006. Hypermedia support for argumentation-based rationale. Rationale
Management in Software Engineering. Springer, pp. 111-132.

Bull, C.N., Whittle, J., 2014. Supporting reflective practice in software engineering edu-
cation through a studio-based approach. IEEE Softw. 31, 44-50.

Burge, J., Brown, D.C., 2000. Reasoning with design rationale. Artificial Intelligence in
Design’00. Springer, pp. 611-629.

Capilla, R., Jansen, A., Tang, A., Avgeriou, P., Babar, M.A., 2016. 10 years of software
architecture knowledge management: practice and future. J. Syst. Softw. 116,
191-205.

Carriere, J., 2005. Lightweight Archit. Altern. Assess. Method Available. http://blogs.
msdn.com/jeromyc/archive/2005/08,/27/457081.aspx.

Cohen, J., 1968. Weighted kappa: nominal scale agreement provision for scaled dis-
agreement or partial credit. Psychol. Bull. 70, 213.

Conklin, J., Begeman, M., 1988. gIBIS: a hypertext tool for exploratory policy discussion.
In: Proceedings of the 1988 ACM conference on Computer-supported cooperative
work, pp. 140-152.

Conklin, J., Selvin, A., Buckingham Shum, S., Sierhuis, M., 2001. Facilitated hypertext for
collective sensemaking: 15 years on from gIBIS. In: Proceedings of the 12th ACM
conference on Hypertext and Hypermedia, pp. 123-124.

de Jong, P., 2017. Master Research Thesis. Department of Information and Computing
Sciences, Utrecht University.

Decisions, S.. (2016, February 26, 2016). Smart decisions: a software architecture design
game. Available: http://smartdecisionsgame.com/#.

Dorst, K., 2006. Design problems and design paradoxes. Des. Issues 22, 4-17.

Dorst, K., Cross, N., 2001. Creativity in the design space: co-evolution of problem-solu-
tion. Des. Stud. 22, 425-437.

Dutoit, A., McCall, R., Mistrik, I., Paech, B. (Eds.), 2006. Rationale Management in
Software Engineering. Springer p."pp. Pages.

Falessi, D., Briand, L.C., Cantone, G., Capilla, R., Kruchten, P., 2013. The value of design
rationale information. ACM Trans. Softw. Eng. Methodol. 22, 21.

Grenning, J., 2012. Planning poker or how to avoid analysis paralysis while release
planning.-2002. Online. http://renaissancesoftware.net/files/articles/
PlanningPoker-v1.

Holyoak, K.J., Simon, D., 1999. Bidirectional reasoning in decision making by constraint
satisfaction. J. Exp. Psychol. 128, 3-31.

Horsburgh, D., 2003. Evaluation of qualitative research. J. Clin. Nurs. 12, 307-312.

IDEO, 2015. IDEO method cards. Available. https://www.ideo.com/by-ideo/method-
cards/.

ISO/IEC/IEEE, 2010. ISO/IEC/IEEE 42010:2010 Systems and Software Engineering -
Architecture Description. Mar.

Kahneman, D., 2003. Maps of bounded rationality: psychology for behavioral economics.
Am. Econ. Rev. 93, 1449-1475.

Kahneman, D., Tversky, A., 1972. Subjective probability: a judgment of representative-
ness. Cognit. Psychol. 3, 430-454.

Kazman, R., Abowd, G., Bass, L., Clements, P., 1996. Scenario-based analysis of software
architecture. IEEE Softw. 13, 47-55.

Kazman, R., Asundi, J., Klein, M., 2001. Quantifying the costs and benefits of archi-
tectural decisions. In: Proceedings of the 23rd International Conference on Software
Engineering (ICSE 2001), pp. 297-306.

Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., Carriere, J., 1998. The
architecture tradeoff analysis method. In: Proceedings of the Fourth IEEE
International Conference on Engineering of Complex Computer Systems (ICECCS
'98), pp. 68-78.

39

The Journal of Systems & Software 144 (2018) 22-40

Keil, M., Li, L., Mathiassen, L., Zheng, G., 2008. The influence of checklists and roles on
software practitioner risk perception and decision-making. J. Syst. Softw. 81,
908-919.

Kollanus, S., Koskinen, J., 2009. Survey of software inspection research. Open Softw. Eng.
J. 3, 15-34.

Lago, P., van Vliet, H., 2005. Explicit assumptions enrich architectural models. In:
Proceedings 27th International Conference on Software Engineering (ICSE'05), pp.
206-214.

Lamoreux, M., 2005. Improving agile team learning by improving team reflections [agile
software development]. In: Agile Conference, 2005. Proceedings, pp. 139-144.

Lockyer, J., Gondocz, S.T., Thivierge, R.L., 2004. Knowledge translation: the role and
place of practice reflection. J. Contin. Educ. Health. Prof. 24, 50-56.

Lytra, I., Gaubatz, P., Zdun, U., 2015. Two controlled experiments on model-based ar-
chitectural decision making. Inf. Softw. Technol. 63, 58-75.

Maclean, A., Young, R., Bellotti, V., Moran, T., 1996. Questions, options and criteria:
elements of design space analysis. In: Moran, T., Carroll, J. (Eds.), Design Rationale -
Concepts, Techniques, and Use. Lawrence Erlbaum, New Jersey, pp. 53-105.

Moe, N.B., Aurum, A., Dybd, T., 2012. Challenges of shared decision-making: A multiple
case study of agile software development. Inf. Softw. Technol. 54, 853-865.

Obbink, H., Kruchten, P., Kozaczynski, W., Postema, H., Ran, A., Dominick, L., et al.,
2002. Software Architecture Review and Assessment (SARA) Report (version 1.0).

Petre, M., Van Der Hoek, A., 2013. Software Designers in Action: A Human-Centric Look
at Design Work. CRC Press p."pp. Pages.

Poort, E.R., v. Vliet, H., 2011. Architecting as a risk- and cost management discipline. In:
Proceedings of the Ninth IEEE/IFIP Working Conference on Software Architecture,
pp. 2-11.

Razavian, M., Tang, A., Capilla, R., Lago, P., 2016. In two minds: how reflections influ-
ence software design thinking. J. Softw. 28, 394-426.

Reymen, 1., 2001. Improving Design Processes through Structured Reflection: A Domain-
independent Approach,”. PhD Thesis. Stan Ackermans Institute, Centre for
Technological Design, Technische Universiteit Eindhoven, Eindhoven.

Rittel, H.W.J., Webber, M.M., 1973. Dilemmas in a general theory of planning. Policy Sci.
4, 155-169.

Schon, D.A., 1983. The Reflective practitioner: How Professionals Think in Action. EUA:
Basic Books, Nueva York.

Schriek, C., 2016. Master Research Thesis. Department of Information and Computing
Sciences, Utrecht University.

Schriek, C., van der Werf, J.M.E.M., Tang, A., Bex, F., 2016. Software architecture design
reasoning: a card game to help novice designers. In: Tekinerdogan, B., Zdun, U.,
Babar, A. (Eds.), Software Architecture: 10th European Conference, ECSA 2016,
Copenhagen, Denmark, November 28 — December 2, 2016, Proceedings. Springer
International Publishing, Cham, pp. 22-38.

Schwaber, K., Beedle, M., 2002. Agile Software Development With Scrum 1 Prentice Hall,
Upper Saddle River.

Simon, H.A., 1987. Satisficing. The New Palgrave: A Dictionary of Economics 4. pp.
243-245.

Stacy, W., MacMillan, J., 1995. Cognitive bias in software engineering. Commun. ACM
38, 57-63.

Sweller, J., 1988. Cognitive load during problem solving: effects on learning. Cogn. Sci.
12, 257-285.

Tang, A., Aleti, A., Burge, J., van Vliet, H., 2010. What makes software design effective?
Des. Stud. 31, 614-640.

Tang, A., Lau, M.F., 2014. Software architecture review by association. J. Syst. Softw. 88,
87-101 2//.

Tang, A., Tran, M.H., Han, J., van Vliet, H., 2008. Design reasoning improves software
design quality. In: Proceedings of the Quality of Software-Architectures (QoSA 2008),
pPp. 28-42.

Tang, A., van Vliet, H., 2015. In: Weyns, D., Mirandola, R., Crnkovic, I. (Eds.), Software
Designers Satisfice," in Software Architecture 9278. Springer International
Publishing, pp. 105-120.

Tversky, A., Kahneman, D., 1986. Rational choice and the framing of decisions. J. Bus. 59,
S251-S278.

Tyree, J., Akerman, A., 2005. Architecture decisions: demystifying architecture. IEEE
Softw. 22, 19-27.

Van Heesch, U., Avgeriou, P., Hilliard, R., 2012. Forces on architecture decisions-a
viewpoint. In: Software Architecture (WICSA) and European Conference on Software
Architecture (ECSA), 2012 Joint Working IEEE/IFIP Conference on, pp. 101-110.

van Heesch, U., Avgeriou, P., Tang, A., 2013. Does decision documentation help junior
designers rationalize their decisions?-A comparative multiple-case study. J. Syst.
Softw. 86, 1545-1565.

Van Manen, M., 1977. Linking ways of knowing with ways of being practical. Curriculum
Ing. 6, 205-228.

van Vliet, H., Tang, A., 2016. Decision making in software architecture. J. Syst. Softw.
117, 638-644.

Vliet, Hv., 2008. Software Engineering: Principles and Practice, third ed. John Wiley &
Sons.

Von Alan, R.H., March, S.T., Park, J., Ram, S., 2004. Design science in information sys-
tems research. MIS Q. 28, 75-105.

http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0001
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0002
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0003
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0004
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0005
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0006
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0006
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0007
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0008
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0008
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0009
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0010
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0010
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0011
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0011
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0012
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0012
http://blogs.msdn.com/jeromyc/archive/2005/08/27/457081.aspx
http://blogs.msdn.com/jeromyc/archive/2005/08/27/457081.aspx
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0014
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0014
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0015
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0016
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0016
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0016
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0017
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0018
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0019
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0019
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0020
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0021
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0021
http://renaissancesoftware.net/files/articles/PlanningPoker-v1
http://renaissancesoftware.net/files/articles/PlanningPoker-v1
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0023
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0023
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0024
https://www.ideo.com/by-ideo/method-cards/
https://www.ideo.com/by-ideo/method-cards/
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0026
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0027
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0027
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0028
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0028
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0029
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0030
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0031
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0031
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0031
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0031
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0032
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0032
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0032
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0033
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0033
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0034
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0034
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0034
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0035
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0035
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0036
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0036
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0037
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0037
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0038
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0038
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0038
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0039
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0039
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0040
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0040
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0041
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0041
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0042
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0042
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0042
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0043
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0043
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0044
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0044
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0044
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0045
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0045
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0046
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0046
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0047
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0047
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0048
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0048
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0048
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0048
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0048
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0049
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0049
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0050
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0050
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0051
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0051
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0052
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0052
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0053
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0053
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0054
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0054
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0055
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0055
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0055
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0056
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0056
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0056
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0057
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0057
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0058
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0058
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0059
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0059
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0059
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0060
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0060
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0060
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0061
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0061
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0062
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0062
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0063
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0063
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0064
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0064

A. Tang et al.

Wiltschnig, S., Christensen, B.T., Ball, L.J., 2013. Collaborative problem-solution co-
evolution in creative design. Des. Stud. 34, 515-542.

Wohlin, C., Runeson, P., Hst, M., Ohlsson, M.C., Regnell, B., Wessln, A., 2012.
Experimentation in Software Engineering. Springer Publishing Company
Incorporated.

Woods, E., 2012. Industrial architectural assessment using TARA. J. Syst. Softw. 85,
2034-2047.

Zalewski, A., Borowa, K., Ratkowski, A., 2017. On cognitive biases in architecture deci-
sion making. In: Lopes, A., de Lemos, R. (Eds.), Software Architecture: 11th European
Conference, ECSA 2017, Canterbury, UK, September 11-15, 2017, Proceedings.
Springer International Publishing, Cham, pp. 123-137.

Zannier, C., Chiasson, M., Maurer, F., 2007. A model of design decision making based on
empirical results of interviews with software designers. Inf. Softw. Technol. 49,
637-653.

Zimmermann, O., Koehler, J., Leymann, F., Polley, R., Schuster, N., 2009. Managing ar-
chitectural decision models with dependency relations, integrity constraints, and
production rules. J. Syst. Softw. 82, 1249-1267.

40

The Journal of Systems & Software 144 (2018) 22-40

Antony Tang is Associate Professor in Swinburne University of Technology, Australia. He
received a PhD degree in Information Technology from Swinburne in 2007. Prior to being
a researcher, he had spent many years designing and developing software systems. His
main research interests are software architecture design reasoning, software development
processes, software architecture knowledge management.

Floris Bex is a researcher and instructor at the Utrecht University, The Netherlands.

Courtney Schriek graduated with a degree of Master Science in Business Informatics
from Utrecht University. She is currently a consultant at Deloitte, The Netherlands.

Jan Martijn van der Werf is assistant professor in Software Architecture at the
Department of Information and Computing Science at Utrecht University. His research
focuses on behavioral aspects within software architectures, such as the design and ver-
ification of component-based systems, process modelling, and Petri nets.

http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0065
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0065
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0066
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0066
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0066
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0067
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0067
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0068
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0068
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0068
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0068
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0069
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0069
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0069
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0070
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0070
http://refhub.elsevier.com/S0164-1212(18)30104-3/sbref0070

	Improving software design reasoning–A reminder card approach
	Introduction
	Software decision making related work
	Design reasoning processes, techniques and rationales
	Software architecture evaluation
	Reflection and reasoning reminders

	Research method
	Treatment design: reasoning reminder cards to prompt reflective reasoning
	Experiment design
	Participants: students and professionals

	Assignment and experimental procedure
	Analysis of the design sessions

	Research result
	Design session length and word count
	Card play frequencies
	Design reasoning terms used
	Design reasoning techniques
	Design reasoning outcomes
	Correlation between cards played, the use of reasoning techniques and design rationale
	Participant questionnaires

	Analysis and discussion
	How reminder cards influences design discourse
	Use of reasoning techniques by test and control groups
	Impact of reminder cards on design reasoning techniques
	Design dialogue and questionnaire feedback

	Design rationale
	Problem identification and solution option generation
	Combating satisficing behaviour
	External reflection and reminder cards

	Research validity
	Internal validity
	External validity
	Reliability

	Conclusion and future work
	Time and word count of the design discussions.
	Cards played by the test groups.
	Terms used by the test groups.
	Terms used by the control groups.
	Reasoning techniques applied by the test group.
	Reasoning techniques applied by the control groups.
	Design reasoning outcomes of the test teams.
	Design reasoning outcomes of the control groups.
	References

