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Abstract

Defect prediction models focus on identifying defect-prone code elements, for example to allow practitioners to allocate
testing resources on specific subsystems and to provide assistance during code reviews. While the research community
has been highly active in proposing metrics and methods to predict defects on long-term periods (i.e., at release time),
a recent trend is represented by the so-called short-term defect prediction (i.e., at commit-level). Indeed, this strategy
represents an effective alternative in terms of effort required to inspect files likely affected by defects. Nevertheless, the
granularity considered by such models might be still too coarse. Indeed, existing commit-level models highlight an entire
commit as defective even in cases where only specific files actually contain defects.

In this paper, we first investigate to what extent commits are partially defective; then, we propose a novel fine-grained
just-in-time defect prediction model to predict the specific files, contained in a commit, that are defective. Finally, we
evaluate our model in terms of (i) performance and (ii) the extent to which it decreases the effort required to diagnose
a defect. Our study highlights that: (1) defective commits are frequently composed of a mixture of defective and non-
defective files, (2) our fine-grained model can accurately predict defective files with an AUC-ROC up to 82% and (3)
our model would allow practitioners to save inspection efforts with respect to standard just-in-time techniques.

Preprint https://doi.org/10.5281/zenodo.1880517. Appendix https://doi.org/10.5281/zenodo.1886063.
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1. Introduction

During software maintenance and evolution, develop-
ers constantly modify the source code to introduce new
features or fix defects [40]. These modifications, how-
ever, may lead to the introduction of new defects [37],
thus developers must carefully verify that the performed
modifications do not introduce new defects in the code.
This task is usually performed directly during development
(e.g., by running test cases) [77] or when changes are re-
viewed [3]. An efficient way to allocate inspection and test-
ing resources to the portion of source code more likely to be
defective is represented by defect prediction [24], which in-
volves the construction of statistical models to predict the
defect-proneness of software artifacts, by mostly exploiting
information regarding the source code or the development
process.

The problem of defect prediction has attracted the
attention of many researchers in the past decade, who
tried to address it by (i) conducting empirical studies
on the factors making artifacts more defect-prone (e.g.,
[6, 36, 60, 61, 63, 68, 79, 81]) and (ii) proposing novel pre-
diction models aimed at accurately predicting the defect-
proneness of the source code (e.g., [8, 25, 51, 57, 62, 70]).

Most of the existing techniques evaluate the defective-
ness of software artifacts perform long-term predictions.
Analyzing the information accumulated in previous soft-

ware releases, these models predict which artifacts are
going be more prone to defect in future releases. For
instance, Basili et al. investigated the effectiveness of
Object-Oriented metrics [12] in predicting post-release de-
fects [6], while other approaches consider process metrics
(e.g., the entropy of changes [25]) or developer-related fac-
tors [8, 57] for the same purpose.

Kamei et al. reported that these long-term defect pre-
diction models—despite their good accuracy—may have a
limited usefulness in practice because they do not provide
developers with immediate feedback [34], thus not avoid
the introduction of defects during the commit of artifacts
on the repository. To overcome this limitation, a recent
trend is the investigation of just-in-time prediction mod-
els, i.e., techniques exploiting the characteristics of a com-
mit to perform short-term predictions of the likelihood of
a commit introducing a defect. With this solution, a de-
veloper can limit the effort required to diagnose problems
since s/he focuses on the committed artifacts only [34].
Among the studies investigating just-in-time prediction
models, Kamei et al. [34, 32] defined 14 metrics character-
izing a commit under five perspectives, demonstrating how
such metrics can be successfully exploited for predicting
defective commits either in the case the model is trained
using previous data of the project [34] and in the case
the training information come from different projects [32].
Other approaches proposed the use of deep-learning [88],
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textual analysis [5], and unsupervised methodologies [89].
It is reasonable to think that, in a real-world scenario,

a commit may be partially defective, i.e., it may be com-
posed of both defective and non-defective files. In this
case, despite the advantages provided by just-in-time de-
fect prediction, a developer might still need to spend a
considerable effort to locate the files of a commit that are
actually defective. For instance, during a Modern Code
Review (MCR) the reviewers iterate several times over
the proposed set of changes and the amount of time spent
finding a subset of defective files might substantially in-
crease [3]. In this paper, we aim at making a further step
ahead in the context of just-in-time defect prediction by
investigating the original problem at a finer granularity.
Particularly, our goal is to investigate the prominence of
partially defective commits and, should they be a signifi-
cant amount, devise a defect prediction model to identify
the defective files within a commit.

To this aim, we firstly performed an exploratory study
to characterize defective commits and evaluate whether
fine-grained solutions are actually needed. In the second
place, we built a fine-grained just-in-time defect predic-
tion model adapting 24 basic features previously defined
in the papers by Kamei et al. [34] and Rahman and De-
vanbu [70]. Finally, we assessed the performance of the
model in terms of (i) accuracy of the predictions and (ii)
effort developers can save using our model with respect to
state-of-the-art just-in-time prediction models. The study
was conducted considering 10 major open source systems
and 160, 515 commits. Key findings of our investigations
revealed that (i) almost 43% of defective commits are com-
posed of a mixture of both defective and non-defective re-
sources, (ii) the devised fine-grained model obtained an
AUC-ROC up to 82% when locating defective files in a
commit, and (iii) our model is more cost-effective than the
state of the art just-in-time model.

Structure of the paper. Section 2 reports background,
related work, and a concept of the envisioned solution.
Section 3 reports the methodology used to address our re-
search goal as well as possible threats that might influence
our findings, while Section 4 presents the results of the
study. Finally, Section 5 concludes the paper.

2. Background and Related Work

In this section we introduce the terminology used
through the paper, discuss the related work, and motivate
our study.

2.1. Terminology

Throughout the paper, we frequently refer to the fol-
lowing five concepts:

Defect. To define a condition in which a software system
does not meet its requirements, we use the term defect,
among all the possible terms (e.g., bug and fault [24]).

Defect-Inducing/-Fixing Change. We identify two
events in the life of a defect: (i) the defect-inducing
change, i.e., the code change that inserts the defect into
a project and (ii) the defect-fixing change, i.e., the code
change that fixes the defect.

Commit. In most modern collaborative software
projects, authors develop code relying on version system
control tools such as Git.1 Such tools track changes as
commits, which are documented changes that involve
one or more files.

Non-/Partially/Fully Defective Commit. We define
three classes of commits: non-defective commits (when
all the committed files are changed without introducing
any defect), fully defective commits (when all the com-
mitted files are changed introducing defects), and par-
tially defective commits (when a subset of the committed
files are changed introducing a defect). The top part
of Figure 1 depicts a part of the history of an example
software system, with the activities made on the version-
ing system after a system’s release. A set of commits
C = {cx, ..., cx+4} are performed by developers to evolve
the system; all the commits change the same three files
(A.c, B.c, and C.c). In Figure 1, we see examples of non-
defective commits (cx and cx+3), partially defective com-
mits (cx+1, cx+4), and a fully defective commit (cx+2).

2.2. Related Work

In this section, we discuss the related work that in-
spired and guided this study, considering long- and short-
term defect prediction.

2.2.1. Long-term Defect Prediction

Long-term defect prediction pertains to models able to
classify defect-prone files in future releases of a software
project. Several studies addressed this problem in the re-
cent years (a relatively recent survey has been compiled
by Hall et al. [24]). Basically, the proposed models differ
for the source of information used to predict the defec-
tiveness of a class: the main distinction is between static,
product information and historical, process data.

Product Information. Structural data are computed
with metrics such as the McCabe’s cyclomatic complex-
ity [47] or the Chidamber and Kemerer (CK) [12] metrics.
These product metrics have been investigated in several
studies [2, 16, 17, 22, 26, 41, 56, 23] and researchers have
shown how such metrics can provide useful contribution
in the prediction of defective classes. For instance, Na-
gappan et al. [56] found that a model based on code
metrics may achieve up to 83% of accuracy in the identi-
fication of defect-prone classes.

1https://git-scm.com/
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Figure 1: An example set of (defective) commits after release to files in a software system.

Process Information. Historical data are computed
with metrics such as relative code churn, entropy of
changes, or developer-related factors [25, 22, 24, 54, 55,
57]. Also in this case, researchers provided empirical ev-
idence on the value of such metrics for defect prediction.
For instance, Moser et al. [54] performed a compara-
tive study analyzing static- and historical-based predic-
tors, concluding that metrics computed over the history
of projects are better predictors and can significantly im-
prove the performance of defect prediction models.

Combining Information. Later on, D’Ambros et al.
[14] found that combined techniques work better than
models based on single unique set of metrics. On the
basis of this result, di Nucci et al. [57] defined a com-
bined model based on a mixture of static and historical
metrics able to outperform the prediction capabilities of
single models. Finally, Menzies et al. [51] introduced the
concept of local defect prediction, an approach in which
classes that will be used for training the classifier are
firstly clustered into homogeneous groups to reduce the
differences among such classes and obtain higher predic-
tion accuracy.

We build on top of this line of work, by considering
the features that are better able to predict defects at file-
level—a key attribute that we include in our model.

2.2.2. Short-term Defect Prediction

Short-term defect prediction refers to models able to clas-
sify defect-prone at commit time. Previous work moti-
vated the introduction of this new strategy with the need
of having tools able to locate defects in the shortest pos-
sible time [52]. While Madeyski et al. [44] proposed the

idea of continuous defect prediction, Mockus et al. [52]
addressed the problem by proposing a model based on the
change-proneness of files to predict defects at commit-
level.

Characteristics of Defect-Introducing Changes.
Other studies (e.g., Sliwerski et al. [75] and Eyolfson
et al. [18]) tried to localize defect-introducing changes
in open source projects by means of correlation between
the defectiveness of a commit and the experience of
developers. Sliwerski et al. [75] also discovered that
defect-introducing changes are generally a part of large
transactions. The “unnaturalness” of defective code was
subsequently confirmed by Ray and Hellendoorn et al.
[72], who discovered that source code presenting defects
is characterized by higher entropy than non-defective
code. They also found that source code entropy might
be a valid and simpler way to complement the effec-
tiveness of static analysis tools (e.g., CheckStyle2) in
recommending to developers the areas of source code
where to focus inspection activities.

Ad Hoc Models. Jiang et al. [29] proposed the concept
of “personalized” defect prediction by proposing a tech-
nique able to create a different model for each developer.
Their results report that such a technique outperforms
existing just-in-time defect prediction models. Along
with this line, Xia et al. [86] improved the aforemen-
tioned technique by Jiang et al. using a multi-objective
genetic algorithm that firstly builds a defect prediction
model for each developer, and then combine these mod-
els assigning different weights with the aim of maximizing

2http://checkstyle.sourceforge.net

3



F-Measure and cost-effectiveness. With respect to these
papers, our approach has not the goal to build a predic-
tion model for each developer, but instead that of provid-
ing feedback on defect-prone classes within the scope of a
commit: further analysis will evaluate the possible ben-
efits provided by the creation of personalized models in
the context of fine-grained just-in-time defect prediction.

Just-In-Time. The studies by Kamei et al. [34, 32] are
great source of inspiration for our work. They proposed
a just-in-time quality assurance technique that predict
defects at commit-level trying to reduce the effort of a
reviewer [34]. Later on, they also evaluated how just-
in-time models perform in the context of cross-project
defect prediction [32]. Their main findings report good
accuracy for the models in terms of both precision and
recall, but also in terms of saved inspection effort. Our
work is complementary to these papers. In particular, we
start from their basis of detecting defective commits and
complement this model with the attributes necessary to
filter only those files that are defect-prone and should be
more thoroughly reviewed. Rahman et al. [71], Yang et
al. [88], and Barnett et al. [5] proposed the usage of
alternative techniques for just-in-time quality assurance,
such as cached history, deep learning, and textual anal-
ysis, reporting promising results. We did not investigate
these further in the current paper, but studies can be
designed and carried out to determine if and how these
techniques can be used within the model we present in
this paper to further increase its accuracy.

2.3. Motivating Example

We discuss an example in which a developer uses long-
vs. short-term defect prediction models while inspecting a
commit, in order to show some of the limitations of these
approaches.

The top part of Figure 1 depicts an example history
of a software system, with the activities made on the ver-
sioning system after a system’s release. A set of commits
C = {cx, ..., cx+4} are performed by developers to evolve
the system. For sake of clarity, suppose that the files A.c,
B.c, and C.c are always changed in the considered com-
mits after the system’s release. The small circles in the
top bar represent changes made to files in each commit
and the colors represent whether these changes introduce
a defect (purple) or not (dark green) in these files. In
addition, a black box surrounds all the files in the same
commit. In the following we describe the behavior of the
two aforementioned prediction models:

Long-term Defect Prediction. Based on the informa-
tion gathered before the system’s release, a long-term de-
fect prediction model would mark certain files as defect-
prone for the entire period leading to the issue of the next
release. In our example, the model marks the files B.c

and C.c as defect-prone and A.c as non-defective. The
model classifies both B.c and C.c as defective starting

from the system’s release onward, in Figure 1 we depict
this behavior with a horizontal small arrows, thus show-
ing that B.c and C.c are considered as defective in every
commit. Indeed, the model does not provide any informa-
tion about the exact commit that will likely lead to the
introduction of a defect. This model would issue warn-
ings about these files on each commit involving them. In
our example, this represents an unjustified extra-effort
for the developer inspecting the commit. As found in pre-
vious research, this unjustified extra-effort derived from
using a tool can reduce the developers’ confidence in the
prediction [65], thus leading to miss important defects
in future commits involving actual defect-prone artifacts.
Finally, we see that the model does not classify as defec-
tive the code in file A.c, also when a defect is introduced
in commit cx+2 (the missed defective file is depicted with
a yellow circle).

Short-term Defect Prediction. As an alternative, a
reviewer may adopt a short-term defect prediction model
such as the just-in-time one proposed by [34]. In this
scenario, a developer is pointed to analyze more in depth
only the files referring to a commit marked as poten-
tially defective by the model. However, the number of
resources to inspect might be still high depending on the
number of files committed and the wasted effort on how
many are defect-free. For instance, in the commit cx+1

shown in Figure 1, only the file B.c introduces a defect,
while the others are defect-free, yet a warning from the
tool would be issued; the developer may need to analyze
some non-defective files before finding the actual defect.
Thus, while short-term solutions can significantly reduce
the reviewers’ effort, they might still produce extra-effort
in cases a commit is partially defective. Furthermore, in
our example, file B.c is again defective in commit cx+4,
but it is not marked as such, since the model does not rec-
ognize the commit as defective (in the figure, the missed
defective file is depicted with a yellow circle).

The goal of our work is to make the first steps in sup-
porting software developers during the inspection of a com-
mit (e.g., in a code review), by striving to overcoming
the aforementioned limitations of existing defect predic-
tion models in this context. The next section details our
research questions and the research method.

3. Methodology

This section defines the overall goal of our study, mo-
tivates our research questions, and outlines our method.

3.1. Research Questions

The goal of the study is to investigate how frequently
commits are only partially defective and to devise a de-
fect prediction model able to identify the files with the
changes that are more likely to introduce a defect. We set
up our work around three research questions. The first
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Table 1: Characteristics of the subject software systems.

Project KLOC Developers Commits Defective Commits

Accumulo 102 66 8,747 1,399
Angular-js 87 1,589 8,467 1,525
Bugzilla 239 99 9,788 3,621
Gerrit 79 38 22,232 4,001
Gimp 102 216 38,240 8,412
Hadoop 291 92 15,556 2,606
JDeodorant 70 9 1,105 199
Jetty 88 70 12,638 3,286
JRuby 129 322 38,894 8,945
OpenJPA 822 25 4,848 1502

Overall 2,009 2,526 160,515 35,496

one is a preliminary analysis aimed at assessing the extent
to which a defect prediction model is actually able to es-
timate the defect-proneness of files within a commit. To
this aim, we investigate the ratio of commits that contain
both defective and not defective files. Should the frequency
of partially commits be low, standard just-in-time models,
such as the one devised by Kamei et al. [34] would be suffi-
cient, while in case there should be a notable percentage of
commits presenting both defective and non-defective files,
then defect prediction models working at a finer granular-
ity than standard just-in-time ones would be desirable.

RQ1. What is the ratio of partially defective commits?

Once assessed the actual need for finer grained solu-
tions, we devise a defect prediction model to predict de-
fective files at commit scope.

RQ2. To what extent can we predict defect-inducing
changes at file-level in a commit?

In addition to assessing the model as a whole, we also
evaluate which features provide the highest contribution
to the achieved performance.

RQ3. What are the features of the devised model that
the most to its performance?

Finally, we are also interested in understanding how
much effort could be saved when using the proposed model,
comparing it to the just-in-time defect prediction model
proposed by Kamei et al. [34] as our baseline.

RQ4. How much effort can be saved using a fine-
grained just-in-time defect prediction model with respect
to a standard just-in-time model?

In the following sections, we describe the steps we per-
form to answer our three research questions.

3.2. Subject Systems

To conduct our analysis, we focused on open-source
software systems and defined multiple selection criteria:
We selected software systems (i) written in the most com-
mon programming languages (C, C++, Java, JavaScript,
Ruby, and Perl, i.e., the most popular programming lan-
guages [10]), (ii) having different size and scope, and (iii)
having a change history composed of at least 1,000 com-
mits. We preferred open-source systems where a ver-
sioning system is used to track all changes. The access
to the source code history enables the computation of
metrics with static analysis tools. Moreover, to increase
the generalizability of our research, we selected software
projects having different domains and programming lan-
guages. Note that our selection is not intended to be sta-
tistically significant, but rather we just aim at selecting a
various set of systems to assess the performance of our pre-
diction model in different contexts (e.g., when considering
projects having different change history sizes). In prac-
tice, we started from the entire list of open source projects
available on GitHub; then we filtered out systems not im-
plemented in the considered programming languages and
with less than 1,000 commits in their history. Successively,
among 2,362,287 project candidates, we considered only
the most popular projects for a given domain or scope; fi-
nally, we randomly selected the ten open-source software
systems reported in Table 1. For each system, the table
reports size (in terms of KLOCs), number of developers,
number of commits, and the information on the number
of defective commits.

3.3. RQ1 - Investigating Defective Commits

To answer our first research question, we analyze the
ratio of the defective files (i.e., source code, configuration,
and auxiliary files) contained in defective commits. To
this aim, for each commit ci of the change history of a sys-
tem S, we identify the set defectiveF iles(ci) composed of
the defective resources contained in ci. To the best of our
knowledge, there is not a publicly available dataset report-
ing this information: Previous work defined datasets of de-
fective commits [34], without providing details on which of
the resources in a certain commit were actually defective.
For this reason, we build our own dataset as detailed in
the following.

Data Extraction. To automatically identify the set
of defective files in each of the commits of the considered
systems, we rely on the SZZ algorithm [76, 84]. SZZ ex-
ploits the annotation/blame feature of a versioning system
to estimate the lines of code of a file that induced a cer-
tain defect, thus retrieving files that are defect-inducing
in each commit. More formally, the algorithm implements
the following steps:

1. For each file fi (where i = 1...n) involved
in a defect fixing commit dfc, the algorithm
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prevV ersion(commit, file) extracts the last ver-
sion of the file before the defect fixing commit:
prevV ersion(dfc, fi);

2. Starting from the commit prevV ersion(dfc, fi), for
each line of code in fi changed to fix the defect in
dfc, the algorithm uses git blame to detect the file
revision where the last change to that line occurred.
We identify comments and empty lines using island
parsing [53] and we exclude fi if no other code is
touched. This step outputs the commits in which a
defect in file fi is introduced.

The SZZ algorithm takes as input the list of defects
that are already fixed by developers, excluding the open
ones,3 but the analysis and the effect of considering open
issues will be considered in future work (e.g., exploiting
tools such as ReLink [85]).

Data Analysis. Once extracted the defective files in-
volved in defective commits, we answer RQ1 in two ways.
First, we measure how many defective commits are par-
tially defective, i.e., they contain a mixture of both de-
fective and non-defective resources. This analysis allow us
to understand the magnitude of the problem investigated:
If the vast majority of defective commits is composed of
only defective artifacts, then standard just-in-time defect
prediction models would suffice; conversely, if a significant
part of defective commits is partially defective, then the
introduction of fine-grained solutions might be worthwhile.
Second, we further analyzed the set of partially defective
commits, by measuring the ratio between defective and
non-defective files they contain. More formally, we com-
puted the defectiveF ilesdc ratio as follow:

defectiveF ilesdc =
#defectiveF iles(dc)

#files(dc)
(1)

where #defectiveF iles(dc) represents the number of
defective files in the defective commit dc, and #files(dc)
the total number of files in dc. This analysis helped us
to understand the intrinsic characteristics of partially de-
fective commits. Also in this case, if the resulting ratio
is high (most files are defective in partially defective com-
mits), then the adoption of fine-grained solutions would be
not worthwhile.

3.4. RQ2 - The Fine-Grained JIT Model

To answer our second research question, we build a
fine-grained just-in-time defect prediction model and eval-
uate its performance. In the following, we describe (i)
the independent variables, i.e., the metrics on which the
model relies, (ii) the dependent variable, i.e., the charac-
teristic that the model have to predict, (iii) the machine
learner performing the predictions, and (iv) the validation
methodologies to estimate the accuracy.

3Open issues might be not verified by developers (i.e., they might
be not real defects).

i. Independent Variables. This step consists in ex-
tracting and quantifying the characteristics of each file
involved in a commit. To this purpose, we considered
the 24 basic features shown in Table 2. These features
represent a modified version of those previously proposed
by Kamei et al. [34] and Rahman and Devanbu [70]. We
adapted the previous metrics to work at file-level in a
commit. The column ‘Description’ in Table 2 details the
implementation of the metrics in our context. The choice
of the independent variable is driven by two goals: (i) to
understand the value of standard just-in-time measures
in a fine-grained context; (ii) to investigate whether met-
rics originally proposed in the context of long-term de-
fect prediction to predict defective files may also provide
useful contributions when employed in the prediction of
defective files contained in a change set.

Furthermore, the chosen metrics help us to character-
ize commits under different perspectives, thus allowing
us to evaluate which metric types are more relevant in
our context. Specifically, we selected metrics to measure
(i) the developers’ experience (e.g., the experience of the
committer [34]), (ii) structural and process factors of the
files in the commit (e.g., the lines of code added or the
number of previous changes of a committed file [70]), and
(iii) factors related to the neighbors’ of a committed file,
which have been shown to be relevant for predicting the
defectiveness of files [70]. Although other metrics have
been proposed in the contexts of both code review (e.g.,
by McIntosh et al. [48] and Kononenko et al. [38]) and
defect prediction (e.g., [14, 57]), the selected metrics bet-
ter allow us to verify the role of a larger set of metrics
that have been previously adopted for traditional short-
and long-term defect prediction. Further studies can be
conducted to investigate the addition of other metrics in
our context.

From a methodological standpoint, the process metrics
adapted from Rahman and Devanbu [70] (i.e., COMM,
ADEV, DDEV, ADD, DEL, OWN, MINOR, SCTR,
NADEV, NDDEV, NCOMM, NSCTR, OXEP, and EXP)
were always evaluated considering the commits up to the
commit of interest. Similar adjustments were applied for
the metrics proposed by Kamei et al. [34]. For instance,
the NUC metric represents the number of unique changes
to the files modified in a commit. In our case, we adjust
NUC to represent the number of times a single file in-
volved in a commit is modified alone up to the considered
commit. Descriptions of how we adapted the Kamei et al.
[34] and Rahman and Devanbu [70] metrics are reported
in Table 2.

ii. Dependent Variable. The characteristic to measure
is the defectiveness of files contained in a commit. To
this aim, we exploited the dataset built in the context of
RQ1 (i.e., we used the output of the SZZ algorithm as a
dependent variable to predict).

iii. Machine Learner. In this stage, we needed to se-
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Table 2: List of the independent/predicting variables adapted from Rahman et al. [70]∗ and Kamei et al. [34]∗∗

Acronym Name Description Ref.

COMM Commit Count Number of changes to the file up to the considered commit *
ADEV Active Dev Count Number developers who modified to the file up to the considered commit *
DDEV Distinct Dev Count Cumulative number of distinct developers contributed to the file up to the considered commit *
ADD Normalized Lines Added Normalized number of lines added to the file in the considered commit *
DEL Normalized Lines Deleted Normalized number of lines removed to the file in the considered commit *
OWN Owner’s Contributed Lines Boolean value indicating whether the commit is done by the owner of the file *
MINOR Owner’s Contributed Lines Number of contributors who contributed less than 5% of the file up to the considered commits *
SCTR Changed Code Scattering Number of packages modified by the committer in the commit *
NADEV Neighbor’s Active Dev Count Number of developers who changed the files involved in commits where the file has been modified *

NDDEV Neighbor’s Distinct Dev Count
Cumulative number of distinct developers who changed the files involved in commits
where the file has been modified

*

NCOMM Neighbor’s Commit Count Number of commits made to files involved in commits where the file has been modified *
NSCTR Neighbor’s Commit Count Number of different packages touched by the developer in commits where the file has been modified *
OEXP Neighbor’s Commit Count Percentage of lines authored in the project *
EXP All Committer’s Experience Mean of the experiences of all the developers *
ND Number of modified directories Number of modified directories **
Entropy Distribution of modified code across each file Entropy of changes of the file up to the considered commit **
LA Lines of code added Number of lines added to the file in the considered commit (absolute number of the ADD metric) **
LD Lines of code deleted Number of lines removed to the file in the considered commit (absolute number of the DEL metric) **
LT Lines of code in a file before the change Lines of code in the file before the change **
AGE Average interval between the last and the current change The average time interval between the last and the current change **
NUC Number of unique changes to the modified files Number of times the file has been modified alone up to considered commit **
CEXP Experience of the committer Number of commits made on the file by the committer up to the considered commit **
REXP Recent developer experience (last x months) Number of commits made on the file by the committer in the last month **
SEXP Developer experience on a subsystem Number of commits made by the developer in the package containing the file **

lect a machine learning classifier able to use the inde-
pendent variables to infer the defectiveness of files in a
change set [20]. To this aim, we tested different classi-
fiers (using the validation methodologies described later
in this section), i.e., Binary Logistic Regression [39], J-
48 [45], ADTree [19], Multilayer Perceptron [83], Naive
Bayes [31], and Random Forest [43]. As a result, we
found that the Random Forest technique [43] is the one
having the highest performance, in line with previous
findings [30, 73]. A complete report of such analysis is
available in our online appendix [66].

Such classifiers builds several decision trees, each of them
containing nodes representing a condition on a certain
feature that splits the dataset into two. A condition
is chosen based on the so-called Mean Decrease in Im-
purity (MDI) [21], a metric able to measure the extent
to which the value of a feature can correctly discrimi-
nate the dependent variable. It is important to point out
that the selected classifier automatically performs a fea-
ture selection, thus avoiding the well-known problem of
multi-collinearity [58] that occurs when two or more in-
dependent variables correlate with each other, possibly
affecting the performance of the classifier.

iv. Validation Methodologies. The final step to an-
swer RQ2 is related to the validation of the model. Com-
monly used techniques such as ten-fold cross [15, 80],
or leave-one-out cross-validation [74] are not suitable for
the validation of just-in-time defect prediction models be-
cause the data points (i.e., the commits) follow a certain
time order: Time-insensitive validation strategies might
cause a model to be trained using future data that should
not be known at the time of the prediction [80]. For this
reason, we adopt a time-sensitive analysis where the de-
fectiveness of a commit ci is evaluated by a model trained
using the data coming from the previous three months of

history of the system considered. In other words, while
the training set is composed of three-month data, the
test set is represented by each commit singularly. Do-
ing so, we exclude the first three months of change his-
tory, because of the lack of data needed to perform a
proper validation [80]. Our choice of considering three-
month periods is based on: (i) choices made in previous
work [25, 57, 80] and (ii) the results of an empirical assess-
ment we performed on such a parameter. The empirical
assessment showed that the best performance for the de-
vised model is achieved by using three-month periods. In
particular, we experimented with time windows of one,
two, three, and six months. The complete results are
available in our replication package [66].

Afterward, we measure the performance of the model us-
ing precision and recall [4]:

precision =
|TP |

|TP + FP |
(2)

recall =
|TP |

|TP + FN |
(3)

where TP , FP , and FN are:

• True Positives (TP ): elements that are correctly
retrieved by the fine-grained just-in-time predic-
tion model (i.e., defective files correctly classified
as such);

• False Positives (FP ): elements that are wrongly
classified by the fine-grained just-in-time prediction
model (i.e., non-defective files misclassified as defec-
tive by the model);

• False Negatives (FN): elements that are not
retrieved by the fine-grained just-in-time predic-
tion model (i.e., defective files misclassified as non-
defective by the model).
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In addition, to have a unique value that synthesizes pre-
cision and recall we also measure the F-measure, i.e., the
harmonic mean of precision and recall:

F −Measure = 2 · Precision ·Recall
Precision+Recall

(4)

While the metrics described so far have been widely used
in the past to evaluate defect prediction models [24], most
of the classifiers output a probability ranging between 0
and 1 representing the likelihood of a code component to
be part of a certain class (i.e., in our case, to be defective
or non-defective). The threshold used to discriminate the
two classes (in most cases—as well as in this work—such
threshold is set to 0.5) influences the computation of both
precision and recall, and as a consequence of F-Measure.
ROC plots the true positive rates against the false posi-
tive rates for all possible thresholds between 0 and 1; the
diagonal represents the expected performance of a ran-
dom classifier. AUC computes the area below the ROC
and allows us to have a comprehensive measure for com-
paring different ROCs: An area of 1 represents a perfect
classifier (all the defective methods are recognized with-
out any error), whereas for a random classifier an area
close 0.5 is expected (since the ROC for a random clas-
sifier tends to the diagonal). To have a detailed view of
the performance of the model in the different cases found
in RQ1, in Section 4.2 we report the evaluation metrics
achieved when ran the model over the set of (i) all the
defective commits in the dataset, (ii) partially defective
commits only, and (iii) fully defective commits only.

3.5. RQ3 - Investigating the Importance of the Features

While in RQ2 we provide an overview of the accuracy
of the devised model in predicting defective files within a
commit, RQ3 has the goal of investigating which features
contribute the most to the prediction capabilities. To ad-
dress this point, we use an information gain algorithm [69]
to quantify the gain provided by each independent variable
to the prediction of defective files within commits. For-
mally, let M be the devised fine-grained just-in-time pre-
diction model, let F = {f1, . . . , fn} be the set of features
used by M , the information gain algorithm [69] applies the
following formula to compute the difference in entropy:

InfoGain(M |fi) = H(M)−H(M |fi) (5)

where the function H(M) indicates the entropy of the
model that includes the feature fi, while the function
H(M |fi) measures the entropy of the model that does not
include fi. Entropy is computed as follow:

H(M) = −
n∑

i=1

prob(fi) log2 prob(fi) (6)

The algorithm quantifies the degree of uncertainty in
M that is reduced by considering the feature fi. In our

work, we employ the Gain Ratio Feature Evaluation al-
gorithm [69], which ranks f1, . . . , fn in descending order
based on the contribution provided by each feature to the
decisions made by M . More specifically, the output of
the algorithm is represented by a ranked list in which the
features having the highest expected reduction in entropy
are placed at the top. During this step, we also verified—
through the evaluateAttribute function of the Weka4

implementation of the algorithm—whether a certain fea-
ture mainly contributes to the identification of defective or
non-defective files, i.e., if there exists a positive or negative
relationship between the feature and the defect-proneness
of files.

3.6. RQ4 - Measuring the Saved Effort

For RQ4 we investigate the potential benefits in terms
of saved effort that the fine-grained just-in-time defect pre-
diction model provides to a developer analyzing the com-
mitted files to discover possible defects (e.g., in a code re-
view). Specifically, we perform an effort-aware validation
as recommended by Ostrand et al. [59]. In this formula-
tion, a technique is assessed on the fraction of defects it
can detect while varying the effort required to locate them.
As done in previous work [34], we first rank the files to in-
spect according to their probability of being defective, as it
is assigned by the automated classifier (in our case, Ran-
dom Forest); then we measure the percentage of defects
that a developer would identify as the effort spent in ana-
lyzing the suggested defective files increases. To approxi-
mate such an effort, we use the number of lines of code to
inspect ; this metric has been shown to be a surrogate mea-
sure of the effort needed for testing or reviewing a module,
as code and cognitive complexity are strongly related to
size [56]. Thus, size can be considered as a lightweight
and efficient solution to estimate the developer’s effort in
inspecting a code change [2, 33, 49, 50].

We compare our model to the traditional just-in-time
defect prediction model proposed by Kamei et al. [34]. The
selection of this baseline is driven by experimental tests,
where we found that this approach works better than the
twelve unsupervised techniques proposed by Yang et al.
[89]. In particular, the model by Kamei et al. [34] achieves
an AUC-ROC 6% higher than the best unsupervised tech-
nique, which was the one that predicts a commit as de-
fective in case of a number of committed files higher than
eight. We report the results of this additional analysis in
our online appendix [66].

To perform a fair comparison, the baseline relies on the
same predictors used by Kamei et al. in their experiments
and is trained using the best performing classifier (i.e.,
Random Forest, the same used by our approach). We also
empirically evaluate the performance of the several clas-
sifiers, namely Binary Logistic Regression [39], J-48 [45],
ADTree [19], Multilayer Perceptron [83], Naive Bayes [31],

4https://www.cs.waikato.ac.nz/ml/weka/
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and Random Forest [43], when applied on the model by
Kamei et al. [34]. Also in this case, Random Forest classi-
fier outperforms the others.

As the baseline can only assign defect probabilities to
commits (because of the commit-level granularity), we as-
sume that the same probability holds for all files within
that commit. In other words, if a commit is considered
defective by Kamei et al. ’s technique, then all the files
within that commit are considered as potentially defective
and have the same probability to require further inspec-
tion by a developer. To determine in which sequence the
developer would inspect the files in the same commit, we
use the alphabetical order, because it is the normal order
offered by both IDEs and code review tools [7]. Once we
assign the probabilities/order to all the files, we rank them
in descending order and compare it with the ranking pro-
vided by our technique. It is worth noting that we expect
our technique to outperform this baseline, as by definition
it aims at lowering the granularity of the information pre-
sented to developers. Nevertheless, we still consider this
comparison useful because we can verify whether and how
much our approach actually meet the expected goal.

Finally, we perform a comparison with the optimal ap-
proach that ranks all the actual defective files first, starting
from the smallest to the largest. In this way, we can in-
vestigate how far our technique is with respect to optimal
scenario as well as how much it improves upon existing
just-in-time approaches.

Data Analysis. To quantify the differences between
our model and the baselines, we use the Popt and Pk evalu-
ation metrics [49]. Popt is defined as the ∆opt between the
effort-based cumulative lift charts of the optimal model
and the devised prediction model. Similarly, ∆k is defined
as the ∆k between our technique and the one by Kamei
et al. [34]. Larger values of Popt and Pk indicate smaller
differences between the compared techniques. Such values
are normalized in the range [0,1] to ease their interpreta-
tion [34].

3.7. Threats to validity

The results of our study may be affected by a number
of threats.

Threats to construct validity. As for factors threaten-
ing the relation between theory and observation, in our
context, these are mainly concerned with the measure-
ments we performed. Above all, we rely on the results of
the SZZ algorithm [76] to answer our research questions.
Although the intrinsic imprecisions of SZZ [13] still rep-
resent a threat for the validity of our results, it is the
most effective algorithm available in literature.

To compute the CEXP, REXP, SEXP metrics, we mined
commits to count the number of modifications applied by
a developer in different time windows. However, it might
be possible that the actual author of a commit is not the
same person as the committer. That may be especially

true in large projects where sometimes developers (e.g.,
newcomers) can modify the source code but do not have
rights to perform a push onto the repository. This po-
tential problem might have influenced the way the met-
rics are computed and used within the devised prediction
model. To verify the extent to which this represents an
actual issue for our analyses, we quantified in how many
cases there was a mismatch between author and com-
mitter in the analyzed commits. Specifically, for each
commit of the considered projects, we ran the command
git show --format=full5 to obtain the full set of in-
formation available for the commit. That includes data
on both author and committer email addresses. Thus,
we could compute the number of times in which the two
email addresses differ, i.e., in how many cases the author
of a change was not the actual committer. Out of the
160,515 total commits considered in our study, we found
4,173 mismatches, meaning that we are not accurate in
only 2.6% of the cases. Based on this result, we can argue
that such mismatches represent corner cases rather than
systematic problems that threats our analysis. To further
verify the impact of this potential threat, we completely
re-ran our study excluding those 4,173 commits. How-
ever, we did not observe any difference for the results
achieved when including the commits. That indicates
that mismatches between authors and committers do not
influence our findings. A complete overview of this addi-
tional analysis is available in our online appendix [66].

Threats to conclusion validity. Although the metrics
used to evaluate the performance of the fine-grained
just-in-time defect prediction model, (i.e., precision, re-
call, F-measure, and AUC-ROC), are widely used in the
field [14], future studies can be conducted to validate our
model from a different angle, e.g., by evaluating its in-
dustrial impact.

A possible threat concerning the results achieved in RQ1

is related to the co-presence of production and test files
within a commit, which may lead to a over-estimation of
the number of partially defective commits. We conducted
an additional analysis to assess the effect of excluding test
files on our findings. We could not find differences with
respect to the results reported in the original submission
(a complete report of this additional analysis is available
in our online appendix [66]). These results are in line with
recent work: Even test code may be defective [82] and
test files have the same proneness of production files to
be affected by functional issues [78]. It seems reasonable
to keep test files in our analysis/approach to maintain
developers’ awareness also on bugs in tests.

Another threat regards how we assess the cost-
effectiveness of the models experimented. As done in
previous research [9, 64, 2, 33, 49, 50], we measure the
inspection cost in terms of lines of code to be inspected

5https://git-scm.com/docs/git-show
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by a reviewer. LOC has been evaluated as a valid proxy
measure [2] since it is correlated with code and cogni-
tive complexity [56]. However, this is an approximation.
Function points (FPs) [46] represent an alternative that
we do not consider in this study, since it requires setting
parameters that only original developers/managers or ex-
pert effort estimation consultants might properly set and
a third-party analysis done by the authors of this paper
would introduce noise/bias. Future work can be designed
and conducted to investigate how much size approximates
defect inspection effort.

In the context of RQ2, we adopt a time-sensitive vali-
dation strategy where a single commit ci represents the
test set and the data of the previous three months form
the training set. We select this strategy because this is
the most similar to a real-case scenario where develop-
ers use the devised approach as soon as a new commit is
performed, for example in a code review. While other re-
searchers adopted slight variations of this strategy (e.g.,
Tan et al. [80] used a gap between training and test sets
to add in the training set defective commits that were
discovered and fixed), we preferred it for its stronger eco-
logical validity.

We statistically compare the differences between our
model and the standard just-in-time model proposed by
Kamei et al. [34]. We do not perform statistical tests
with the Bonferroni correction [1]: This is a conscious
decision taken on the basis of the findings by Perneger
[67], who explained why such a correction is unnecessary
and deleterious for sound statistical inference. Finally,
we assess the model for the presence of multi-collinearity
[58], relying on Random Forest, which can automatically
remove non-relevant features.

As a final note, we compare our model with the one pro-
posed by Kamei et al. [34] in the context of RQ4 (the
cost-effectiveness analysis) but not in RQ2 (the accuracy
analysis). On the one hand, the model by Kamei et al.
[34] targets a different problem (i.e., detecting defective
commits rather than defective files within commits), thus
it cannot be fairly compared with the proposed model in
terms of accuracy. This statement is supported by ex-
perimental data, which showed that the model by Kamei
et al. [34] achieved an overall F-Measure of 31% and AUC-
ROC of 53% when employed in our context (by consider-
ing all the files within an identified defective commit as
defective). On the other hand, the comparison performed
regarding cost-effectiveness allows us to understand and
quantify the gain provided by our approach against state
of the art.

Threats to external validity. The main issue concerns
the generalizability of the results. To alleviate this issue,
we take into account a variety of projects having differ-
ent characteristics, scope, and size. Nevertheless, future
studies must be devised to replicate and extend our in-
vestigation on a larger set of systems, possibly taking into

consideration industrial projects as well.

Table 3: Results for RQ1 on partially defective commits

Ratio

Systems
Partially

defective commits
Defective files

Avg. files
per commit

Accumulo 46% 44% 4.1
Angular-js 51% 38% 2.2

Bugzilla 47% 37% 5.4
Gerrit 38% 43% 3.3
Gimp 44% 45% 4.3

Hadoop 49% 38% 3.1
JDeodorant 39% 47% 3.4

Jetty 53% 46% 3.8
JRuby 45% 42% 3.5

OpenJPA 40% 37% 4.0
Overall 43% 42% 3.7

4. Results and Analysis

In this section, we present the results of the study by
research question.

4.1. RQ1. What is the ratio of partially defective com-
mits?

The analysis of the results associated to the first re-
search question aims to understand the prominence of par-
tially defective commits, hence the importance of devising
a fine-grained solution for just-in-time defect prediction.
Table 3 reports the results for each considered system:
The second column reports the percentage of partially de-
fective commits contained in the considered systems, the
third column shows the percentage of defective files for
each projects (computed using Formula 1), and the fourth
column reports the average number of files per commit in
the considered systems. The last row (“Overall”) repre-
sents the average ratio computed taking into account all
the projects as a single dataset.

Among all the defective commits investigated we found
that 43% of them are partially defective, i.e., they con-
tain a mixture of both defective and non-defective files,
while 57% of defective commits only contain one resource.
Thus, while standard just-in-time models can be adopted
in most cases, there still exists a consistent part of de-
fective commits for which they cannot provide developers
with detailed information.

Investigating the partially defective commits more in
depth, we found that on overall only 42% of committed
files are defective; this is quite surprising, since it implies
that less than the half of the elements in a partially de-
fective commit is actually defective. Considering the per-
spective of a developer who has to inspect the files in a
change set, she might spend more than half of the time
inspecting non-defective resources before finding an actual
defect.
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For instance, let us consider the commit a0641ea475

belonging to the Angular.js project.6 In this case, the
developer committed 9 different files with the aim of mak-
ing configurable the errors to show in case of wrong usage
of the tool. However, there was only one defective file in
the whole change set, i.e., the minErr.js one. As a conse-
quence, the usage of coarse-grained just-in-time prediction
model such as the one proposed by Kamei et al. might
not provide the adequate support in these cases. The ob-
servations made until now still hold when considering the
“best” scenario reported in the table, i.e., the one of the
JDeodorant project, where we found that 47% of the
resources in a defective commit is affected by a problem,
enforcing a developer to inspect many non-defective re-
sources before diagnosing the defect.

With the aim of further understanding the characteris-
tics of defective commits, we also computed the Kendall’s
τ correlation [35] between the number of files per commit
and the number of defective files. This is a non-parametric
statistical test used to measure the ordinal association be-
tween two measured quantities, with a value ranging be-
tween -1 and +1.7 In our case, the correlation between
number of files per commit and number of defective files
turned to be equals to 0.42, thus indicating a positive con-
cordance between the two variables. This confirms previ-
ous findings reporting that the more resources a developer
changes the higher the chances to introduce defects [28].

In conclusion, the results show the need of fine-grained
techniques to reduce the number of resources to inspect in
a defective commit.

Result 1: 42% of defective commits in our subjects are
partially defective, i.e., composed of both files that are
changed without introducing defects and files that are
changed introducing defects. Further, in almost 43%
of the changed files a defect is introduced, while the
remaining files are defect-free.

4.2. RQ2. To what extent can the model predict defect-
inducing changes at file-level?

To answer our second research question we evaluate the
effectiveness of the prediction model described in Section
3.4 based on a machine learning algorithm built using the
Random Forest classifier. For sake of clarity, we report
the results of both RQ2 and RQ3 in three separated tables
that have a similar structure. The columns “RQ2” report
the evaluation metrics, i.e., precision, recall, F-measure,
and AUC-ROC, for each system. Table 4 is obtained eval-
uating our model considering indiscriminately all commits
in the history of the projects, instead Table 5 considers

6https://github.com/angular/angular.js/pull/15881
7(i) -1 represents a perfect negative linear relationship, (ii) +1 a

perfect positive linear relationship, and (iii) the values in between
indicate the degree of linear dependence between the two measured
quantities

Table 4: Results of the RQ2 considering all commits in the history
of the subject software systems.

RQ2 RQ3
Systems

Precision Recall F-measure AUC-ROC Cost-effectiveness
Accumulo 71% 66% 69% 82% 16% (L)
Angular-js 73% 62% 68% 79% 18% (L)
Bugzilla 65% 65% 65% 73% 4% (M)
Gerrit 69% 62% 65% 72% 8% (L)
Gimp 61% 59% 60% 69% 16% (L)
Hadoop 67% 58% 63% 73% 7% (L)
JDeodorant 75% 61% 68% 74% 11% (L)
Jetty 60% 65% 62% 77% 17% (L)
JRuby 64% 61% 62% 70% 21% (L)
OpenJPA 63% 60% 61% 72% 7% (M)
Overall 67% 62% 65% 76% 13% (L)

Table 5: Results of the RQ2 considering only partially defective com-
mits in the history of the subject software systems.

RQ2 RQ3
Systems

Precision Recall F-measure AUC-ROC Cost-effectiveness
Accumulo 76% 69% 73% 85% 19% (L)
Angular-js 75% 63% 69% 77% 23% (L)
Bugzilla 69% 68% 68% 74% 4% (M)
Gerrit 77% 66% 72% 77% 9% (L)
Gimp 65% 63% 64% 69% 17% (L)
Hadoop 68% 61% 64% 76% 11% (L)
JDeodorant 83% 68% 76% 79% 16% (L)
Jetty 64% 69% 67% 83% 20% (L)
JRuby 66% 63% 65% 73% 28% (L)
OpenJPA 66% 64% 65% 71% 7% (M)
Overall 72% 65% 69% 77% 16% (L)

Table 6: Results of the RQ2 considering only fully defective commits
in the history of the subject software systems.

RQ2 RQ3
Systems

Precision Recall F-measure AUC-ROC Cost-effectiveness
Accumulo 65% 63% 64% 72% 7% (M)
Angular-js 71% 61% 66% 80% 13% (L)
Bugzilla 61% 62% 61% 71% 3% (S)
Gerrit 62% 58% 60% 66% 6% (M)
Gimp 57% 58% 57% 68% 13% (L)
Hadoop 66% 56% 60% 64% 6% (M)
JDeodorant 74% 59% 67% 73% 9% (L)
Jetty 61% 64% 62% 71% 11% (L)
JRuby 62% 59% 61% 69% 18% (L)
OpenJPA 60% 60% 60% 67% 6% (M)
Overall 63% 61% 62% 70% 10% (L)
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only partially defective commits and Table 6 represents
only fully-defective commits.

Looking at the full-inclusive results of Table 4, we
observe that the precision ranges between 60% and
75% (overall=67%), the recall between 58% and 66%
(overall=62%), while the overall F-measure is equal to
65%. Interesting are the results in terms of precision: in
a context where the recommendations are given when de-
velopers are committing their changes on the repository,
having a tool able to pinpoint the files that are likely defec-
tive can avoid the introduction of a consistent number of
defects in a system. Assuming that developers can recog-
nize a defect should they get a true positive warning from
our model, the adoption of our model has the potential
to be useful in practice, since its precision is higher than
60% in most of the cases. The recall values tell us that
our model locates more than half of the defects actually
present in the subject systems.

Considering also the AUC-ROC we observe that the
model obtains levels between 69% and 82% (overall=76%).
The worst case observed in our dataset regards the Gimp
project, where our model achieves the lowest F-measure
(60%). Investigating the likely causes behind this result,
we found that our model was not able to work on the other
projects because of the peculiar characteristics of the C
programming language used. In particular, 39% of the
change sets were composed of interacting files (e.g., a file
C including functions from other files): consistent modi-
fications to files including several external files were often
performed, while minor defective changes were performed
on the other files. As a consequence, the metrics computed
(e.g., the normalized number of lines of code added) were
not effective.

We do not observe large decays between the over-
all metric values and the highest/lowest ones (i.e., the
difference is always within 21%). This means that the
fine-grained just-in-time model is consistent across the
projects.

When analyzing the results obtained by the models
built only considering partially and fully defective com-
mits (Table 5 and Table 6), we observe that the former
outperforms the latter by 7% in terms of both F-measure
and AUC-ROC. Since the goal of this paper is to assess the
extent to which a prediction model can identify defective
files within commits, we consider the performance of the
technique built on partially defective commits as encourag-
ing because the proposed approach is actually able to meet
the intended goal. At the same time, we consider the per-
formance degradation noticed on fully defective commits
as reasonable. Unfortunately, we are not able to speculate
on the specific reasons causing such degradation. Likely,
the addition of further independent variables able to char-
acterize the defectiveness of commits as a whole (e.g., the
metrics devised by Kamei et al. [34]) can be beneficial
to improve the performance of the model further. A fu-
ture research effort can be devoted to the potential combi-
nation between just-in-time and fine-grained just-in-time

Table 7: Gain Provided by Each Feature To The Prediction Model.

Variable name Expected Entropy Reduction Shape
CEXP 0.76 defective
LA 0.71 defective
NCOMM 0.68 non-defective
REXP 0.64 defective
ND 0.58 non-defective
SCTR 0.55 defective
Entropy 0.49 non-defective
OWN 0.48 non-defective
SEXP 0.43 defective
LD 0.33 non-defective
MINOR 0.31 defective
DEL 0.28 non-defective
ADD 0.21 defective
COMM 0.19 defective
NSCTR 0.17 defective
DDEV 0.12 defective
NDDEV 0.10 non-defective
OEXP 0.09 non-defective
EXP 0.09 defective
ADEV 0.06 non-defective
NADEV 0.04 non-defective
NUC 0.04 non-defective
LT 0.03 defective
AGE 0.02 defective

models. In any case, our results show that in the majority
of the cases the model can provide further recommenda-
tions also when considering fully-defective commits. Fi-
nally, the model including all commits inherits pros and
cons observed in the cases of the models built on partially
and fully defective commits only. In other words, it can
predict partially defective commits better than fully de-
fective ones, having higher performance on the former and
lower on the latter; that shifts performance in the middle
to the individual models.

Result 2: The proposed model achieves an over-
all AUC-ROC of 76% and obtains stable performance
across the considered projects.

4.3. RQ3. What are the features of the devised model that
the most to its performance?

Table 7 reports the results achieved when applying the
Gain Ratio Feature Evaluation algorithm [69] to under-
stand which are the most relevant features that allow the
model to identify defect-inducing changes within the files
of a commit. In particular, for each variable we report
(i) the expected entropy reduction it gives to the model
and (ii) the shape of the relationship with the dependent
variable, i.e., whether the feature contributes more to the
prediction of defective or non-defective files.

Four key factors give the highest contribution to the
performance of the model, i.e., experience of the commit-
ter, lines of code added, neighbor’s commit count, and
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Figure 2: Results achieved for RQ4.

recent experience of the committed. All of them have an
expected entropy reduction higher than 0.6, which means
that they are highly relevant to discriminate defective files.
The number of modified directories is also pretty rele-
vant, with an entropy reduction of 0.58, while the result
of the changed code scattering (entropy reduction=0.55)
confirms that non-focused modifications tend to have an
adverse effect on source code quality [57]. Other factors,
even though lower in ranking, can characterize defective
files within a commit, such as entropy or owner’s con-
tributed lines. The remaining independent variables tend
to be less/poorly related to defective files (e.g., the average
interval between the last and the current change).

Looking more in depth into the results, we observe
that the model relies on different types of information to
discriminate defective and non-defective files. For exam-
ple, experience-related metrics have a positive relationship
with the dependent variable, meaning that they mostly
help in detecting defective files. It seems reasonable to
think that this is due to a substantial difference in the
behavior of developers expert and non-expert of a partic-
ular piece of code, which the model can correctly interpret
for the identification of defect-inducing changes. Similarly,
the amount of lines added mainly indicates the defective-
ness of an artifact. On the other hand, several factors
contribute more to the prediction of non-defective files.
Among them, the NCOMM feature, which represents the
neighbor’s commit count, has a strong impact on the pre-
dictions made by the model on non-defective files: this
indicates that the number of changes applied to files con-
nected to a specific file can particularly characterize the
lack of defects.

To sum up, this analysis let emerge that defective com-
mits are strongly explained by developer-related factors

(thus corroborating the need for methodologies and tools
for an efficient allocation of resources) and that developers
should perform small changes. Our results are in partial
agreement with the findings by Kamei et al. [34]: indeed,
only the experience of the committer is a powerful pre-
dictor in both traditional and fine-grained just-in-time de-
fect prediction. Instead, when comparing our results with
those of Rahman and Devanbu [70], we confirm that pro-
cess metrics are generally better predictors than product
ones. More in general, we observe that no single family of
metrics (i.e., product, process, or developer-related) pro-
vides the best predictors; this is in line with recent find-
ings reporting the importance of exploiting a combination
of metrics to improve the performance of prediction mod-
els [11, 57].

Result 3: Developer-related factors are those that gen-
erally provide the highest contribution to the prediction
of defective files within commits. Similarly, also the
amount of lines added influences the prediction.

4.4. RQ4. How much effort can be saved using a fine-
grained just-in-time defect prediction model with re-
spect to a standard just-in-time model?

This analysis is intended to provide evidence on the
effort developers can save using our model to guide the
inspection of commits for defects. We consider the state
of the art just-in-time model and the optimal results for
comparison. Figure 2 plots the effort-based cumulative lift
charts of the experimented techniques. The devised fine-
grained just-in-time solution presents a larger curve with
respect to the technique of Kamei et al. [34]: this confirms
the ability of our model to work better than the baseline,
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and thus it can optimize the effort required by a developer
to locate actual defects. For instance, our results show
that 54% of all defects can be identified by investigating
an effort of 24% in terms of lines of code to inspect. With
the same budget, only 27% of them can be found by rely-
ing on the technique by Kamei et al. [34]. This observation
is confirmed when considering the Pk metric, that is equal
to 0.43. Thus, the devised technique seems to represents
a more viable solution for predicting defects at commit-
level. A clear example can be found in the JRuby project
and is represented by the pull request #43718 where two
reviewers needed to inspect four committed files. In one of
these, i.e., the mx jruby.py file composed of 171 lines of
code, a defect was identified. On this commit, our model
correctly marked the file as defective. At the same time,
the model by Kamei et al. also correctly pointed out the
defectiveness of the commit. However, while the effec-
tiveness of the models is the same their code review cost
is largely different: using the proposed model a reviewer
should have focused on the mx jruby.py file only, while
using the baseline one she should have potentially investi-
gated all the four files, leading to the analysis of a total of
1,947 LOCs (i.e., +1,776 LOCs).

If we consider the differences between our technique
and the optimal model, the Popt is 0.31. This means
that, as expected, the optimal model outperforms ours.
Nonetheless, we can also see that the difference is closer
when considering a reduced effort budget, i.e., in cases
where developers have limited time to dedicate to defect
fixing activities. For example, let consider a hypothetical
limited budget of 10%: in this case, using our technique, it
is possible to identify 23% of the defective files, while with
the optimal technique 35%. This indicates that, at least
in the first phases, our model can be considered as a valid
solution to speed up the identification of defects. At the
same time, we argue that more research on the topic would
be needed, as there is still room for further improvements.

When considering the individual projects, we observe
that the Bugzilla and OpenJPA projects follow a dif-
ferent trend. Further analyzing these cases, we found that
the limited improvement with respect to the baseline was
due to the characteristics of the commits in that reposito-
ries. Even though in RQ1 we found that average commit
defectiveness ratio of the systems was 37% in both the
cases, often the commits on these repositories contain few
resources, i.e., the average number of resources per commit
was 2.3 and 3.4 for the two systems, respectively. This as-
pect limited the difference in the inspection costs achieved
by the experimented models since in cases of defective com-
mits composed of few resources the lines of code to inspect
with the two models is similar. Nevertheless, also in these
systems, the fine-grained solution outperforms the base-
line: this result indicates that the proposed model may
be useful also on systems which follow restrictive commit

8https://github.com/jruby/jruby/pull/4371 (associated with the
commit 9c921e)

policies or whose developers tend to commit fewer changes
(e.g., to avoid the introduction of tangled changes [27]).

Finally, it is worth remarking that the results achieved
on the entire set of defective commits were also confirmed
when considering partially and fully defective commits in-
dependently.

Result 4: Considering an effort-budget of 24%, 54%
of the defects can be identified by our technique. In
comparison with the state of the art, we observe that
the devised technique represents a more viable solution
to locate defects at commit-time. Our model improves
upon the baseline also with a few files per commit.

5. Conclusion

Many defect prediction models have been proposed to
locate defect-prone files or commits exploiting long-term
or short-term techniques, respectively. Nevertheless, such
models suffer from limitations due to the coarse-grained
granularity of the predictions performed, which hinder
their practical applicability (e.g., in code review). For
this reason, we investigated the possibility to devise a fine-
grained just-in-time defect prediction model to locate de-
fective files contained in a commit. The study considered
10 open-source systems written in different programming
languages and having different size and scope. In total we
analyzed 160,515 commits of which 35,496 defective.

The main contributions made by this paper are:

1. An empirical validation aimed at understanding the
prominence of partially defective commits, i.e., com-
mits containing both defective and non-defective files
on a set of 10 different open source software projects.
The results highlight that almost half of defective
commits contain both defect-inducing and defect-
free changes.

2. A fine-grained just-in-time defect prediction model
and its empirical evaluation, which showed perfor-
mance up to 82% in terms of AUC-ROC.

3. An assessment of the cost-effectiveness of our model
and its comparison with the standard just-in-time
model proposed by Kamei et al. [34], with evidence
that our model is more cost-effective.

4. An online appendix [66] that reports all the addi-
tional analyses mentioned in the paper.

Based on the results, our future agenda includes the
replication of our study on a larger set of systems, pos-
sibly performing an in-depth study in an industrial con-
text. At the same time, future studies can be designed
and conducted to investigate (i) the role of other indepen-
dent variables, e.g., those reported by McIntosh et al. [48],
on the performance of fine-grained defect prediction, (ii)
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the model in the context of cross-project defect prediction,
and (iii) the benefits provided by the usage of personalized
defect prediction [29, 86] as well as more sophisticated en-
semble techniques [87]. Moreover, we plan to evaluate the
extent to which standard just-in-time approaches working
at commit-level can be combined with the fine-grained so-
lution we proposed, e.g., through a multi-stage classifica-
tion process where the defective commits are identified first
and then the specific defective files are detected. Further-
more, the effectiveness of our model should be evaluated
in-field, through a controlled study with practitioners to
incorporate in our model some of the guidelines suggested
by Lewis et al. [42] to make defect prediction more ac-
tionable in practice and support human activities (e.g., by
introducing a graphical user interface supporting code re-
viewers when diagnosing defect-prone code components).
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