Document downloaded from:

http://hdl.handle.net/10251/201044
This paper must be cited as:

Garcia-Valls, M.; Perez-Palacin, D.; Mirandola, R. (2018). Pragmatic cyber physical systems
design based on parametric models. Journal of Systems and Software. 144:559-572.
https://doi.org/10.1016/}.jss.2018.06.044

The final publication is available at

https://doi.org/10.1016/}.jss.2018.06.044

Copyright E|sevier

Additional Information

Pragmatic cyber-physical systems design based on
parametric models

Marisol Garcia-Valls®, Diego Perez-Palacin®, Raffacla Mirandola®

?Dept. of Telematic Engineering, Universidad Carlos III de Madrid, Leganés, Spain
bDept. of Computer Science, Linnaeus University, Vizjo, Sweden
¢Dip. di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy

Abstract

The adaptive nature of cyber-physical systems (CPS) comes from the fact
that they are deeply immersed in the physical environments that is inher-
ently dynamic. CPS also have stringent requirements on real-time operation
and safety that are fulfilled by rigorous model design and verification. In the
real-time literature, adaptation is mostly limited to off-line modeling of pre-
dicted system transitions. In the adaptive systems literature, adaptation so-
lutions are silent about timely execution and about the underlying hardware
possibilities that can potentially speed up execution. This paper presents a
solution for designing adaptive cyber-physical systems by using parametric
models that are verified during the system execution (i.e., online), so that
adaptation decisions are made based on the timing requirements of each par-
ticular adaptation event. Our approach allows the system to undergo timely
adaptations that exploit the potential parallelism of the software and its ex-
ecution over multicore processors. We exemplify the approach on a specific
use case with autonomous vehicles communication, showing its applicability
for situations that require time-bounded online adaptations.

Keywords: CPS, autonomous systems, adaptive systems, verification

1. Introduction

Cyber Physical Systems (CPS) emerged as a new generation of systems
that combine properties from real-time, embedded, control, and wireless sen-

Email addresses: mvalls@it.uc3m.es (Marisol Garcia-Valls), diego.perez@lnu.se
(Diego Perez-Palacin), raffaela.mirandola@polimi.it (Raffaela Mirandola)

Preprint submitted to Journal of Systems and Software March 15, 2018

sor network systems. This resulted in a combination of requirements that
makes CPS extremely challenging to design and develop. For example, they
must reconcile their real-time and open nature. On the one hand, some of
their activities must finish before a given time deadline, and this needs good
knowledge of the system activities including their execution time. But, on
the other hand, CPS are open to the environment influence [25], and that is
a source of unpredictability.

Cyber-physical systems can be autonomous, long lived sytems, mean-
ing that they cannot be stoped, modified, and later restarted as this could
have unaffordable consequences in terms of cost, data loss, or environmental
threats. As a result, CPS will have to evolve during their lifetime to react
to the external influence caused by the environment, by other systems, or
by human operators. In the simplest form, this evolution can be viewed as
a sequence of transitions where the system adapts the behavior and possi-
bly the structure to handle the changes in the environment appropriately.

Given their stringent requirements, cyber-physical systems must preserve
correct operation at all times, also across their transitions. Correctness is
achieved by applying verification mechanisms to the system model. It is
widely accepted nowadays that the model of a cyber-physical system cannot
be fully verified off-line because it is deeply immersed in the environment
that it monitors and actuates on; and the environment is highly dynamic.
This means that during the system operation, new requirements will appear;
this forces designers to move from the notion of predictability to the notion of
uncertainty. To achieve the vision of CPS, new mechanisms need to be devel-
oped to support online autonomous decisions by mixing off-line correctness
checks with some level of run-time analysis of tentative future transitions.

This paper presents an approach to achieve the evolution of CPS that
require timely adaptations, i.e., the system must change as required by the
frequency of the execution which is dependent on the environment. For
example, if two nodes must exchange information while in motion, the system
must adapt its operation to meet a given time deadline for the data exchange
that is related to the speed of motion and the communication range. When
the system has to adapt, the current model of the system will be enhanced by
means of incremental updates that will be verified for correctness. The goal
is to obtain a new verified incremental model that preserves the global system
properties and addresses well the change in the environment that triggered
the system adaptation. All the previous steps must be finished before the
time deadline.

The evolution of a cyber-physical system along time is related to the prin-
ciples of autonomic computing [1], also referred to as self-adaptive [24, 39].
We take as baseline the idea of MAPE-K loop [24] for autonomic systems; this
loop was initially slightly modified in [14] to suit the needs of time-sensitive
adaptations as required by CPS. We extend this work by supporting concur-
rent and parallel execution of activities considering the specific characteristics
of current processors that are based on multi-core technology.

1.1. Technical problem and requirements

The technical problem is that of supporting flexible execution of a scenario
that contains moving objects and control nodes. The problem is inspired on
a small scale laboratory case used for study and validation of cyber-physical
systems work. Our scenario has a set of autonomous moving nodes that can
have a number of attached sensors. The nodes are toy cars equipped with
Raspberri Pi processors connected to an on board IP camera and luminosity
sensors that for surveillance of given preselected collision-free areas by video
recording; they are equipped with 802.11n wireless connection and bluetooth.
Nodes can reach a maximum speed of 52 km/h. There are a number of servers
in the track grid equipped with a double core symetric processor that receive
the video data from the moving nodes. The general requirements of our
target systems (i.e., the autonomous nodes) are:

e Flexible execution. A node should be capable of modifying the set of
activities that it runs and/or how activities are run; a node should be
capable of finishing the execution of selected activities in shorter time
when needed.

e Timely execution. Some activities are time sensitive, i.e., they must
finish before a given time deadline. Then, resource management mech-
anisms are needed within the nodes to ensure timely operation.

e Dynamic behaviour. The current deployment and operation conditions
may vary at any time. A moving node records video with some reso-
lution; when entering a different area or upon the receipt of a remote
command, it may have to change the resolution dynamically.

e Timely reconfiguration. Moving nodes have to adapt to the changing
surrounding environment. For example, if node a has to transfer data

to b, a will have to select a given transfer policy (or transfer rate) based
on the speed of both moving nodes a and b.

e Accelerate execution by exploiting the capacity of the underlying mul-
ticore processors. We consider symetric processors with various cores.

1.2. Contribution

An initial contribution using Petri nets for fast online decisions in reduced
complexity models was provided in [14]; also, [5] analyzed the suitability of
CLTLoc for scenarios of the same complexity. However, these works did not
at all consider some important aspects that are contributed in this paper:

e Timely adaptation process that considers the execution time of system
activities. Cyber-physical systems have to explicitly consider the exe-
cution times of activities as well as the maximum deadline for the adap-
tation process that are application dependent values. In our approach,
these are specified as reference values that the adaptation process con-
siders automatically to modify the system model.Also, the adaptation
process is more precisely decomposed into a set of steps based on the
MAPE-K loop for autonomic systems. The adaptation logic can be
embedded in an enhanced middleware as proposed in [12, 13].

e Supporting scalable execution to improve application response times.
Since at least a decade, single core processors are not available in the
market anymore. The existence of multicore systems is an important
characteristic that is exploited in our approach to improve response
times of activities and of the adaptation logic. We use the term scalable
execution to indicate the possibility of accelerating the execution of
some specific activities, that will yield shorter response times.

e Usage of parametric models. Parametric models are instantiated and
evaluated at run-time to decide how the system will be modified to
handle the change in the environment. These parametric models are
instantiated and analyzed online based on the temporal requirements
(execution times) of the activities and of the adaptation process.

e Providing a pragmatic view on the design of a CPS to handle the
inherent dynamic behavior and effectively achieve timely adaptation.
We exemplify our parametric model construction and evaluation from

4

an applied perspective, on a use case inspired in a real lab setting and
use modeling and verification based on Petri nets. As the complexity
of CPS design and development is so high, we strongly believe that
pragmatic contributions and fundamental theory have to proceed in
parallel. Pragmatic contributions introduce more novel ideas that can
be faster explored; they can later be used to improve the fundamental
theory like formal language enhancements [4] to raise the expression
power of models or research on verification mechanisms and tools.

1.3. Paper structure

Section 2 explains related work on adaptation. Section 3 describes the
model of the target systems, the requirements for timely adaptation, and how
execution can be scaled. Section 4 describes our approach for online adap-
tation Section 5 describes a use case inspired on a real lab setting for which
its activity-based model and adaptation parameters are obtained. Section
6 applies our adaptation approach to the use case, showing how the model
is modified by instantiation according to the conditions detected online and
how it complies with the specified timing requirements. Section 7 summarizes
the work and draws some conclusions.

2. Background and related work

This section presents the contributions that related to ours separated
into three perspectives: self-adaptation approaches, modeling the adaptation
process, and time sensitive adaptation. At the end of the section, Table 1
offers an overall comparison of the related approaches.

Self-adaptive systems. Several methodologies have been proposed to build
self-adaptive systems, like the IBM MAPE-K autonomic control loop [24]
(later revised in [1]), the CADA approach [9], the Rainbow architecture [15],
the high-level architectural approach firstly proposed in [32], to cite a few.
These approaches consider the fact that systems are located within a broader
environment whose behavior is out of the control of the system|[38]. The envi-
ronment may have effects on the system and may probably require it to take
some action; these effects are observed and evaluated by the system itself.
These approaches are based on the premise that implementing self-managing
attributes involves an intelligent control loop with a common general struc-
ture. Systems that adhere to this loop collect information from the system
itself, make decisions and then adjust the system itself as necessary. This

structure involves two major elements: a managed subsystem and an auto-
nomic manager or managing subsystem. The managing subsystem controls
the managed subsystem. The managing subsystem comprises the adapta-
tion logic that deals with one or more concerns and the control loop that is
implemented as consisting of four stages that share knowledge.

A different reference model for a self-adaptive software system, called
3-Layers-Architecture [26], suggests to architect the system along three dif-
ferent layers, that interact with each other by reporting status information
to the above layer and issuing adaptation directives to the layer below. The
bottom layer (component control) is concerned with adaptation at the level
of single components (i.e., services in the SOA domain). The middle layer
(change management) reactively uses a pre-specified set of plans to adapt the
system consisting of components at the lower layer. When these plans are no
longer able to meet the system goals, or when new goals are introduced, the
upper layer (goal management) determines new adaptation plans. This archi-
tecture can be mapped onto the managed /managing subsystems schema as
well, just considering two different levels of analysis and plan corresponding
to the change and goal management, respectively.

In what follows, we refer to the specific implementation of the autonomic
control loop called MAPE-K (Monitor, Analyze, Plan, Execute and Knowl-
edge) [24]. The Monitor component observes the relevant properties of the
managed subsystem and feeds the Knowledge; the Analyze component checks
the status of the managed subsystem (stored within the knowledge) against
the stated QoS and functional requirements; the Plan component decides the
set of needed reconfiguration actions based on the Knowledge as well as on
the current models; and finally the Ezxecute component enacts the reconfigu-
ration implementing the plan output into the managed subsystem.

As indicated in [30], around 60% of the contributions on adaptive sys-
tems use MAPE control loop for the adaptation; moreover, around 66% of
the works that apply self-adaptation to cyber-physical systems address ef-
ficiency /performance applied to particular domains such as transportation
(e.g. vehicular networks [37]), robot navigation [18], energy [36], or manu-
facturing [27]). [33] applies MAPE-K loop for performing efficient resource
allocation (i.e., mostly memory and processor) applying different learning
techniques that processed the systems’ monitored data. Optimization of the
behavior is also a key aspect; there are a number of strategies such as those
described in [29] concerning decision making for autonomic systems.
Modeling. Model-driven techniques are a popular approach to CPS de-

6

sign as reflected in [7]. Among the first ones to outline a methodology for
model-based design of CPS, we find [23]; the adaptation here is limited to
the control loop operation and its integration in a static component-based
software design. Managing the scale and complexity of CPS benefits from
component-based modeling contributions that provide reuse, encapsulation,
and separation of concerns, and that also support adaptation of the compo-
nents and their relations. In [6], component-based development is utilized
as ground to apply selected software engineering approaches for designing
cyber-physical systems. In [21], it is evidenced that a number of techniques
for self adaptation ranging from component ensembles to representational
languages can be applied to CPS.

Following the claim that component-based software engineering is not
sufficient for modeling ensembles (or a collection of autonomic entity that
collaborates for some global goal), [19] proposes a formal approach to model
the structural aspects of collaborative entities and labeled transition systems
to specify their dynamic behavior. This work targets at pervasive types of
structures based on the roles played by components where timeliness is not
a driver. Overall, the above techniques remain at a high abstraction level
mainly focusing at the component specification and their interactions, being
mostly silent about real-time adaptation.

Among the alternatives to represent adaptation concerns in CPS mod-

eling. One of them is [40] that uses timing analysis to provide CPS with a
sufficient temporal bound to anticipate adaptation decisions. Work in[35]
uses formal models to verify probabilistic reliability properties in dynamic
cyber-physical systems and smart cyber-physical spaces. The formalisms
used are Markov Decision Processes, probabilistic Computation Tree Logic
and model checking.
Time bounded adaptation. To achieve timely adaptations, traditional
real-time systems (predecessors of CPS) used mode change protocols. An
execution based on mode changes consists of a set of operation modes and
a set of transitions among them, and in each mode only a given set of ac-
tivities can run. This technique is very restrictive and static, but allowed
for schedulability analysis [34] to guarantee temporal bounds on the mode
change transitions. General self-adaptive systems also suffer the time con-
suming reasoning process that is carried out at runtime. To mitigate it,
work in [10] proposes a time efficient method for applying model checking at
runtime.

Adaptation and reconfiguration applied to distributed systems has been

7

studied since decades, but contributions are silent about temporal guaran-
tees for the adaptation transitions. For instance, [20] supports changes in
the software based on the identification of a set of safe adaptation points.
Recent work [13] has enhanced the logic of distribution middleware to embed
adaptation and reconfiguration logic to support time bounded transitions in
service oriented systems. Overall, these contributions also do not target CPS.

Table 1 shows selected works on adaptation. It lays down the main char-
acteristics of these works: adaptation type; verification model; whether it
explicitly targets CPS; support for real-time adaptation; and the main con-
cept of the work. It has the goal of laying down their main characteristics
easy the comparison with our contribution.

Table 1: Classification of state of the art contributions on adaptation

’ Work \ Type \ Verif. Target Concept

[38] | Online - Generic MAPE patterns
4] Offline | Model check Embed. sys. Contract language
[7] Offline - Generic Components
[34] | Offline | RT analysis RT sys. Operation modes

[19, 20] | Offline - Generic Components
[20] | Online - Generic SW modules
[13] | Online | RT analysis | SOA RT sys. Distrib. RT reconf.
[14] | Online | Petri net CPS Service selection
[5] Offline | CLTLoc CPS Activity adaptation
[23] | Offline - CPS Components
[18] | Offline - Swarms Components
[33] | Online | Learning CPS Resource alloc.
[27] | Offline - CPS-Grid Cloud
[36] | Offline - CPS-Production Multi agents

[40, 37] | Online - CPS-Vehicular Control theory
[10] | Online | Model check Generic Probability

From the above selected works it can be seen that none of them considers
tasks with dynamic priorities in a processor multicore structure; our con-
tribution uses this characteristic to speed up the execution of parallelizable
activities. Moreover, our work supports online adaptation, including the ver-

8

ification of the overall model behavior as well as temporal verification that
analyses the temporal guarantees.

3. System model

The system model that supports timely adaptations includes: (i) a soft-
ware structure based on activities, (i7) the temporal requirements of adapta-
tions, and (i7i) mapping between software and hardware parallelism.

3.1. Software structure

The system is structured in activities. In the literature, similar con-
cepts are referred to as activities, components, or services. Activities are
light-weight self-contained code units with a well defined interface that can
communicate with other activities only via message exchanges. Then, the
set of n activities of a system j is indicated as Ag (where i =1,..,n).

The timing characteristics of an activity are: computation time (et) is
the time to finish its computation; deadline (d) that is the maximum time
(relative to the activation of the activity) that must not be exceeded by
the computation of an activity; priority (p) is a value showing the relative
urgency with respect to the other activities in the system.

A system is viewed as a graph (G) of activities that can incrementally
evolve during the execution lifetime: G = {A, R, gt, L}, where G represents
a generic graph composed of a set of nodes that are the activities A; a set of
directed arcs (R) connecting pairs of nodes; the end-to-end deadline (gt) or
maximum time to execute the worst case or critical path of the graph and
the set of limitations or restrictions to the graph (L).

Verification of a cyber-physical system is typically done from a schedu-
lability analysis perspective that is the main target in real-time theory; the
rest of properties are not contemplated explicitly. Considering that the set
of complex properties of CPS can be synthesized as a worst case execution
time parameter is a very strong assumption and it is often not a realistic one.
In our approach, the restrictions (L) express the set of properties of different
nature (i.e., not only time) that have to be checked jointly.

3.2. Timely adaptation

The changing environmental conditions trigger adaptation events that
are detected by the system. As a result of an adaptation event and in order
to handle the new external conditions, the system model may have to be
modified. In summary, upon the detection of an adaptation event:

9

e a decision process is run that analyses the situation and creates a mod-
ified model capable of handling the new external conditions;

e the adaptation process has an associated deadline (d,), i.e., a maximum
time to complete the adaptation that is an application dependant value.

The time for the system to complete an adaptation is the adaptation
time (at). at includes different temporal costs: (1) the execution time of the
activities, (2) possible synchronization penalties, and (3) execution overlaps.

Changing the model implies changing some of the running activities.
Since a cyber-physical system must be correct by construction, a model mod-
ification must be preceded by an online analysis to guarantee that the new
model that will be applied is also correct. Formal methods are used for
this purpose. The adaptation process introduces extra overhead as it is im-
plemented with additional code. This overhead can be absorbed building
parallel software models in which activities can be run simultaneously in the
available hardware cores. The actual impact of this approach on the execu-
tion can only be analysed when the adaptation process is triggered and it
will depend on the status of the system at the precise instant.

3.83. Scalability

Currently, there are no single core processors available in the market. Our
approach exploits the multicore nature of current processors. Parallelizable
activities at software level are mapped to a specific processor core at hardware
level, so different activities can run simultaneously. Identifying parallelizable
activities is key; these are the activities that do not have synchronization
requirements during their execution although they may need to synchronize
at the end of their operation.

The proposed model can combine, both, activities that need to run se-
quentially and others that can run in parallel. Then, application graphs
(see Figure 1) will have concurrent parts for parallelizable tasks that will be
possibly allocated to different cores, and sequential ones for non paralleliz-
able activities. The allocation of parallelizable activities to different cores
simultaneously will speed up execution and shorten the response time to an
event. Parallellizable activities such as A, and Az of Figure 1, can run in
different cores simultaneously, in the same core sequentially, or in either way
depending on what is most convenient given the current situation.

A decision function is applied to determine which activities can be paral-
lelized, taking as input the set of parallellizable activities and a set of criteria

10

Figure 1: Adaptable execution through parallelizable activities

parameters as follows: the activity set; the current system state, and a set
of reference values. The activity set of the system comprises all the activi-
ties whether parallelizable or sequential. The current system state indicates
the resource availability. To obtain a result, a graph set will be generated,
that contains the different execution possibilities over the candidate activi-
ties. The criteria for selecting a feasible solution, i.e., what model to apply is
expressed as a set of reference values; these are known a priori and express
the suitability of a solution.

The decision function is applied to the current model, i.e., the initial
graph. The obtained results are compared with respect to the set of provided
reference values. Then, a solution/model (i.e., a specific graph) is selected.

It should be considered that the integration of a parallelizable activity
into a running model may have negative effects on the calculation of the end
to end timeliness of other activities. Consequently, it is needed to perform
an online analysis of the situation as it is the only means to determine the
current system availability and associated execution possibilities.

4. Adaptation by model instantiation at run-time

The adaptation process, sketched in Figure 2, relies on the basis of an
original parametric model of the system. This is a model that can be instanti-
ated to adapt the system behavior to the needs of the changing environment.
The adaptation process is done as the system is in execution, i.e., at run
time. As a result, all the steps in the adaptation process have to be efficient
in time to meet the overall application dependent deadline.

4.1. Steps in the adaptation process

Upon the occurrence of a transition event, G (the original system
model or graph) must be changed to G'"9¢ (the target model). The target
model must be one that complies to the new situation of the environment.

11

After the change to the target model, the set of activities will not be the

same.

Once an adaptation event has been triggered, the adaptation process
follows the steps given below :

1.

Read the event information to determine the type of needed change,
its inherent urgency, and any other context information that is rele-
vant for handling the event. This step is associated with the Monitor
component in the MAPE-K loop.

Create incremental models that are also named tentative models, that
have the goal of satisfying the new environment conditions. A tentative
model G*" is derived from the current model G with the needed
additions to handle the new situation. This step is associated with the
query to the Knowledge of the Analyze activity in the MAPE-K loop.
Analyze tentative model individually and collect results with respect
to the expected properties of the system as the result of the simulated
execution of these models. This step is associated with the Analyze
step in the MAPE-K loop.

Decide to what G*™ the system should evolve towards in order to adapt
to the new environment situation. For this, the expected property
values of the tentative models are compared against the set of reference
values that are the values to satisfy. This step is associated with a
simple Plan step in the MAPE-K loop.

. Adapt the system to execute as represented by the chosen model G**™*.

This phase is associated with a simple Ezecute step in the MAPE-K
loop.

If there is not any G whose properties accomplish the reference values,
a back up decision must be taken, such as transitioning to an emergency
configuration. Section 4.3 explains this parameterization.

4.2. Scalable execution

The scalable execution of a system depends on two main factors:

1.

The software/application nature. As an example consider the video
processing algorithms, they are typically scalable, providing a range
of output qualities depending on the assigned computational resources
such as time, i.e., the more time to execute, the better the quality of the
processed image. Consider two video activities that are in execution, if

12

Event
detection

Model
Repository
(Parametric)

Intantiated
Model

Event info

Plan / Mode
Change

Emergency /
Default
configuration

Analyse &
Decide

Reference
Values

Figure 2: Overview of adaptation process

one is assigned more processor cycles/time, the other one will have to
scale down its delivered quality, and vice versa. For instance, work in
[14] addressed this type of factor.
. The hardware characteristics. Current processor architectures are mul-
ticore, capable of running several actions in parallel.
sumption with respect to the software design is that actions that are
parallelizable can execute at the same time, speeding the overall com-
putation time which may benefit processor intensive activities, and
improve the response time of applications.

In the presence of scalable applications, some activities have variable
execution times depending on the specific execution conditions such as the
volume of the processed data. Let us consider a system that must execute
a video file transfer action that is scalable: it can be provided by a set of
y different variants of this activity, each delivering various output qualities.
The selection of the activity variant will depend on the current situation of
the system and will have to be decided on-line by generating a tentative future
model G*™ that will be analyzed and verified to guarantee that the system
properties are preserved, i.e., the model is correct. If the tentative model is
successfully verified, then it will become the new model of the system.

13

The basic as-

4.8. Parametric model creation and execution

The system model G contains a set of nodes or activities that are activated
by means of transitions triggered by event occurrences such as completion of
previous activities.

To support the evolution of the system behavior, the system adapts by
transitioning from a model G to a model G*™. The adaptation is guided
by a set of rules of the form: if [c] then [G'""], where the adaptation
conditions are ¢, and are parametric. Adaptation conditions are expressions
containing variables, and they are evaluated at run-time. The structure of
an adaptation condition ¢ is an expression of the form: f(PV) @& R , where:

e parametric variables PV are represented by PV = {uvy, ..., v, } and their
values depend on the current system situation and environment status;

e logic operation (@) indicates a comparison with respect to a value of
reference;

e reference values are represented by the set R = {rg, ..., }; these are
application dependent values (expected values) that guide the transi-
tion of the system to a specific model;

e f is a function over the parametric variables that returns model-specific
values to be compared to the reference values: f: PV — R

Therefore, in the adaptation condition the expression determines a spe-
cific global evaluation of the system behavior whereas the reference values
represent the limits that determine whether a transition is to be fired.

As an example, let us imagine that the system has the possibility of
running two different computation models G! and G? which contain activities
Ay and A, respectively. These activities differ only on the precision of the
output result (A; delivers higher precision results compared to Ay) and on
the time that they consume to deliver such output (A; consumes more time
than Ajs). The highest precision operation is the preferred one, but it is
not always possible to execute it since the system may have consumed more
time on other actions, having less time to complete these activities before
the deadline. Therefore, the default choice will be to run A; as it provides
the best possible output quality; however, the decision on which action will
be run depends on the remaining time before the deadline (remT’) that is
actually the used reference value in this case: R = {ro} and ro = remT.

14

This is shown by the following rule: if [f(A41) > remT] then [As], where f
in this case is the function that returns the execution time et of an action,
i.e., f(A1) returns the required execution time of action A;.

The decision function f can be complex as it sets the relation between
the observed parametric variables whose values are compared to the refer-
ence values. The Analyze activity of the MAPE-K self-adaptive control loop
runs the decision function. In our approach, f is implemented by a model
verification engine that verifies models that are instantiated with the set of
parametric values; these models are evaluated yielding values that are com-
pared to the reference values. From the current model GG, instantiations can
be obtained as tentative models G*" that will undergo online verification.

5. Use case

We validate our approach through a prototype of an autonomous system
that coordinates the operation of vehicles that move over predefined areas
performing video surveillance activities. Video data collected by such vehicles
are transmitted to servers that process and upload them to a storage system.

Servers are located at specific locations, and the video file transmission oc-
curs when the moving vehicles are within the allowed communication range.
Servers are also responsible for handling alarm events that are sporadic oc-
currences triggered by the detection of some special environmental condition.
Such conditions may have very important consequences on the system, e.g.,
disable some vehicle routes or consider the presence of additional vehicles.

Servers run in two different operational modes: normal and alarm han-
dling. This section describes how transition across modes done at the server
making use of the online adaptation approach explained in sections 3 and 4.

5.1. Server normal operation model

In the normal operation mode, the server receives requests from vehicles
to transmit and upload video files as they pass close to the server. The mov-
ing vehicles act as client nodes. Then, the deadline for file transmission de-
pends on the communications reachability range and the speed of the moving
clients. Assuming that every client has the same reachability range (and that
every client provides its speed to the server upon communication set up), the
duration of the file transmission will have a time deadline D that is calculated
as the reachability range divided by the client speed. Then, the interaction
between client and server should finish within D? time units since the start.

15

Figure 3 shows the interactions between server and vehicle through a UML
activity diagram extended with MARTE-like [31] performance notation. Pre-
cisely, the set of server activities in the normal operation mode are A =
{Aq, ..., A5} = {InformClient, Transmit, Write, Read, Upload, Compute}.

Inform Client

<<PaStep>>
{rep=$ 1}19) FromClientToServer FromServerToStorage

<<PaStep>>
J---77] {rep=$1/x9}

.. <<GaAcqStep>>
" {facqRes=UsedBufferSlot,

resUnits=1}
Upload

<<GaAcqStep>> L Transmit
{acqRes=EmptyBufferSlot,

resUnits=1}
Write

®

<<GaRelStep>>
{relRes=UsedBufferSlot,
resUnits=1}

<<GaRelStep>>
~r {{relRes=EmptyBufferSlot,
resUnits=1}

Figure 3: Server behavior in the normal operation mode.

When a vehicle is detected, the server runs activity Inform Client (with
an execution time of #; time units) to first inform the vehicle client that it can
start the transmission. The client then sends the data to the server, and the
server uploads the data to the storage system. This is indicated by activities
Transmit, Write, Read and Upload of Figure 3. After the data has been
uploaded, the server runs activity compute on the vehicle information.

Detailed considerations of the data sending are:

1. Transmitted data size ranges from x7MB to xsMB. Data is split in in-
dependently processed and transmitted blocks of xgKB. For each block
size, activities Transmit, Write, Read and Upload have an execu-
tion time of w9, x3, x4, or x5 time units, respectively. This is mod-
eled as rep = $1/xg iterations over activities From Client to Server
and From Server to Storage, where $1 is data length (in the range
[27MB,zsMB]). The last iteration of activity From Client to Server
must finish before D! to fulfill the deadline.

16

2. Figure 3 shows the parallel workflow that is supported by the multicore
processor. Then, a data block can be transmitted concurrently to the
upload of a received block to the data storage system. To synchronize
transmission and uploading, a buffer size of xgMB is kept at the server
that can store up to 1024x¢/x9 blocks.

3. Transmit activity can suffer from environmental interference resulting
in deadline miss. If so, vehicles take actions such as stop movement to
keep in the reachability range. The approach supports the accumula-
tion of errors in the transmission of data blocks. For this, the deadline
is relaxed: proper operation is achieved if the transmission deadline is
fulfilled in 99.5% of the vehicle-server interactions. Probability distri-
butions and random transmission times for each data blocks adjust to
this characteristic.

5.2. Uncertainty management: Alarm handling

Their unpredictable surrounding environment, forces cyber-physical sys-
tems to face unexpected situations that may trigger alarms requiring timely
reaction. In the proposed use case, this is illustrated as follows. The server
detects alarms raised due to some problem encountered by the moving clients
along their circulation path that can affect the plant safety (e.g., changes in
environmental conditions, meeting additional vehicles over the same path,
etc.). Among other actions, this alarm requires the server to run a Path
Recalculation activity, which is the most time consuming activity along
the alarm management process. There are a number of contributions in the
literature regarding path calculation algorithms. Examples are shortest path
algorithms of Dijkstra [8] and Floyd [11]; the latter has been revisited also
for negative cycles in [22].

This implies that the set of activities, A, is enhanced with this additional
activity in the alarm mode (see Figure 4(a)) provided sequentially as run:

e Read environmental conditions: It runs on the first place to collect
data of the current environment status and physical restrictions for the
moving clients.

e Recalculate the vehicle path: Path calculation can be very com-
plex depending on the number of restrictions over the environment.
The time taken by this activity is assumed to be bounded to a worst
case scenario where the upper bound of the restrictions is known.

17

ReadEnvironmental

o Process adaptation
conditions

Continue Alarm

[ParallelismLevel==2Cores]

ReadEnvironmental
conditions

[Paralleli|smLevel==1Core]

RecalculateVehicle
Path

InformVehicle

StoreReport

(@) (b)

RecalculateVehicle
Path

RecalculateVehicle) [RecalculateVehicle)
Path-Parall1 Path-Parall2
RecalculateVehicle
Path—MergeResults

InformVehicle

StoreReport

ReadStatus
normalOperation

DecidePriority
andParallelism

Figure 4: Server alarm management: a) operations to perform, b) operations to
perform with self-adaptation process c) detail of the activities in the self-adaptation
process

18

e Inform vehicle: It communicates the new path to be followed by the
moving client.

e Store report: It registers the alarm in a log file.

The alarm handling activities have a deadline, D%, that should be fulfilled,
at least, 99.999% of the time.

The multicore nature of processors and the existence of parallelizable
activities are exploited in our approach to yield the following benefits:

e The available processor is dual core; the alarm handling process can
use both of them to speed up the response to alarm.

e Activity recalculate a vehicle path, which is the most computa-
tionally expensive activity in the process, is parallelizable; therefore,
the system can run either a serial version of this activity or a parallel
one. The rest of activities are not parallelizable, so they have to execute
either in one core or in the other, but not on both simultaneously.

5.8. System self-adaptation

Both the normal operation and the alarm handling processes will meet
the deadline if run in isolation. However, they can miss their deadline if
an alarm event is triggered while the server running in normal mode, i.e.,
receiving a video file transmission from a moving client.

A first analysis might result in deciding that the alarm mode should have
higher priority over the normal mode. The reason is that the alarm is likely to
have a shorter deadline. However, this cannot be inferred for all cases since it
may result in normal mode activities missing their deadline; as Section 6 will
show. For instance, operation Transmit, which is also a real-time activity
and has an associated deadline, would be preempted by the alarm and could
fail to meet its deadline.

The possible workflows when an alarm event arrives to the server are:

e The alarm mode activities run after the normal mode activities have
finished. Scenario 1 in Appendix A exemplifies need for this workflow
in order to meet the deadlines of all processes.

e Activity from server to storage of the normal mode is preempted.
Here, the alarm activities are executed in one core while the transmis-
sion from the moving client to the server continues in the other core
until the buffer is full. Scenario 2 in Appendix A shows its utility.

19

e The normal mode activities of the system are preempted. The alarm
mode activities are run in both cores and, when they are finished, the
normal mode activities continue execution. Scenario 3 in Appendix A
illustrates its utility.

When an alarm is detected, the server reads the data about the environ-
mental conditions that can affect the duration of the handling process, and it
launches the adaptation. The alarm mode activities set (A set) is enhanced
so that the adaptation process is integrated into this set; this results in a
modified adaptation management workflow.

Figure 4(b) illustrates the workflow of activities given that the alarm
process can parallelize its recalculate vehicle Path depending on the de-
cision taken by the adaptation managing process. The first activity read
environmental conditions is equivalent to its homonym in part (a). First,
the adaptation process is launched using the data on the environmental con-
ditions. When the adaptation process finishes, the alarm process continues
to run. Depending on the decision taken by the adaptation process, the
alarm will implicitly run with the decided priority and it will explicitly split
its read environmental conditions into two parallel activities.

In turn, the adaptation process, which is depicted in Figure 4(c) waits
until the arrival of the signal to start its execution. Then, it proceeds as
follows: (i) it reads the status and progress of the normal operation, which
corresponds to the Monitor activity of MAPE-K; (ii) its instantiates and
analyzes model G and different alternative G*™ to obtain the expected prop-
erties that are comparable with the reference values, which corresponds to
the Analyze activity of MAPE-K; (7i7) it decides the priority and paralleliza-
tion level with which the alarm handling activities should run, corresponding
to Plan activity and is further explained in the next paragraphs; and (iv) it
sets the decided parallelism and priority, corresponding to the Fzecute phase.
After, it notifies the alarm mode to continue execution.

Table 2: Variables to be set in the parameterizable model for timely handling of the normal
operation of the system and the alarm event

Parameter Reference values
Priority 0,1,2]
ParalelismLevel | [1 core, 2 cores]

20

Table 2 shows the model parameters. Their values are decided by activity
Decide Priority and Parallelism according to the provided reference values.
Setting these parameters is an actual instantiation of the parametric model,
that is a mechanism for supporting adaptation and system evolution. Activ-
ity Decide Priority and Parallelism is run online by the server providing the
following results:

e the parallelization level of recalculate vehicle path activity, with
possible values:

— sequentially, if the adaptation analysis results yield a parallelism-
Level=1Core, or

— parallelized, if the adaptation analysis yield a parallelismLevel=2Core),

e the priority of the rest of the workflow activities; possible values are:

— 0, the alarm mode activities will wait until the execution of the
normal mode activities finishes;

— 1, starting immediately the sequential execution of the alarm mode
activities by preempting the core that uploads the data to the
storage system:;

— 2, starting immediately the parallel execution of the alarm by
preempting both cores.

If the decision is to parallelize, the alarm process will split activity
recalculate vehicle path in two activities that will run in parallel
(i.e,. paralll and parall2) and a final activity mergeResults to
integrate their results.

Table 3 shows an overview of the activities run by the server and their
priority and parallelization level properties.

Priorities of Transmit and Upload activities reflect the previous descrip-
tion. Upload is best effort, so its priority value is the lowest one: 0. The
priority of Transmit is higher than the previous one: 1. The priority of
activity RecalculateVehiclePath is a wvariable of the parametric model; it
is decided within the adaptation process.

In case that the adaptation analysis results show that the requirements
of both normal and alarm mode activities cannot be fulfilled (e.g., the dead-
lines are not met within the given reference values and none of the adaptation

21

Table 3: Description of the server activities per execution mode

Normal mode actitivies

Activity Priority ‘Activity Priority ‘Activity Priority

Inform Client 1 Transmit 1 Write 1
Read 0 Upload 0 Compute 1
| Alarm mode activities |

Activity Priority Parallel
Read Environmental conditions 2 -
Recalculate Vehicle Path prio_var v
Recalculate Vehicle Path-Merge Results prio_var -
Inform Vehicle prio_var -
Store Report prio_var -
Read Status Normal Operation 2 -
Model Analysis 2 -
Decide Priority and Parallelism 2 -
Set Priority - Set Parallelism 2 -

conditions ¢ in if [¢] then [G'] is true), according to Figure 2 the sys-
tem switches to an Emergency configuration. In this example, the emergency
configuration corresponds to the one that ensures plant safety (i.e., the alarm
process is immediately executed using both cores although the video trans-
mission operation could not be completed).

The properties and particularities of the use case conform a target sys-
tem with the following general characteristics: (i) open as it may dynam-
ically modify the functionality and code that it executes, (i) real-time as
there are some activities that must finish before a specified deadline expires,
(1ii) correctly designed because it must always execute under a model that
has been previously verified and checked against the set of desired proper-
ties; (iv) priority-based, as it can also handle the occurrence of events that
should be handled with different urgency (e.g., an alarm); (v) concurrent at
both intra and internode level: modern processors are multicore systems and
they support execution speed up and increased throughput for parallelizable
activities.

22

Table 4: Reference values

Name Value Description

D* fulfillment level | 99.999% | Probability of finishing alarm
mode activities

D! fulfillment level | 99.5% | Probability of finishing normal
mode activities

6. Validation

This section validates the proposed approach through its application to
the self-adaptive case study presented in previous section.It also reports the
performance results obtained from the execution of the model analysis, and
discusses the limitations of the approach.

6.1. Adaptation process at work

The adaptation process must deal with adaptation analysis and decisions
at run-time. The system will then adapt by assigning the appropriate com-
putational resources (cores) to the RecalculateVehiclePath activity in a
way that guarantees that deadlines are met even in the case that there is an
on-going transmission from a moving client to the server.

Since the status and situation of vehicles when an alarm occurs is not pre-
dictable, the computation time required by RecalculateVehiclePath will
only be known at execution time concretely, only after ReadEnvironmentalConditions
activity of the alarm process has executed. Next subsections describe how
we applied the model instantiation and adaptation analysis activity to the
use case.

6.1.1. Tentative model generation.

Figure 2 illustrated the adaptation process in which a repository stores
parametric models models for each behavior of the system. In our case study,
there are three tentative behaviors, and thus three parametric models or tar-
get system configurations, namely G"t! Gtent2 and G**"*3. For convenience,
models are stored in the same language that will be used for their execution
and analysis, Generalized Stochastic Petri nets (GSPN) [2].

Figure 5 depicts these three models. Part (a) shows G*"! the system
behavior when the alarm mode activities wait until the execution of the

23

transmission between the moving client and server in the normal mode has
finished. Part (b) shows G2, the system behavior when the alarm mode
activities are immediately executed using one core and leaving the other core
for the normal mode activities. Part (c) shows G*™3 the system behavior
when the alarm mode activities are immediately executed in both cores by
preempting the normal mode activities, which can resume when the alarm
has been completely handled.

Alarm process

1 Normal operation
H N

RecalculateVehicle
Parth—Parall 1 .__]

RecalculateVehicle
‘Parth—Parall2

Alarm process

RecalculateVehiclePath

RecalculateVehicle
L Parth-MergeResults

InformVehicle

InformClient 7 InformVehicle

StoreReport

PFinishAlarm

InformVehicle

[1 Read

O g
‘UsedBuffer§

StoreReport

Alarm process

JPfinishAlarm

() (b) (©)

Figure 5: Petri nets to analyze the appropriate level of parallelism and priority of
the alarm process. These models are stored in the Model Repository. (a) represents
system behavior G**™ (b) G2 and (c) G™t3

The model instantiation activity of the adaptation process in Figure 2
gives values to the Petri net model parameters. The environmental condi-
tions that are used to instantiate in the Petri nets and which are represented
as the event info in Figure 2, are: the expected execution time of Inform-
Client activity, the number of remaining blocks to be sent from the vehicle
to the server, the number of buffer slots currently used, and the number of
elements that the vehicle path recalculation activity will need to consider
(i.e. the size of the problem for the path recalculation). Each of these envi-

24

ronmental conditions only affects a single parameter in the Petri net model;
for instance, the number of remaining blocks to be sent affects only te arc
weight parameterized as IV in the Petri net models in Figure 5. More details
on these parameters are provided in Appendix A.

Conversely, parameters in the Petri nets that are independent of the cur-
rent environmental conditions are the mean execution times of activities:
mergeResults and Inform Vehicle in the alarm process; and read, upload trans-
mit, and write of a data block in the normal operation. These parameters
do not need to be instantiated and can be set as constants in the model.

6.1.2. Role of model results in the adaptation decision

The Analyseéidecide activity of the adaptation process analyses the Petri
net models to obtain information regarding the expected completion times
of both, the alarm mode and the normal mode activities. The logic of Anal-
yseéddecide activity is contained in Table 5. It relates the results of the model
evaluation with the adaptation decisions.

Table 5: Incremental model creation: Rules modification

if [P(#FinishAlarm(D*) = 1) > 0.99999 | G'""|

then

[prio_var = 0 A Paralelism level = one core]

else if [(P(#FinishAlarm(D®)) =1 >0.99999 | G™*"%) A
(P(#FinishTransmit(Dt_, .)=1)>0.995 | G"2)]

then

[prio_var = 1 A Paralelism level = one core]

else if [P(#FinishTransmit(D!,, ...) = 1) > 0.995 | Gni3)]
then

[prio_var = 2 A Paralelism level = two cores]

else # emergency configuration

[prio_var = 2 A Paralelism level = two cores]

The expression P(#FinishAlarm(D®) = 1) refers to the results of the
Petri net analysis, specifically to the probability of being a token in place Fin-
ishAlarm after D* time has elapsed. Similarly, P(# FinishTransmit(D:,, .in) =
1) refers to the probability of completing the client-server communication

25

within time D!, ... Utilization and meaning of D .. is explained later.
Expression (P(#FinishAlarm(D®)) =1 > 0.99999 | G*"?2) refers to the
computation of the aforementioned probability in the tentative model G2
and checking whether its value is higher than the reference value 0.99999.
The amount of time available to finish the alarm mode activities is D?,
while the amount of time available to finish the transmission, called Dt ..
in the table, is not immediate but it requires the following calculation: being
D' the deadline to finish the transmission computed from the reachability
range and the communicated vehicle speed, being f.,.ren the current time,
and being ts 4+ the moment in which the execution of the normal mode

activities started, the remaining time to finish the transmission is D! =

remain
Dt - (tcurrent - tstart)-
Looking at Table 5 as a workflow with the logic for the adaptation deci-
sion, we obtain the decision process in Figure 6, where each of its decision
activity contains the condition in one of the rows in Table 5.

isSafeToExecuteWithPriorityO pa_raﬂellsmLeveI = 1Core
prio=0
no
parallelismLevel = 1Core
isOKToExecuteWithPriority1 prio=1
no
yes
isOKToExecuteWithPriority2
no

Figure 6: Adaptation logic

parallelismLevel = 2Core
prio=2

emergencyConfiguration

6.1.3. Model evaluation and Decision

The decision on isSafeToExecuteWithPriority0 in Figure 6 is obtained
from the evaluation of the condition in the first row in Table 5, which required
the analysis of the instantiated Petri net G,

In turn, the decision on isOKToExecuteWithPriorityl is obtained from
the evaluation of the condition in the second row in Table 5, which involved
the analysis of the Petri net G*"2. In this case, it is checked whether both
the alarm process without parallelism and the vehicle-server transmission can
finish within their deadlines.

Finally, the value of isOKToExecuteWithPriority2 is obtained from the
evaluation of the condition in the third row in Table 5, which requires the

26

analysis of the Petri net G*"3. Since this execution allows the alarm mode
activities to finish on time with the required probability, it is only checked
the probability of finishing the normal mode activities within DZ_ . time
units.

After executing this decision logic, it is known the target configuration
to which the system should adapt actuating on parameters priority and
paralelismLevel. The Mode change activity of the adaptation process in
Figure 2 sets up the parallelism level of the recalculate vehicle path activity
and the priority of the alarm management behavior.

The Emergency configuration activity of the adaptation process in Figure
2, which executes when the decision on isOKToExecuteWithPriority?2 is
'no’, sets up the parallelism level of the alarm to use both cores and its priority
to the highest. In this case the alarm execution will satisfy its requirements
although the risk of the normal operation of the system to fail is higher than
allowed in this case.

6.2. Experimental results

In order to evaluate the feasibility and quality of the approach, we have
experimented the case study in different scenarios. These scenarios cover
the three possible system configurations and require the analysis of the three
tentative models. Table 6 provides the values of model parameters that are
independent of the particularities of each scenario.

Table 6: Values of scenario-independent parameters

’ Parameter \ Value H Parameter \ Value ‘

mergeResults | 100ms || InformVehicle | 10ms
read 5ms upload 100ms
transmat 30ms write 10ms
Buffer size 2MB Block size 50KB

From these data, we easily obtain the maximum buffer capacity of
2MB/50KB=40 slots. Moreover, message sizes range from 1MB to 6MB; the
reachability radius from the server is 25m which makes a reachability range
of 50m; the deadline for managing the alarm process is 5 seconds; and oper-
ation recalculatePath can take from 500ms —in case of minimum complexity

27

from the read environmental conditions— to 3 seconds —in case of maximum
complexity of the problem to compute-. We assume that, once the num-
ber of environmental conditions to use for a path recalculation is known,
the time required to compute the recalculate VehiclePath can be known with
considerable precision. We assume a relative standard deviation value be-
tween the expected and the actual computation time of /0.2, which allows
us to model the computation time with the Gamma I'(5,) or with Erlang-5
distributions.

Appendix A provides, for each of the scenarios considered, a detailed
description of the status of the normal operation execution when an alarm
event was received by the system, and provides the Petri net evaluation
results and the outcome of the adaptation decision.

As performance indicator for the feasibility of the approach, the analysis
of the Petri nets for the example scenarios took around 200 ms; this execution
time indicates that the analysis can be made at run time. For the analysis we
have used the command-line scripts provided by the GreatSPN[16] Petri net
analysis tool. These scripts implement a randomization method to efficiently
calculate the transient solution [28, 17, 3|. GreatSPN tool provides a syntax
very similar to the used in Table 5. In the definition of the Petri net model, it
is specified as result: p{#Px=1}; to mark that GreatSPN analysis engine
must calculate the probability of place Px having exactly one token. However,
the time horizon of the transient analysis (i.e., the deadline value) is not
represented in the definition of the Petri net but it is passed as argument
in the transient analysis command. Finally, GreatSPN stores the results of
the analysis in a text file (with extension .sta), which is read and its value
compared with the reference values for adapting the system. The execution
of the Petri nets analysis was carried out in a MacBook Pro 2011 with 8GB
of RAM which executed VirtualBox and virtualized a Linux Debian with
GreatSPN 2 installed.

Nevertheless, if the execution time of the Petri nets would have been
larger (and, therefore, not affordable to be executed online), other alterna-
tives that can speed up the output of results could be applied. For example,
a pre-analyis of the Petri net can be done parametrically without actual val-
ues for transition rates, leaving a set of formulas that need to be evaluated
with the actual values; this technique that was proposed in [10] for the relia-
bility analysis using Markov chains. As we are evaluating performance, this
technique cannot be directly applied, but it appears as a research direction
in case that results need be obtained within shorter deadlines.

28

Enforcing the execution of specific activities on given cores requires to use
both core affinity and priority assignment to activities. Establishing a core
affinity is done per activity and it consists of instructing the kernel to run the
activity on a specific core of the processor. Cores are numbered and receive
unique identifiers. Each activity can set the processor bitmask reflecting its
execution preference that determines which is the core (or cores) that it will
run on. In case that several activities wish to run on the same core, the ties
are solved by using their priority values.

6.3. Discussion

This section provides a summary discussion of the approach benefits,

pointing also at the limitations and current challenges that leave the door
open to future contributions. For discussing benefits and limitations, we
consider the range of situations in which it can be applied.
Benefits of contribution claims. Contributions enumerated in section 1.2 —
i.e., Timely adaptation, supporting scalable execution, usage of parametric
models, and pragmatic view of the design— have been put at work in the use
case description and validation. Precisely, their benefits are:

e The Pragmatic view of the design as a graph of activities that represent
the system in a particular configuration; system adaptations that are
triggered by the satisfaction of a predefined set of adaptation rules that
imply the evolution of the graph towards a different target configura-
tion.

e The analysis of the system in different configurations has been per-
formed through parametric analyzable models, precisely the use case
utilized a set of three parameterized Petri nets. Each of these Petri
nets models the system behavior in a different configuration. Param-
eters of the Petri net refer to the state of the system execution and
its environment, and they are instantiated from information from the
monitoring just before the model analysis is launched. Results of the
analysis are used within the rules that define the adaptation conditions.

e The goal of the self-adaptive system is to execute timely adaptations
to keep the system in configurations that ensure that deadline of all its
tasks are met, both in the normal behavior and in the sporadic alarm
process. The use case proved through examples that a self-adaptive

29

system was necessary since it did not exist any static configuration
of the system under study that could satisfy the deadlines in every
possible situation. The proposed timely adaptation process considers a
key aspect such as the execution times of activities and the specification
of reference values for the adaptation times that are required by the
system. We also measured the overhead of the adaptation process, and
of its most time consuming activity of analyzing the Petri nets of the
case study took around 200ms, which showed feasible to execute such
analysis at runtime.

e The illustration of the application of the approach has considered a
system whose allowed configurations exploited a Scalable execution;
precisely in the case study, an activity could be split up and executed
in parallel due to a hardware structure based on multiple processing
cores. This scalability allows to improve the timeliness of the response
of the parallelized activities.

The combination of these benefits allows to relax some assumptions that
are usually needed for the operation of real-time and cyber-physical systems,
such as the assumption of known execution time of tasks (or planning the
scheduling for the worst-case execution time). Under this assumption, when
an event arrives, it is immediately known the remaining computing demand
of tasks. This work partially relaxes this assumption by computing their
remaining demand from their actual status when events that may require
adaptation arrive. This simplifies the management of tasks that show differ-
ent computing demand and different deadline each time they execute (e.g.,
such as the transmission of files of different sizes at different vehicle speeds).
This runtime evaluation of the performance properties of processes is well-
known in the self-adaptive software field, however the amount of time that
is required for computing such evaluation is not usually considered critical
in this field. This work mixes these two concepts, evaluating at runtime the
execution time while paying attention to the time required by such evalua-
tion. This has been possible thanks to both a pre-generated parameterized
model for each alternative in the graph of configurations that only needs to
receive the actual values and limiting the possible configuration alternatives.
It is worth noting that these benefits are in trade-off with the generality of
the approach. Next paragraphs present its identified limitations.

Limitations of the approach. The next list of limitations considers the
defined system behaviors, the definition of system configurations, and the

30

physical environment characteristics.

e Known possible system configurations: since each parametric model
represents the system in a given configuration, the models of new pos-
sible configurations have to be defined by the engineer before running
the system. This means that new system behaviors that emerge at
runtime are not supported by the approach because, at present, the
structure of the parametric model is not created automatically. In the
presented case study, this situation would happen if, for instance, a
third additional process beyond the normal behavior and alarm han-
dling is installed in the server; the engineer should manually extend the
parametric models for considering this new process.

o [inite set of configurations: since the adaptation decisions are defined
as rules that contain condition and action, the adaptation action to
take when a condition is satisfied must exist in a predefined finite set
of configurations. In our case study, a configuration was defined by
the parallelism level and the priority value that are natural numbers.
However, the applicability of the proposed approach is restricted to
autonomous decisions. Therefore, the approach is difficult to apply if
the server could also decide about the speed of the vehicle (e.g., de-
creasing its speed if there is a risk of deadline miss) that would mean
that it acts as coordinator of the behavior of other nodes. Also, the ap-
proach does not consider an infinite number of known configurations,
e.g., speed ranges that are real number between an interval such as
[bkm/h ... 15km/h]. Although the illustrated limitation could be over-
come by discretizing the range of possible speeds, the applicability of
the approach would be more complex due to the number of possibilities
that may arise from discretization.

o [inite state space of the parametric analyzable model: it should be pos-
sible to represent the system behavior in a configuration using a Petri
net model with finite reachability graph. Due to the Petri net tran-
sient analysis technique used in this work, at present it is not possible
to analyze unbounded Petri nets.

7. Conclusion

This paper has presented an approach to support on-line adaptation in
cyber-physical systems that have to adhere to timing requirements. The

31

approach considers the inherent immersion of cyber-physical systems in the
environment that they monitor and actuate on. We describe the software
structure of a cyber-physical system based on its constituent entities or ac-
tivities that can be either parallelizable or sequential. We provide a prag-
matic approach towards supporting adaptation while respecting the inherent
timing constraints of cyber-physical systems. The system is designed as
an activity graph with a number of possible different configurations, all of
them are translated into activity graphs; and the adaptation of the system is
the transition between two different configurations which are fired when the
specified set of adaptation rules are satisfied. To ensure correctness, system
configurations are analyzed through parametric models that we exemplify
with parameterized Petri nets. We exemplify the need for adaptation with
a use case based on a real laboratory prototype, since there is no static con-
figuration in our specific case that can satisfy the operation deadlines in all
situations. We have proposed a timely adaptation process based on two key
aspects such as the execution times of activities and the specification of ref-
erence values for the adaptation times that are required by the system. The
measurement of the overhead of the adaptation process yields 200ms, which
proves that it can be run online.

Parametric analyzable models have been used to analyze the system under
various configurations. Precisely, three parameterized Petri nets are elabo-
rated for our use case. The parameters of the Petri nets model the execution
of the system and environment conditions. The monitoring performed at
runtime derives a set of values that are fed to these parameterized Petri nets
when an adaptation need is detected, i.e., just before launching the model
analysis. The results of the analysis are used to obtain the rules that define
the adaptation conditions. We show that the system performs timely adap-
tation satisfying the deadline of all its activities in the different operation
modes. To improve timeliness and obtain shorter response times, we have
exploited scalable execution by splitting sequential activities into other par-
allel activities that can execute simultaneously in different processing cores.

Acknowledgement

This work has been primarily funded by the Salvador de Madariaga re-
search grant by the Spanish Ministry of Education (PRX2012-00252) and

32

partly funded by the project REM4VSS (TIN2011-28339) and M2C2 funded
by the Spanish Ministry of Economy and Competitiveness.

1]

2]

An architectural blueprint for autonomic computing. Technical report,
IBM, June 2005.

M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Frances-
chinis. Modelling with Generalized Stochastic Petri Nets. John Wiley
Series in Parallel Computing - Chichester, 1995.

G. Balbo and M. Silva, editors. Performance Models for Discrete Fvent
Systems with Synchronizations: Formalisms and Analysis Techniques.
Editorial KRONOS, Zaragoza, Spain, 1998.

A. Benveniste, B. Caillaud, and R. Passerone. A generic model of con-
tracts for embedded systems. CoRR, abs/0706.1456, 2007.

M. M. Bersani and M. Garcia-Valls. Online verification in cyber-physical
systems: Practical bounds for meaningful temporal costs. Journal of
Software: Evolution and Process, pages n/a—n/a, 2018.

T. Bures, 1. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, and
F. Plasil. Deeco: An ensemble-based component system. In Proceedings
of the 16th International ACM Sigsoft Symposium on Component-based
Software Engineering, CBSE 13, pages 81-90, New York, NY, USA,
2013. ACM.

I. Crnkovic, I. Malavolta, H. Muccini, and M. Sharaf. On the use of
component-based principles and practices for architecting cyber-physical
systems. In 2016 19th International ACM SIGSOFT Symposium on
Component-Based Software Engineering (CBSE), pages 23-32, April
2016.

E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1(1):269-271, Dec 1959.

S. Dobson, S. Denazis, A. Fernandez, D. Gaiti, E. Gelenbe, F. Mas-
sacci, P. Nixon, F. Saffre, N. Schmidt, and F. Zambonelli. A survey of
autonomic communications. ACM Trans. on Auton. and Adap. Syst.,
1(2):223-259, 2006.

33

[10]

[11]

[12]

[13]

[14]

[16]

[17]

[18]

A. Filieri, C. Ghezzi, and G. Tamburrelli. Run-time efficient probabilis-
tic model checking. In Proceedings of the 33rd International Conference
on Software Engineering, ICSE ’11, pages 341-350, New York, NY, USA,
2011. ACM.

R. W. Floyd. Algorithm 97: Shortest path. Communications of the
ACM, 5(6):345—, June 1962.

M. Garcia-Valls and R. Baldoni. Adaptive middleware design for CPS:
Considerations on the os, resource managers, and the network run-

time. In International Workshop on Adaptive and Reflective Middleware
(ARM), 2015.

M. Garcia-Valls, I. R. Lopez, and L. Fernandez-Villar. iLAND: An En-
hanced Middleware for Real-Time Reconfiguration of Service Oriented
Distributed Real-Time Systems. [EEE Trans. Industrial Informatics,
9(1):228-236, 2013.

M. Garcia-Valls, D. Perez-Palacin, and R. Mirandola. Time-sensitive
adaptation in CPS through run-time configuration generation and ver-
ification. In IEEE 38th Annual Computer Software and Applications
Conference (COMPSAC), 2014, pages 332-337, July 2014.

D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste.
Rainbow: architecture-based self-adaptation with reusable infrastruc-
ture. Computer, 37(10):46-54, 2004.

GreatSPN. Dipartamento di informatica, Universita di Torino. GRaph-
ical Editor and Analyzer for Timed and Stochastic Petri Nets, Dec.,
2015. URL: www.di.unito.it/~greatspn/index.html.

D. Gross and D. R. Miller. The randomization technique as a modeling

tool and solution procedure for transient markov processes. Oper. Res.,
32(2):343-361, Apr. 1984.

A. Gupta, O. J. Pandey, M. Shukla, A. Dadhich, A. Ingle, and
P. Gawande. Towards context-aware smart mechatronics networks: In-
tegrating swarm intelligence and ambient intelligence. In 2014 Inter-

national Conference on Issues and Challenges in Intelligent Computing
Techniques (ICICT), pages 64-69, Feb 2014.

34

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

R. Hennicker and A. Klarl. Foundations for Ensemble Modeling — The
Helena Approach, pages 359-381. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2014.

C. Hofmeister and J. Purtilo. Dynamic reconfiguration in distributed
systems: adapting software modules for replacement. In Distributed
Computing Systems, 1993., Proceedings the 13th International Confer-
ence on, pages 101-110, May 1993.

M. Holzl and T. Gabor. Reasoning and Learning for Awareness and
Adaptation, pages 249-290. Springer International Publishing, 2015.

S. Hougardy. The Floyd-Warshall algorithm on graphs with negative
cycles. Information Processing Letters, 110(8):279 — 281, 2010.

J. C. Jensen, D. H. Chang, and E. A. Lee. A model-based design method-
ology for cyber-physical systems. In 2011 7th International Wireless
Communications and Mobile Computing Conference, pages 1666—1671,
July 2011.

J. O. Kephart and D. M. Chess. The vision of autonomic computing.
IEEE Computer, 36(1):41-50, 2003.

K. D. Kim and P. R. Kumar. Cyber physical systems: A perspec-
tive at the centennial. Proceedings of the IEEFE, 100(Special Centennial
Issue):1287-1308, May 2012.

J. Kramer and J. Magee. Self-managed systems: An architectural chal-
lenge. In 2007 Future of Software Engineering, FOSE ’07, pages 259268,
Washington, DC, USA, 2007. IEEE Computer Society.

N. Kumar, M. Singh, S. Zeadally, J. J. P. C. Rodrigues, and S. Rho.
Cloud-assisted context-aware vehicular cyber-physical system for phevs
in smart grid. IEEE Systems Journal, 11(1):140-151, March 2017.

C. Lindemann. On efficiently calculating transient solutions of gener-
alized stochastic petri net models. In [1991] Proceedings of the 34th
Midwest Symposium on Circuits and Systems, pages 1001-1004 vol.2,
May 1991.

35

[29]

[30]

[34]

[35]

[36]

M. Maggio, H. Hoffmann, A. V. Papadopoulos, J. Panerati, M. D. San-
tambrogio, A. Agarwal, and A. Leva. Comparison of decision-making
strategies for self-optimization in autonomic computing systems. TAAS,
7(4):36:1-36:32, 2012.

H. Muccini, M. Sharaf, and D. Weyns. Self-adaptation for cyber-physical
systems: A systematic literature review. In 2016 IEEE/ACM 11th In-
ternational Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS), pages 75-81, May 2016.

Object Management Group. A UML Profile for MARTE.
http://www.omg.org/omgmarte, 2012.

P. Oreizy, M. Gorlick, R. Taylor, D. Heimhigner, G. Johnson, N. Med-
vidovic, A. Quilici, D. Rosenblum, and A. Wolf. An architecture-based
approach to self-adaptive software. IEEE Intelligent Systems, 14(3):54—
62, 1999.

J. Panerati, F. Sironi, M. Carminati, M. Maggio, G. Beltrame, P. J.
Gmytrasiewicz, D. Sciuto, and M. D. Santambrogio. On self-adaptive
resource allocation through reinforcement learning. In 2013 NASA/ESA
Conference on Adaptive Hardware and Systems, AHS 2013, Torino,
Italy, June 24-27, 2013, pages 23-30, 2013.

K. Tindell, A. Burns, and A. J. Wellings. Mode changes in priority pre-
emptively scheduled systems. In Proceedings of the Real-Time Systems
Symposium - 1992, Phoenix, Arizona, USA, December 1992, pages 100—
109. IEEE Computer Society, 1992.

C. Tsigkanos, T. Kehrer, C. Ghezzi, L. Pasquale, and B. Nuseibeh.
Adding static and dynamic semantics to building information models. In
2016 IEEE/ACM 2nd International Workshop on Software Engineering
for Smart Cyber-Physical Systems (SEsCPS), pages 1-7, May 2016.

B. Vogel-Heuser, C. Diedrich, D. Pantfrder, and P. Ghner. Coupling
heterogeneous production systems by a multi-agent based cyber-physical
production system. In 2014 12th IEEE International Conference on
Industrial Informatics (INDIN), pages 713-719, July 2014.

36

[37] J. Wan, D. Zhang, S. Zhao, L. T. Yang, and J. Lloret. Context-aware
vehicular cyber-physical systems with cloud support: architecture, chal-
lenges, and solutions. IEEE Communications Magazine, 52(8):106-113,
Aug 2014.

[38] D. Weyns and et al. On patterns for decentralized control in self-adaptive
systems. In R. De Lemos, H. Giese, H. Miiller, and M. Shaw, edi-
tors, Software Engineering for Self-Adaptive Systems II, volume 7475 of
LNCS, pages 76-107. 2013.

[39] M. Wooldridge and N. Jennings. Intelligent agents: Theory and practice.
Knowledge Engineering Review, 2(10), 1995.

[40] Y. Zhao, S. Li, S. Hu, L. Su, S. Yao, H. Shao, H. Wang, and T. Ab-
delzaher. Greendrive: A smartphone-based intelligent speed adapta-
tion system with real-time traffic signal prediction. In 2017 ACM/IEEE
8th International Conference on Cyber-Physical Systems (ICCPS), pages
229-238, April 2017.

Appendix A. Validated scenarios

We have experimented the approach using the case study described in
Section 5 in multiple situations, varying the available remaining time for
completing the transmission, the remaining data in the vehicle to transmit
to the server, and the percentage of utilization of the buffer when the alarm
event occurs. Among the obtained results, we chose three different represen-
tative situations (i.e., a combination of parameters) to report. These three
situations are described in the following three execution scenarios

Scenario 1. In this scenario, an alarm arrives when the normal mode activi-
ties are running and in the following situation:

e having still 1MB of data to transmit from the vehicle to the node,

e having already finished its first activity InformClient, with a half empty

buffer, and
e being the vehicle speed 12km/h, which makes the deadline to finishing
the normal mode activities of the node be 121%}1 = 15s, and

37

e having elapsed already 13 seconds of transmission.

In this situation, the read EnvironmentalConditions operation of the alarm
process is immediately executed because it has the highest priority (as shown
in Table 3). According to the number of current environment conditions, the
recalculate Vehicle Path is expected to have an execution time of 1 second that
will yield to selecting a new path.

In this case, it is safe to execute with priority 0 because the Petri net
analysis of the model in Figure 5(a) returns that the probability of a token
being at place PfinishAlarm in less than 5 seconds is 0.99999.

Furthermore, we have executed a further what-if analysis for approach
validation only (i.e., it would not be executed in the real case) of this scenario.
We have analyzed the expected results if the alarm process had received max-
imum priority, i.e., we have instantiated a Petri net model as in Figure 5(c).
In this analysis that, we have obtained that if the alarm process had received
maximum priority and parallelism, the normal behavior would have finished
within its deadline with a probability of 0.933, then failing to satisfy its
deadline requirement. This analysis demonstrates that the straightforward
solution of giving maximum priority and resources to the alarm process is
not appropriate in our case study, and hence it is necessary that the system
performs the analysis of its situation in each alarm event and self-adapts to
its best configuration.

Scenario 2. In this scenario, an alarm arrives when the node is running the
normal mode activities and with the following situation:

e still has 2MB of data to transmit,

e the vehicle speed is 12km /h, thus giving again a deadline of 15 seconds,
and

e the normal mode operations have already consumed 10.5 seconds of
transmission, thus remaining 4.5 seconds until its deadline,and

e being the buffer again half full.

In this situation,the read EnvironmentalConditions operation of the alarm
process executes and, according to the current environment conditions, it is
estimated that the recalculateVehiclePath will its required execution time
will be 1.2 seconds to select a new path.

38

In this case, the isSafeToExecuteWithPriorityO returns false since the
analysis of the Petri net in Figure 5(a), G*"! returns that the probability
of a token being at place PfinishAlarm after 5 seconds is 0.97923. In turn,
the analysis of the Petri net representing G*"? yields that it is appropriate
to execute the alarm process with priority 1. Its analysis shows that the
probability of a token being at place PfinishAlarm after 5 seconds is 0.99999,
whereas the probability of a token being at place PfinishTransmit after 4.5
seconds is 0.99660 —which satisfies the requirement of 99.5%. Therefore,
isOKToExecuteWithPriorityl returns true and the system executes with
the configuration of parallelismLevel of the alarm process is 1Core and
the priority of the alarm process is prio=1.

Scenario 3. In this scenario, an alarm arrives when the node has just initiated
the transmission of 6MB of data, with the following situation:

e the buffer is still empty, and
e the vehicle moves at the same 12km/h as in previous scenarios, and

e the process has used 0.5 seconds, then remaining Df_ . = 14.5 sec-
onds until the deadline.

In this situation, the read EnvironmentalConditions operation of the alarm
process executes and, according to the current environment conditions, it is
estimated that the recalculate VehiclePath activity will require 2.2 seconds to
execute and provide a new path.

In this case, the analysis of the Petri net representing G*"*! returns that
the probability of a token being at place PfinishTransmit after 14.5 seconds
is &~ 1; but also it yields that the probability of a token being at place Pfin-
wshAlarm after 5 seconds is ~ 0. Therefore, isSafeToExecuteWithPriority0
returns false. The analysis of the Petri net representing G*"2 are used to
to assess whether isOKToExecuteWithPriorityl. Its analysis yields that
the probability of a token being at place PfinishTransmit after 14.5 seconds
is 0.999977 (that satisfies the deadline requirement of the normal mode ac-
tivities); and the probability of a token being at place PfinishAlarm after 5
seconds is 0.98756. Since 0.98756 < 0.99999, it is not appropriate to execute
with priority 1. Finally, the analysis of the Petri net G*™3 returns that the
probability of a token being at place PfinishTransmit after 14.5 seconds is
0.99993, and the probability of a token being at place PfinishAlarm after 5

39

seconds is 0.999993. Thus, isOKToExecuteWithPriority2 is true and hence
the alarm process executes with parallelismlLevel=2core and maximum
priority. After the alarm process has finished, the normal mode continues and
it is expected to satisfy its deadline with a probability of 0.99993 > 0.995.

40

