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Abstract

Spreadsheet users are often unaware of the risks imposed by poorly designed
spreadsheets. One way to assess spreadsheet quality is to detect smells which at-
tempt to identify parts of spreadsheets that are hard to comprehend or maintain
and which are more likely to be the root source of bugs. Unfortunately, current
spreadsheet smell detection techniques suffer from a number of drawbacks that
lead to incorrect or redundant smell reports. For example, the same quality
issue is often reported for every copy of a cell, which may overwhelm users.
To deal with these issues, we propose to refine spreadsheet smells by exploiting
inferred structural information for smell detection. We therefore first provide a
detailed description of our static analysis approach to infer clusters and blocks
of related cells. We then elaborate on how to improve existing smells by provid-
ing three example refinements of existing smells that incorporate information
about cell groups and computation blocks. Furthermore, we propose three novel
smell detection techniques that make use of the inferred spreadsheet structures.
Empirical evaluation of the proposed techniques suggests that the refinements
successfully reduce the number of incorrectly and redundantly reported smells,
and novel deficits are revealed by the newly introduced smells.

Keywords: Spreadsheets, Code smells, Static analysis

1. Introduction

End-user programming has gained a lot of attention. Without doubt, spread-
sheets are the most prominent example of end-user programs. They are intuitive
to use and widespread. Nearly everybody has access to them via spreadsheet
environments like Microsoft Excel, Google Sheets, and Numbers. Professionals,
managers, sales people, and administrators use spreadsheets exhaustively [1],
and often base important decisions on them. Their easy usage is one of the
main reasons why spreadsheets are so popular.
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On the downside, there is a lack of quality awareness. The ease of use often
prevents people from taking training courses and lets them handle spreadsheets
in a learning by doing style. Therefore, many people are not aware of the risks
that come with spreadsheets. The list of horror stories3 where spreadsheet errors
caused significant reputation loss or immense financial damages is long, as the
following three examples illustrate: (1) JP Morgan lost $ 400 million because
of a fault in their value-at-risk model spreadsheet [2]. (2) The US-village West
Baraboo has to pay more than $ 400,000 in additional interests because of a
spreadsheet error [3]. (3) The Canadian power generation company TransAlta
lost $ 24 million because of a copy-paste error in a spreadsheet that led them
to buy more US power transmission hedging contracts than necessary [4]. One
might think that these examples are just extraordinary exceptions, but field
studies [5, 6] confirm a consistent lack of quality in business spreadsheets.

To address such quality issues, we are working among a large number of
fellow researchers to develop quality assurance (QA) techniques for spreadsheets
(see Jannach et al. [7] for an overview). As spreadsheets can be regarded as
a form of software, as pointed out by Hermans et al. [8], a number of QA
techniques for general software development were adopted for the domain. One
such technique is the detection of spreadsheet smells that were adopted from
code smells [9]. A code smell indicates lacks in the quality of a part of source
code. This part could either be hard to comprehend, hard to maintain, or
error-prone. Spreadsheet smells similarly attempt to infer deficient parts in
spreadsheets [10]. There are three basic types of spreadsheet smells: (1) input
smells [11] indicate, for example, missing input values, wrong numeric values,
and mistyped strings; (2) formula smells [12] relate to complex formulas, long
calculation chains, and duplicated formulas; and (3) inter-worksheet smells [13]
point out cells and worksheets that excessively refer to other worksheets, or
which are excessively referred to by other worksheets.

In this work, we regard spreadsheet smells to be used as part of a checking
regime for spreadsheets. In a survey, Mireille Ducassé [14] classified debugging
approaches where one method is checking. In checking, patterns in programs
are used for identifying potential bug locations. Such patterns are code smells,
which directly point to suspicious parts of the program and therefore potentially
locate bugs. Debugging can be seen as an activity comprising fault detection,
fault localization, and fault correction to eliminate bugs in software. In check-
ing, fault detection and fault localization are preformed at the same time using
patterns that are classifying a code smell. Similarly, we regard the use of spread-
sheet smells to point out suspicious parts of a spreadsheet that a user should
examine preferrentially when checking for correct functionality of said sheet.

We would however like to point out, that we currently lack substantive em-
pirical evidence that clearly links spreadsheet smells to fault proneness, and
we thus regard this as an opportunity for future work. Nevertheless, we still
suspect our perception to be valid, as a recent case study linked a reduction in

3see http://www.eusprig.org/horror-stories.htm
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spreadsheet smell detections with a subjective impression of heightened qual-
ity and maintainability of spreadsheets [10], and a number of previous works
successfully used spreadsheet smells in the context of spreadsheet debugging,
including the FaultySheet Detective tool introduced by Abreu et al. [15], as well
as Table Clones and other approaches discussed by Dou et al. [16, 17].

Unfortunately, spreadsheet smell detection suffers from certain weaknesses
and blind spots. For example, duplication is a common problem: if a smelly cell
of a spreadsheet is copied, its copies are often also reported as being smelly, and
seeing the same smell being reported over and over again can be very frustrating
for a user. Other weaknesses affect only certain smells. For example, the input
smell ‘Pattern Finder’ [18, 11] detects deviating cell types for cells in the same
row or column. However, the reported smelly cells often turn out to be false
positives, because not all cells in a row or column serve the same purpose.

We propose to compensate existing shortcomings by incorporating structural
information in the detection procedures of spreadsheet smells. As shown by a
study of Cunha et al. [19], providing abstract structure information can enhance
the ability of end-users to understand and efficiently use spreadsheets. The
detection of spreadsheet structures follows the approach we outlined in previous
work [20], where we explained and evaluated the static analysis process. As
the targeted smell refinements require detailed information about the inferred
structures, the current work describes the structure analysis in greater detail,
including a description of the handling of cell references and area references, as
well as the theory of absolute versus relative references.

Inferred structure information (input groups, formula groups, computation
blocks, and headers of such blocks) can be applied in several ways for smell
refinement, as we demonstrate in three examples: (1) for the Pattern Finder
input smell, we check for deviations only within groups instead of checking
complete rows and columns; (2) for the Long Calculation Chain formula smell,
we report a smell only once per group instead of reporting it for each individual
cell; and (3) for Feature Envy inter-worksheet smell, we count the connections
between worksheets for each group instead of for each cell. Moreover, structural
information can be used to check for novel quality issues. We demonstrate this
by introducing three new spreadsheet smell detection techniques which are based
on the results of the structural analysis: (1) Overburdened Worksheet indicates
worksheets that contain too much functionality; (2) Inconsistent Formula Group
Reference signals inconsistencies within the references of groups of formulas; and
(3) Missing Header indicates gaps in series of header cells.

We investigated the performance of the improved and new smells using an
empirical evaluation on a well known dataset in combination with a manual
investigation of detected smells on a selected subset of spreadsheets. This in-
vestigation revealed that the improved smell versions are successful in limiting
false positive and duplicate detections, and the new smells can be used in com-
bination with existing techniques to point out novel quality issues.

The remainder of this paper is organized as follows: Section 2 pictures a mo-
tivating example for the application of the proposed refinements, and Section 3
defines the most important concepts of spreadsheets used in this paper. Sec-
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tion 4 explains how our structural analysis approach works. Section 5 shows how
three existing smell detection techniques can be improved by means of structure
information and introduces three novel smell detection techniques that make use
of structures. Section 6 evaluates the improved and new techniques, Section 7
discusses related work, and Section 8 concludes this paper.

2. Motivating Example

The spreadsheet illustrated in Figure 1 compares purchase options for a
new office coffee machine. The coffee machine should be chosen from one of
three alternatives (capsule, drip, automatic) in such a way that the total costs
over a period of three years are the lowest. For this, the coffee consumption
per department is captured in worksheets Department1/2/3 (see Figure 1a,
the non-illustrated worksheets are similar), summed up in worksheet Total

(see Figure 1b), and the resulting cost of the three alternatives compared in
worksheet Investment (see Figure 1c).

Assume a smell detection technique reports cell E9 of the Investment work-
sheet as smelly, because E9’s formula is too complex. Since the cells E10 and
E11 have the same complex formula, they would also be reported as smelly.
When only these three smells are reported, then a user would probably immedi-
ately see that these cells suffer from the same smell. However, when faced with
an abundance of smell reports in a larger spreadsheet, the connection between
related smelly cells is harder to comprehend for a user. In contrast, our pro-
posed smell refinement detects and indicates related smelly cells as one smelly
unit instead, providing concise feedback to the user.

3. Preliminaries

A spreadsheet consists of a set of worksheets; a worksheet consists of set of
cells. A cell c has a content and can be uniquely identified by its coordinates
and the worksheet it belongs to: The function x (cell c) returns the column
index of cell c within a worksheet; y(cell c) returns its row index [21]. We can
use the cells’ coordinates to determine neighboring cells.

Definition 1 (Neighbors). Two cells, c and c’, are neighbors if their Man-
hattan distance (simple sum of the differences of the respective column and
row indices) is one. The function neighbors( cell c) returns c’s neighbors [20]:
neighbors(c) = {c′ ∈ cells(ws(c)) : |x(c′)− x(c)|+ |y(c′)− y(c)| = 1}.

Example 1. Cell B5 of the worksheet from Figure 1c has as neighbors the cells
B4, B6, A5, and C5.

Definition 2 (Connected). The function connected( {cell} C) checks whether
a set of cells C is completely connected by neighbourhood relations; it returns
true, if {|C| = 1∨ (∃c ∈ C : ∃c′ ∈ C with c′ ∈ neighbors(c)∧ connected(C \ c))}.
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(a) Department1

(b) Total

(c) Investment

Figure 1: Formula views of the different worksheets of our running example
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All cells in a set of connected cells must reach every other cell in the set by
following only neighborhood relations of cells within the set.

Beside its coordinates, each cell has a type depending on its content. This
can be either formula, Boolean, numeric, string, error, or empty. ‘Formula’ is
a dominant type: formula cells compute to other cell types, however, the cell’s
type is still ‘formula’. The function type(cell c) returns the type of a cell.

Example 2. Although cell F4 of worksheet Department1 (see Figure 1a) com-
putes a numerical value, its type is ‘formula’.

Formula cells might reference other cells. References can either be relative
or absolute: a relative reference determines the referenced cell in relation to the
position of the referencing cell; an absolute reference determines the referenced
cell by indicating its position within the worksheet independent of the position
of the referencing cell. There are two notations for referencing cells, the A1 and
the R1C1 notation. Both support relative and absolute references.

In the A1 notation, a cell c references another cell c’ by indicating the
absolute position of c’, i.e., x (c’) and y(c’). Absolute references place a $
sign preceding the coordinate position. Absolute references in A1 notation are
relevant when copying cells. For example, if the relative cell reference ‘A1’ is
copied from cell B1 to cell B2, the reference will change, according to the shift
of the cell position, to ‘A2’. In contrast, an absolute cell reference ‘$A$1’, when
copied from any cell to any other cell, will always refer to the coordinates A1.
Cell references can be absolute (e.g., ‘$A$1’), relative (e.g., ‘A1’), or mixed (e.g.,
‘$A1’, ‘A$1’). Names of worksheets are only included when the worksheet of the
referenced cell differs from that of the referencing cell.

Definition 3 (R1C1 notation). In the R1C1 notation, a cell references an-
other cell by indicating the relative position of the referenced cell. The relative
position of cell c′ with respect to c is indicated as R[y(c’) - y(c)]C[x(c’) - x(c)].
Absolute references to a cell c′ are written as Ry(c′)Cx(c′). The names of work-
sheets are only indicated when the worksheet of the referenced cell differs from
that of the referencing cell. [20]

If a cell refers to a cell in the same row or column, the ‘0’ for indicating the
row or column index can be left out, e.g. ‘RC[-1]’ for indicating the cell above
and ‘R[-1]C’ for indicating the left cell. References to absolute row or column
positions omit the square brackets, e.g. ‘R1C1’ indicates cell A1, the first cell in
the first column.

Definition 4 (Formula). The function formula( cell c) returns the formula of
cell c in R1C1 notation if c is a formula cell; otherwise it returns void.

Example 3. Cell B5’s formula of the worksheet Investment (Figure 1c) is
‘=B3*B4’ in A1 notation and ‘=R[-2]C*R[-1]C’ in R1C1 notation. Cell B3’s
formula of the same worksheet is ‘=Total!E8’ in A1 notation and
‘=Total!R[5]C[3]’ in R1C1 notation.
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Frequently, formulas are copied to other cells. Many spreadsheet environ-
ments support copying by drag&drop. Even though the copied cells reference
other cells than the original cells, they are semantically equal. We identify
semantically equal cells by means of copy-equivalence:

Definition 5 (Copy-equivalence). Two cells c, c’ are copy-equivalent if their
formulas in R1C1 notation are identical (formula(c) ≡ formula(c′)).

Example 4. For the spreadsheet from Figure 1, we identify the cells E9, E10,
and E11 of the worksheet Investment as copy-equivalent since they have the
same formula (‘=RC[-3]+RC[-2]*R5C2+RC[-1]*R4C2’) in R1C1 notation. The
other copy-equivalent cells are

• B8, C8, D8, E8, and F8 of the worksheets Department1, Department2

and Department3 (‘=SUM(R[-4]C:R[-1]C)’),

• F4, F5, F6, and F7 of Department1, Department2 and Department3

(=SUM(RC[-4]:RC[-1]))

• B4, B5, B6, B7, and B8 of worksheet Total (‘=Department1 RC[4]’)

• C4, C5, C6, C7, and C8 of worksheet Total (‘=Department2 RC[3]’)

• D4, D5, D6, D7, and D8 of worksheet Total (‘=Department3 RC[2]’)

• E4, E5, E6, E7, and E8 of worksheet Total (‘=SUM(RC[-3]:RC[-1])’)

B3 and B5 of worksheet Investment do not have any copy-equivalent cells.

Since references can be absolute, relative or mixed, we separately consider
the x and y coordinates when determining the position of a referenced cell:

Definition 6 (Coordinate reference). A coordinate reference rc represents
either the x or the y coordinate of cell c and consists of a value and a type.
The function absolute( coordinate reference rc) returns true if rc is an ab-
solute reference; it returns false if rc is a relative reference. The function
value( coordinate reference rc) returns for an absolute reference, the absolute
index of an absolute reference; for a relative reference, it returns the deviation
of the reference from a base index.

Example 5. The reference ‘R4C[2]’ features two coordinate references. Its row
reference, ‘R4’, is absolute and refers to the fourth row of the worksheet. Its
column reference, ‘C[2]’, is relative and refers to the column two positions right
of the column of the cell containing the reference.

Definition 7 (Dereferencing coordinates). The function derefCoordinate(
coordinate reference rc, index coordinate) returns the dereferenced index of a
coordinate reference rc in the formula of the cell at index coordinate:

derefCoordinate(rc, coordinate) =

{
value(rc) if absolute(rc)

coordinate+ value(rc) otherwise.
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Example 6. Cell E9’s formula of the worksheet Investment (Figure 1c) is
‘=B9+C9*$B$5+D9*$B$4’ in A1 notation and ‘=RC[-3]+RC[-2]*R5C2+RC[-1]*
R4C2’ in R1C1 notation. Its first reference, ‘RC[-3]’ (‘B9’ in A1 notation), is
a combination of a relative column-reference with value -3 and a relative row-
reference with value 0. Its third reference, ‘R5C2’ (‘$B$5’ in A1 notation), is a
combination of an absolute column-reference and an absolute row-reference.

Formulas may contain two different types of references: cell references and
area references. Cell references, hereinafter referred to as “references”, point to
individual cells; area references point to sets of cells. Cell references consist of
two parts: (1) the target worksheet of the reference (provided by the function
ws(reference r)) and (2) the coordinate references in column and row orientation
(provided by the functions x (reference r) and y(reference r)).

Definition 8. The function deref( reference r, cell c) resolves a reference r
contained in the formula of cell c, returning the referred cell c’:

deref(r, c) = c′ ∈ cells(ws(r)) : x(c′) ≡ derefCoordinate(x(r), x(c)) ∧
y(c′) ≡ derefCoordinate(y(r), y(c))

The function refs( formula f) returns the set of all cell references of formula f.

In contrast to cell references, area references refer to a set of cells in a rect-
angular area of a worksheet. The rectangular area is described by its top-left
start coordinates and its bottom-right end coordinates. Area references consist
of three parts: (1) the worksheet to which the reference ra refers to (accessibly
by the function ws(area reference ra)), (2) the x and y coordinate references of
the start coordinates of the area reference (accessible by the functions x1(area
reference ra) and y1(area reference ra)), and (3) the x and y coordinate refer-
ences of the end coordinates of the area reference (accessible by the functions
x2(area reference ra) and y2(area reference ra)).

Definition 9. Function deref( area reference ra, cell c) resolves an area refer-
ence ra contained in the formula of cell c, returning the set of referred cells:

deref(ra, c) =

c′ ∈ cells(ws(ra)) :

∣∣∣∣∣∣∣∣
derefCoordinate(x1(ra), x(c)) ≤ x(c′) ∧
derefCoordinate(x2(ra), x(c)) ≥ x(c′) ∧
derefCoordinate(y1(ra), y(c)) ≤ y(c′) ∧
derefCoordinate(y2(ra), y(c)) ≥ y(c′)


Function refsa( formula f) returns the set of all area references of formula f.

Definition 10 (Referenced cells). The function ρ( cell c) returns the set of
cells that are referenced in c’s formula f:

ρ(c) =
⋃

rc∈refs(f)

{deref(rc, c)} ∪
⋃

ra∈refsa(f)

deref(ra, c).
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Example 7. For the cell E11 in the worksheet Investment, we compute the fol-
lowing reference information: refs(Investment!E11) = {RC[-3], RC[-2], R5C2,
RC[-1], R4C2}, refsa(Investment!E11) = {}, and ρ(Investment!E11) = {B11,
C11, B5, D11, D4}. For the cell Total!E8, we compute the following reference
information: refs(Total!E8) = {}, refsa(Total!E8) = {RC[-3]:RC[-1]}, and
ρ(Total!E8)={B8, C8, D8}.

4. Structure Analysis

This section describes our approach to infer structure information from a
spreadsheet, that is then used to improve and create spreadsheet smells. The
general approach was already presented in our IWPD paper [20]. In the present
work, we describe the analysis process in greater detail. We provide examples
for each analysis step by referring to the running example in Section 2, and also
elaborate on previously unattended topics that are relevant for the definition of
smell refinements and novel, structure-based smells (e.g. handling of cell and
area references).

The goal of the structural analysis is to identify input groups, formula groups,
computation blocks, and headers. Groups are one-dimensional areas in a work-
sheet. Cells belonging to the same group share the same purpose, e.g. summing
up data, even though they might operate on different input data. Cells of an
input group provide their value to formula groups, but do not themselves refer
to any other group. Cells of formula groups process the same calculation on
different input data and refer to input groups or intermediate formula groups.
Computation blocks are rectangular areas containing related input groups, for-
mula groups, and empty cells. Headers serve as labels for rows and columns of
computation blocks.

Example 8. For the worksheet Department1 from Figure 1a, the structural
analysis process will detect input groups for the area B4:E7, two formula groups
(B8:F8 and F4:F7), and one computation block (B4:F8). The cells in the area
A4:A8 are the row headers for this block and the cells B3:F3 are the column
headers. A3 and B2 are meta headers. While all cells in the area A4:E7 are
numerical values, the cells A4:A7 have a different purpose then the cells B4:E7.

Figure 2 illustrates the overall analysis process: (1) Grouping finds group of
related cells, based on various criteria; (2) Blocking combines groups into cohe-
sive blocks; and (3) Header Assignment relates header cells to blocks and the
contained groups. Each step in the process infers specific structural properties
of the input sheet, and includes information from preceding process steps for in
the analysis.

4.1. Grouping

In the grouping step, we infer different groups the cells in each worksheet, ac-
cording to their type (string, numeric, formula, . . . ), content (in case of formula
cells), and position within the worksheet. The first action within the Grouping
step is to determine type-based groups within each worksheet.
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Spreadsheet

Grouping

Blocking

Header
Assignment

Structure
Information

Figure 2: Block creation. Gray cells represent grouped cells, red cells represent non-blockable
cells (i.e., non-empty cells that are not part of any group), and frames represent blocks.

Definition 11 (Type-based group). A type-based group C consists of a set
of cells which (1) have the same cell type, (2) are connected (see Def. 2), and
(3) feature the same formula in R1C1 notation (if the cells are of type formula):

typeBasedGroup(C) =


true if ({∀c, c′ ∈ C : type(c) = type(c′)

∧formula(c) ≡ formula(c′)}
∧connected(C))

false otherwise.

Example 9. Worksheet Department1 (Figure 1) contains the following type-
based groups: {A1}, {B2;A3:F3}, {A4:E7}, {F4:F7}, {A8}, and {B8:F8}. Work-
sheet Total has {{A1}, {B2}, {A3}, {B3:D3}, {E3}, {A4:A7}, {A8}, {B4:B8},
{C4:C8}, {D4:D8}, {E4:E8}} as type-based groups. Worksheet Investment has
{{A1:A5}, {B3}, {B4}, {B5}, {A7:A11;B8:E8}, {B9:D11}, {E9:E11}} as type-
based groups.

In the example, the headers in the cells A4:A7 of the worksheet Department1
are in the same group as the input cells B4:E7. This renders header inference
problematic. The header and input cells will be separated in the subsequent
analysis, by examining which cells are referenced by formula cells.

The type-based groups mainly serve as starting point for further processing
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of related formula cells. In the next step, we synthesize the formula cells of each
worksheet into cohesive units. For doing so, we define formula groups.

Definition 12 (Formula group). A type-based group C is a formula group if
the group consists of formula cells:

formulaGroup(C) =


true if typeBasedGroup(C) = true

∧(∀c ∈ C : type(c) = ‘formula’)

false otherwise.

The function formulaGroups( worksheet w) returns for a worksheet w the set
of all formula groups contained in w. The function formula( formula group C)
returns the formula of group C.

Example 10. The function formulaGroups(Department1) returns {{B8:F8},
{F4:F7}}, formulaGroups(Total) returns {{B4:B8}, {C4:C8}, {D4:D8}, {E4:E8}},
and formulaGroups(Investment) returns {{B3}, {B5}, {E9:E11}}.

Where necessary, formula groups are then divided into one-dimensional par-
titions: partitioned formula groups are one-dimensional areas, i.e., they either
have a row-wise or column-wise orientation. When partitioning a formula
group, we choose the orientation of the partitions in such a way that the small-
est number of partitioned formula groups is created. In case of a draw, we opt
for column-oriented groups because our analysis of a public spreadsheet corpus
(EUSES, see Section 6 for further information) concluded that 34 % of work-
sheets contain references to column-oriented areas, whereas only 13 % feature
references to row-oriented areas. Thus, it is more likely that a column-oriented
group was applied by the spreadsheet’s author.

Definition 13 (Partitioned formula group). A formula group C is a par-
titioned formula group g, if its cells form a one-dimensional group:

PFGroup(C) =


true if formulaGroup(C) ∧ {{∀c, c′ ∈ C : x(c) = x(c′)}∨

{∀c, c′ ∈ C : y(c) = y(c′)}}
false otherwise.

The function partFormulaGroups( worksheet w) returns all partitioned formula
groups of worksheet w.

Example 11. Since all formula groups in Example 10 are one-dimensional, the
partitioned formula groups are the same.

After processing all partitioned formula groups of a spreadsheet, we first de-
termine which referred formula groups are connected to each partitioned formula
group via references from the cells within a group.
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Definition 14 (Referred formula groups). A partitioned formula group g
has a group reference to another partitioned formula group g’, if any of its cells
refer to any cell within g’:

refersTo(g, g′) =

{
true if ∃c : c ∈ g ∧ ρ(c) ∩ g′ 6= ∅
false otherwise.

The function referredFormulaGroups( Partitioned formula group g) returns the
set of all partitioned formula groups to which g refers to.

Example 12. The Department1 worksheet has two partitioned formula groups:
B8:F8 and F4:F7. Cell F8 in group B8:F8 refers to cells in group F4:F7;
the function refersTo(B8:F8,F4:F7) returns true. Hence, the function referred-
FormulaGroups(B8:F8) returns {F4:F7}. Group F4:F7 does not refer to cells
of any other partitioned formula group (referredFormulaGroups(F4:F7)=∅).

Next, we establish reference-based groups using the references of each formula
group. We thus identify connected areas of cells that serve as input for a specific
calculation in the spreadsheet (a partitioned formula group).

Definition 15 (Reference-based group). A reference-based group gr is a
set of cells that are referred to by a partitioned formula group g. Each group gr
can be attributed to either a specific reference r or a specific area reference ra
of g. In case of a reference, gr is the collection of all cells that are referred to by
any cell of g via the reference r. In case of an area reference, gr is a collection
of all cells that are referred to by a specific cell of g via the area reference ra.
The function referenceGroups( partitioned formula group g) returns the set of
reference-based groups {gr} for a partitioned formula group g.

referenceGroups(g) = refGroups(g) ∪ areaRefGroups(g)

refGroups(g) =
⋃

r∈refs(f)

{⋃
c∈g
{deref(r, c)}

}

areaRefGroups(g) =
⋃

ra∈refsa(f)

{⋃
c∈g

deref(ra, c)

}
where f = formula(g). The function referenceGroups( worksheet w) returns for
a worksheet w the set of all reference-based groups of w.

Example 13. The formula of the partitioned formula group Investment!

E9:E11 (Figure 1c) has five cell references (refs(Investment!E9:E11)=RC[-3],
RC[-2], R5C2, RC[-1], R4C2). Therefore, it has five reference-based groups,
namely {B4}, {B5}, {B9:B11}, {C9:C11}, and {D9:D11}.

The formula of the partitioned formula group Department1!F4:F7 (Fig-
ure 1a) has one area reference (refsa(Department1!F4:F7)={RC[-3]:RC[-1]}).
Therefore, the group refers to four reference-based groups, one for each of the
four cells in the group: {B4:E4}, {B5:E5}, {B6:E6}, and {B7:E7}.
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To allow for concise further processing of higher-level structures, we then
merge all overlapping reference-based groups that have the same orientation, i.e.
each cell is at most part of one reference-based group in vertical and one group
in horizontal orientation. The remaining non-empty cells that are contained
neither in any partitioned formula group nor in any reference-based group are
designated as non-blockable cells, in preparation of the following Blocking step
of the analysis.

Definition 16 (Non-blockable cell). The function non-blockable( cell c) re-
turns true, if c is non-blockable:

non-blockable(c) =

{
true if type(c) 6= empty ∧ {@g ∈ G : c ∈ g}
false otherwise.

where G = partFormulaGroups(ws(c)) ∪ referenceGroups(ws(c)). The function
non-blockables( worksheet w) returns the set of all non-blockable cells contained
in w (non-blockables(w) = {c ∈ cells(w) : non-blockable(c)}).

Example 14. The function non-blockables(Department1) returns {A1; B2;
A3:F3; A4:A8}, non-blockables(Total) returns {A1; B2; A3:F3; A4:A8}, and
non-blockables(Investment) returns {A1:A5; A7:A11; B8:E8}.

4.2. Blocking

In the blocking step, the formula groups and reference-based groups are
aggregated to rectangular areas. These areas are called blocks, and each block
contains input cells, formula cells, and empty cells, but no header cells.

Definition 17 (Area). Function area( {cell} C, worksheet w) returns all cells
contained in the rectangle spanned by the non-empty set of cells C = {c1, . . . , cn}:

area(C,w) = {c ∈ cells(ws(c1)) : x1 ≤ x(c) ≤ x2 ∧ y1 ≤ y(c) ≤ y2}

where x1 = min{x(c1), . . . , x(cn)}, y1 = min{y(c1), . . . , y(cn)},
x2 = max{x(c1), . . . , x(cn)}, and y2 = max{y(c1), . . . , y(cn)}.

Example 15. Area({A3, B4, C2}) computes x1 = 1, y1 = 2, x2 = 3, and y2 = 4
and returns as result {A2,A3,A4,B2,B3,B4,C2,C3,C4}.

Definition 18 (Block). A non-empty set of cells C = {c1, . . . , cn} forms a
block if the area spanned by the cells C contains no non-blockable cells:

block(C) =

{
true if @c ∈ area(C) : non-blockable(c)

false otherwise.

Example 16. For worksheet Departement1 (Figure 1a), block({B4, D4}) re-
turns true, but block({A4, D4}) returns false, as cell A4 is non-blockable.
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Blocks are established by expansion operations that add block neighbors,
physically close groups, to an existing block. A group is regarded as physically
close to a block if there is at most one column or row between the block and
the group which should be added. We regard both, partitioned formula groups
as well as reference-based groups, for block expansion.

Definition 19 (Block Neighbors [20]). The function neighbor( block b,
group g) returns true if there is at most one row or column between b and g:

neighbor(b, g) =


true if ∃c ∈ g,∃c′ ∈ b : |x(c)− x(c′)| ≤ 2 ∧ y(c) = y(c′)

true if ∃c ∈ g,∃c′ ∈ b : x(c) = x(c′) ∧ |y(c)− y(c′)| ≤ 2

false otherwise.

Block creation for a worksheet follows the procedure of Algorithm 1): First,
the set of blocks is initialized (Line 2) and the partitioned formula groups and
the reference-based groups are computed (Lines 3-4). The sets G and G′ are
both initialized with the union of the previously computed groups (Line 5).
While G′ will be reduced in size during the computation of the blocks, G never
changes. In the outer loop (Lines 6-13), new blocks are created as long as there
are groups which are not yet part of any block. In the inner loop (Lines 9-12),
groups are added to the blocks if they fulfil two criteria: (1) They must be
neighboring to the block, and (2) the block and the group must form a valid
block. Lastly, we return the inferred set of blocks for the given worksheet w.

Algorithm 1 Block Creation

Require: worksheet w
Ensure: set of blocks B

1: procedure blocks(worksheet w)
2: B ← ∅
3: Gp ← partFormulaGroups(w)
4: Gr ← referenceGroups(w)
5: G,G′ ← Gp ∪Gr

6: while ∃g ∈ G′ do
7: b← g
8: G′ ← G′ \ g
9: for all g′ ∈ G do

10: if neighbor(b, g′) ∧ block(b ∪ g′) then
11: b← b ∪ g′
12: G′ ← G′ \ g′

13: B ← B ∪ {b}
14: return B

Figure 3 illustrates scenarios that might occur during the block creation. In
the sub-figures (a), (b), (c), all groups can be merged to one large block. Sub-
figures (d) and (e) additionally contain non-blockable cells. These cells prevent

14



us from building a single large block. In both cases, a second block (green
hatched border) has to be created for the group to the right. We allow groups
to belong to several blocks. Hence, groups within the first block (blue solid
border) might be added to the second block (green hatched border). In sub-
figure (d), the groups of the first block have row-orientation. Hence, adding any
of these groups to the second block would violate the block criteria according to
Def. 18. In contrast, all groups in sub-figure (e) are column-oriented. Therefore,
some of the groups of the first block can also be added to the second one.

Figure 3: Block creation. Gray cells represent grouped cells, red cells represent non-blockable
cells (i.e., non-empty cells that are not part of any group), and frames represent blocks.

Example 17. For the individual worksheets of our running example, the fol-
lowing blocks are computed: Department1!B4:F8, Total!B4:E8, Investment!
B3:B5, and Investment!B9:E11.
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4.3. Header Assignment

In the third and final part of the structural analysis process, headers are
assigned to blocks. Headers are non-empty cells which are not part of a block,
i.e., they are elements of the set of non-blockable cells.

The position of headers depends on the writing system: The Left-To-Right
(LTR) system, used in western countries, places headers left to and/or above
blocks; the Right-To-Left (RTL) system, used in Arabic countries, places head-
ers right to and/or above blocks. In the LTR system, the left-most cells have the
lowest column index; in the RTL system, the right-most cells have the lowest
column index. Therefore, we assume that headers of blocks have lower row- or
column indices than the cells of the block. In the following, we use the word
‘left’ to express that a cell has a lower column index than another cell, i.e., we
focus on the LTR system, but the approach works similar in the RTL system.

Two types of cells can be located between a header cell h and its block b:
empty cells and other header cells. If a header cell is between h and b, then h
is a higher level header, also called meta-header. If there are no other header
cells between h and b, then h is a low-level header.

We call areas which contain headers layers. There are row- and column
layers. Row layers are vertical groups which are located left to a block; they
have the same number of rows as the block. Column layers are horizontal groups
which are located above a block; they have the same number of columns as the
underlying block. Figure 4 illustrates the position and shape of layers.

Figure 4: Column- and row layers for a block. The dark-shaded layers contain low-level
headers; the light-colored layers contain higher-level headers.

We identify the column layers for a block b by investigating the horizontal
areas in the row above b. If at least one of the cells of this area contains a non-
blockable cell, a new layer has been detected. In succession, we check the area
above this layer. We repeat this process until we reach the last row of potential
headers or another block. We analogously detect the row header layers.

Definition 20 (Layers). The function columnLayers( block b) returns the set
of detected column header layers of block b. Each header layer is described by the
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set of cells within its area. Likewise, the function rowLayers( block b) returns
the set of detected column header layers of block b.

Example 18. For our running example, we detect the following layers:

Block Column layers Row layers
Department1!B4:F8 B3:F3, and B2:F2 A4:A8

Total!B4:E8 B3:E3 and B2:E2 A4:A8

Investment!B3:B5 - A3:A5

Investment!B9:E11 B8:E8 A9:A11

The layers Department1!B2:F2 and Total!B2:E2 contain higher-level headers;
the other layers contain low-level headers.

In the next step, we check the remaining non-blockable cells for being meta-
headers: If a non-blockable cell c is left of a column layer or above a row layer,
c is a meta-header and has to be linked to the corresponding layer. If c is left
to a column layer as well as above a row layer, we assign c to the row layer,
because row headers typically act as identifiers for single items of a set while
column headers typically act as descriptive headers for different characteristics
that are recorded for the set. Hence, c is more likely to provide a common
category for the underlying set of item-labels than a common category for the
set of neighboring category labels.

Example 19. The following non-empty cells neither belong to a block nor to a
layer: for the worksheets Department1 and Total, the cells A1 and A3, and for
the worksheet Investment, the cells A1, A2, A7, and A8. We are able to assign
some of these cells to layers:

Cell Layer
Department1!A3 A4:A8

Total!A3 A4:A8

Investment!A2 A3:A5

Investment!A8 A9:A11

4.4. Comparison with previous work

We are not the first dealing with cell classification and header assignment for
spreadsheets. As mentioned in Section 7, Abraham and Erwig [22] have identi-
fied header cells and core cells as part of the UCheck approach. UCheck assigns
one of four roles to each cell: (1) header (i.e. labels), (2) footer (i.e. formula
cells at the end of rows and/or columns which aggregate information), (3) core
(i.e. data cells), and (4) filler (i.e. empty or particularly formatted cells which
separate tables within spreadsheets). Thereby, UCheck uses different techniques
to assign these roles, e.g. fence identification, content-based cell classification,
and region-based cell classification. Based on the results of the cell classification,
UCheck assigns first-level headers to core and footer cells and higher-level head-
ers to header cells. Our analysis process is, in principle, based on the ideas of
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the cell classification and header assignment rules of UCheck. However, UCheck
is not capable of identifying all header cells correctly. For example, UCheck fails
to identify the headers for the quarters (cells A4:A7 of worksheet Total) and
the headers for the departments (cells B2:E2 of worksheet Total) of the running
example as headers. Moreover, our analysis not only identifies cell roles, but
also provides information about cohesive structures (groups/blocks) within a
worksheet.

5. Improved and New Spreadsheet Smell Detection Techniques

In this section, we demonstrate how the detected high-level structures can
improve existing spreadsheet smell detection techniques, and how new smell
detection techniques can be derived from the structure information.

5.1. Improved Smell Detection Techniques

The detected spreadsheet structures provide a number of opportunities to
improve existing smell detection techniques. Table 1 presents basic refinement
ideas, for smells presented by Cunha et al. [11], and Hermans et al. [12, 13].

Name IS FS IWS Refinement Suggestion

Std. Deviation • Compare within group instead of column/row
Empty Cell • Report connected vacant areas in blocks
Pattern Finder • Compare within group instead of column/row
String Distance • Compare within group/block instead of sheet
Ref. to Empty Cells • Highlight group instead of individual cells
QFD • Compare within block instead of column/row
Multiple Operations • Report group instead of individual cells

Multiple References • Count group references instead of cell references
Report group instead of individual cells

Cond. Complexity • Report group instead of individual cells

Long Calc. Chain • Count group references instead of cell references
Report group instead of individual cells

Duplicated Formulas • Detect duplicated formula groups
Report group instead of individual cells

Inappr. Intimacy • Count group references instead of cell references
Feature Envy • Count group references instead of cell references
Middle Man • Report group instead of individual cells
Shotgun Surgery • Count changing groups instead of formulas

Table 1: Refinement suggestions for smells presented in the literature, categorized in input
smells (IS), formula smells (FS), and inter-worksheet smells (IWS).

Since similar smell detection techniques often can benefit from structure
information in a similar way, we propose exemplary improvements for one rep-
resentative of each smell group: (1) for input smells we improve the Pattern
Finder smell, (2) for formula smells we refine the Long Calculation Chain smell,
and (3) for inter-worksheet smells we improve the Feature Envy smell. For each
investigated smell detection technique, we first discuss the original technique
and its deficits. We then explain how to improve the smell detection process
using structural information, and lastly discuss the benefits and drawbacks of
the proposed improvements.
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5.1.1. Pattern Finder

Cunha et al. [11] proposed the original Pattern Finder smell detection tech-
nique. The smell detects cells that break a pattern that holds for the other
cells of the same row or column, e.g., a constant in a row of formula cells or
a string in a column of numerical values. According to Cunha et al. [11], this
smell is detected by checking in windows of four cells if one of these cells has a
different type than the other cells. The authors provide an implementation of
this technique in the FaultySheet Detective tool [15]. Examination of the tool4

furthermore provided the following insights: (1) Patterns are detected in column
orientation only. (2) A cell’s type refers to the type of its value, i.e., a cell with
a constant numeric value within a series of formula cells which evaluate to a
numeric value would not be indicated as smelly. (3) A broken pattern can only
be detected if no other cell in a 5-cell-distance above or below the cell features
the same evaluated type. (4) The smell is not detected for cells within the top
or bottom five rows of a worksheet.

Pattern Finder attempts to establish patterns for entire columns of a work-
sheet. However, columns do not necessarily feature uniform content. For ex-
ample, string cells are widely used to provide header information of a column.
Similarly, cells at the bottom of a computation block might aggregate the data
entered above or perform simple checks w.r.t. the validity of the above data.
This explains why the top and bottom 5 rows are excluded. However, if a work-
sheet consists of several computation blocks, this workaround does not work.

We propose to focus smell detection on reference-based groups instead of
generic sliding windows. This improves over the current detection process by
allowing row-wise pattern detection and by extending the smell detection to
the top and bottom five rows. Moreover, we base the smell detection on non-
evaluated cell types. This allows for the detection of instances where formulas
and values are mixed in the same group.

Algorithm 2 describes the updated Pattern Finder smell detection process.
It detects reference-based groups whose cells feature more than one cell type.
We iterate over the reference-based groups of the worksheet, checking for the
smell (Lines 3 to 8). In the inner loop (Lines 5 to 8), we check whether group G
contains the smell: If one of the cells has a different type, we add the group to
the set of afflicted groups. The algorithm returns this set as result.

Example 20. The modified Total worksheet (Figure 5) illustrates the Improved
Pattern Finder smell detection technique: Cell D4 has been changed from a for-
mula to a fixed value. The original Pattern Finder does not indicate D4 as
smelly, because every cell in column D evaluates to a number, but our improved
Pattern Finder does. Indicating a constant within a group of formula cells as
smelly helps users to detect formula cells which have been accidentally overwrit-
ten with constant values.

4Version 1.1 from http://ssaapp.di.uminho.pt/twiki/bin/view/Main/Software
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Algorithm 2 DetectPatternFinder

Require: worksheet w
Ensure: reference groups afflicted by the Pattern Finder smell

1: procedure PatternFinderGroups(worksheet w)
2: AfflictedGroups = ∅
3: for all G ∈ referenceGroups(w) do
4: Type ← type of first cell in G . init
5: for all c ∈ cells(G) do
6: if Type 6= type(c) then
7: AfflictedGroups = AfflictedGroups ∪{G}
8: break
9: return AfflictedGroups

Figure 5: Example of Improved Pattern Finder smell detection technique

The focus on reference-based groups provides three key benefits in compar-
ison to the original smell detection process: First, the algorithm compares cells
within well-defined borders. This prevents the smell to be accidentally detected
for column headers. Hence, the group-based approach reduces the number of
false positives. Second, location limitations of the current detection approach do
not apply for the updated algorithm. Groups in horizontal orientation and bor-
der areas of the worksheet are eligible for smell detection. Third, the updated
algorithm only checks each reference-based group once, instead of checking every
possible position of a sliding window, which makes the smell detection faster.

Setting the focus of the detection process on reference-based groups also
introduces some drawbacks. First, smell detection is only applied to areas which
are used as input values for calculations. Hence, the smell cannot be detected
for areas containing output formulas, non-computational values, and labels.
Further, the smell assumes that every referenced cell should contain a value at
the time of smell detection. Consequently, blank spots which are reserved to be
filled by a spreadsheet’s user (as often used in form spreadsheets) will wrongly
be indicated as smelly. However, if all cells in the same reference group are
empty, they feature the same type. In such a case, no smell is reported.
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5.1.2. Long Calculation Chain

Hermans et al. [12] proposed the original Long Calculation Chain smell de-
tection technique, which detects formulas referring to a long chain of formulas,
because long calculation chains are difficult to follow and to understand. This
smell is detected by computing the maximum number of references which need
to be followed when evaluating a formula. If this number exceeds a certain
threshold, the formula cell is indicated as smelly.

The main drawback of this smell detection technique is its tendency to cause
redundant calculations and detection notifications. Neighboring cells with the
same R1C1 formula usually share the same preceding calculations. Hence, de-
tectable issues for these cells can be traced back to one and the same general
structural flaw. Computing the length of the calculation chain for each cell indi-
vidually is inefficient. Moreover, each afflicted cell is reported individually. As a
remedy, we propose to apply smell-detection on formula groups and inter-group
dependencies instead of individual cells and cell references:

Definition 21. The function longestChain( partitioned formula group g) cal-
culates the longest chain of group g as follows:

longestChain(g) =


longestChain(G) + 1 if G 6= ∅
1 else if Gr 6= ∅
0 otherwise

where longestChain(G) = max{l|∀g ∈ G : l = longestChain(g)},
G=referredFormulaGroups(g), and Gr=referenceGroups(g).

We compute the length of the longest formula group chain of formula group g
by adding 1 to the longest chain of the formula groups to which g refers to. The
chain of a formula group that has only references to input cells has a length
of 1. The chain of a formula group that has no references has a length of 0.

Like the original smell detection technique, the detection function of the
group-based Long Calculation Chain smell returns a metric value. To decide on
whether any given partitioned formula group is smelly, a threshold for the calcu-
lated metric is required. Groups whose calculated metric exceeds this threshold
are indicated as smelly. Hermans et al. proposed a threshold of 4 to indicate a
small risk, and a threshold of 7 to indicate a high risk.

Example 21. The Investment worksheet (Figure 1c) illustrates the benefits of
the Improved Long Calculation Chain: Cells E9, E10, and E11 are part of the
partitioned formula group E9:E11. Each cell has a longest calculation chain
of length 7. The specific references for each cell differ. However, the over-
all contextual structure of the calculation is shared among all cells. A spe-
cific reference chain path for cell E9 is Department1!B4 → Department1!F4 →
Department1!F8→ Total!B8→ Total!E8→ Investment!B3→ Investment!

B5 → Investment!E9. Similar paths can be reported for cells E10 and E11. Al-
ternatively, the Improved Long Calculation Chain reports only one calculation
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path for the entire group Investment!E9:E11. One possible group reference
chain is Department1!B4:E4 → Department1!F4:F7 → Department1!B8:F8

→ Total!B4:B8 → Total!E4:E8 → Investment!B3:B3 → Investment!B5:B5

→ Investment!E9:E11.

Checking for long calculation chains on a per-group basis has several benefits:
First, associated smells can be reported once per group instead of individually
for each cell. This helps to reduce the number of reported smells. Second,
per-group detection provides users with additional context to facilitate under-
standing of the overall calculation structure of the spreadsheet. A better men-
tal model of a spreadsheet enables users to introduce well-considered changes.
Third, group-wise smell detection implies that each reference is computed only
once for an entire group of related formula cells. Hence, the detection approach
may require substantially less individual references to be checked.

Setting the focus to group-based references introduces one key flaw: incon-
sistent groups. Inter-group references are not necessarily consistent for each
individual cell within a group. Hence, the smell might be reported for a cell
within a group even though this cell is not affected by the smell on a per-cell
basis. As a remedy, only the partition of a formula group which is affected by
the smell could be reported instead of the entire group. However, this would
require per-cell detection of the smell in combination with per-group detection,
neutralizing the calculation performance benefit of the improvement. Moreover,
although usual spreadsheet programs prohibit circular references on a per-cell
reference basis, inconsistent group references might introduce circular reference
paths in-between formula groups. Such instances need to be handled correctly
when calculating the metric’s value.

5.1.3. Feature Envy

Hermans et al. [13] proposed the Feature Envy smell. This smell detects
worksheets which contain a large number of references to other worksheets. It
is difficult to follow many different relations to other worksheets when trying
to understand or debug a spreadsheet. Feature Envy reports worksheets for
excesses in the number of individual connections to other worksheets. However,
even a limited number of semantically different connections to other worksheets
can render a worksheet difficult to comprehend and, thus, should be reported
as smelly. Moreover, advanced tasks, e.g., elaborate data analysis, require a
greater number of processing steps. Spreadsheet creators fulfil such tasks in
two different ways: (1) They add more functionality into individual formulas,
or add more formula cells to the worksheets. (2) They add new worksheets
that refer to interim results. The first way increases either the complexity of
the individual formula cells or the size of the worksheet; both consequences
make a worksheet more difficult to understand. Therefore, the second way
becomes the preferred option at some point. Consequently, we argue that a high
number of semantically equivalent connections to the same worksheet should
not necessarily be indicated as smelly. To allow for a more purposeful smell
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detection, we propose to base the smell detection on references of partitioned
formula groups instead of individual formula connections.

Algorithm 3 describes the updated Feature Envy detection process. The
function ws(reference-based group gr) permits access to the worksheet of group
gr. The function countFeatureEnvyConnections(worksheet w) in Line 1 counts
the number of total smell occurrences within worksheet w. It first initializes the
variable Count with the value 0. It then iterates the partitioned formula groups
of worksheet w. For each group g, the function iterates the set of reference-based
groups to which g refers to. For each referred group gref, the function increments
Count if gref’s worksheet differs from worksheet w. Lastly, the function returns
Count, the number of group references to other worksheets.

Algorithm 3 DetectFeatureEnvy

Require: worksheet w
Ensure: number of connections from formula groups in w to other worksheets

1: procedure countFeatureEnvyConnections(worksheet w)
2: Count ← 0
3: for all g ∈ partFormulaGroups(w) do
4: for all gref ∈ referenceGroups(g) do
5: if ws(gref) 6= w then
6: Count ← Count + 1

7: return Count

Example 22. The cells in the area B4:D8 of worksheet Total (Figure 1b) fea-
ture 12 references to other worksheets. However, the cells in each column can be
grouped into the partitioned formula groups B4:B8, C4:C8, and D4:D8. Hence,
the Improved Feature Envy only reports three inter-worksheet connections.

The detection function of the group-based Feature Envy smell returns a
value. Worksheets whose calculated metric value exceeds a certain threshold
are indicated as smelly. Hermans et al. proposed a threshold of 3 to indicate a
small risk, and a threshold of 7 to indicate a high risk.

The proposed improvement offers two main benefits: First, applying group
connections for the calculation of the detection metric provides users with more
meaningful feedback in regard to the overall quality of the connection structure
of the spreadsheet. This supports users in making high-level structural improve-
ments, eliminating the root cause of indicated smells instead of alleviating its
effects. Second, group-based smell detection only requires to check for inter-
worksheet connections of each partitioned formula group, instead of checking
the connections of all cells of a worksheet. Hence, this detection approach may
require substantially less individual references to be checked.

The drawback of using group connections is a potential loss of informa-
tion. While a high number of semantically similar inter-worksheet connections
might be a necessary design, reporting the circumstance might still offer an
opportunity for improvement. As a remedy, the cardinality of processed group
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connections might be introduced into the detection metric, be reported to the
user as contextual information, or both.

5.2. New smell detection techniques

We elaborated different approaches to formulate new smell detection meth-
ods that are based on the structural information. From this list of fundamen-
tal smell ideas, we present three smells that showcase utilization of different
aspects of the available structure information: The Overburdened Worksheet
smell indicates that a worksheet contains too much functionality. The Inconsis-
tent Formula Group Reference smell signals inconsistencies occurring within the
group-resolving step of the analysis process. The Missing Header smell indicates
gaps in the headers of a block. For each of the introduced smells, we first out-
line its basic concept. We then present the smell detection process and provide
an example. Lastly, we highlight benefits and possible limitations of the new
smell, and explain its significance related to the overall quality of a spreadsheet.
For doing so, we will refer to the ISO/IEC 25010:2011 International Standard
for System and Software Quality Models [23] and the quality model [24] for
spreadsheets that is based on a predecessor of this standard.

5.2.1. Overburdened Worksheet

Each part of a spreadsheet serves a specific purpose: a reference group pro-
vides a set of common input data for further calculations; a formula group
performs a calculation on sets of input data; a block distinguishes functionally
enclosed areas of a worksheet. The Overburdened Worksheet smell indicates
worksheets which feature an excessive number of any structure type, e.g., blocks:

Definition 22 (Overburened Worksheet). The function overburdenedWork-
sheet( worksheet w) returns the detection metric for the smell:

overburdenedWorksheet(w) = |blocks(w)|.

To decide on whether any given worksheet is smelly, a threshold for the
calculated value is required. Worksheets whose calculated value exceeds this
threshold are indicated as smelly.

Example 23. The Investment worksheet (Figure 1c) has two calculation blocks:
B3:B5 and B9:E11. If we set the threshold of this smell to the extremely low
level of two, the worksheet would be indicated as smelly.

As worksheet Investment contains a minimal example, it remains compre-
hensible despite featuring multiple calculation blocks. However, in general, mul-
tiple blocks in a worksheet indicate a suboptimal spreadsheet structure, which
can be easily resolved by moving some blocks to a new worksheet.

The provided detection function utilizes the number of calculation blocks per
spreadsheet as significance metric. However, other structure information may be
employed, as well. We included the number of formula groups per worksheet as
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an additional metric in our evaluation. Another possibility would be to count
the reference-based groups of a worksheet, or the number of intra-worksheet
connections in-between formula groups. When relying on basic spreadsheet in-
formation, the number of cells or the number of formulas might also be employed
to indicate an overburdened worksheet.

The Overburdened Worksheet smell provides a natural counter-balance to
existing inter-worksheet smells indicating worksheets that refer too abundantly
to other worksheets. The goal for an overall, optimal spreadsheet structure
is then a balanced partition of the required functionality over a number of
worksheets which neither overburdens any individual sheet nor renders any sheet
overly reliant on inter-worksheet connections.

The quality and success of the Overburdened Worksheet’s smell detection
process highly depends on the success of the previous structural analysis pro-
cess. Inconclusive structural analysis might result in an excessive number of
small structures. In such a case, the size-based metrics provide misleading in-
formation. Smell metrics which combine the quantity of structures with their
respective size might lessen the influence of ambiguous structure analysis.

While an overburdened worksheet does not influence the functionality and
security of a spreadsheet, it influences the maintainability (in particular the
subcatetory analyzability, see ISO/IEC 25010:2011 standard [23]) and usability
(subcategory understandability): A spreadsheet that has a clear modular struc-
ture with worksheets as modules is easier to understand and maintain than a
spreadsheet that contains all information in a single worksheet.

5.2.2. Inconsistent Formula Group Reference

The Inconsistent Formula Group Reference smell highlights an inconsis-
tency that becomes apparent during the structural analysis process. Common
spreadsheet programs already point out inconsistencies regarding the formulas
of groups of related cells. Inconsistent Formula Group Reference points out
inconsistencies regarding references to individual cells of such groups.

More elaborate worksheets depend on reference chains, linking sequential
calculations. Structural analysis enables tracking of references in between for-
mula cells, as well as references in between formula groups. However, references
in between formula groups are not always concise. For example, one group
might refer only to a subset of the cells of another group. Inconsistent Formula
Group Reference points out those instances.

Definition 23 (Inconsistent group reference). The function
inconsGroupRef( partitioned formula group g, partitioned formula group g’)
identifies inconsistent group references:

inconsGroupRef(g, g′) =


true if @ gr ∈ referenceGroups(g) : gr ≡ g′

∧ ∃ gr ∈ referenceGroups(g) : gr ∩ g′ 6= ∅
false otherwise.
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Example 24. Our running example in Figure 1 contains an occurrence of the
Inconsistent Formula Group Reference smell. In the Investment worksheet,
cell B3 creates a formula group that refers to the single cell E8 of the Total work-
sheet. However, the cell Total!E8 is part of the formula group Total!E4:E8.
Hence, Investment!B3:B3 inconsistently refers to Total!E4:E8.

The smell points to inconsistencies within reference chains in between for-
mula groups. Such inconsistencies may be introduced during the creation or
expansion of the spreadsheet, e.g., a newly created set of calculations mistak-
enly refers to only a part of preceding formulas, or an inner part of a calculation
chain is expanded, but successive calculations are not updated accordingly.

As demonstrated in the example, referring only to a part of a formula group
may not always indicate an error, but be the intended behavior. However, even
in those cases, a spreadsheet may be restructured to remove the inconsistency.
Moreover, inconsistency detection depends on the success of the previous struc-
tural analysis process. Incorrect grouping, poor partitioning of formula groups,
or resolving of group references might lead to false positive detection.

A spreadsheet with inconsistent references is difficult to analyze. Inconsis-
tent references might point to faults caused by expanding a spreadsheet. While
some parts of a spreadsheet are updated, others might be forgotten to be up-
dated. When the forgotten updates lead to errors, the spreadsheet does not
provide the intended functionality. Hence, the Inconsistent Formula Group
Reference influences the overall quality of a spreadsheet with respect to its
analyzability (subcategory of maintainability) and to a certain extent to its
functionality (see ISO/IEC 25010:2011 standard [23]).

5.2.3. Missing Header

Headers are not always provided for each column and/or row of a block.
This results in empty spots within the header layers of affected blocks. The
Missing Header smell reports cases of such vacant spots.

Definition 24 (Missing headers). The function missingHeaders( block b) re-
turns the set of missing header cells of block b:

missingHeaders(b) = { c ∈ (
⋃

l∈Lcol

l) ∪ (
⋃

l∈Lrow

l) : type(c) = ‘empty’ }

where Lcol = columnLayers(b) and Lrow = rowLayers(b).

Example 25. Figure 6 illustrates the Missing Header smell. It depicts a revised
version of the Department1 worksheet of our running example. For demonstra-
tion purposes, we have removed the label of cell D3. Structural analysis detects
a block in area B4:F8. Column-headers for this block are available in row 3.
However, one spot in the header layer of the block, cell D3, is vacant.

The Missing Header smell gives feedback about the quality of non-calculation
parts of worksheets. Missing headers impair comprehensibility of worksheets,
as calculation relations do not necessarily provide contextual information.

26



Figure 6: Example of Missing Header smell

Inference of headers and header layers is directly dependent on the preceding
block detection results. Hence, header detection carries on the same limitations
as affected the previous analysis steps. For example, the current blocking ap-
proach does not compute blocks for tables that only collect data, but do not
process it. Thus, no headers can currently be inferred for such tables. An-
other drawback of the proposed analysis method is a high likelihood of false
positives in higher-order header layers. Items of such layers usually provide
contextual information to underlying header layers; they are, therefore, usually
not completely filled in. This is an intended behavior. Nevertheless, the current
definition would count such instances as missing headers.

Moreover, conflicts may occur, whereby meta-headers can be assigned to
both, underlying column- and row header layers. Following the current header
assignment process, such conflicts are resolved by a static default decision. To
attain more reliable results for higher-order headers, structural analysis would
benefit from a more elaborate approach to correctly decide ties.

Badly or even undocumented spreadsheets are obviously difficult to under-
stand. Hence, missing headers influence the overall quality of a spreadsheet by
a reduced understandability (subcategory of the usability characteristic in the
ISO/IEC 25010:2011 standard [23]).

6. Empirical Evaluation

In this section, we evaluate the performance of the improved and new smell
detection techniques. We first outline our study design. We then present the
details and results and lastly, we discuss the presented results.

6.1. Study Design

Study Rationale. The rationale of this study is to evaluate whether struc-
tural information improves the detection of spreadsheet smells. The improve-
ment potential for smells varies, based on the source smell and on how structure
information can be applied. In general, we assume that the improvement of the
detection techniques results in a reduction of false positives, and limits the num-
ber of redundant smell detections. Newly introduced smell detection techniques
are expected to perform similar to already established ones.
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The performance analysis of the underlying structural detection process is
out of the focus of this empirical evaluation. We refer the interested reader to
our IWPD paper [20] for a detailed evaluation of the detection performance for
blocks, groups, and headers.

Objective/Units of study & Context. The objective of this particular
evaluation is to investigate the detection performances of the improved and new
spreadsheet smell detection techniques. The context of our study is the EUSES
corpus, a publicly available collection of spreadsheets. Units of analysis are the
sets of spreadsheet smells: original smells, improved smells, and new smells. For
each of these sets, we record the respective detection metrics when applied to
spreadsheets of the EUSES [25] corpus.

Research questions.

1. Can existing smell detection techniques be improved by applying struc-
tural information in the smell’s detection process?

2. Are novel spreadsheet smell detection techniques that are based on struc-
tural information able to detect new quality issues, and do they perform
similar to traditional ones?

Concepts & Measures. As established by previous research [12][13], we
use detection metrics of smells as basis of analysis and comparison; to determine
whether a given entity is smelly, every smell detection technique calculates a
metric value for the entity. The target entities for baseline techniques are either
cells or worksheets, whereas entities for the improved and new techniques are
either groups, blocks or worksheets. To allow for comparison of the approaches,
we thus regard a cell as well as a group and a block as individual entities of a
spreadsheet which a user has to check, if indicated as smelly. Metrics that are
recorded per worksheet are directly comparable. Following common practice, we
aggregate these metrics into quartile plots. Quartile plots aggregate the results
of individual entities, illustrating the percentage x of the analyzed entities that
feature a metric value of y or lower. To incorporate a wider range of metric
values, we use a logarithmic scale for the y-axis. This allows us to compare our
results with previous work.

Data Collection. Data collection is based on our own test implementation,
Fritz5. The ‘evaluation’ command of Fritz analyzes a supplied spreadsheet
corpus and writes a selectable set of calculated metrics to CSV files for further
processing. The evaluation uses files of the EUSES [25] spreadsheet corpus. The
corpus can be downloaded from the tera-PROMISE Repository6. It contains
4490 files in 11 categories. Not all files of this corpus are fit for evaluation
with Fritz. In a preprocessing step, we exclude files which (1) are not read-
able by external library components used by the evaluation tool, (2) are not
processable due to limitations of the evaluation tool, or (3) do not contain
any formulas. This preprocessing operation is provided by Fritz, using the

5available at http://spreadsheets.ist.tugraz.at/index.php/software/
6http://openscience.us/repo/spreadsheet/euses.html, last visited 2017-01-31
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command ‘preprocess’. This command supports different filtering options, e.g.,
the ‘complete’ option which applies all the previously mentioned filter crite-
ria. The resulting filtered EUSES corpus consists of 1735 files in 10 categories.
We then run the automatic ‘evaluation’ command offered by Fritz, using the
evaluation option ‘SMELLS COMPLETE’. Fritz has a 5 minute timeout limit
per file. Three files (personal/FindFunction.xls, inventory/in emit99.xls, and
grades/PregnancyDiet.XLS ) exceed this limit. The stated results refer to the
1732 files that are fit for evaluation and do not cause a timeout.

Data Analysis. In order to compare our improvements to the original
smell detection techniques, we have to introduce a common baseline. To es-
tablish this baseline, we collect data on the detection performance of our own
re-implementations of the basic smell detection approaches. For our data anal-
ysis, we first compare the new baseline with the results of the smells’ original
authors where available. We then compare the collected data for the improved
smell detection techniques to our baseline results. For our set of novel smells,
we analyze the smell detection performance following the established analysis
approach for spreadsheet smells and provide general remarks.

Case & Data Selection. The general case of the study is provided by
the spreadsheets of the EUSES corpus. Units of analysis within the study are
the sets of smells: baseline, improved, new. The data resulting of analyzing all
eligible spreadsheets within the corpus is used for each analysis unit. Eligible
spreadsheets are determined in a preprocessing step, using the Fritz tool.

Replication. The focus of the present study is to build up on, rather than
to replicate existing work. However, to allow for comparison, we had to replicate
some parts of related publications, as the tools and data of those studies are no
longer available. In order to guarantee that our work is replicable, we provide
references to the used dataset and tools.

6.2. Smell Detection Improvements

Since the tools that were used for evaluating the original smell detection
process are either not publicly available or not designed to support automatic
evaluation using a spreadsheet corpus, we implemented the baseline smell detec-
tion techniques in our own evaluation tool, Fritz. For each improved smell, we
first compare our baseline implementation with the smell’s original evaluation
results (using it’s original evaluation dataset). We then compare this baseline
implementation with our improved variant, using the EUSES corpus as dataset.
As we want to highlight the reduction in total detections caused by avoiding
redundancies, the improved versions of the Long Calculation Chain and Feature
Envy smells use the same thresholds for detection as the baseline techniques.

6.2.1. Pattern Finder

Cunha et al. implemented this technique in the FaultySheet Detective tool,
and evaluated it using 180 selected spreadsheets of the EUSES corpus. To enable
comparison, we reproduced the subset of spreadsheets after consultation of the
authors. Since the FaultySheet detective tool does not support a batch-mode
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analysis, the manual execution of the tool for each spreadsheet and evaluation
of the results is very time consuming. Hence, we chose to limit the comparison
of our implementation with the author’s original results using the FaultySheet
Detective7 to the category “homework” (16 spreadsheets). However, we provide
corpus archive as download8, to allow for validation of our results. Table 2
illustrates the analysis results using the following metrics:

• FaultySheet: smell instances detected by FaultySheet Detective.

• Relevant: amount of FaultySheet detections we regard as relevant,
based on manual inspection. A relevant detection indicates a cell which
discerns from the obvious intention of the spreadsheet’s author (e.g., a
number instead of a date). Other detections (e.g., labels and descriptions
within a table) are not regarded as relevant.

• Cols: smell instances detected by Fritz using column-oriented windows.
This corresponds to FaultySheet Detective’s detection approach.

• Rows: smell instances detected by Fritz using row-oriented windows.

FaultySheet and Relevant numbers result from manual inspections of the re-
sulting sheets by one researcher. For each metric, we provide the total number of
detections for all analyzed worksheets (Cells Total), as well as the average and
median number of detections per worksheet (Cells Average and Cells Median).
Moreover, we state the number and percentage of worksheets that feature any
detection (Worksheets (>0) and % Worksheets (>0)), as well as the average
number of detections for these worksheets (Cells Average (>0)).

Metric FaultySheet Relevant Cols Rows

Cells Total 180 20 181 129
Cells Average 6.6 0.7 6.6 4.8
Cells Median 0.5 0 1 0
Worksheets (>0) 14 4 15 9
% Worksheets (>0) 50% 14% 54% 32%
Cells Average (>0) 12.9 5.0 12.1 14.3

Table 2: Pattern Finder detection metrics based on the homework folder of Cunha et al.’s
evaluation set. Cell count average and median are calculated on a per-worksheet basis.

Our recorded detection numbers for the FaultySheet tool diverge from the
numbers stated by the smell’s authors [11]. Cunha et al. reported 58 detected
Pattern Finder smells; 56 of these they categorized as “no smells”, leaving two
genuine smell detections. In contrast, we counted 180 smelly cells as detected
by the FaultySheet Detective tool. Manual inspection categorized 20 of these as
relevant detections, for example the number 38412 in a column labelled “Target

7Version 1.1 from http://ssaapp.di.uminho.pt/twiki/bin/view/Main/Software
8http://spreadsheets.ist.tugraz.at/wp-content/uploads/EUSES_small.zip
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date for next steps” that otherwise contained proper date values. In compar-
ison, our analysis tool managed to find the same 180 smell instances using
column-oriented windows. Hence, the baseline implementation of the tech-
nique adequately reproduces the performance of the original approach. One
additional instance was detected due to technical specifics of a utilized library
component. When using row-based windows, Fritz detected 129 smelly cells.

We thus proved the adequacy of our implementation when compared to the
original tool. However, during this evaluation we also revealed a significant
shortcoming in terms of relevant detections. We assume that specific imple-
mentation details are to blame for these shortcomings. To check how specific
implementation choices influence the results, we devised a number of differ-
ent interpretations of the base technique, and evaluated the approach on the
EUSES corpus. Figure 7 illustrates the results of the evaluation of various in-
terpretations of the Pattern Finder smell as implemented in Fritz. Pattern
Finder Column and Pattern Finder Row only use detection windows in the
respective orientation and exclude detections in the first and last five columns
and rows. The Pattern Finder Column -border and Pattern Finder Row -border
metrics work the same, but suspend the border restrictions. The Pattern Finder
Combined metric reports cases where a cell is indicated as smelly by both, a
horizontal and a vertical detection window, and excludes detections in border
areas. The Pattern Finder Combined -border metric works the same way, but
also allows detections in the border areas. Outliers that exceed metric values of
100 are not depicted.
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Figure 7: Quartile plot of various interpretations of the original Pattern Finder smell, evalu-
ated on EUSES. See Section 6.1 Concepts & Measures for a description of quartile plots.

Pattern Finder Column detects more smell instances than its row-based
counterpart. The detection numbers of Pattern Finder Combined is significantly
lower than both, indicating that only a limited overlap exists between column-
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based and row-based smell detections. When allowed to detect smells in border
areas (-border), the detection rates of all approaches increase noticeably. The
rise is especially significant for the Pattern Finder Row -border metric, where at
least one smell instance is detected for more than 90 % of worksheets. Borders
of worksheets usually contain a high number of string cells that are used as
descriptive headers and footers. Hence, we suspect that the additional detections
in border areas include a high number of such cells, and can thus be regarded
as false positive detections. Pattern Finder Combined -border also registers a
moderate increase in its detection rate in comparison to the results of it’s border-
excluding counterpart. Nevertheless, it identifies fewer smelly cells than the
comparable row- and column-based approaches. We argue that the combination
of row-based and column-based detection windows reduces the likelihood of
false positive detections by counteracting the tendency of spurious detections
in border areas. We consequently regard Pattern Finder Combined -border as
the most comprehensible of the analyzed approaches, and add this measure as
additional baseline for comparison with our Improved Pattern Finder approach.

Figure 8 compares two interpretations of our improved smell detection ap-
proach with the original technique, Cunha Pattern Finder, and the selected
baseline variant, Combined Pattern Finder -border. The metric Group Pattern
Finder illustrates the result of our implementation based on Algorithm 2. The
Group Evaluated Pattern Finder first evaluates formula cells and uses the eval-
uated cell types for comparison with other cells. In total, Cunha Pattern Finder
detected 45 010 smelly cells (7.4 per worksheet), and Pattern Finder Combined
-border used as baseline, identified 8 003 smelly cells (1.3 detections per work-
sheet). In comparison, Group Pattern Finder counted 49 667 group detections,
(8.2 per worksheet), and Group Evaluated Pattern Finder counted 44 453 group
detections (7.3 per worksheet).
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Figure 8: Quartile plot comparing the original Pattern Finder, our selected baseline variant,
and two improved smell variants on the EUSES dataset.
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As expected, Cunha Pattern Finder reports a significantly larger number of
smell detections than the other approaches, detecting at least one smelly cell
within 40 % of analyzed worksheets. Group Evaluated Pattern Finder ’s result is
similar to the chosen baseline. Both evaluate formula cells before comparing the
types, hence both approaches are likely to detect similar cases of the smell. The
higher number of detections of the Group Evaluated Pattern Finder is likely due
to cases where a pattern is broken only in one orientation, but not the other. The
results of Group Pattern Finder follow the same overall trend as those of Group
Evaluated Pattern Finder. Due to cases whereby the evaluation of formula cells
conceals otherwise mismatching cell types, the number of individual detections
is higher. As such instances might indicate genuine deficits, we suggest using
Group Pattern Finder over the Group Evaluated Pattern Finder approach.

6.2.2. Long Calculation Chain

Figure 9 compares our evaluation results with the author’s initial results.
Hermans Chain Length indicates the evaluation result as published by Her-
mans et al. [12]. Baseline Chain Length is the result of our interpretation of the
smell using Fritz. Group Chain Length refers to the results of the improved
smell detection version, as described in Section 5.1.2.
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Figure 9: Quartile plot of Long Calculation Chain metrics

Baseline Chain Length computes an average chain length of 24.5, while
Group Chain Length computes an average chain length of 2.1. When apply-
ing the threshold of 7 for a smell detection, the baseline approach identifies
84 031 formula cells as smelly, whereas the group-based approach identifies only
4 879 groups as smelly. Consultation of the smell’s original authors revealed
that detailed numbers for Hermans Chain Length are no longer available. The
presented numbers are thus extracted from the result plots given in [12].
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When comparing significant features of the graph, our baseline result indi-
cates a higher proportion of calculation chains as smelly than was indicated by
the original results. Moreover, Baseline Chain Length features a greater propor-
tion of formulas that feature chain lengths significantly longer than 10 than both
the original and group-based smell versions. These deviations might be caused
by specific design choices regarding the compared smell implementations, or by
distinctions in the evaluation datasets introduced by pre-processing operations.
The graph of Group Chain Length follows a similar progression as the graph of
the baseline implementation. The number of individual detections, however, is
noticeably lower. This is the expected result, as the same structural flaws are
detected by both approaches. Nevertheless, the baseline implementation has a
higher individual metric number due to redundant smell detections. In terms of
detection rates, the baseline approach results in a substantially larger number
of individual detections than the group-based approach. Group Chain Length,
therefore, offers a more concise way of communicating these flaws.

6.2.3. Feature Envy

Figure 10 compares the results of the improved Feature Envy detection met-
ric to the smell’s baseline implementation and the author’s original results.
Hermans Feature Envy illustrates the evaluation result of the original smell de-
tection technique as published by Hermans et al. [13]. Baseline Feature Envy is
the result of our baseline interpretation of the smell in Fritz. Group Feature
Envy depicts the result of the improved smell detection process as described in
Section 5.1.3.
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Figure 10: Quartile plot of Feature Envy metrics

In terms of numbers, Baseline Feature Envy reports 3 058 758 inter-worksheet
connections (505.4 connections per worksheet). In comparison, Group Feature
Envy counts 102 694 inter-worksheet group-connections (16.9 connections per
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worksheet). When applying the threshold of 7 for a high risk smell detection,
the baseline approach detects 737 worksheets as smelly, whereas the group-based
approach only results in 533 smell detections. Consultation of the smell’s orig-
inal authors revealed that detailed numbers for Hermans Feature Envy are no
longer available. The presented numbers are thus extracted from the result plots
given in [13].

When comparing significant features of the graph, Hermans Feature Envy
detects noticeably more worksheets with a significant number of inter-worksheet
connections than the other approaches. Based on Hermans et al.’s evaluation,
about 70 % of the worksheets fall in this category, whereas both Baseline Feature
Envy and Group Feature Envy start reporting signficant detections at the 85 %
threshold. Hermans Feature Envy also features wider plateaus of percentage-
areas where worksheets contain the same number of Feature Envy connections,
whereas the other approaches do not report similar features. Starting at the 90 %
mark, the results of all approaches follow a similar trend. However, the maximal
values of the approaches are noticeably different: Our implementations detect
a number of worksheets with more than 1 000 connections, but Hermans et al.
reported no findings of this magnitude.

In terms of detection rates, Baseline Feature Envy results in a larger number
of individual detections than Group Feature Envy. However, the group-based
approach is based on the number of semantically different connections, instead
of the total number of connections. It is therefore likely that the group-based
approach prevents reporting of false positive smell detections.

6.3. New Smell Detection Techniques

Figure 11 compares the results of our novel smell detection techniques. Over-
burdened Worksheet Blocks and Overburdened Worksheet Groups are smell de-
tection metrics as proposed in Section 5.2.1, with the former counting the num-
ber of calculation blocks, and the latter counting the number of formula groups
per worksheet. Inconsistent Formula Group Reference illustrates the results of
the corresponding smell as described in Section 5.2.2. Missing Header counts
the number of missing headers as described in Section 5.2.3.

Overburdened Worksheet Blocks counts 24 006 blocks (3.9 counted per work-
sheet). In comparison, Overburdened Worksheet Groups counts 105 414 groups
for the same worksheets (17.4 groups per worksheet). Moreover, worksheets fea-
ture 102 281 Inconsistent Formula Group References and 98 686 Missing Headers.
The results of all novel smells follow a power law like distribution; each indi-
vidual metric curve has a gentle slope at first and most of its variability on
the tail. This is the usual case for smell metrics, as demonstrated by Her-
mans et al. [12][13].

The values of the metrics for Overburdened Worksheet Groups are signifi-
cantly higher than their block-based counterparts. This is expected, as blocks
aggregate multiple groups. For smell detection, both versions of the Overbur-
dened Worksheet smell require a detection threshold. Worksheets are indicated
as smelly only if this threshold is exceeded by the recorded smell metric. Follow-
ing Hermans et al. ’s recommendation, we provide threshold values for the 70 %,
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Figure 11: Quartile plot of novel smell metrics

80 %, and 90 % marks of the smell metric curves in Table 3. Worksheets whose
metrics surpass these thresholds are regarded as featuring low risk, medium risk,
and high risk respectively of being affected by the related smell.

Smell Detection Technique 70 % 80 % 90 %

Overburdened Worksheet Blocks 4 5 9
Overburdened Worksheet Groups 11 19 37

Table 3: Overburdened Worksheet detection thresholds.

Inconsistent Formula Group Reference and Missing Header smells are re-
ported for each individual instance that is detected within a worksheet, hence
no detection thresholds have to be provided. Inconsistent Formula Group Ref-
erence has one or fewer detections for about 70 % of the worksheets; Missing
Header for about 63 %. Both metrics surpass 10 or fewer detections per work-
sheet at 80 % to 85 %. Hence, about 15 % of the worksheets have more than 10
individual detections of the smells. The upper ends of both metric curves exceed
100 detections per worksheet. In case of Inconsistent Formula Group Reference,
these results are probably caused by VLOOKUP and similar spreadsheet func-
tions which refer to entire areas of worksheets instead of individual groups, in-
troducing a large number of inconsistent references. In case of Missing Header,
the high metric numbers are likely caused by limitations in the header detection
process and the currently applied focus of the header detection method.

6.4. Manual Investigation

To complement the empirical study we described above, we also conducted
a manual investigation of detected smells. For this investigation, we again
employed the homework category of spreadsheets of Cunhaet al.’s evaluation
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dataset that we previously used to compare the results of the Pattern Finder
smell in Section 6.2.1. For each of the basic, improved, and novel smells, we
applied the smell detection techniques to all sheets in the collection using the
suggested thresholds. We then tallied how many of each smell instance were
detected, how many of the detections were relevant (signalled a genuine issue),
and for the basic and improved techniques, how many detections were missing
that were successfully indicated by the respective other technique.

Table 4 summarizes the results of this investigation. In general, significantly
less detections were recorded for the improved and novel techniques. Pattern
Finder was the most detected smell. However, many of the detections of the
basic smell were spurious, and many of relevant cases that are detected of the
improved version were missed by the basic implementation. The 9 Missing
cases for the Improved Pattern Finder were multiplicities of the same structural
issue of one worksheet. The Long Calculation Chain smell was detected in one
spreadsheet only (see example below). Also, we found no detections for both
versions of the Feature Envy smell, as the spreadsheets in this category do not
sufficiently rely on inter-worksheet references. For the New Techniques, almost
all detections were relevant and pointed out novel issues.

Smell Detection Technique Detected Relevant Missing

Basic Techniques

Pattern Finder 181 20 80
Long Calculation Chain 99 99 0
Feature Envy 0 0 0

Improved Techniques

Pattern Finder 9 9 9
Long Calculation Chain 0 0 0
Feature Envy 0 0 0

Novel Techniques

Overburdened Worksheet 12 9 -
Incons. Ref. 12 12 -
Missing Header 5 5 -

Table 4: Manual evaluation of detected smells based on the homework folder of Cunha et al.’s
evaluation set.

Figure 12 illustrates an excerpt of the finalGrades.xls that was part of the
manual investigation. This example contains three deficits, that were success-
fully indicated by spreadsheet smells: (1) The student numbers in Column A,
after the first entry, are created by successive, self referencing formulas, instead
of usually employed continuous numbers. The issue is highlighted by many Long
Calculation Chain detections, as each formula after the 7th in the chain is con-
sidered smelly. It is also indicated by one instance of the Group Pattern Finder
smell for the column. The basic Pattern Finder smell, in contrast, does not
detect this issues. (2) Many cells in Column K are empty, but are referred to by
subsequent calculations, that do not properly take missing values into account.
This issue is, again, highlighted by Group Pattern Finder smell, detected for the
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column, but was not detected by the basic smell version. (3) The calculations
in Column L use different formulas, dividing the total in Column N bei either 7
or 8. The exact number to divide by should likely depend on the optional en-
try in Column K. However, closer investigation reveals that this is not properly
implemented in the sheet. The issue is revealed by the Inconsistent Formula
Group Reference smell, as the percentage calculation in Column M refers to a
number of smaller formula groups in Column L that are created for the different
formulas. Moreover, the issue is also detected by the Overburdened Worksheet
smell, as many small formula groups are calculated in Column L, which exceeds
the threshold for this smell.

(a) Value view

(b) Formula view

Figure 12: Spreadsheet finalGRADES.xls of Cunha et al.’s evaluation set.

6.5. Discussion

In the empiric evaluation of the Feature Envy smell, the baseline interpreta-
tion features significantly lower individual detection numbers. Indeed, it counts
8 003 of 45 010 detections. The results from the manual investigation suggest
that this drop in the detection rate likely excludes a significant portion of the
previously detected false positive smell instances. Further, the Improved Pattern
Finder detection reveals more smell instances than our chosen baseline (i.e., the
non-evaluated version reports 49 667 detections). This increase of the detec-
tion rate is likely attributable to genuine smell detections. This is also in line
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with the results from our manual investigation, where the improved technique
revealed additional issues that were not detected by the original technique.

When comparing the results of improved Long Calculation Chain and Fea-
ture Envy smells with their baseline implementations, the corresponding metric
curves in the empiric evaluation consistently follow a similar trend. However,
the improved versions of the smells indicate overall lower individual metric val-
ues. Indeed, when applying the suggested threshold values, the improved ver-
sions of the smells report a substantially lower number of smell detections than
their baseline counterparts (4 879 instead of 84 031 for Long Calculation Chain,
and 533 instead of 737 for Feature Envy). However, genuine detections that
would be indicated by the baseline smell are still reported by the improved
version. Our manual investigation also indicates that the improved techniques
are successful in limiting the number of superficial detections. The proposed
improvements thus are successful in reducing the number of individual entities
that are indicated and have to be checked by a user.

Revisiting the first research question (RQ1): “Can existing smell detection
techniques be improved by applying structural information in the smell’s de-
tection process?”, we conclude that our proposed improvements provide a clear
benefit over the original smell detection techniques. The improved version of
the Pattern Finder detection process decreases the amount of false positives and
reveals new issues. The improved Long Calculation Chain and Feature Envy
detection techniques limit duplicate reports, while still including genuine cases.

The metric results of the novel smell detection techniques follow the expected
trend set by previous spreadsheet smell evaluations. The Overburdened Work-
sheet variants require a threshold to indicate worksheets as smelly. We provided
the cut-off values of four for block-based detection and eleven for group-based
detection of the smell, each indicating a low risk for the corresponding work-
sheet. Occurrences of inconsistent formula group references and missing headers
can directly be reported as smell detections. As illustrated by our manual in-
vestigation, all three smell types could be used alongside the established set of
smells and were able to identify novel issues.

Looking at the second research question (RQ2): “Are novel spreadsheet
smell detection techniques that are based on structural information able to de-
tect new quality issues, and do they perform similar to traditional ones?”, we
conclude that the newly introduced smell detection techniques indeed perform
similar to traditional spreadsheet ones. Detection values and rates follow the
same distribution trend, a power law like distribution which is the usual case
for smell metrics (see Hermans et al. [12][13]). They are moreover mechanically
similar to the existing smells, and successfully point out novel issues, as demon-
strated by the manual investigation. Consequently, each of the newly introduced
smells is apt to be used alongside the currently established smell catalogue.

Lastly, detection of structure refined smells is dependent upon successful
inference of structure information. However, due to erroneous or unexpected
spreadsheet layouts, the proposed structure analysis approach might lead to
incomplete or misleading results. Fortunately, cases of “improper” spreadsheet
structuring usually also cause issues that are detected by structure aware smells.
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For example Inconsistent Formula Group Reference highlights any structurally
unsound modification of a formula group, if the initial group as referenced by
another formula group, or if the initial group referred to any other formula group.
A list of examples for such detections is given in previous work [26]. If one of
these smells identifies and reports the initial structural issue, the user is able to
apply adequate fixes and refactorings. This allows for a bootstrap approach of
iterative cycles of structure inference, smell detection, and refactoring, until a
sound spreadsheet structure is accomplished.

6.6. Threats to Validity

A threat to the external validity of our evaluation is the representativeness
of the EUSES corpus for the overall population of spreadsheets. However, the
corpus consists of 4490 spreadsheets in 11 categories, providing an adequate
variety of samples. Moreover, the corpus has already been extensively used for
empirical evaluations, providing further credit as adequate evaluation baseline.

A further threat to the external validity of our results are the preprocessing
operations we applied to the corpus before the actual evaluation took place.
However, this operation only affects the comparison between the results of our
baseline implementation and the respective smell’s original evaluation. Both
the evaluation of our baseline implementation as well as the evaluation of im-
proved and new detection techniques are based on the same, preprocessed set
of spreadsheets.

A threat to the internal validity of our results might concern the baseline
smell detection implementations in the Fritz tool. Abstract smell definitions,
provided by each smell’s original author, leave room for interpretation for a con-
crete implementation. Hence, our specific design decisions when implementing
the baseline smells might affect the related evaluation results.

Another threat with respect to the internal validity is related to the correct-
ness of our tool implementation, Fritz, providing spreadsheet file handling,
abstraction, structural analysis, smell detection, and automatic evaluation. We
minimized this risk by manual testing, sanity checking of evaluation results, and
comparison of the results with the original evaluation results. Moreover, the tool
is publicly available. This allows other researchers to replicate our results.

7. Related Work

Hermans et al. [13] were among the first to define smells for spreadsheets.
They adapted Fowler’s inter-class smells [9] from object-oriented software to
spreadsheets by treating worksheets as classes: When two or more worksheets
have a strong connection, the spreadsheet is difficult to understand and to main-
tain; changes to a worksheet might also have impacts on other worksheets. In
their paper, they redefined well-known smells like Inappropriate Intimacy, Fea-
ture Envy, and Shotgun Surgery. In an ensuing work [12], they deal with intra-
worksheet smells and propose smells like Multiple Operations (derived from Long
Method smell), Multiple References (from Long Parameter List), Conditional
Complexity, and Long Calculation Chain for spreadsheets.
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In more recent work, Hermans et al. propose refactorings for formula smells [27].
They indicate the need for refactoring by shading smelly cells and adding com-
ments. These comments mention the proposed refactoring action (e.g. “Com-
mon subformula can be extracted”). Hermans and Dig [28] provide tool sup-
port for refactoring intra-formula smells. Unfortunately, support for automated
refactoring of inter-formula smells is not offered yet, meaning the user has to
manually change the spreadsheet when inter-formula smells like long calculation
chains have been detected.

Cunha et al. [18, 11] focus on input cells and identify, e.g., outliers of numer-
ical values (Standard Deviation smell), typos (String Distance smell), references
to empty cells, mixed use of strings and numerical values in a column (Pattern
Finder smell), and deviations in data entries (Quasi-Functional Dependency
smell). To provide a better overview of existing smells, they aggregate Her-
mans et al.’s smells and their own smells in a catalog and provide a tool named
SmellSheet Detective9 which implements all of these smells. Abreu et al. [29]
improve the functionality of the SmellSheet Detective by combining smell detec-
tion with spectrum-based fault localization. They provide an implementation
of their approach in the tool FaultySheet Detective9.

Several approaches detect faults by identifying structures in spreadsheets.
UCheck [22] uses header cells as unit information for input and formula cells.
A unit can be a simple unit like ‘Employee’ or a dependent unit like ‘Em-
ployee[Anderson]’. Units can be combined using the &-operator, e.g., ‘Em-
ployee[Anderson]&Quarter[1]’. Formula cells inherit their unit from referenced
cells. Since a formula might reference several cells, the resulting units are a
combination of the referenced cells’ units. All units must be well-formed. Vio-
lations occur, for example, if two dependent units with the same base unit are
combined using an &-operator, e.g. ‘Employee[Anderson]&Employee[Bourne]’.
Im more recent work [30], Cunha et al. extended their approach to automat-
ically infer rational schemas from spreadsheets, and to map these schemas to
ClassSheets, object-oriented models for spreadsheets that were previously intro-
duced by Engels and Erwig [31]. They also provided and evaluated a catalogue
of refactorings for said models, and showed a positive effect on end-users’ pro-
ductivity via an empirical evaluation [32].

Dimension [33] derives dimension information from the headers (e.g., length,
time, and speed) and uses the corresponding units (e.g., meter, second, and
meter/second) as units for the input cells. Formula cells inherit their units from
the input cells to which they refer to. Invalid operations (e.g., adding meter
and decimeter or meter and meter/second) are reported as errors.

AmCheck [16] identifies cell arrays and detects smells based on these arrays.
There are two types of smells that can be detected by AmCheck: the Missing
Formula smell and the Inconsistent Formula smell. The Missing Formula smell
occurs in cells which have a constant input value instead of a formula; the In-
consistent Formula smell occurs in cells whose formulas differ from the formulas

9download via http://ssaapp.di.uminho.pt/twiki/bin/view/Main/Software
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of the other cells in the same cell array.
Zhang et al. [34] have empirically evaluated UCheck, Dimension, and Am-

Check with respect to precision, recall, efficiency, scope, and limitations. This
evaluation shows that AmCheck has the best precision and recall rate and that
UCheck and Dimension find different faults compared to AmCheck.

CACheck [17] improves over AmCheck by additionally detecting inhomoge-
neous cell arrays. A row-/column-based cell array is inhomogeneous if it con-
tains a formula cell that references cells in a different column/row. Furthermore,
CACheck removes invalid cell arrays by means of filtering rules.

Custodes [35] clusters cells by means of strong and weak features. Strong
features are, for example, copy-equivalent formulas and cell dependency pat-
terns; weak features are the position of the cell within a worksheet, the cell’s
labels, and the cell’s style. Outlier cells in the individual clusters are identified
and classified either as Missing Formula smell or as Dissimilar Formula smell.

Koci et al. [36] propose a machine learning approach that classifies cells into
five categories: headers, attributes (i.e., row headers), meta data (i.e., captions),
data, and derived (i.e., content that is derived from the actual data). Their
approach extracts features (e.g., cell type, color, alignment, font type, font
style, column- and row index) from the cells and applies different supervised
learning techniques (e.g., Random Forest) on them. In a post-processing step,
they detect and repair misclassified cells by means of predefined patterns.

TableCheck [37] detects table clones, i.e., two rectangular blocks of cells
which have the same labels. Table clones are problematic, as they might be-
come inconsistent when a spreadsheet evolves. TableCheck also reports when
detected clones contain inconsistencies like missing and inconsistent formulas.
TableCheck differs from AmCheck, CACheck and Custodes, as it detects in-
consistencies between blocks rather than smells within a block.

Amalfitano et al. [38] propose a reverse engineering process for automatically
retrieving data models from spreadsheets. This process is a top-town approach,
meaning that a spreadsheet is decomposed into several worksheets which contain
several areas, subareas and sub-subareas. The decomposition process makes use
of the cells’ formatting properties for refining the model. The derived model is
visualized as a UML class diagram. Another interesting work of Amafitano et
al. [39] presents a tool that helps to analyze connections of cells and VBA code.

The range of research publications regarding the overall topic of spreadsheet
quality assurance is considerable. Therefore, we have focused on papers that
are closely related to ours: The last mentioned papers [22, 33, 16, 17, 35, 36,
37, 38] deal with the identification of spreadsheet computation structures. Our
structural analysis process builds upon the ideas of UCheck [22] and is explained
in detail in Section 4. The first mentioned papers [13, 12, 27, 18, 11] deal with
spreadsheet smells. We discuss how these spreadsheet smells can benefit from
the structural analysis in Section 5. Since we have limited the discussion of
related work to smells and structural analysis, we refer the interested reader to
Jannach et al.’s overview paper [7] for a general overview of quality assurance
techniques for spreadsheets.
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8. Conclusion and Future Work

In this paper, we proposed to compensate present shortcomings of spread-
sheet smells by refining smell detection procedures using structural information.
To that end, we first presented an analysis process that infers structural infor-
mation from spreadsheets. We then demonstrated smell refinements on the
examples of the Pattern Finder, Long Calculation Chain, and Feature Envy
smells. Furthermore, we introduced three new smells that make use of inferred
structure information, namely Overburdened Worksheet, Inconsistent Formula
Group Reference, and Missing Header. Empirical evaluation indicated that re-
fined smells indeed have a positive effect on detected smells, and that novel
smells are an adequate strategy to indicate further quality deficits.

The empirical evaluation shows that the use of structure information im-
proves the performance of the smell detection techniques: (1) improved Pattern
Finder reduces the number of incorrect detections while increasing the number
of genuine detections; (2) improved Long Calculation Chain limits the number
of redundant smell reports; and (3) improved Feature Envy refines the smell’s
detection focus, reducing the number of detections of permissible cases. The
evaluation of the new smell detection techniques indicates their applicability
along the current smell catalog to detect novel quality issues.

The proposed smell refinements alleviate a major drawback of existing smell
detection processes: i.e., that the original approaches often highlight effects
instead of causes. The refined smell detection approach condenses many related
smell detections into one; the user gets a clearer picture of the overall issue and is
less focused on an overwhelming number of problems regarding individual cells.
Moreover, the new smells provide additional perspectives for users to assess the
overall spreadsheet quality. In particular, the Overburdened Worksheet smell
acts as a good counterbalance to existing formula- and inter-worksheet smells.

A major drawback of the proposed improved and new smell detection tech-
niques is their reliance on a successful structural analysis process and the associ-
ated limited applicability to any given spreadsheet. Not all spreadsheets follow
the same approach to general spreadsheet structuring, and not all spreadsheets
contain applicable formulas, required as cues for the analysis. Hence, the struc-
tural analysis process in its current form might not always be be applicable
and successful, leading to missing or false positive smell detections. However,
detection of structure refined smells also allows a user to tackle this issue by
fixing unsound spreadsheet structures using an iterative bootstrap process.

In future work, we want to examine how to best provide adequate repre-
sentations of structures and related smells to users. This includes information
about the inter-relations between different groups of a spreadsheet via group ref-
erences, e.g. in form of a graph, which would be a valuable asset for spreadsheet
comprehension. Moreover, smell detection in traditional software development
usually is accompanied with a set refactorings, standard transformations of code
that remove the indicated issue. To provide similar actions for spreadsheets, we
currently investigate structure-based interactions in spreadsheets that allow us
to formulate refactorings for structure-based smells. Lastly, the presented struc-
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ture analysis process, as well as the derived smells pose opportunities for future
work. For example, by extending the inference of groups to include non-formula
related cells, and defining/evaluating further refined and novel smells.
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[14] M. Ducassé, A pragmatic survey of automatic debugging, in: Proceedings of
the 1st International Workshop on Automated and Algorithmic Debugging,
AADEBUG ’93, Springer LNCS 749, 1993, pp. 1–15.

[15] R. Abreu, J. Cunha, J. P. Fernandes, P. Martins, A. Perez, J. Saraiva,
Faultysheet detective: When smells meet fault localization, in: 2014 IEEE
International Conference on Software Maintenance and Evolution (IC-
SME), 2014, pp. 625–628. doi:10.1109/ICSME.2014.111.

[16] W. Dou, S. Cheung, J. Wei, Is spreadsheet ambiguity harmful? Detecting
and repairing spreadsheet smells due to ambiguous computation, in: 36th
International Conference on Software Engineering, ICSE, 2014, pp. 848–
858. doi:10.1145/2568225.2568316.

[17] W. Dou, C. Xu, S. C. Cheung, J. Wei, Cacheck: Detecting and repairing
cell arrays in spreadsheets, IEEE Transactions on Software Engineering
PP (99) (2016) 1–1. doi:10.1109/TSE.2016.2584059.

[18] J. Cunha, J. P. Fernandes, P. Martins, J. Mendes, J. Saraiva, Smellsheet
detective: A tool for detecting bad smells in spreadsheets, in: IEEE Symp.
on Visual Languages and Human-Centric Computing, VL/HCC, 2012, pp.
243–244. doi:10.1109/VLHCC.2012.6344535.

45

http://dx.doi.org/10.1007/978-3-642-31128-4_15
http://dx.doi.org/10.1109/ICSM.2012.6405300
http://dx.doi.org/10.1109/ICSE.2012.6227171
http://dx.doi.org/10.1109/ICSME.2014.111
http://dx.doi.org/10.1145/2568225.2568316
http://dx.doi.org/10.1109/TSE.2016.2584059
http://dx.doi.org/10.1109/VLHCC.2012.6344535


[19] J. Cunha, J. P. Fernandes, J. Mendes, J. Saraiva, Embedding, evolution,
and validation of model-driven spreadsheets, IEEE Trans. Software Eng.
41 (3) (2015) 241–263. doi:10.1109/TSE.2014.2361141.
URL https://doi.org/10.1109/TSE.2014.2361141

[20] P. W. Koch, B. Hofer, F. Wotawa, Static spreadsheet analysis, in: 7th IEEE
International Workshop on Program Debugging (IWPD), ISSRE Workshop
Proceedings, 2016, pp. 167–174. doi:10.1109/ISSREW.2016.8.

[21] B. Hofer, A. Riboira, F. Wotawa, R. Abreu, E. Getzner, On the Em-
pirical Evaluation of Fault Localization Techniques for Spreadsheets, in:
Fundamental Approaches to Software Engineering (FASE’13), Vol. 7793
of Lecture Notes in Computer Science, 2013, pp. 68–82. doi:10.1007/

978-3-642-37057-1_6.

[22] R. Abraham, M. Erwig, UCheck: A spreadsheet type checker for end users,
Journal of Visual Languages and Computing 18 (1) (2007) 71–95. doi:

10.1016/j.jvlc.2006.06.001.

[23] ISO/IEC 25010:2011 Systems and software engineering – Systems and
software Quality Requirements and evaluation (SQuaRE) – System and
software quality models, International Organization for Standardization,
Geneva, Switzerland (2011).

[24] J. Cunha, J. P. Fernandes, C. Peixoto, J. Saraiva, A quality model for
spreadsheets, in: 8th International Conference on the Quality of Infor-
mation and Communications Technology, QUATIC, 2012, pp. 231–236.
doi:10.1109/QUATIC.2012.16.

[25] M. F. II, G. Rothermel, The EUSES spreadsheet corpus: a shared resource
for supporting experimentation with spreadsheet dependability mecha-
nisms, ACM SIGSOFT Software Engineering Notes 30 (4) (2005) 1–5.
doi:10.1145/1082983.1083242.

[26] P. Koch, Smelly spreadsheet structures: Structural analysis of spreadsheets
to enhance smell detection, Master’s thesis, Graz University of Technology
(2016).

[27] F. Hermans, M. Pinzger, A. van Deursen, Detecting and refactoring code
smells in spreadsheet formulas, Empirical Software Engineering 20 (2)
(2015) 549–575. doi:10.1007/s10664-013-9296-2.

[28] F. Hermans, D. Dig, Bumblebee: a refactoring environment for spread-
sheet formulas, in: Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, (FSE-22), 2014, pp.
747–750. doi:10.1145/2635868.2661673.

[29] R. Abreu, J. Cunha, J. P. Fernandes, P. Martins, A. Perez, J. Saraiva,
Smelling faults in spreadsheets, in: 30th IEEE International Conference on

46

https://doi.org/10.1109/TSE.2014.2361141
https://doi.org/10.1109/TSE.2014.2361141
http://dx.doi.org/10.1109/TSE.2014.2361141
https://doi.org/10.1109/TSE.2014.2361141
http://dx.doi.org/10.1109/ISSREW.2016.8
http://dx.doi.org/10.1007/978-3-642-37057-1_6
http://dx.doi.org/10.1007/978-3-642-37057-1_6
http://dx.doi.org/10.1016/j.jvlc.2006.06.001
http://dx.doi.org/10.1016/j.jvlc.2006.06.001
http://dx.doi.org/10.1109/QUATIC.2012.16
http://dx.doi.org/10.1145/1082983.1083242
http://dx.doi.org/10.1007/s10664-013-9296-2
http://dx.doi.org/10.1145/2635868.2661673


Software Maintenance and Evolution (ICSME), 2014, pp. 111–120. doi:

10.1109/ICSME.2014.33.

[30] J. Cunha, M. Erwig, J. Mendes, J. Saraiva, Model inference for spread-
sheets, Autom. Softw. Eng. 23 (3) (2016) 361–392. doi:10.1007/

s10515-014-0167-x.
URL https://doi.org/10.1007/s10515-014-0167-x

[31] G. Engels, M. Erwig, Classsheets: automatic generation of spreadsheet
applications from object-oriented specifications, in: Proceedings of the 20th
IEEE/ACM international Conference on Automated software engineering,
ACM, 2005, pp. 124–133.

[32] J. Cunha, J. P. Fernandes, P. Martins, J. Mendes, R. Pereira, J. Saraiva,
Evaluating refactorings for spreadsheet models, Journal of Systems and
Software 118 (2016) 234–250. doi:10.1016/j.jss.2016.04.043.
URL https://doi.org/10.1016/j.jss.2016.04.043

[33] C. Chambers, M. Erwig, Automatic detection of dimension errors in spread-
sheets, Journal of Visual Languages and Computing 20 (4) (2009) 269–283.
doi:10.1016/j.jvlc.2009.04.002.

[34] R. Zhang, C. Xu, S. Cheung, P. Yu, X. Ma, J. Lu, How effectively can
spreadsheet anomalies be detected: An empirical study, Journal of Systems
and Software 126 (2017) 87 – 100. doi:10.1016/j.jss.2016.03.061.

[35] S.-C. Cheung, W. Chen, Y. Liu, C. Xu, CUSTODES: Automatic spread-
sheet cell clustering and smell detection using strong and weak features, in:
Proceedings of the 38th International Conference on Software Engineering,
ICSE ’16, ACM, 2016, pp. 464–475. doi:10.1145/2884781.2884796.

[36] E. Koci, M. Thiele, O. Romero, W. Lehner, A machine learning approach
for layout inference in spreadsheets, in: Proceedings of the 8th Interna-
tional Joint Conference on Knowledge Discovery, Knowledge Engineer-
ing and Knowledge Management (IC3K) - Volume 1, 2016, pp. 77–88.
doi:10.5220/0006052200770088.

[37] W. Dou, S.-C. Cheung, C. Gao, C. Xu, L. Xu, J. Wei, Detecting table clones
and smells in spreadsheets, in: Proceedings of the 2016 24th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering,
FSE 2016, ACM, 2016, pp. 787–798. doi:10.1145/2950290.2950359.

[38] D. Amalfitano, A. R. Fasolino, P. Tramontana, V. D. Simone, G. D.
Mare, S. Scala, A reverse engineering process for inferring data mod-
els from spreadsheet-based information systems: An automotive indus-
trial experience, in: Data Management Technologies and Applications -
Third International Conference, DATA, 2014, pp. 136–153. doi:10.1007/
978-3-319-25936-9_9.

47

http://dx.doi.org/10.1109/ICSME.2014.33
http://dx.doi.org/10.1109/ICSME.2014.33
https://doi.org/10.1007/s10515-014-0167-x
https://doi.org/10.1007/s10515-014-0167-x
http://dx.doi.org/10.1007/s10515-014-0167-x
http://dx.doi.org/10.1007/s10515-014-0167-x
https://doi.org/10.1007/s10515-014-0167-x
https://doi.org/10.1016/j.jss.2016.04.043
http://dx.doi.org/10.1016/j.jss.2016.04.043
https://doi.org/10.1016/j.jss.2016.04.043
http://dx.doi.org/10.1016/j.jvlc.2009.04.002
http://dx.doi.org/10.1016/j.jss.2016.03.061
http://dx.doi.org/10.1145/2884781.2884796
http://dx.doi.org/10.5220/0006052200770088
http://dx.doi.org/10.1145/2950290.2950359
http://dx.doi.org/10.1007/978-3-319-25936-9_9
http://dx.doi.org/10.1007/978-3-319-25936-9_9


[39] D. Amalfitano, V. D. Simone, A. R. Fasolino, P. Tramontana, EXACT: A
tool for comprehending vba-based excel spreadsheet applications, Journal
of Software: Evolution and Process 28 (6) (2016) 483–505. doi:10.1002/

smr.1787.

48

http://dx.doi.org/10.1002/smr.1787
http://dx.doi.org/10.1002/smr.1787

	1 Introduction
	2 Motivating Example
	3 Preliminaries
	4 Structure Analysis
	4.1 Grouping
	4.2 Blocking
	4.3 Header Assignment
	4.4 Comparison with previous work

	5 Improved and New Spreadsheet Smell Detection Techniques
	5.1 Improved Smell Detection Techniques
	5.1.1 Pattern Finder
	5.1.2 Long Calculation Chain
	5.1.3 Feature Envy

	5.2 New smell detection techniques
	5.2.1 Overburdened Worksheet
	5.2.2 Inconsistent Formula Group Reference
	5.2.3 Missing Header


	6 Empirical Evaluation
	6.1 Study Design
	6.2 Smell Detection Improvements
	6.2.1 Pattern Finder
	6.2.2 Long Calculation Chain
	6.2.3 Feature Envy

	6.3 New Smell Detection Techniques
	6.4 Manual Investigation
	6.5 Discussion
	6.6 Threats to Validity

	7 Related Work
	8 Conclusion and Future Work

