A Mixed-Method Empirical Study of
Function-as-a-Service Software Development
in Industrial Practice

Philipp Leitner®* Erik Wittern®, Josef Spillner®, Waldemar Hummer"

aSoftware Engineering Division, Chalmers | University of Gothenburg, Sweden
bIBM Research, Yorktown Heights, New York, USA
¢Service Prototyping Lab, Zurich University of Applied Sciences, Switzerland

Abstract

Function-as-a-Service (FaaS) describes cloud computing services that make infrastructure components transparent to
application developers, thus falling in the larger group of “serverless” computing models. When using FaaS offerings,
such as AWS Lambda, developers provide atomic and short-running code for their functions, and FaaS providers execute
and horizontally scale them on-demand. Currently, there is no systematic research on how developers use serverless, what
types of applications lend themselves to this model, or what architectural styles and practices FaaS-based applications
are based on. We present results from a mixed-method study, combining interviews with practitioners who develop
applications and systems that use FaaS, a systematic analysis of grey literature, and a Web-based survey. We find that
successfully adopting FaaS requires a different mental model, where systems are primarily constructed by composing
pre-existing services, with FaaS often acting as the “glue” that brings these services together. Tooling availability and
maturity, especially related to testing and deployment, remains a major difficulty. Further, we find that current FaaS
systems lack systematic support for function reuse, and abstractions and programming models for building non-trivial
FaaS applications are limited. We conclude with a discussion of implications for FaaS providers, software developers,

and researchers.

1. Introduction

Since its emergence, the programmable cloud has been
a rapidly growing area of interest for application deploy-
ment. Various providers, including Amazon Web Services,
Google Cloud, Microsoft Azure, and IBM Cloud (formerly
Bluemix), offer services on different levels of the cloud
stack, e.g., Infrastructure-as-a-Service (IaaS) or Platform-
as-a-Service (PaaS). IaaS services often lend themselves
to a “lift-and-shift” style migration, where entire applica-
tions can be migrated without deep changes as mostly self-
contained virtual machines (VMs) or containers. However,
PaaS services, which provide a higher level of abstraction,
ask for more concessions in how applications are archi-
tected, built, and deployed in return for a richer devel-
opment experience and more built-in features [I]. Ulti-
mately, many applications deployed in PaaS clouds are
“cloud-native”, in the sense that they are specifically built
for the cloud, or even a specific combination of services,
and cannot easily be operated anywhere else. This intro-
duces a certain amount of lock-in, which practitioners are

*Corresponding author
Email addresses: philipp.leitner@chalmers.se (Philipp
Leitner), witternj@us.ibm.com (Erik Wittern),
josef.spillner@zhaw.ch (Josef Spillner), whummer@ibm.com
(Waldemar Hummer)

Preprint submitted to Some Journal

still often willing to accept in exchange for built-in elas-
ticity and resilience, lower costs of operation, and a relief
from having to manage their own infrastructure [2].

In recent years, the term “serverless computing’ﬂ has
gained momentum to describe the pinnacle of the cloud-
native model: a “serverless” cloud application is deployed
to infrastructure components that are entirely transparent
to the application developer. The fundamental promise
of serverless is sometimes pointedly described as “NoOps”,
a wordplay on the well-known DevOps movement [3] that
stresses that “no operations” is, at least in theory, required
to maintain a serverless application.

The most prominent implementation of the serverless
model are Function-as-a-Service (FaaS) offerings, such as
AWS Lambda, Azure Functions or IBM’s and Google’s
Cloud Functions. When using FaaS offerings, application
developers provide source code of relatively atomic and
typically short-running functions, and define triggers for
executing these functions, for example HTTP requests or
system events. The FaaS provider then, on-demand, ex-
ecutes and bills functions as isolated instances and scales
their execution horizontally as needed. Ideally, application
developers using Faa$S benefit from simple deployments, re-
duced operation efforts, and pay-as-you-go pricing, while

Thttps://martinfowler.com/articles/serverless.html

November 8, 2018

https://martinfowler.com/articles/serverless.html

providers have the chance to efficiently serve large numbers
of users and functions with relatively few resources.

Unsurprisingly, these advantages of FaaS do not come
for free. FaaS-based applications need to adhere to a mul-
titude of technical and architectural restrictions to ease
their transparent management. For instance, functions
deployed to AWS Lambda cannot, at the time of writing,
retain state between invocations, need to finish processing
in 5 minutes or less, have unpredictable execution time de-
viations and cannot make use of more than a single CPU
thread [4]. More importantly, AWS Lambda and other
FaaS services are ultimately intended to host small mi-
croservices implemented in a few hundred lines of program
code. Composing larger applications from such stateless
microservices, or decomposing an existing monolith into
them, is still a challenging open issue [5] [3].

In this paper, we present the first systematic study of
software development for FaaS-based applications. Our
study addresses the following research questions:

e RQ1: Which types of applications is FaaS-based
computing used for in today’s industrial practice?

Which types of use cases is this technology valuable
for?

e RQ2: What are the key architectural patterns and
best practices for building FaaS applications?

¢ RQ3: What are the major advantages and chal-
lenges of using serverless and FaaS in practice?

Given the immaturity of our study subject, we use an
exploratory mixed-method empirical research design to ad-
dress these questions. We initially conduct a structured
review of multi-vocal (“grey” [6]) literature (e.g., online
blogs) and semi-structured interviews with 12 practition-
ers in the field. We use grounded theory, as well as open
and axial coding, to generate a number of initial findings
and hypotheses related to our research questions, which
we then validate and refine based on a Web-based survey
with 182 valid respondents.

Our study shows that FaaS is commonly used in back-
end scenarios, where the technology is often used to han-
dle batch jobs. Building user-facing FaaS applications is
possible, but requires careful design to deal with slow tail
latency due to container startup. Adopting serverless re-
quires a different mental model, where systems are primar-
ily constructed by composing pre-existing services, with
FaaS often acting as the “glue” that brings these services
together. FaaS offers technical and business-related advan-
tages, but managing and predicting deployment costs is
difficult for larger applications. Further, tooling availabil-
ity and maturity, especially related to testing and deploy-
ment, remains a barrier to entry. Finally, limited support
for function sharing and the absence of a service ecosystem
is seen as a challenge.

The remainder of this paper is structured as follows.
We provide details on FaaS offerings, development of cloud

functions and other important concepts in Section 2} In
Section [3] we discuss our study design in detail, followed
by an extensive discussion of results and study outcomes
in Section [d] Section [§] discusses the main implications of
these results and presents the central lessons learned for
Faa$S providers, users, and researchers. Section [6] puts our
work in context of the existing body of research. Finally,
Section [7] summarizes and concludes the paper.

2. Background

This section introduces the main concepts and archi-
tecture of Function-as-a-Service (FaaS) offerings. It fur-
ther introduces selected technology stacks, providers, and
developer tools including their characteristics and limita-
tions.

2.1. FaaS Characteristics

FaaS offerings allow developers to provide pieces of
code that, upon being triggered, are executed in an iso-
lated environment. This model can be considered an evo-
lution over previous cloud computing paradigms. Initial
cloud computing offerings such as Amazon EC2 or Soft-
Layer relied on (orchestrated) virtual machines which, along
with system containers, offer a high degree of isolation and
architecture-specific but language-independent encapsula-
tion. Platform-as-a-Service offerings such as Heroku raise
the abstraction by providing language-specific application
runtimes, which are generally long-running. In compar-
ison, FaaS offerings provide more fine-grained scalability
and corresponding pricing.

Individual functions typically describe only parts of a
larger application. For example, rather than containing a
complete web application with a RESTful interface, a sin-
gle function may only implement one endpoint of such an
interface. Functions are expected to execute in a limited
amount of time, i.e., a few minutes at most. When exceed-
ing this threshold, the execution will time out. Depending
on configuration, failed executions (due to timeout or any
other reason) may be automatically retried. Hence, it is
important that the logic of functions be implemented in
an idempotent manner [7]. Functions can receive input
data, which may be required by or influence the function
execution, and produce output data. In addition, function
executions may result in additional data being produced,
such as logs or execution metrics.

Function executions are triggered by events, which can
be diverse in nature. For example, client requests, events
produced by (external) systems, data streams, or even
complex rules describing a combination of the above can
all be configured to trigger a function. The concrete avail-
able triggers are specific to the FaaS offerings.

The FaaS provider is responsible to horizontally scale
function executions in response to the amount of incom-
ing events. That is, function developers have no insights
into how their code is actually being provisioned, but may

Execution
datastore

Events

(e.g., client Event Controller
requests, system——»| Y
events, triggers...) Authentication ——
Authorization -
R R unction
Load balancer E EE container
A Execution
i
Result data «—| = Queue Container
I Runtime

—
User/tenant
datastore

Function

Function Controller
source code

Function
datastore

Figure 1: Exemplary FaaS system architecture

assume that sufficient resources are provided to deal with
whatever workload the service experiences. These resources
are typically billed using a pay-as-you-go model, e.g., per
number of function executions, function execution time, or
I/0O operations. That is, costs generally depend directly
on usage, and an idle function that is not invoked incurs
no or very little charges.

Functions are assumed to be stateless. After being
executed, state in memory at the end of the execution
can not and should not be assumed to be available dur-
ing the next function execution. Functions can be written
in various programming languages, however, which con-
crete languagues are available depends on the specific FaaS
provider. Most providers support at least basic JavaScript
(Node.js), Python, and Java runtimes but expect functions
to encapsulate additional third-party libraries.

2.2. Common FaaS System Architecture

Figure[I]illustrates an exemplary architecture of a FaaS
system with the previously outlined characteristics. The
architecture is loosely based on that of the publicly avail-
able Apache OpenWhisk FaaS systemﬂ

At design time, function developers interact with a
function controller to create, update, or delete functions.
As part of this, they provide the function source code, set
up event triggers, and possibly define rules for function
executions. Function source code is persisted in a function
datastore, and triggers and rules are persisted in a user /
tenant datastore.

At runtime, incoming events are processed by the event
controller. Tt determines which functions to execute based
on triggers and rules present in the user / tenant datastore.
The controller also ensures that events are authenticated
and authorized to be processed. The event controller de-
termines which container runtime is supposed to execute

2For details, see https://console.bluemix.net/docs/
openwhisk/openwhisk_about.html

— =

the function, based on current system load. Then the ex-
ecution is queued to ensure it is performed even under
heavy system load or in case of (partial) system failures.
Next, the (designated) container runtime picks up the ex-
ecution from the queue. It either starts a new function
container and injects the required function source code
from the function datastore into it, or it reuses an existing
function container for execution. Importantly, the service
user or developer has no control over whether the FaaS
service allocates an existing container or provisions a new
one. The function is executed in the selected container,
and the execution results are persisted in the ezecution
datastore, from where they can be returned to clients via
the event controller. The container runtime may time out
executions that take too long, and will eventually destroy
idling function containers.

The possibility that the container runtime may reuse
existing containers leads to functions not being entirely
stateful: reused containers may allow to access state set
on disk during past executions, but there is no guarantee
for any future invocation to actually have access to this
state. Container reuse also impacts the response times of
functions. Starting a new container and injecting func-
tion code takes a significant amount of time (up to multi-
ple seconds, strongly depending on the used programming
language), which leads to functions experiencing high tail
latency [8].

2.3. Ezample Function

An example function for AWS Lambda, which fetches
images from an S3 datastore and runs an object detection
algorithm, is provided in Listing[I] The example is written
in the Python programming language. Functions typically
need to implement a generic interface, taking the triggering
event and the context as input, and often produce a JSON-
serializable object as output. Function implementations
are often rather small, such as in the provided example.

Listing 1: Example AWS Lambda function in Python

import boto3
def detectobjects(f):pass # not defined here
def lambda_handler (event, context):
tmppath = "/tmp/tempimages/"
s3 = boto3.client("s3")
objectlist = []
for image in event["images"]:
imgfile = tmppath + image
s3.download_file("images", image, imgfile)
objectlist += detectobjects(imgfile)
return {"objects": objectlist}

= O ©0NO Uk WwWN -

2.4. FaaS Providers

All major cloud providers offer FaaS implementations
by now. Offerings include AWS Lambda, IBM Cloud Func-
tions (which is based on the open source project Apache
OpenWhisk), Microsoft Azure Functions, and Google Cloud
Functions. Typically, these FaaS offerings provide integra-
tions with other Cloud services, such as API gateways, to

https://console.bluemix.net/docs/openwhisk/openwhisk_about.html
https://console.bluemix.net/docs/openwhisk/openwhisk_about.html

monitor, control, and bill function usage, authentication
and authorization services, or application services, ana-
lytics services, or development systems that may trigger
function executions. Furthermore, more specialized FaaS
offerings exist, like IronFunctions or Webtask.io.

2.5. FaaS Developer Tooling

Most FaaS providers offer Command Line Interfaces
(CLIs), Software Development Kits (SDKs), and further
resources to facilitate the design, implementation, testing,
and deployment of cloud functions. AWS, for example, of-
fers reference functions, tutorials, and webinars, an appli-
cation repositoryﬂ an API reference, and a local testing
framework in addition to SDKs in various programming
languages. In addition, some providers offer orchestration
tools like IBM Composer, AWS Step Functions, and Fis-
sion Workflows that help developers to form larger appli-
cations from functions or to execute complex workflows.
These tools allow to define sequences and/or parallel exe-
cutions of functions and provide strategies to handle exe-
cution failures. Finally, many FaaS providers offer metric
collection, tracing, and debugging facilities, if only at ad-
ditional cost. Examples include AWS X-Ray and Google
Stackdriver.

Beyond provider-offered tools, a plethora of third-party
created tools have emerged. Foremost among them are
FaaS deployment tools such as the Serverless frameworkEl,
which abstracts from provider-specific aspects of FaaS of-
ferings, allowing to build and deploy provider-independent
functions.

3. Study Design

We express the goal of this study based on the tem-
plate defined by the TAME project [9]. The purpose of
this study is to characterize the use of FaaS. Characteriza-
tion helps in understanding and guides practitioners and
researchers in the evolution of FaaS offering, related tools,
and related software engineering processes. This study re-
veals common practices, advantages, disadvantages, chal-
lenges and opportunities of using FaaS. The here presented
perspective is that of practitioners from industry who de-
velop systems or applications that use FaaS offerings as
part of their job. We focus on FaaS systems offered for
on-demand use by Cloud service providers specifically, and
serverless computing more broadly. Given the exploratory
nature of this study subject and our research questions, we
decided on a mixed-method study protocol that combines
qualitative and exploratory elements with a structured,
quantitative survey.This follows the recommendations by
Bratthall and Jgrgensen [I0] as well as established prac-
tice used in other, comparable studies in software engi-
neering |11}, 12} [2].

3See https://aws.amazon.com/serverless/serverlessrepo/
4https://serverless.com

3.1. Owverview

We base our research on three primary data sources:
semi-structured practitioner interviews, a systematic re-
view of multi-vocal (“grey”) literature (e.g., blogs and Web
articles), and a Web-based quantitative survey. Following
a grounded theory approach, we combine open and axial
coding in multiple rounds with an assessment of survey
data. The basic structure of our research methodology is
outlined in Figure 2] We conducted our research in three
phases. In the first exploratory, phase we conducted inter-
views and analyzed grey literature. In the second phase,
we turned towards validating and quantifying the qualita-
tive results from the first phase through an online survey.
In the third and final phase, we refined the results from the
first two phases and constructed a final theory of serverless
and FaaS usage in industry, which is the primary outcome
of this study.

e

Interviews 12

E\\

o F}‘gn S——
; 403 + 400
Coding Initial Codes

Grey Literature 50 Web k
Review Articles T
)
Axial Coding
Phase 1
= —
Web-Based 40 Survey
Survey Questions
S —
Initial
Findings and
——— Hypotheses
182
Responses
Phase 2
k) N]
Analysis Refinement
—
Final Theory
and Study
Phase 3 Outcomes

Figure 2: High-level overview of our mixed-method study method-
ology. Primary data sources of the study are (1) transcripts of 12
semi-structured interviews with practitioners, (2) 50 Web articles
(“blogs”) discussing industrial experience, and (3) 182 responses to a
Web-based survey.

3.2. Semi-Structured Interviews

Interviews with practitioners are a common research
method often employed in emerging fields, in which the
scientific theory is not yet stable enough to compile scien-
tific hypotheses through an analysis of peer-reviewed liter-
ature alone. The goal of our interviews was to collect and
consolidate the, often disparate, lessons learned, success
factors, and best practice knowledge that early adopters
of serverless computing and FaaS have acquired.

https://aws.amazon.com/serverless/serverlessrepo/
https://serverless.com

ID Source Main Provider Main Lang. Company Type Country Experience [Years]|
I1 PN IBM various Enterprise US na.
12 PN AWS JavaScript SME CH 11+
13 PN IBM various Enterprise Us 11+
I4 AWSRC AWS JavaScript, Python Enterprise FR 3-5
I5 PN AWS Scala, JavaScript Enterprise DE 3-5
16 PN AWS Python, Java SME AT 6—-10
17 WS AWS .NET, JavaScript SME IN 6-10
18 MSAAN MS C# Enterprise PL 11+
I9 MSAAN MS C# Enterprise NL 11+
110 WS AWS / Google JavaScript, Go SME US na.
I11 MSAAN MS NET Enterprise JP 11+
112 MSAAN MS C# Enterprise CZ 11+

Table 1: Summary of basic interviewee information. “PN” refers to interviewees acquired through our personal network, “AWSRC” and
“MSAAN” are recruited through the Amazon and Microsoft reference customer lists, and “WS” indicates interviewees found through Web
search. All other data is based on self-reported information by the interviewees. The column “Experience” lists overall professional experience
in the cloud domain. For I1 and I10, no data on their professional experience is available.

Participant Selection. Given these goals, our primary ac-
ceptance criterion for interview partners was real-life pro-
duction experience with at least one FaaS technology (e.g.,
AWS Lambda, Azure Functions, etc.). Given that FaaS,
while hyped, is still a niche topic, we used an opportunis-
tic, multi-pronged approach to recruit suitable interview
partners. Firstly, we used our personal networks to find in-
terviewees. Secondly, we selectively contacted companies
on the FaaS reference customer lists of AWS and Azure
and asked for developers that we could interview. Thirdly,
we actively approached individuals which are outspoken on
the Web about their usage of FaaS (e.g., through blogs or
Reddit discussion threads) and asked for interviews. Using
this recruiting strategy, we acquired 12 interview partners
out of 15 we initially contacted, which we refer to as I1 to
I12. Table[llsummarizes basic information about all inter-
viewees. We list how we got in contact with them (personal
network, AWS and Azure reference customer lists, and via
the Web), which cloud provider their experience relates
to, what programming languages they use in conjunction
with FaaS, how large their company is (SME or large enter-
prise, where the SME category also includes startup com-
panies), where they are located geographically, and how
much experience with cloud technology this interviewee
has reported. We refrain from reporting experience with
FaaS specifically, as the technology is still young enough
that even “experienced” practitioners have realistically not
used the technology for more than a year or two.

Our interviewee population covers three continents, all
major cloud providers, as well as startups, medium-sized
companies, and large enterprises. Further, we have inter-
viewed participants using a wide range of programming
languages. In terms of cloud providers, there is a bias to-
wards AWS and Microsoft Azure, which is not surprising
given that these two providers are also leaders in the FaaS
market at the time of our study. Finally, the majority of
our interviewees are FaaS end users, but we have also in-
terviewed two individuals who are developers working on
a Faa$S solution themselves (I1 and I3) and one individual
who is a major contributor to the well-known open source
toolkit Serverless Framework (16).

Study protocol. We conducted all interviews following a
semi-structured approach. We developed a coarse-grained
interview guideline (see also the appendix of this paper).
Specifically, we asked questions related to the projects that
the interviewee used FaaS for in the past, why they chose
to use it, how they architect serverless solutions, which
advantages and disadvantages they see with the technol-
ogy, and what they think that the future of FaaS holds.
However, we did not cover all questions in the same order
and in the same depth with each interviewee, but instead
followed the flow of the conversation. We conducted all
interviews remotely via Skype or Google Hangouts, and
in English. All interviews were conducted by a combina-
tion of the first, second, and third author of the paper
(for most interviews, multiple authors were interviewing
together). Interviews took between 30 and 60 minutes,
and were recorded with the permission of the interviewee
to foster transcription and easier analysis.

Analysis. As a first step towards analysis, the first, third,
and fourth authors manually produced verbatim transcripts
of each interview. Then, the first and the second author
independently produced a hierarchical set of codes from
all transcripts using the open coding methodology. Af-
terwards, these initial code hierarchies were enriched with
codes produced by analysing multi-vocal literature (see be-
low), followed by another analysis step where the first and
second author discussed and resolved differences in their
coding and conducted axial coding together. This step led
to an initial theory for FaaS usage in practice, which was
then discussed with the other authors. We also used the
results of the axial coding to develop the questions for the
Web-based survey.

8.8. Survey of Multi-Vocal Literature

As noted by Garousi et al. [6] as well as by Barik et
al. [I3], much of the important discourse in software engi-
neering does not happen through peer-reviewed, scientific
articles, but rather through more informal publications,
such as practitioner-oriented books, blogs, press releases,
and white papers. While important to the conversation
and often highly impactful in practice, these sources need

to be considered with a certain skepticism, as they often
lack a sound empirical and methodological basis. For our
study, we have chosen to treat this body of “grey” literature
as another source of qualitative information, analogously
to the semi-structured interviews. This reflects the fact
that individual grey literature items may be biased or not
trustworthy (just like any individual interview does not
necessarily deliver robust scientific results in itself), but
in aggregation they still provide an accurate reflection of
how the practitioner community thinks about our study
subject.

Incidentally, our study also showcases one of the dan-
gers of using grey literature as basis for academic research:
article A42 (a blog post on the blogging site Mediunfb has
been removed by Medium shortly prior to the submission
of this article, and is not available anymore. This shows
that there is a need to consolidate the knowledge available
on the Web in archived scientific publications.

Article selection. We particularly focus on articles, blogs,
and discussions in comment threads on the Hackernewd|
news portal. We used the Hackernews search engine Algo-
liaﬂ and executed the search terms serverless, aws lambda,
azure functions, and openwhisk to discover relevant arti-
cles. These search terms were generated in an interative,
exploratory manner. Initially, we experimented with dif-
ferent variations of our main study subject (serverless,
FaaS, cloud functions), but found that FaaS as a term
is not sufficiently well-established to lead to interesting
hits, while cloud functions was too general (many hits
were false positives dealing with some arbitrary function-
ality of a cloud). We added aws lambda, azure functions,
and openwhisk as simply searching for serverless resulted
in a biased data set discussing AWS Lambda almost ex-
clusively, and searching for specific services resulted in a
broader coverage. To keep the size of the study managable,
we focused on the services that were most prominently
discussed in our interviews (Lambda, Azure, Openwhisk),
and decided to skip the many alternatives that exist in the
market (e.g., Google Functions, OpenFaaS, etc.).

Given the vast amount of blogs etc. covering our study
subject, a complete survey was deemed infeasible. Hence,
prior to starting our article collection, we set a goal of col-
lecting 50 relevant articles. More concretely, we decided to
first select 20 results for the general search term serverless,
and enrich this data set with 10 additional results for each
of the other terms. We ranked all search results by popu-
larity (based on voting through the Hackernews platform),
and went through the lists in order of popularity, checking
for each article (1) whether it matches our inclusion/ex-
clusion criteria (see below), and (2) whether it was not
already contained in the data set. For each search term,
we stopped when we reached the a priori set number of

Shttps://medium.com
Shttps://news.ycombinator.com
“https://hn.algolia.com/

hits. Searches have been executed on September 9th, 2017
(serverless) and October 23rd, 2017 (other search terms).

Our inclusion /exclusion criteria were as follows. We ac-
cepted articles that describe reference architectures, case
studies, or experience reports, but rejected tool announce-
ments or pure marketing communications. We have ac-
cepted articles that advertise specific tools if the tool itself
was built on top of FaaS (rather than being a FaaS service
itself), and the article talked about how the tool made use
of FaaS. For each article, we also skimmed the Hackernews
comment threads, and included them in our article analy-
sis (see below) if salient additional comments on the topic
were raised in the comments. We refer to our total data
set as articles A1 to A50. A full list of articles including
links is available in the appendix.

N
o

8 Lambda
g 15 .Azure
::3 - OpenWhisk
% 10 — . Google
§ 5 —— OpenFaaS
o

. e E-

Figure 3: Distribution of Hackernews articles on serverless topics
over years and cloud providers.

Figure |3| depicts when these articles have been pub-
lished (if a publishing date is specified in the article), and
what cloud provider they primarily discuss. The earliest
article in our data set is from May 2015, the most recent
one from October 2017. Most articles have been published
in 2016 and 2017. Further, it is evident that the majority
of articles in our set discuss AWS Lambda. Other cloud
providers (e.g., Microsoft Azure and IBM’s OpenWhisk)
primarily come up when we explicitly searched for them,
i.e., through the search terms openwhisk and azure func-
tions. Two articles discuss the Google Cloud platform and
the open source FaaS implementation OpenFaaS, which
we do not explicitly cover in this work. Seven articles in
the set are generic and do not discuss a specific provider.

Analysis. After open coding of the interview transcripts,
the first author read all articles in our data set and up-
dated the previous hierarchy of codes with any new codes
emerging from the articles. That is, the article texts were
treated as another source of qualitative evidence, coded,
and integrated with the opinions collected through the in-
terviews. In addition to the articles themselves, we have
also read the comment sections on Hackernews related to
the article. We treat these comments in the same way as
the articles themselves. If new codes emerged from the dis-
cussion in the article comments, we have taken them up in
the code hierarchy. However, we have excluded comments
that were (1) downvoted (had a negative total rating on
Hackernews) or (2) out of scope (i.e., they discussed an

https://medium.com
https://news.ycombinator.com
https://hn.algolia.com/

aspect not directly related to our study subject).

Relationship to Existing Guidelines. Garousi et al. [14]
present, valuable guidelines for conducting multi-vocal lit-
erature surveys. Our research has been conducted in par-
allel to the development of these guidelines. Hence, we do
not follow the guidelines exactly. However, we argue that
they are largely compatible in goal and spirit.

Our design differs from these guidelines primarily in
how we have built up the pool of candidate articles. Garousi
et al. suggest to use a general search engine (e.g., Google)
and extend the pool through snowballing. Following older
suggestions by Barik et al. [I3], we have instead queried
a much more specific database (namely Hackernews), and
did not make use of snowballing. We argue that our ap-
proach has both, advantages and disadvantages over the
approach suggested by Garousi et al. Namely, our ap-
proach has a higher danger of missing relevant articles.
However, it is presumably easier to replicate, and Hacker-
news provides a reasonable article quality indicator through
community rating. Further, another advantage of using
Hackernews is that the, often extensive, article comment
threads provide another interesting data source besides the
articles themselves.

3.4. Web-Based Survey

The main goal of the survey was to validate our quali-
tative findings on a larger sample of practitioners. We dis-
tributed an anonymous Web-based survey using the sur-
vey tool Typefornﬁ consisting of, in total, 40 questions
in 7 categories. An excerpt is available in the appendix
and the raw form in the accompanying open research data
repository [15].

Survey dissemination. Given that we do not have access
to a baseline demography of cloud developers that we could
send the survey to, we used a convenience sampling method-
ology and distributed the survey through a range of dif-
ferent channels. The survey was publicly available from
January 11th to February 13rd 2018, and yielded 182 re-
sponses, or 5.52 per day. The survey took respondents on
average 11:42 minutes to complete, and had a completion
rate of 33.8%. Given our convenience sampling strategy,
we are unable to provide an estimation of the survey re-
sponse rate.

All responses were tagged with a source attribute in or-
der to distinguish the survey dissemination channels and
to prevent a domination of results from a single channel.
Most responses were acquired through a topically rele-
vant open source project that the last author is involved
Wit}ﬂ (49.4% of responses), advertisements on social me-
dia (15.9% of responses), and a mention in the newsletter
of the well-known German IT news site heise.dd™| (15.3%

Shttps://typeform.com/
9https://github.com/localstack/localstack
Onttps://www.heise.de/newsletter/

of responses). The remaining 19.4% of responses came in
through personal contacts of the authors, or other sources.

Participants. Our survey attracted responses from a wide
range of IT professionals. Most respondents reported to
be working in software developer or architect roles. How-
ever, we have also received responses from product owners,
IT managers, site reliability engineers, DevOps engineers,
researchers, and C-level executives.

Overall Experience

1: 11+ years 100 / 55%
2: 5-10 years 44 / 24%
3: 3-5 years 30 / 17%
4: 0-2 years 8/ 4%
Cloud Experience

1: 0-2 years 98 / 54%
2: 3-5 years 55 / 30%
3: 5-10 years 29 / 16%
4: 11+ years 0/ 0%
Experience with Different Cloud Providers

1: AWS 157 / 86%
2: Microsoft Azure 56 / 31%
3: Digital Ocean 51 / 28%
4: Google Cloud 49 / 27%
5: Heroku 47 / 26%
6: IBM (Bluemix, Softlayer, ...) 25 / 14%
7: Rackspace 14 / 8%
8: Other 12 / 7%

Figure 4: Overview of self-reported relevant experience of survey
respondents. 54.9% of respondents report more than 10 years of IT
experience. However, 53.8% report less than 3 years of experience
with cloud technologies. AWS is by far the most commonly used
cloud provider among our respondents.

As indicated in Figure [] most respondents were expe-
rienced IT professionals (54.9% report more than 10 years
of professional experience), but most respondents (53.8%)
are not very experienced with cloud technology. This may
be due to the fairly young age of the field in general. Most
of our survey respondents report having worked with AWS
in the past (86.3%). However, Microsoft Azure, Digital
Ocean, Google Cloud, and Heroku are also commonly used
(by 30.8%, 28%, 26.9%, and 25.8% of respondents respec-
tively).

Survey questions. The survey consisted of seven groups of
questions and a total of 40 questions of mixed type, in-
cluding multiple-choice questions, numeric range choices,
Likert scales, boolean yes/no questions, and free text ques-
tions. In addition to demographics (5 questions), we asked

https://typeform.com/
https://github.com/localstack/localstack
https://www.heise.de/newsletter/

questions related to terminology (a single question), appli-
cation architecture (14 questions), the FaaS development
practices and patterns (10 questions), the FaaS mental
model (5 questions), advantages and challenges when using
FaaS (3 questions), and the future of FaaS (2 questions).

3.5. Limitations and Threats to Validity

While we have designed our research as a mixed-method
study and based on grounded theory as a strong theoretical
framework, there are still some limitations to our research
design.

External validity. In terms of external validity, the ques-
tion arises to what extent our interview participants are
representative of serverless and FaaS developers, or of cloud
developers in general. This threat is amplified, as 53% of
survey respondents reported that they are not very expe-
rienced with cloud technology (see Section . We have
mitigated this threat by also taking into account multi-
vocal literature as a second qualitative data source, and
by validating our findings through a survey. However, all
three data sources in our study are potentially biased to-
wards developers that are positive towards FaaS due to
self-selection bias. That is, developers that are skeptical
about or are not interested in FaaS are less likely to blog
about the topic, agree to be interviewed about it, or fill
out a Web survey. However, given that the goal of our re-
search is to identify practices more than establish to what
extent FaaS is used, we assume the impact of this bias to be
small. Further, we have focused on AWS Lambda, Azure
Functions, and IBM OpenWhisk as FaaS technologies in
our study. While these appear to be the most widely used
providers at the time of our study, it is not clear to what
extent our results also generalize to other FaaS providers,
particularly as we have in fact observed significant differ-
ences between providers.

Internal validity. In terms of internal validity, it is possi-
ble that we have biased the interviewees through the pre-
selection of questions and topics in our interview guide.
Consequently, we may have missed interesting codes be-
cause they were not discussed during the interviews. Our
analysis of multi-vocal literature again served as a fail-safe
against this threat, as we expect that any major missing
discussion items would have emerged during this analy-
sis. However, this has not been the case. Hence, we judge
the risk that we have missed important aspects entirely to
be low. Another threat to internal validity of our study
is that we need to trust that interviewees, survey respon-
dents, and article authors report truthfully on their usage
of Faa$S, i.e., we report on what participants say, but we do
not have insights into what they actually do. This threat
is inherent to our choice of research method.

4. Study Results

We now discuss the main outcomes of our study based
on the raw results published as open research data [I5].

As not unusual for current trends in Web development, we
have experienced that concepts and terminology around
serverless are less than well-defined. Particularly, the very
name “serverless” is a source of confusion, as there certainly
are servers running any serverless application — they are
simply invisible to the application developer, as also men-
tioned in A39.

"Serverless Computing’ doesn’t really mean there’s no
server. Serverless means there’s no server you need to
worry about." {Scott Hanselman, quoted in A39

A consequence of this comparatively broad definition
of “serverless” is that the term does not only include Faa$,
but encompasses various other kinds of hosted cloud ser-
vices, many of which predate FaaS substantially (including
hosted database technologies, such as DynamoDB [16]). In
fact, many early definitions of cloud computing used the
same principle of “servers as utility” as the defining fea-
ture of clouds [I7]. According to some of our interviewees
(e.g., I1), FaaS should really be understood as “serverless
for computing”, whereas “serverless for data storage” has
been available since the early days of cloud computing.

One problem with this broad definition is that the de-
lineation to PaaS is not clear-cut. In fact, a minority of in-
terviewees actually consider PaaS services such as Heroku
or Google’s Appengine to be an early version of serverless.
However, our survey results indicate that the majority of
respondents (58%) still largely equate the terms FaaS and
serverless (see Figure [5)).

Select the most fitting definition:

To me, the term "serverless" describes...
1: Specifically Function-as-a-Service offerings 105 / 58%

2: Cloud offerings that do not require managing servers 64 / 35%

4: The specific toolset provided by serverless.com 5/ 3%
3: Other 8 /5%
Figure 5: Survey respondent’s definition of the term "serverless"

In the remainder of this paper, we will use the term
“serverless” to represent the more general development model,
and FaaS to specifically refer to cloud services such as
AWS Lambda (but not, for instance, to DynamoDB or
Appengine). Further, we use “Serverless framework” to
refer to the popular open-source toolkit of the same name.

4.1. Mental Model

In our study, we observed that successful adopters of
serverless have a different mental model of their systems or
applications than developers of traditional Web-based ap-
plications. In traditional projects, developers often value
being “in control” of all components in their application
and re-use existing functionality (e.g., through external
APIs) only when there are clear advantages or concrete
needs for doing so. Serverless developers, on the other

https://blog.elmah.io/migrating-from-windows-services-to-azure-functions/

hand, inherently think of their application as a composi-
tion of small, stand-alone components, only some of which
they (or their team, or even company) build themselves.
Using external components becomes the default, and server-
less developers assume from the get-go that most of their
development will be dedicated to the integration of exist-
ing services rather than writing “new” code. Consequently,
serverless applications by nature are more microservices-
oriented than monolithic [I8]. 16 goes as far as calling
serverless “microservices on steroids”, i.e., the idea of mi-
croservices taken to the extreme. In many ways, serverless
can be seen as a resurgence of Service-Oriented Architec-
ture (SOA) concepts, such as service composition [19].

Further, given the tight coupling of serverless applica-
tions with other services in the cloud provider’s ecosys-
tem, a tight coupling and considerable vendor lock-in is
unavoidable. In our survey, a third of respondents con-
sider vendor lock-ins to be a significant challenge when us-
ing FaaS, making it the third most named challenge (see
also Section [4.5)).

"AWS API Gateway, S3, Kinesis, SNS, DynamoDB, Step-
Functions, or their Azure and GCP siblings — are at play
with any serverless solution" {A9

A common theme in our interviews was that referring
to serverless applications as “applications” is even mislead-
ing, given the fundamentally different nature.

"I think the term ’application’ is oftentimes not really that
applicable anymore (...) it‘s really hard to say, like, what
is the application anymore [and what is part of the cloud
or infrastructure.]." -16

Our survey confirms that building a serverless appli-
cation using FaaS requires a different mental model than
using more traditional cloud technologies, such as IaaS or
Docker (Figure @ 76% of respondents agree or strongly
agreed with the sentiment that a different mental model
or mindset is required to successfully build FaaS applica-
tions. None of the respondents strongly disagreed with
this notion.

Building FaaS applications requires a different mindset.

‘0‘3‘ 19/ 21% 36 / 40% ’ 33 / 36% ‘
Legend:
Strongly Disagree Disagree ‘ No Opinion Agree Strongly Agree

Figure 6: Mental model for developing FaaS applications. Values
without percentage sign refer to absolute numbers of responses.

We further collected data which other types of (server-
less or other) cloud services repondents commonly use in
conjunction with FaaS (Figure [7)). Unsurprisingly, hosted
database services (77%) as well as API gateways (69%) are
most commonly used in conjunction with FaaS. Especially
using an API gateway is a de facto technical necessity when
building a pure serverless, end-user facing application. It

Which other cloud services are you using in conjunc-
tion with FaaS?

1: Database services (e.g., Cloudant, ElephantSQL, ...) 73 / 78%
2: API Gateways (e.g., Amazon API Gateway) 65 / 69%
3: Logging services (e.g., Loggly, AWS Logging, ...) 62 / 66%
4: TaaS (e.g., EC2 VMs, container services, ...) 49 / 52%
5: Analytics services (e.g., Spark, Hadoop, ...) 20 / 21%
6: PaaS (e.g., Heroku, CloudFoundry, ...) 15 / 16%
7: Other 6 /6%

Figure 7: Cloud services used in conjunction with FaaS

is interesting to note that 52% of respondents use FaaS
in conjunction with TaaS following a hybrid model, but
only 16% combine it with PaaS services, such as Heroku
or CloudFoundry.

In theory, this composition-focused mental model would
enable high reuse of functions. However, in practice, server-
less applications, at the time of our study, are largely com-
positions of services provided by the cloud, well-known
external APIs, and self-written functions. A more peer-
to-peer exchange of end user functions sounds promising,
but is not a reality at the time of study. Some providers
maintain a marketplace for functions (e.g., the Amazon
Serverless Application Repository). However, so far struc-
tured reuse of existing functions from this marketplaces
does not appear to be a common practice, although our
interviewees found the general idea to be rather intrigu-
ing.

"(...) the idea of sharing code amongst various functions
is an attractive one." -110

Further, interviewees have also expressed that the dif-
ferent mental model of serverless is also a challenge for
newcomers and can lead to a steep learning curve.

"People are very comfortable with things that they spent
years learning, and this is different." -13

Interestingly, this has not been confirmed in our survey.
56% have argued that the mental model behind FaaS$ is not
difficult to grasp (Figure .

The mental model behind Faa8S is difficult to grasp.

‘ 10 43 / 46% ‘ 25 / 27% ‘15/16% 1‘
Novice developers have an easier time getting started.

‘4‘ 15 / 16% 27 / 29% 34 / 37% ’ 13 ‘
Legend:

Strongly Disagree Disagree ‘ No Opinion Agree Strongly Agree

Figure 8: Difficulty of grasping the FaaS mental model. Values
without percentage sign refer to absolute numbers of responses.

We speculate that one reason behind this surprising re-
sult may be that some existing development practices may

https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49

train developers well for adopting a serverless mindset. In-
deed, our survey confirmed that specifically experiences
in functional programming (70%) and programming with
scale-out, immutable infrastructure [2] (60%) are consid-
ered an asset when diving into FaaS (Figure E[)

Which of the following techniques are helpful to better
understand the mental model behind FaaS?

1: Functional Programming 62 / 70%
2: Programming with Immutable Infrastructures 53 / 60%
3: Stream Programming 38 / 43%
4: Reactive Programming 37 / 42%
5: Heroku’s 12-Factor App 25 / 28%
6: Other 5/ 6%

Figure 9: Helpful techniques to better understand FaaS
However, given that some developers still appear to be
struggling with adopting to the serverless mental model,
A20 speculates that hiring inexperienced developers may
sometimes actually be beneficial as these newcomers may
have an easier time adopting to the FaaS mental model.

"With Serverless hiring less experienced developers can
work out better than hiring experienced cloud developers"
-Paul Johnston, quoted in A20

Our survey respondents moderately agreed with this
notion, although the idea is not uncontested (Figure
— 51% of respondents agree or strongly agree with this
notion, while 20% disagreed or strongly disagreed.

Summary: Building Serverless and FaaS applica-
tions requires a different mental model that emphasizes
“plugging together” microservices. Currently, most ser-
vices are either self-written or provided by the cloud
infrastructure. Adopting this different mental model
may be different, but experience with functional pro-
gramming and the immutable infrastructure paradigm
helps.

4.2. Types of Serverless Applications

In our interviews, two important dimensions to classify
FaaS applications have emerged: whether the application
is part of an end-user facing request cycle (e.g., a REST
service that is invoked to serve a user request) or a back-
end application (e.g., a function that consolidates server
logs), and whether the application is built entirely from
serverless components (“pure serverless”) or in conjunction
with traditional cloud technology, such as virtual machines
or Docker containers (“hybrid serverless”). We refer to the
former as the serverless use case type (user-facing or back-
end service), and to the latter as the application’s purity
(pure or hybrid).

10

Both
38 (40%)

Backend

29 {21%)

Usar-Facing
27 (70%)

Figure 10: Percentage of survey respondents who have built only
user-facing, only backend, or both types of FaaS applications.

As Figure visualizes, both application types are
commonly used among our survey respondents. 40% of
respondents actually have built FaaS applications of both
types in the past.

Serverless use case type. While the survey has shown that
many practitioners actually build serverless user-facing ap-
plications, many of our interviewees were not convinced
about this particular use case. An often-voiced concern
was that the response time and latency of functions (with
a tail latency in the range of multiple seconds [20], when a
new container instance is started by the provider) does not
lend itself to usage directly in an end user facing request
cycle. These interviewees have argued that the primary
use case for FaaS should be in backend applications, such
as for transforming images, processing logs or telemetry
data, scheduling and executing backups, sending out noti-
fication emails, and similar tasks.

"It‘s not in the request cycle directly what we do with
Lambda, but it‘s more operations which also involve ship-
ping, business information, business data as well." -15

Another common backend use case was to use FaaS
to write small “glue code” functions which connect other
services or applications, e.g., take a file from S3, apply a
small transformation to it, and forward it to a Big Data
service for further processing. It can be argued that this
is the true power of FaaS — to act as the glue that allows
developers to bring together a multitude of existing hosted
or self-developed cloud services. Such applications tend
to not run continuously, but in a batched or event-based
fashion, making FaaS a natural fit.

"How Lambda plays into infrastructure automation and
management, and how that will change the way we build
infrastructure, and how we actually get to this infrastruc-
ture as software kind of world, that was always a big thing
for me." -16

This was confirmed in our survey (Figure . Most
backend FaaS usage is for processing application data (76%)
or running scheduled jobs (64%). About a third of respon-
dents uses FaaS for processing monitoring or telemetry
data.

If our interviewees use FaaS functions in the request
cycle, they are often used as backend implementation of

http://highscalability.com/blog/2017/5/15/is-serverless-the-new-visual-basic.html

What do you use FaaS for in the backend?

1: Process application data (e.g., transform images) 72 / 76%
2: Perform scheduled jobs (e.g., backups, notifications) 61 / 64%
3: Process monitoring or telemetry data 37 / 39%
4: T'm not using it for backend tasks 7/ 7%
5: Other 6/ 6%

Figure 11: Usage of FaaS in the backend

a REST API. Two architectural styles have emerged in
our study how to implement a REST API or service us-
ing FaaS: either using one function per service or REST
resource, or using one function per HI'TP operation. The
former style leads to significantly larger functions which
need to do considerable dispatching internally, while the
latter style allows for fairly small and highly granular func-
tions. Of course, this also means that the number of func-
tions that need to be managed can potentially explode in
the latter style.

If you use FaaS to implement a REST endpoint or
HTTP service, how fine-grained are functions?

1: One function per individual REST method 34 / 36%
2: One function per resource (e.g., products function) 26 / 27%
3: I never do|this 20 / 21%
4: One function per service/endpoint 14 / 15%
5: Other 1/1%

Figure 12: Granularity of FaaS functions

In our survey, using one FaaS function per REST method
was reported as the most common architectural style (Fig-
ure . Presumably, this is because this style optimally
fits the FaaS paradigm of tiny, stand-alone functions. In-
terestingly, 15% of survey respondents implement an entire
service or endpoint using just one function, an architec-
tural style that has emerged neither in our interviews nor
in our analysis of grey literature.

One article in our literature study describes an inter-
esting middle ground approach to use FaaS for user-facing
applications. They use FaaS functions to generate static
HTML, which can then be delivered using a CDN.

"Combining serverless APls with static file hosting for site
resources, e.g. HTML, JavaScript and CSS, means we can
build entire serverless web applications." {A49

In general, we have observed that use cases which ex-
hibit some of the following characteristics tend to be par-
ticularly suitable for FaaS:

e Applications which are predominantly idle. The strict
pay-per-use model of FaaS makes for a particularly
compelling cost case for such applications.

11

e Applications that face bursty workloads with strin-
gent requirements regarding scalability and elastic-
ity, and particularly applications that need to pro-
vide consistent Quality-of-Service in spite of inter-
mittent slashdotting (i.e., short, unpredictable peri-
ods of orders of magnitude increased load).

e Applications that are data or event stream driven.
Our interviews have shown that many interviewees
considered, for example, IoT scenarios to be a natu-
ral fit for FaaS.

e Early application prototyping, where “getting it to
run” in the shortest time possible is a primary con-
cern.

Contrary, the following characteristics describe use cases
for which FaaS may not be the right choice. Many of these
characteristics are tightly linked to the inherent limitations
and restrictions of current FaaS platforms:

e Applications that are inherently heavily stateful, such
as database systems.

e Applications that comprise long-running tasks.

e Applications that have high performance or real-time
requirements, where the performance impact through
virtualization and, more importantly, Docker startup
latency cannot be tolerated.

e Applications that have requirements with regards to
data locality, i.e., which need to store data to the file
system.

Within these general constraints, an interesting special
case is parallel and high-performance computing. On the
one hand, the high latency of FaaS is a problem for such
performance-critical systems. On the other hand, the fact
that FaaS gives a developer essentially unlimited cores to
do distributed computation on makes the abstraction pow-
erful for such applications. This has also been observed in
A2.

" Parallelization with Lambda is as easy as executing as
many functions as you need to cover the full depth and
breadth of your dataset, in real time as it grows. It’s like
having a CPU with virtually infinite cores." -A2

Initial scientific computing frameworks that build on
FaaS are already starting to gain traction. One example
is the PyWren framework [2I], which provides a parallel
computing framework on top of various FaaS providers,
most importantly AWS Lambda.

Purity. The second important distinction is between pure
serverless, where all parts of the application are either ex-
ternally hosted services (such as S3 or DynamoDB) or im-
plemented on top of FaaS, and hybrid serverless, where this
is only true for parts of the application. 12 was actually

http://jamesthom.as/blog/2016/04/26/serverless-apis-with-openwhisk-and-api-connect/
http://tothestars.io/blog/2016/11/2/serverless-mapreduce

able to build an entire startup company without having
to manage servers at all: the entire application is a pure
serverless application, and all development tools (e.g., CI,
bug tracker) are hosted external applications. One chal-
lenge of pure serverless applications is that authentication
gets more difficult without a stateful component to hold
user-authenticated sessions. This problem has also been
observed by Adzic and Chatley [22].

In our interview study, most participants opted for a
hybrid model. This was especially true for user-facing
applications, which are often built using a stateful, end-
user facing entry component (e.g., an nginx Docker con-
tainer) and one or more stateless request handlers built
using FaaS. However, others have chosen to just imple-
ment small parts of their application using FaaS:

"We are doing a lot of hybrid — for example you can just
have your authentication on Lambda, and the rest of your
code is on standard EC2." -14

One reason for this may be that a common pattern
for migrating web applications to serverless is to gradually
“cut out” functionality from a monolith and re-implement
or move them to serverless. As one interviewee puts it:

"I think a good rule is to start decomposing your applica-
tion into smaller and smaller functions so that it’s easier
for you to essentially make cuts in the graph, and mowve
the boundary of what belongs to one [function] and what to
another." -11

However, our survey responses do not support that
many FaaS applications are are actually built in that fash-
ion (Figure . 58% of respondents argued that they
rarely or never gradually migrate existing appllications.

I gradually migrate existing systems.

‘ 28 / 30% ‘ 22 / 23% ‘ 25 / 27% ‘18/19%

]

Legend:

‘ Never ‘ Rarely ‘ Sometimes ‘ Usually ’ Always ‘

Figure 13: Migration to FaaS. Values without percentage sign refer
to absolute numbers of responses.

Summary: FaaS is used for both, user-facing appli-
cations and backend utilities. However, if used within
the user-facing request cycle, some technical challenges,
most importantly slow tail latency, need to be over-
come. FaaS is particularly suitable for event-driven ap-
plications or applications facing bursty workload that
are idle a significant fraction of the time. This type
of service is less suitable for applications comprising
tasks that are long-running or have strong performance
requirements. It is common to use FaaS in a hybrid
model, i.e., in conjunction with traditional cloud ser-
vices, such as virtual machines or containers.

12

4.8. Application Patterns

‘We now discuss common application patterns we have
observed in our research.

Application size. Regarding the number and sizes of func-
tions used in applications and systems, the interviewees to
a large extent paint a similar picture. Typically, between
5 and 15 functions are combined to form or complement
an application or system. Only two interviewees report
larger systems containing multiple tens of functions. The
survey respondents’ answers support this finding, as can
be seen in Figure[14 Nearly two thirds of respondents use
between one to ten functions per application or system.

How many functions do the FaaS systems or applica-
tions typically consist of?

1: 1-5 functions 33 /35%
2: 6-10 functions 28 / 29%
3: 11-20 functions 19 / 20%
4: 21+ functions 15 / 16%

Figure 14: Number of functions per system or application

The functionality provided by individual functions is
typically chosen to be relatively atomic. According to in-
terviewees, functions are scoped to reflect a specific busi-
ness need, or to correspond to one operation of a REST
APL

Common patterns. One particularly interesting outcome
that emerged from our interviews and literature review
was that there are a number of recurring patterns in in-
dustrial FaaS solutions to deal with technical or conceptual
limitations, such as too short maximum timeouts or the
complexity of dealing with API gateways. We dub the pat-
terns we observed externalized state (all state is stored in
an external database), routing function (a central function
is configured to receive all requests and dispatches them),
function chain (one function calls another to increase time-
outs), function pinging (functions are periodically “pinged”
with artifical payload to prevent the FaaS platform from
discarding all containers), and owversized function (func-
tions are configured with excessive memory requirements
purely to get deployed to a faster physical machine). We
provide an overview of these patterns in Table[2] It is inter-
esting to observe that, with the exception of externalized
state, all of these (anti-)patterns can be seen as develop-
ers struggling with the inherent limitations of FaaS and
working around them.

In Figure we summarize how prevalently these pat-
terns were used among our survey respondents. FEzxternal-
ized state is by far the most common, with two thirds of
participants reporting that they at least sometimes use it.
17 respondents (18%) always make use of externalized state
when building FaaS applications. The remaining patterns
are less commonly used, which is unsurprising given that

Pattern Name

Addressed Problem

Description

Advantages

Disadvantages

Externalized State

Functions need to be
stateless; any state
saved in a function is

not guaranteed to be
available in subsequent
function calls.

Developers externalize all func-
tion state in key/value data stor-
age, such as Redis.

State is persisted reli-
ably between function
calls.

Persisting state to key/value
stores induces latency over-
head and requires additional
programming effort; unless
a hosted database service is
used, an additional applica-
tion component needs to be
managed.

Routing Function

API gateways and routes
are cumbersome to con-
figure.

A central routing function is
used to receive requests and for-
ward them via function chaining
(see below) to the appropriate
other functions, based for exam-
ple on the received payload.

API routes only need
to be configured for one
function, not for each of
them.

Routing information is hid-
den in a function implemen-
tation rather than in the
configuration.

Function Chain

Functions are restricted
to a maximum call dura-
tion.

When the normal (i.e., non-
erroneous) execution time of a
function sometimes exceeds the
maximum configurable timeout
threshold (e.g., 5 minutes on
AWS Lambda), developers may
split the function into multiple
parts which are then chained to
effectively prolong the allowed
call duration.

Allows to circumvent
platform timeouts.

Essentially creates two de-
ployment units for one log-
ical service; splitting the
function may be difficult
for some applications; in-
troduces strong coupling be-
tween the chained functions.

Function Pinging

Container cold start
times lead to high la-
tency for some requests
(tail latency), especially
after an idle period that
causes the platform to
stop all containers for a
function.

Developers put functionality in
place that periodically “pings”
(triggers) the function even if
no production workload is to be
handled, to avoid containers be-
ing discarded by the platform.

Timeouts are avoided.

Periodic pings induce un-
necessary costs; additional
code needs to be developed,
tested, and maintained to
manage pinging.

Oversized Function

Current FaaS platforms
do not provide mecha-
nisms to directly select
what type of CPU to ex-
ecute the function on.

In some platforms, the only way
to get a function deployed to
a stronger physical machine is
to increase the memory require-
ments for the function, even if
the function does not actually re-

Functions with higher
memory requirements
get deployed to physical
machines with faster
CPUs.

The function is billed signif-
icantly more for the higher
memory allowance without
actually using it.

quire more memory.

Table 2: Common application patterns that developers use to address FaaS limitations.

these patterns are workarounds around somewhat niche
constraints and problems rather than actual best practices.
However, all four remaining patterns are reported to be
used at least occassionally, indicating that the limitations
imposed by the FaaS model are constraining developers at
least sometimes.

Externalized State

‘ 22 / 24% ‘ 12 21 / 23% ‘ 21 / 23% ’ 17 / 18%
Routing Function

‘ 29 / 32% ‘ 25 / 28% ‘ 25 / 28% ‘ 11 ’1‘
Function Chain

‘ 34 / 37% ‘ 22 / 24% ‘ 21 / 23% ‘ 11 ’3‘
Function Pinging

‘ 46 / 49% ‘15/16% 17/18%‘ 11 ’5‘
Oversized Function

‘ 27 / 30% ‘ 20 / 23% ‘ 23 / 26% ‘ 11 ’ 8 ‘
Legend:

‘ Never ‘ Rarely ‘ Sometimes ‘ Usually ’ Always ‘

Figure 15: Prevalence of FaaS application patterns in practice. Val-
ues without percentage sign refer to absolute numbers of responses.

13

Summary: Current FaaS applications are commonly
small, and often consist of 10 functions or less. Devel-
opers use various application patterns and workarounds
to deal with the inherent limitations of current FaaS
platforms.

4.4. Development Languages and Practices

We observe that there are a small number of program-
ming languages that are commonly used to implement
serverless solutions. In most cloud platforms, JavaScript,
Python, and, to a lesser degree, Java are dominant. In
Azure, C# / .NET unsurprisingly is of great importance.
This can also be seen in our survey: from 96 respon-
dents that answered this question, 74% (71) include either
JavaScript (with or without Node.js), Python, or Java.
Figure [I6] breaks down the answers provided in the survey
in detail. These results indicate on the one hand develop-
ers’ preferences for writing functions, but are also deter-
mined by what languages are made available. For example,
of the 8 responses marked "Other" in Figure[I6] 5 include
"Go", which became available in Google’s FaaS offering
only when our survey was already live.

Development challenges. Given the relative immaturity of
the technology, it is unsurprising that we have observed

Which programming languages do or did you use with
FaaS?

1: JavaScript / Node.js 68 / 71%
2: Python 47 | 49%
3: Java 29 / 30%
2G5 / Net 9/ 9%
5: Other 8/ 8%

Figure 16: Programming languages used in FaaS applications

some challenges and grievances that even advanced prac-
titioners currently struggle with. A major challenge is how
to test functions. Due to the relatively small size and often
low complexity of individual functions, they lend them-
selves well for unit tests, which can be performed locally.
However, testing the integration of multiple functions or
external services is harder, as local replication of the entire
system is often not possible or hard to achieve.

"[...] it is not possible to replicate a serverless or cloud
system on your local machine." -16

One possible solution is to test functions directly in
production, or in a dedicated development environment
that is also hosted in the cloud. One common way to
implement the latter is to have multiple separate accounts
with the cloud provider, one for production and one for de-
velopment and testing. Both approaches have the obvious
disadvantage that they require developers to pay for test
invocations the same as for production workload. In ad-
dition, we have observed that testing in actual production
environments can have (negative) side-effects on produc-
tion systems in some cases. One approach to deal with this
issue is to perform canary releases or A/B testing, so that
possible side-effects can be assessed for a small number of
requests.

The testing practices used by survey respondents are
illustrated in Figure As expected, unit tests are com-
monly performed locally. When it comes to integration
tests, dedicated development environments and mocked
environments are more commonly used for testing than
production environments (in general, or via canary releases
or A/B tests). 23.7% (22) of respondents to this ques-
tion perform tests in both, dedicated FaaS development
environments and mocked FaaS environments, while only
16.1% (15) respondents test both in a dedicated environ-
ment (dev or mocked) and in a production environment.

Another core challenge is a lack of tooling and insuffi-
cient documentation. Tooling is especially desirable for the
interviewees when it comes to deploying (sets of) functions,
mapping events to functions (using, for example, API gate-
ways to make functions accessible to HTTP requests), and
monitoring and logging. At the same time, only a few of
the available tools are actually used. With 79.7% of survey
respondents using it, the Serverless framework is by far the

14

How do you typically test FaaS functions?

1: Local unit testing of functions 1/ 87%
2: Integration tests in dedicated FaaS dev. environment 57 / 61%
3: Integration tests in mocked FaaS environment 44) 47T%
4: Integration tests in production FaaS environment 18 / 19%
5: Canary releases or A/B tests in FaaS environment 12 / 183%
6: Other 1/1%

Figure 17: Testing approaches for FaaS functions

most common among them. Contrary, the next frequently
named library, Chalice, was only named by 11.6% of re-
spondents. This indicates that existing tooling, with the
exception of the Serverless framework, appear to not ad-
dress the core challenges that developers currently face, or
their existance is not yet widely known.

Further, interviewees perceive the available documen-
tation to be insufficient, especially as best practices around
FaaS still evolve. With regard to deploying functions, one
interviewee remarked.

"(...) there are really not a whole lot of accepted patterns
or state of the art solutions [how to deploy functions]." -11

Acknowledging these shortcomings, 11 and I3, who work
for a major FaaS provider, emphasized that one of their
current priorities is to improve documentation of their of-
ferings.

Summary: JavaScript, Python, Java, and C# are
currently the dominant implementation languages for
FaaS services. Current main development challenges
for building FaaS solutions include (integration) test-
ing applications, as well as a lack of good tooling and
documentation.

4.5. Advantages and Challenges

We now discuss the major advantages and challenges
when adopting FaaS. For the latter, we focus on more ar-
chitectural and strategic difficulties rather than the more
technical development challenges discussed in the previous
section.

Advantages. We observe that there are three classes of
advantages that motivate developers to use FaaS offerings,
namely business-related, technical, and security-related ad-
vantages (see Figure . This is in line with previously
reported results for cloud computing in general [2].

In terms of business advantages, the interviewees con-
sider the pay-as-you-go pricing model typically used for
FaaS as a big factor. It guarantees that costs correspond
to usage volume, and especially avoids any cost when no
usage occurs. In consequence, functions do not need to be

Select what the most significant advantage of using
FaaS8 is for you.

1: Elasticity and automatic scalability 29 / 31%
2: Less time spent on managing servers 20 / 22%
3: Reduced total costs 15 / 16%
4: Pay-as-you go pricing model 12 / 13%
5: Reduced time to market 6/ 6%
6: Simplified deployment processes 6 /6%
7: Infrastructure maintained by cloud provider 3 /3%
8: Built-in failover and retry capabilities 2 /2%

Figure 18: Significant advantages when working with FaaS services

“unprovisioned” or “undeployed” for cost reasons when lit-
tle or no usage is expected. Further, as FaaS liberates
developers from managing servers themselves, they can
spend more time focusing on business features than would
be possible when running applications on their own hard-
ware or VMs. This observation holds even as FaaS requires
developers to write some “management code”, for example
to deploy related sets of functions. Deployment processes
for FaaS are generally considered to be simpler than for
other types of cloud services, freeing up additional time.

"(...) a lot of integrations we have were built in let‘s say
one week. And almost every integration with external ser-
vices like SAP or CRM or service bus would have cost you
a couple of sprints with a senior development team." -19

Another cost-related aspect of using FaaS is that the
per-request billing model of FaaS enables straight-forward
deployment cost optimization. Essentially, every millisec-
ond that a FaaS function executes faster directly translates
into cost savings. This makes reasoning over whether cer-
tain code-level optimizations are “worth it” easier from a
deployment cost point of view.

As for technical advantages, the interviewees consider
the elastic scalability of functions to be a major technical
advantage. If demand rises, FaaS providers horizontally
scale up functions. Because functions are short running,
they automatically scale down upon completing execution.
Thus, FaaS provides elastic scalability without any setup
efforts for users. The interviewees consider this to be a
significant advantage, even though no interviewee yet re-
ports to use FaaS in large-scale setups. Further, inter-
viewees welcome FaaS’ failover capabilities. If function
executions fail, they can automatically be retried without
explicit configuration or coding.

A somewhat less discussed advantage of serverless is
that it can also increase the security of applications. FaaS
shifts the burden of managing and maintaining machines
to cloud providers, which are more likely to keep machines
up-to-date with patches:

15

"Serverless practically eliminates the main source for suc-
cessful exploits today — unpatched servers. Such servers
are using binaries with known vulnerabilities, as they did
not apply the latest security updates of those dependen-
cies." HA8

Another aspect of this is that (Distributed) Denial-of-
Service (DDoS) attacks become a billing rather than an
availability issue. Where a traditional system may become
unavailable under a DDoS attack, a FaaS-based solution
scales up to deal with the load, incurring potentially sig-
nificant additional costs. Whether this is preferable to a
downtime is of course context- and application-dependent.

Challenges. In contrast to these advantages, the intervie-
wees also raise challenges with FaaS or serverless comput-
ing in general. Some of these may be attested to the rel-
ative immaturity of FaaS offerings, while others are the
result of the concepts and practices underlying FaaS. Fig-
ure summarizes what our survey respondents consider
to be significant challenges when using FaaS in order of
how often the respective challenge has been selected (mul-
tiple selections were possible).

Which of the following do you consider significant
challenges for using FaaS services?

1: Lack of tooling (e.g., testing, deployment) 51 / 55%
2: Integration testing 37 / 40%
3: Vendor lock-in 30 / 32%
4: Container start-up latency 27 / 29%
5: Managing state in functions 25 / 27%
6: Unit testing 17 / 18%
7: Little support for reusing functions 13 / 14%
8: Lack of documentation 12 / 18%
9: Finding/hiring developers familiar with FaaS 11 / 12%
10: Little support for composition of functions 11 / 12%
11: CPU or processing limitations 8/ 9%
12: Memory limitation 5/ 5%
13: Other 3/3%
Figure 19: Significant challenges when working with FaaS services

Besides lack of tooling and difficulties of integration
testing, vendor lock-in is also named as a pressing issue.
All prominent FaaS providers offer custom feature sets and
APIs. Further, due to the tight integration of FaaS with
other cloud services, migrating a FaaS application to a
different provider is rather difficult. Tail latency and han-
dling state are further commonly named challenges. It
is interesting to observe that hiring challenges, as well as
lacking support for function composition (two aspects that
have emerged prominently in our interviews and analysis
of grey literature) are only considered to be a main chal-
lenge by 12% of survey respondents. We attribute this to

https://tinyurl.com/l9hkpul

the fact that many applications built using FaaS today ap-
pear to be fairly small and of young age, so both, function
composition and hiring may not have become a pressing
issue in today’s industrial practice, which may of course
change in the coming years.

Summary: FaaS offers advantages related to busi-
ness (reduced costs and increased developer productiv-
ity), technical advantages (transparent elasticity and
automatic failover), and advantages related to secu-
rity (managed servers and, to some degree, resistance
against DDoS attacks). The main challenges that de-
velopers face include a lack of good tooling, difficulties
in integration testing, vendor lock-in, and performance
problems.

4.6. Deployment Costs

While reduced costs are often named as a core driver
underlying FaaS adoption, a deeper analysis revealed that
this is indeed a hotly debated topic. While all of our inter-
viewees have argued that FaaS is extremely cost-efficient,
or even entirely free for many use cases, our survey of
grey literature has drawn a different picture. In online
articles or discussions on HackerNews, many practitioners
have made negative experiences with unexpectedly high
cloud bills. Partially this may be due to the highly intrans-
parent billing model, which leaves users unclear about the
“real” costs of the different parts of their deployment.

"(...) all of this is super hard to read on the bill (which
function costs me the most and when? Gotta do your own
advanced bill graphing for that) (...) Personally, I think
it’s all <retracted> ridiculous the amount of effort you
have to spend into reading your own bill." -Commenter on
HackerNews, A25

In addition, some FaaS users have observed that there
are non-obvious “traps” that can lead to expensive mis-
takes. For instance, FaaS services foster fault tolerance
by automatically retrying if processing a given trigger or
event has failed [23]. However, in some cases, users have
experienced endless loops where functions kept trying to
process the same malformed input until manually termi-
nated.

"Retries can crazily increase your bill if something goes
wrong." -Commenter on HackerNews, A25

We speculate that these issues have not emerged from
our interview study, as our interviewees are all experienced
cloud developers who are unlikely to fall into such traps.
In general, we have identified two clear fault lines between
practitioners that tend to find FaaS cheap and those that
do not.

Firstly, developers at startup companies tend to find
FaaS cheap, while developers at companies with significant
user base do not. This is due to extensive free tiers, which
skew the observed costs for startup companies. However,

16

for sustained, large-scale usage, many users have observed
that price tags can become quite significant beyond the
free tier, especially as users pay separately for (almost)
every ecosystem service in use, including, for instance, API
Gateway, Lambda, S3, and Step Functions in the case of
AWS. Given that serverless applications are, as described
in Section [41] by nature compositional, this can add up
easily.
"I feel like the "Serverless is cheaper" thing here is being
driven largely by the sorts of companies who are erperi-
menting with it the most - small startups prematurely de-
signing for scale." -Commenter on HackerNews, A9

Secondly, developers using FaaS as “glue code” tend
to find FaaS cheap, while developers who use it for user-
facing applications do not. In backend usage, absolute
request counts are generally low, and this makes the per-
invocation pricing model much cheaper than paying for
an, even small, container or virtual machine. However,
as soon as FaaS functions are invoked for each user re-
quest, invocation counts increase, and so do costs. It is
not surprising that, once FaaS functions are actually exe-
cuting continuously, simply paying for a VM or container
upfront will be cheaper than paying for computation on
a per-request basis. An additional factor to consider here
is that particularly API Gateway, an AWS service that is
virtually mandatory to use in conjunction with Lambda
for user-facing applications, is reputed to be particularly
expensive.

"The power of serverless is that it really allows you when
you don’t have traffic or your system is not busy that you
don’t consume many resources." -111

In our survey, a majority of 93% of respondents has
argued that they find FaaS cheap or do not care about
costs at all (Figure . However, we caution the reader
that this may be due to the self-selection bias: develop-
ers who find FaaS expensive are less likely to voluntarily
participate in an online survey on the topic.

Do you think that using FaaS at the moment is cheap
in terms of cloud hosting costs?

1: Total costs of FaaS are lower than its alternatives 65 / 71%
2: Costs do not matter to us at this point 20 / 22%
3: Total costs of FaaS are higher than its alternatives 3/3%
4: Other 3/3%

Figure 20: Perceived costs for using FaaS versus alternatives

Summary: While FaaS services are indeed often cost-
effective, this may be due to generous free tiers and
low-utilization use cases. Using additional services can
easily increase the total deployment costs for an appli-
cation. Highly intransparent billing models complicate
cost planning.

https://news.ycombinator.com/item?id=14601809
https://news.ycombinator.com/item?id=14601809
https://news.ycombinator.com/item?id=14601809
https://news.ycombinator.com/item?id=15326553

5. Implications

The results of our study reveal implications for FaaS
providers, consumers (i.e., application or system develop-
ers), and researchers, which we address in the following
subsections.

5.1. What’s next for providers

FaaS offerings are still relatively young, with initial re-
leases of AWS Lambda in November 2014, IBM Cloud
Functions / OpenWhisk in February 2016, Azure Func-
tions in March 2016, and (the beta of) Google Cloud Func-
tions in March 2017. Thus, as of now, significant new ca-
pabilities are routinely added to the offerings, including
support for new languages, integration with other Cloud
services, or tooling for testing or compositionﬂ Our study
reveals the need for various further improvements. In-
terestingly, we observe that interviewees that represent
platform providers (e.g., I1 or I3) expect future server-
less solutions to look quite radically different from what
we have today, while interviewees that represent serverless
users largely expect “faster horses”, i.e., incremental im-
provements to existing solutions. These more incremental
improvements fall into two categories, better tooling and
lifted restrictions.

Provide better tools. Given the severely limited
state of current FaaS tooling, it is unsurprising that most
interviewees hope and expect that better and more sophis-
ticated tool chains for developing serverless solutions will
become available in the future. Most importantly, this re-
lates to better means for testing and debugging, such as
tools for record-and-replay testing of cloud events, pub-
lished cloud images that allow users to more accurately
reproduce cloud behavior locally, and debuggers that can
connect directly to functions executing in the cloud. Azure
already provides many of these features through their inte-
gration with Visual Studio. Our study participants largely
expect other providers to follow suit.

Lift restrictions. Further, many interviewees expect
that providers will slowly lift the current fundamental re-
strictions of the model (e.g., related to state, execution
time limits, etc.), or at least provide better technology
to work around them. Most importantly, many intervie-
wees expect that providers will develop support for stateful
functions, or provide an integrated way for handling spe-
cific types of state through the platform. In the wider
ecosystem, there are already new database designs such
as FaunaDB which address especially the latency issue of
external state binding. While selected statefulness within
functions will impact the performance and providers would

1See change logs for AWS Lambda (https://docs.aws.amazon.
com/lambda/latest/dg/history.html) or Google Cloud Functions
(https://cloud.google.com/functions/docs/release-notes)
as well as individual feature announcements, for ex-
ample https://www.ibm.com/blogs/bluemix/2017/10/
serverless-composition-ibm-cloud-functions/.

17

adapt the pricing accordingly, the offer may still be com-
pelling to developers due to being able to deploy more con-
ventionally designed code as functions. I3 recognizes the
need to support connection pooling or caching in end-user
facing Web applications:

"A lot of Web systems use in-memory caches, there are
things like Redis, you can use those in conjunction with
serverless, but as far as in-memory caches go, given that
you are not guaranteed a persistent memory ..." -13

From our interviewees representing providers and tool
builders (I1, I3, and 16), a different set of future devel-
opments has emerged. Those interviewees expect that fu-
ture updates will quite fundamentally change the server-
less landscape, particularly related to function reuse and
ecosystems, higher-level abstractions, serverless for mem-
ory, and serverless on the edge.

Foster function reuse and ecosystems. As indi-
cated in Section[41] there is currently little infrastructure
in place to enable a structured reuse of functions between
cloud tenants, or even between individual applications of
the same tenant. I3 has argued that future FaaS solu-
tions will naturally include a function ecosystem, where
existing external functions, even for specialized tasks, can
be discovered through search engines, catalogues, or func-
tion packages. Existing function marketplaces such as the
Amazon Serverless Application Repository are clear steps
into this direction, but currently seem to have problems
gaining traction. Better marketplaces will increase the
reuse of functions, and make serverless application devel-
opment even more compositional in nature. These func-
tion ecosystems may operate similarly to current-day open
source ecosystems, such as NPM [24].

Provide higher-level abstractions. Both, FaaS users
and developers of FaaS platforms, consider the develop-
ment model provided by today’s platforms, languages, and
services to be quite rudimentary. While initial steps to
provide something akin to a “programming language” for
serverless applications have already been taken (e.g., the
AWS Step Functions service, which allows to describe ap-
plications as workflows of FaaS functions), some of our
interviewees see these merely as the first step:

"(...) format for Step functions is essentially like an as-
sembly language (...) Nobody wants to write JSON format
for a state machine that has hundreds of states." -11

There is an expectation that, in the future, higher-level
abstractions will be developed and current technologies,
such as Lambda and Step Functions, will become mere
deployment platforms, which are not intended to be pro-
grammed directly. Instead, we may see the rise of general-
purpose or domain-specific languages that compile into a
format that is deployable on serverless platforms:

"We will have languages that compile something that you
can execute in a serverless platform." -11

https://docs.aws.amazon.com/lambda/latest/dg/history.html
https://docs.aws.amazon.com/lambda/latest/dg/history.html
https://cloud.google.com/functions/docs/release-notes
https://www.ibm.com/blogs/bluemix/2017/10/serverless-composition-ibm-cloud-functions/
https://www.ibm.com/blogs/bluemix/2017/10/serverless-composition-ibm-cloud-functions/

Provide “serverless for memory”. As discussed,
we have by now on-demand serverless technologies for all
common computing resources, with the exception of mem-
ory. Memory can still only be acquired in conjunction
with compute time, either through IaaS services such as
EC2 or ECS, or through FaaS services such as Lambda.
I3 expects that we will also see the development of analo-
gous services for memory. Realistically, providers could ex-
ploit dynamic allocation (memory ballooning) techniques
for vertical scaling in hypervisors and container engines to
address this perceived need if it fits their business model.

Provide “serverless at the edge”. An already on-
going development is to provide support for function ex-
ecution not only in the cloud, but also directly on edge
devices. I5 sees this as the future “killer app” for serverless
and FaaS:

"Actually being able to execute code in CloudFront on the
edge, this is pretty hot." -15

From a business perspective, established edge and con-
tent delivery networks being upgraded with function pro-
cessing capabilities may become a game-changer given that
their installation base is still vastly larger than the one of
major FaaS providers, but so far no concrete plans in this
direction are known to the authors.

5.2. What’s next for developers

For developers, the current state of FaaS appears to be
a mixture of blessing and curse: on the one hand, FaaS
offers tremendous potential for enabling automatic scaling
and elasticity, reducing efforts for deployments and server
management, and (often) lowering deployment and devel-
opment costs. On the other hand, current limitations of
FaaS offerings and related tooling as well as the need to
adopt a corresponding mental model present challenges for
developers to overcome.

Question whether your use case suits FaaS. Our
survey finds FaaS being used both for backend applications
as well as for end-user facing ones - both on their own or
in combination with other services. However, many in-
terviewees are skeptical of the second use-case, pointing
for example to response time and tail latency limitations
and challenges in dealing with state across requests (for
example to persist sessions). When considering the use of
FaaS, developers should carefully assess their requirements
for handling state, expected workloads and runtimes, as
well as non-functional requirements regarding, for exam-
ple, memory, processing power, response times, and cost -
both for using FaaS as well as for alternative solutions.

Embrace the mental model for FaaS. This model
fosters the composition of applications and systems from
small services implemented as functions and integration
with other cloud services. Developers should be encour-
aged by our study’s finding that training experienced de-
velopers may be easy because of the closeness of FaaS to
existing technologies and methods, and by the hope that

18

junior developers may easily adopt this mental model as a
default one (see Section [L.1]).

Choose carefully which provider to use. When
selecting the concrete FaaS provider to use, developers
should consider on the one hand possibilities and required
efforts for integrating with other cloud services, which is
a common pattern for FaaS usage. If they already rely on
many services from one provider, integrating FaaS may be
easier and familiar tools may be (re-)used. On the other
hand, developers need to carefully asses the vendor lock-in
that is prevalent in virtually all existing offerings.

Anticipate your tooling needs - especially when
it comes to testing. Both, interviewees and survey re-
spondents, note that the current lack of tooling around
FaaS is a central challenge. One area where this is espe-
cially obvious is testing, where most respondents rely on
local unit tests. Integration testing, on the other hand, is
hard to achieve, as emulation platforms are lacking and
tests in production may have side-effects and cost money.
Developers should consider likely testing needs before de-
veloping FaaS-based applications and systems, taking into
account the specific support their FaaS provider offers.

5.83. What’s next for researchers

For researchers, three main implications result from
our work: first, systems and software engineering research
can address the identified challenges for providers and de-
velopers, which we discussed in the previous subsections.
Second, empirical research, like this paper, is required to
assess how FaaS is used and how provided services evolve.
Third, as the amount of research about FaaS stacks up,
meta research is required to contextualize, relate, and sum-
marize findings.

Improve and extend FaaS-related software. The
impact of research aiming to improve FaaS systems in-
creases if the targeted systems are actually used by de-
velopers in practice. According to our findings, FaaS is
now at the core of a rapidly evolving serverless comput-
ing ecosystem. Yet, many of the tools are first-generation
prototypes with a lot of potential for optimization. Thus,
our recommendation to researchers is to go beyond iso-
lated contributions and instead consider holistic serverless
application use cases involving both runtime environments
and developer tooling as well as hybrid serverless/conven-
tional application development.

Study the use of FaaS offerings. As this study
aims to do, empirical research can highlight various as-
pects of current FaaS offerings, including strengths, weak-
nesses, and challenges from a software engineering point of
view, economic incentives or barriers to adoption, or impli-
cations on system and application designs. While we see
our study as a starting point, we have focused on breadth
rather than a deep study of, for instance, the feature set de-
velopment and the affected software developer behaviour
over time. We see such follow-up studies as highly valuable
contributions to guide software developers with building
serverless solutions.

Establish the “real” expenses of using FaaS. As
we found in our study, the question of whether FaaS is
more cost-effective than other cloud services, and for which
applications, is not easy to answer. Researchers should
conduct case studies with companies to get a holistic view
of the various costs and benefits involved, including devel-
opment costs, increased business agility, and pay-per-use
versus pay-per-time. As it currently stands, developers
struggle to make an informed decision about these aspects,
and are unable to distinguish cloud provider marketing
from objective facts.

Align with industrial practice. Furthermore, our
study approach directly leads to follow-up research possi-
bilities. Of particular interest from a perspective of aca-
demic impact would be the matching of technological choices
taken by developers with those taken by researchers. Anec-
dotally, we observed a mismatch, especially concerning ad-
vanced topics such as composition and testing of functions,
both of which are sparsely covered by current scientific lit-
erature but appear to be immensely important in practice
according. We propose to use our results as a an indication
of which areas are actually in need for future conceptual
improvements.

6. Related Work

FaaS platforms have been subject to a growing body of
published findings. The covered fields include cloud func-
tions in scientific computing [25] 26] and edge computing,
further application domains such as data analytics, and
economic aspects. For a broad overview on general server-
less computing research activities and literature, we refer
to the summaries by the participants of the International
Workshop on Serverless Computing [27] and the Serverless
Literature Dataset [28]. A more general survey of software
development practices for the cloud has been presented by
Cito et al. [2]. The general themes reported therein (e.g.,
adoption being driven by a combination of business and
technical factors) have similarly emerged from our study.

There is a strong relationship between our study sub-
ject and the related research area of development of soft-
ware based on microservices [29]. An older systematic
mapping study by Pahl and Jamshidi gives a good overview
over this related area [30]. Balalaie et al. report on a case
study of migrating to microservices [I8]. They argue that
incremental migration and a strong emphasis on hosted
services and re-use is critical to the success of microser-
vices projects, which is in line with our findings. Mazlami
et al. study various automated metrics for slicing out mi-
croservices from a monolith, which can potentially also be
applied to serverless and FaaS migration [5]. Workflow
and orchestration systems appear for cloud functions, as
introduced in Section but also for other microservice
architectures, such as Beethoven for Spring Cloud compo-
nents [3I]. We are not aware of a formal elaboration on
the degree of matching between microservices and predom-
inant cloud functions models, but the selected works, our

19

study findings and first academic works dedicated to this
matching [32] suggest that most FaaS services are widely
seen as microservice implementation technology.

Considering the published works related to serverless
and FaaS, few studies focus on the development perspec-
tive compared to articles about runtime and more techno-
logical questions. The related work can thus be divided
into three categories: platform-level development support,
methods and tools, and software architecture.

Development support has been analysed for the visu-
alisation of serverless application logs with OpenWhisk by
Chang and Fink [33]. The authors note that their ap-
proach, called Witt, facilitates program understanding and
automated documentation generation. Baldini et al. point
out flaws in function composition which can be seen as ad-
vice for developers [8].

Development methods and tools have been explored re-
lated to sample applications such as chatbots [34] and re-
lated to code decomposition and transformation [35]. The
results show that automated conversion of legacy code to
cloud functions is not practical beyond toy examples and
therefore the need to craft functions manually on the code
level remains.

The impact on software architectures has been stud-
ied by Adzic and Chatley with AWS Lambda [22] and by
Sampé et al. with Zion, an environment to execute data-
driven functions [36]. These topics, which partially touch
on the runtime, receive slightly more attention by fellow
researchers, as also evidenced by domain-specific architec-
ture analysis by Crane and Lin [37].

No peer-reviewed empirical works about software de-
velopment in this domain are known to us. The develop-
ment perspective is more prominent in industry surveys,
the first of which have been conducted during our study
period. SlashData, for example, has found out from more
than 21000 developers that serverless adoption is increas-
ing and that AWS Lambda is the leading platform with
44% share [38]. A CNCF survey among 550 community de-
velopers arrives at different conclusions with 70% Lambda
adoption [39]. Yet these statistics are single-method only
and focus on market numbers rather than development
processes and requirements, and are furthermore openly
disputed in developer media such as The Register and The
New Stack [40]. These limitations show that there is a need
for a more profound study design, which we contribute in
our research.

7. Conclusions

In this paper, we presented results from the first sys-
tematic study of serverless and FaaS development. We
conducted a mixed-method study that combined qualita-
tive and exploratory elements with a structured, quanti-
tative survey. Our results are based on the analysis of 12
interviews with professional developers who use, or have
used, FaaS in the past, 50 frequently-discussed online arti-
cles or blogs related to the topic, and 182 survey responses.

Our main findings are that successfully adopting serverless
requires a mental model that is different, where systems
are primarily constructed by composing externally pro-
vided, pre-existing services. FaaS often acts as the “glue”
that allows these services to interact. Many developers use
FaaS particularly for backend tasks, but building end user
facing applications is possible as long as developers remain
acutely aware of the high tail latency of FaaS and other
technical restrictions. We have observed five prevalent ap-
plication patterns (e.g., pinging functions to keep contain-
ers “warm”, chaining functions to circumvent maximum
execution time limitations), indicating that some develop-
ers struggle with the technical restrictions inherent in the
model. FaaS offers advantages related to both, business
factors (e.g., potentially reduced costs and increased de-
velopment speed) and technical factors (e.g., auto-scaling,
automated failover, potentially increased security). How-
ever, the maturity and availability of tooling, particularly
related to testing and deployment, remains a barrier to en-
try. Finally, limited support for function sharing and the
absence of a service ecosysystem is seen as a challenge.

Our results have implications for service providers, de-
velopers, and researchers. For providers, our results indi-
cate that many developers struggle the lack of good tooling
and the limitations inherent in the platform. Further, our
study shows a need for higher-level abstractions as well
as more sophisticated means to foster re-use of functions
(potentially across tenants). For developers, our study has
shown that adopting the right mind set is crucial for suc-
cessfully adopting FaaS. Further, developers need to care-
fully evaluate cloud providers up-front, also because all
current offerings imply significant lock-in. For researchers,
our study opens up the potential, as well as the need, for
follow-up research, particularly as current research does
not appear to be well-aligned with existing woes of prac-
titioners.

Acknowledgements

First of all, we would like the thank the twelve inter-
viewees, for kindly taking the time to talk to us and share
their knowledge, and the many respondents of our online
survey. Furthermore, we would like to thank Jim Laredo
for providing feedback on our questionnaire.

References

[1] V. S. Sharma, S. Sengupta, S. Nagasamudram, MAT: A mi-
gration assessment toolkit for paas clouds, in: 2013 IEEE
Sixth International Conference on Cloud Computing, Santa
Clara, CA, USA, June 28 - July 3, 2013, 2013, pp. 794-801.
doi:10.1109/CLOUD.2013.92.

URL https://doi.org/10.1109/CLOUD.2013.92

J. Cito, P. Leitner, T. Fritz, H. C. Gall, The making of cloud
applications: An empirical study on software development for
the cloud) in: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015, ACM,
New York, NY, USA, 2015, pp. 393—403./doi:10.1145/2786805.
2786826.

URL http://doi.acm.org/10.1145/2786805.2786826

2]

20

(3]

[4]

L. Bass, 1. Weber, L. Zhu, DevOps: A Software Architect’s
Perspective, 1st Edition, Addison-Wesley Professional, 2015.
M. Malawski, K. Figiela, A. Gajek, A. Zima, Benchmarking
heterogeneous cloud functions, in: Euro-Par 2017: Parallel
Processing Workshops - Euro-Par 2017 International Work-
shops, Santiago de Compostela, Spain, August 28-29, 2017,
Revised Selected Papers, 2017, pp. 415-426. |doi:10.1007/
978-3-319-75178-8_34.

URL https://doi.org/10.1007/978-3-319-75178-8_34

G. Mazlami, J. Cito, P. Leitner, Extraction of microservices
from monolithic software architectures, in: Proceedings of the
2017 IEEE International Conference on Web Services (ICWS),
IEEE, 2017. doi:2017WebServices (ICWS),.

V. Garousi, M. Felderer, M. V. Mantyla, The need for multivo-
cal literature reviews in software engineering: Complementing
systematic literature reviews with grey literature, in: Proceed-
ings of the 20th International Conference on Evaluation and As-
sessment in Software Engineering, EASE ’16, ACM, New York,
NY, USA, 2016, pp. 26:1-26:6. [doi:10.1145/2915970.2916008.
URL http://doi.acm.org/10.1145/2915970.2916008

W. Hummer, F. Rosenberg, F. Oliveira, T. Eilam, Testing idem-
potence for infrastructure as code, in: ACM/IFIP/USENIX
Middleware Conference, Springer, 2013, pp. 368—388.

I. Baldini, P. Cheng, S. J. Fink, N. Mitchell, V. Muthusamy,
R. Rabbah, P. Suter, O. Tardieu, The serverless trilemma: func-
tion composition for serverless computing, in: Proceedings of
the 2017 ACM SIGPLAN International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and
Software, Onward! 2017, Vancouver, BC, Canada, October 23
- 27, 2017, 2017, pp. 89-103. |doi:10.1145/3133850.3133855|
URL http://doi.acm.org/10.1145/3133850.3133855

V. R. Basili, H. D. Rombach, The TAME Project: Towards
Improvement-Oriented Software Environments, IEEE Transac-
tions on Software Engineering 14 (6) (1988) 758-773. |doi:
10.1109/32.6156.

L. Bratthall, M. Jgrgensen, Can you trust a single data
source exploratory software engineering case study?, Empiri-
cal Software Engineering 7 (1) (2002) 9-26. doi:10.1023/A:
1014866909191.

URL https://doi.org/10.1023/A:1014866909191

G. Schermann, J. Cito, P. Leitner, U. Zdun, H. C. Gall, We're
doing it live: A multi-method empirical study on continuous
experimentation, Journal of Information and Software Tech-
nology nn (2018) nn, to appear.

URL http://www.ifi.uzh.ch/dam/jcr:
01d34060-29fb-472e-al116-bd26c3b49£67/IST_preprint.pdf
L. Singer, F. Figueira Filho, M.-A. Storey, Software engineering
at the speed of light: How developers stay current using twit-
ter, in: Proceedings of the 36th International Conference on
Software Engineering, ICSE 2014, ACM, New York, NY, USA,
2014, pp. 211-221. [doi:10.1145/2568225.2568305.

URL fhttp://doi.acm.org/10.1145/2568225. 2568305

T. Barik, B. Johnson, E. Murphy-Hill, I heart hacker news: Ex-
panding qualitative research findings by analyzing social news
websites, in: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, ESEC/FSE 2015, ACM,
New York, NY, USA, 2015, pp. 882-885./doi:10.1145/2786805.
2803200.

URL http://doi.acm.org/10.1145/2786805.2803200

V. Garousi, M. Felderer, M. V. My/§ntyl\/§, |Guidelines for in-
cluding grey literature and conducting multivocal literature re-
views in software engineering, Information and Software Tech-
nologydoi:https://doi.org/10.1016/j.infsof .2018.09.006.
URL http://wuw.sciencedirect.com/science/article/pii/
S0950584918301939

P. Leitner, E. Wittern, J. Spillner, W. Hummer, Survey and
interview data from mixed-method survey of serverless comput-
ing and function-as-a-service software development in industrial
practice, the study is currently under review and not yet pub-
lished. (May 2018). |doi:10.5281/zenodo.1252820,

[16] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

https://doi.org/10.1109/CLOUD.2013.92
https://doi.org/10.1109/CLOUD.2013.92
http://dx.doi.org/10.1109/CLOUD.2013.92
https://doi.org/10.1109/CLOUD.2013.92
http://doi.acm.org/10.1145/2786805.2786826
http://doi.acm.org/10.1145/2786805.2786826
http://doi.acm.org/10.1145/2786805.2786826
http://dx.doi.org/10.1145/2786805.2786826
http://dx.doi.org/10.1145/2786805.2786826
http://doi.acm.org/10.1145/2786805.2786826
https://doi.org/10.1007/978-3-319-75178-8_34
https://doi.org/10.1007/978-3-319-75178-8_34
http://dx.doi.org/10.1007/978-3-319-75178-8_34
http://dx.doi.org/10.1007/978-3-319-75178-8_34
https://doi.org/10.1007/978-3-319-75178-8_34
http://dx.doi.org/2017 Web Services (ICWS),
http://doi.acm.org/10.1145/2915970.2916008
http://doi.acm.org/10.1145/2915970.2916008
http://doi.acm.org/10.1145/2915970.2916008
http://dx.doi.org/10.1145/2915970.2916008
http://doi.acm.org/10.1145/2915970.2916008
http://doi.acm.org/10.1145/3133850.3133855
http://doi.acm.org/10.1145/3133850.3133855
http://dx.doi.org/10.1145/3133850.3133855
http://doi.acm.org/10.1145/3133850.3133855
http://dx.doi.org/10.1109/32.6156
http://dx.doi.org/10.1109/32.6156
https://doi.org/10.1023/A:1014866909191
https://doi.org/10.1023/A:1014866909191
http://dx.doi.org/10.1023/A:1014866909191
http://dx.doi.org/10.1023/A:1014866909191
https://doi.org/10.1023/A:1014866909191
http://www.ifi.uzh.ch/dam/jcr:01d34060-29fb-472e-a116-bd26c3b49f67/IST_preprint.pdf
http://www.ifi.uzh.ch/dam/jcr:01d34060-29fb-472e-a116-bd26c3b49f67/IST_preprint.pdf
http://www.ifi.uzh.ch/dam/jcr:01d34060-29fb-472e-a116-bd26c3b49f67/IST_preprint.pdf
http://www.ifi.uzh.ch/dam/jcr:01d34060-29fb-472e-a116-bd26c3b49f67/IST_preprint.pdf
http://www.ifi.uzh.ch/dam/jcr:01d34060-29fb-472e-a116-bd26c3b49f67/IST_preprint.pdf
http://doi.acm.org/10.1145/2568225.2568305
http://doi.acm.org/10.1145/2568225.2568305
http://doi.acm.org/10.1145/2568225.2568305
http://dx.doi.org/10.1145/2568225.2568305
http://doi.acm.org/10.1145/2568225.2568305
http://doi.acm.org/10.1145/2786805.2803200
http://doi.acm.org/10.1145/2786805.2803200
http://doi.acm.org/10.1145/2786805.2803200
http://dx.doi.org/10.1145/2786805.2803200
http://dx.doi.org/10.1145/2786805.2803200
http://doi.acm.org/10.1145/2786805.2803200
http://www.sciencedirect.com/science/article/pii/S0950584918301939
http://www.sciencedirect.com/science/article/pii/S0950584918301939
http://www.sciencedirect.com/science/article/pii/S0950584918301939
http://dx.doi.org/https://doi.org/10.1016/j.infsof.2018.09.006
http://www.sciencedirect.com/science/article/pii/S0950584918301939
http://www.sciencedirect.com/science/article/pii/S0950584918301939
http://dx.doi.org/10.5281/zenodo.1252820

[17]

(18]

[19]

20]

[21]

[22]

23]

[24]

25]

[26]

27]

(28]

[29]

[30]

A. Lakshman, A. Pilchin, S. Sivasubramanian, P. Vosshall,
W. Vogels, Dynamo: Amazon’s highly available key-value store,
in: Proceedings of Twenty-first ACM SIGOPS Symposium on
Operating Systems Principles, SOSP '07, ACM, New York, NY,
USA, 2007, pp. 205-220. doi:10.1145/1294261.1294281]

URL http://doi.acm.org/10.1145/1294261.1294281

T. Erl, R. Puttini, Z. Mahmood, Cloud Computing: Concepts,
Technology & Architecture, 1st Edition, Prentice Hall Press,
Upper Saddle River, NJ, USA, 2013.

A. Balalaie, A. Heydarnoori, P. Jamshidi, Microservices archi-
tecture enables devops: Migration to a cloud-native architec-
ture, IEEE Softw. 33 (3) (2016) 42-52. doi:10.1109/MS.2016.
64.

URL https://doi.org/10.1109/MS.2016.64

A. L. Lemos, F. Daniel, B. Benatallah, Web service composition:
A survey of techniques and tools, ACM Computing Surveys
48 (3) (2015) 33:1-33:41. [doi :10.1145/2831270!

URL http://doi.acm.org/10.1145/2831270

M. Plauth, L. Feinbube, A. Polze, A performance survey of
lightweight virtualization techniques, in: F. De Paoli, S. Schulte,
E. Broch Johnsen (Eds.), Service-Oriented and Cloud Comput-
ing, Springer International Publishing, 2017, pp. 34-48.

E. Jonas, Q. Pu, S. Venkataraman, I. Stoica, B. Recht, Occupy
the cloud: Distributed computing for the 99%) in: Proceedings
of the 2017 Symposium on Cloud Computing, SoCC ’17, ACM,
New York, NY, USA, 2017, pp. 445-451./doi:10.1145/3127479.
3128601.

URL http://doi.acm.org/10.1145/3127479.3128601

G. Adzic, R. Chatley, |Serverless computing: Economic and
architectural impact, in: Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE
2017, ACM, New York, NY, USA, 2017, pp. 884-889. doi:
10.1145/3106237.3117767.

URL http://doi.acm.org/10.1145/3106237.3117767

W. Hummer, C. Inzinger, P. Leitner, B. Satzger, S. Dustdar,
Deriving a unified fault taxonomy for event-based systems, in:
6th ACM International Conference on Distributed Event-Based
Systems (DEBS), 2012, pp. 167-178.

A. Serebrenik, T. Mens, Challenges in software ecosystems re-
search, in: Proceedings of the 2015 European Conference on
Software Architecture Workshops, ECSAW ’15, ACM, New
York, NY, USA, 2015, pp. 40:1-40:6. |doi:10.1145/2797433.
2797475.

URL http://doi.acm.org/10.1145/2797433.2797475

V. Ishakian, V. Muthusamy, A. Slominski, Serving deep learn-
ing models in a serverless platform, ArXiv e-printsarXiv:1710.
08460.

J. Spillner, C. Mateos, D. A. Monge, FaaSter, Better, Cheaper:
The Prospect of Serverless Scientific Computing and HPC, in:
4th Latin American Conference on High Performance Com-
puting (CARLA), Vol. 796 of CCIS, Colonia del Sacramento,
Uruguay, 2017, pp. 154-168.

G. C. Fox, V. Ishakian, V. Muthusamy, A. Slominski, Status of
serverless computing and function-as-a-service(faas) in industry
and research, CoRR abs/1708.08028. arXiv:1708.08028,

URL http://arxiv.org/abs/1708.08028

J. Spillner, Serverless literature dataset (Feb. 2018). doi:10.
5281/zenodo.1175424.

URL https://doi.org/10.5281/zenodo. 1175424

G. Buchgeher, M. Winterer, R. Weinreich, J. Luger, R. Wingel-
hofer, M. Aistleitner, Microservices in a small development or-
ganization - an industrial experience report, in: Software Archi-
tecture - 11th European Conference, ECSA 2017, Canterbury,
UK, September 11-15, 2017, Proceedings, 2017, pp. 208-215.
doi:10.1007/978-3-319-65831-5_15.

URL https://doi.org/10.1007/978-3-319-65831-5_15

C. Pahl, P. Jamshidi, [Microservices: A systematic mapping
study, in: Proceedings of the 6th International Conference
on Cloud Computing and Services Science - Volume 1 and 2,
CLOSER 2016, SCITEPRESS - Science and Technology Pub-
lications, Lda, Portugal, 2016, pp. 137-146. doi:10.5220/

21

[31]

32]

[33]

[34]

[35]

(36]

37]

[38]

(39]

[40]

0005785501370146.

URL https://doi.org/10.5220/0005785501370146

D. M. Barbosa, R. Gadelha, P. H. M. Maia, L. S. Rocha, N. C.
Mendonga, Beethoven: An event-driven lightweight platform
for microservice orchestration, in: Software Architecture - 12th
European Conference on Software Architecture, ECSA 2018,
Madrid, Spain, September 24-28, 2018, Proceedings, 2018, pp.
191-199. |[doi:10.1007/978-3-030-00761-4_13.

URL https://doi.org/10.1007/978-3-030-00761-4_13

W. Lloyd, S. Ramesh, S. Chinthalapati, L. Ly, S. Pallickara,
Serverless computing: An investigation of factors influencing
microservice performance, in: 2018 IEEE International Con-
ference on Cloud Engineering, IC2E 2018, Orlando, FL, USA,
April 17-20, 2018, 2018, pp. 159-169. doi:10.1109/IC2E.2018.
00039.

URL https://doi.org/10.1109/IC2E.2018.00039

K. S. Chang, S. J. Fink, Visualizing serverless cloud applica-
tion logs for program understanding, in: 2017 IEEE Symposium
on Visual Languages and Human-Centric Computing, VL/HCC
2017, Raleigh, NC, USA, October 11-14, 2017, 2017, pp. 261—
265. |[doi:10.1109/VLHCC.2017.8103476.

URL https://doi.org/10.1109/VLHCC.2017.8103476

M. Yan, P. C. Castro, P. Cheng, V. Ishakian, Building a
chatbot with serverless computing, in: Proceedings of the
1st International Workshop on Mashups of Things and APIs,
MOTA@Middleware 2016, Trento, Italy, December 12-13, 2016,
2016, pp. 5:1-5:4. doi:10.1145/3007203.3007217.

URL http://doi.acm.org/10.1145/3007203.3007217

J. Spillner, Practical tooling for serverless computing, in: Pro-
ceedings of the 10th International Conference on Utility and
Cloud Computing, UCC 2017, Austin, TX, USA, December 5-
8, 2017, 2017, pp. 185-186. |doi:10.1145/3147213.3149452|
URL http://doi.acm.org/10.1145/3147213.3149452

J. Sampé, M. S. Artigas, P. G. Lopez, G. Paris, Data-driven
serverless functions for object storage, in: Proceedings of the
18th ACM/IFIP/USENIX Middleware Conference, Las Vegas,
NV, USA, December 11 - 15, 2017, 2017, pp. 121-133. |doi:
10.1145/3135974.3135980.

URL http://doi.acm.org/10.1145/3135974.3135980

M. Crane, J. Lin, An exploration of serverless architectures for
information retrieval, in: Proceedings of the ACM SIGIR Inter-
national Conference on Theory of Information Retrieval, ICTIR
2017, Amsterdam, The Netherlands, October 1-4, 2017, 2017,
pp. 241-244. doi:10.1145/3121050.3121086.

URL http://doi.acm.org/10.1145/3121050.3121086

C. Voskoglou, Developer Economics: State of the De-
veloper Nation 14th Edition, Developer Economics web-
site: https://www.developereconomics.com/reports/

developer-economics-state-of-the-developer-nation-14th-edition.

S. Conway, Cloud Native Technologies Are
Scaling Production Applications, CNCF web-
site: https://www.cncf.io/blog/2017/12/06/

cloud-native-technologies-scaling-production-applications/

(December 2017).

M. Asay, AWS won serverless — now all your soft-
ware are kinda belong to them, The Register web-
site: https://www.theregister.co.uk/2018/05/11/lambda_

means_game_over_for_serverless/| (May 2018).

http://doi.acm.org/10.1145/1294261.1294281
http://dx.doi.org/10.1145/1294261.1294281
http://doi.acm.org/10.1145/1294261.1294281
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1109/MS.2016.64
http://dx.doi.org/10.1109/MS.2016.64
http://dx.doi.org/10.1109/MS.2016.64
https://doi.org/10.1109/MS.2016.64
http://doi.acm.org/10.1145/2831270
http://doi.acm.org/10.1145/2831270
http://dx.doi.org/10.1145/2831270
http://doi.acm.org/10.1145/2831270
http://doi.acm.org/10.1145/3127479.3128601
http://doi.acm.org/10.1145/3127479.3128601
http://dx.doi.org/10.1145/3127479.3128601
http://dx.doi.org/10.1145/3127479.3128601
http://doi.acm.org/10.1145/3127479.3128601
http://doi.acm.org/10.1145/3106237.3117767
http://doi.acm.org/10.1145/3106237.3117767
http://dx.doi.org/10.1145/3106237.3117767
http://dx.doi.org/10.1145/3106237.3117767
http://doi.acm.org/10.1145/3106237.3117767
http://doi.acm.org/10.1145/2797433.2797475
http://doi.acm.org/10.1145/2797433.2797475
http://dx.doi.org/10.1145/2797433.2797475
http://dx.doi.org/10.1145/2797433.2797475
http://doi.acm.org/10.1145/2797433.2797475
http://arxiv.org/abs/1710.08460
http://arxiv.org/abs/1710.08460
http://arxiv.org/abs/1708.08028
http://arxiv.org/abs/1708.08028
http://arxiv.org/abs/1708.08028
http://arxiv.org/abs/1708.08028
http://arxiv.org/abs/1708.08028
https://doi.org/10.5281/zenodo.1175424
http://dx.doi.org/10.5281/zenodo.1175424
http://dx.doi.org/10.5281/zenodo.1175424
https://doi.org/10.5281/zenodo.1175424
https://doi.org/10.1007/978-3-319-65831-5_15
https://doi.org/10.1007/978-3-319-65831-5_15
http://dx.doi.org/10.1007/978-3-319-65831-5_15
https://doi.org/10.1007/978-3-319-65831-5_15
https://doi.org/10.5220/0005785501370146
https://doi.org/10.5220/0005785501370146
http://dx.doi.org/10.5220/0005785501370146
http://dx.doi.org/10.5220/0005785501370146
https://doi.org/10.5220/0005785501370146
https://doi.org/10.1007/978-3-030-00761-4_13
https://doi.org/10.1007/978-3-030-00761-4_13
http://dx.doi.org/10.1007/978-3-030-00761-4_13
https://doi.org/10.1007/978-3-030-00761-4_13
https://doi.org/10.1109/IC2E.2018.00039
https://doi.org/10.1109/IC2E.2018.00039
http://dx.doi.org/10.1109/IC2E.2018.00039
http://dx.doi.org/10.1109/IC2E.2018.00039
https://doi.org/10.1109/IC2E.2018.00039
https://doi.org/10.1109/VLHCC.2017.8103476
https://doi.org/10.1109/VLHCC.2017.8103476
http://dx.doi.org/10.1109/VLHCC.2017.8103476
https://doi.org/10.1109/VLHCC.2017.8103476
http://doi.acm.org/10.1145/3007203.3007217
http://doi.acm.org/10.1145/3007203.3007217
http://dx.doi.org/10.1145/3007203.3007217
http://doi.acm.org/10.1145/3007203.3007217
http://doi.acm.org/10.1145/3147213.3149452
http://dx.doi.org/10.1145/3147213.3149452
http://doi.acm.org/10.1145/3147213.3149452
http://doi.acm.org/10.1145/3135974.3135980
http://doi.acm.org/10.1145/3135974.3135980
http://dx.doi.org/10.1145/3135974.3135980
http://dx.doi.org/10.1145/3135974.3135980
http://doi.acm.org/10.1145/3135974.3135980
http://doi.acm.org/10.1145/3121050.3121086
http://doi.acm.org/10.1145/3121050.3121086
http://dx.doi.org/10.1145/3121050.3121086
http://doi.acm.org/10.1145/3121050.3121086
https://www.developereconomics.com/reports/developer-economics-state-of-the-developer-nation-14th-edition
https://www.developereconomics.com/reports/developer-economics-state-of-the-developer-nation-14th-edition
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://www.cncf.io/blog/2017/12/06/cloud-native-technologies-scaling-production-applications/
https://www.theregister.co.uk/2018/05/11/lambda_means_game_over_for_serverless/
https://www.theregister.co.uk/2018/05/11/lambda_means_game_over_for_serverless/

Appendix

The appendix contains essential data about all study
methods according to our mixed-method approach. The
complete curated data set is available online [I5].

Interview Guidelines

Here we briefly list the questions that guided our inter-
views. Adopting a semi-structured method, we have not
asked every participant each (sub-)question, but followed
the flow of conversation. We also collected basic demo-
graphic information (summarized in Table .

Introduction

Have you used serverless in the past? How of-

ten? Which services / technologies?

How important was serverless in this process?

Was it just a small side-aspect, or a core tech-

nology in the project?

Can you explain the rationale for choosing server-
less? What would have been alternatives, and

why were they not chosen?

What services have you been using?

Architecting with Serverless

How do you choose what goes into a function?
How do you split business logic between func-
tions?

Which features are particularly suitable to be
implemented in functions? Which are not?

Is there a difference between architecting server-
less apps to “regular” (micro-)services, or is it
just a different way of building a service?

How large are those functions in your applica-
tions, typically? How many do you have?

Are your services typically event-driven, or are
they accessed over e.g., a REST interface?

Are they standalone components, or do you of-
ten end up with functions that are tightly cou-
pled to other parts of the application (e.g., other
functions)?

Advantages and Disadvantages

What are the major advantages that you see in
serverless? Are there any besides not having to
manage servers?

Specifically, what about: Reusability; Scalabil-
ity / Elasticity; Costs; Others?

What are major disadvantages that you cur-
rently see?

Specifically, what about: Testing functions; Keep-
ing track of control flow in the application; Deal-
ing with state across functions; Tool support;

22

Integration into standard development processes
and frameworks (e.g., CI / CD pipelines); Oth-
ers?

Wrap-Up

e Do you see serverless as a fad, or do you think
it will be here to stay?

e Is there something that conceptually needs to
change before serverless will be ready for prime-
time?

Questionnaire Form

Here we provide the outline to the seven groups of ques-
tions asked in the online survey.

Demographics

How much experience in IT in general do you
have?

How much experience in programming do you
have?

How much experience do you have with using
cloud services, such as AWS EC2, Lambda, or
Heroku?

Which of the following cloud services have you,
or members of your team you work with closely,
been using?*

What’s your role in your team?

Terminology

Select the most fitting definition: To me, the
term “serverless” describes. . .

Application Architecture

e Have you used a FaaS service in the past?
e How many months have you used a FaaS ser-

vice?

How many different projects have you used a
FaaS service for?

Which programming languages do / did you use
in a FaaS context? (which languages are the
actual functions implemented in)

Which kinds of applications do / did you use
FaaS mostly for?

What do you use FaaS for in end-user facing
applications?

If you use FaaS to implement a REST endpoint
or HTTP service, how fine-grained are func-
tions?

e What do you use FaaS for in the backend?
e Which other kinds of cloud services are you us-

ing in conjunction with FaaS?

e When I build a system with FaaS, typically ...

I use serverless functions to wrap library code,
without extending it significantly.

I reuse individual cloud functions (deployed func-
tions used across many services, applications,
teams, departments).

I compose cloud functions (e.g., use one function
that itself calls other functions).

What number of functions do the FaaS systems
/ applications that you build typically consist
of?

23

FaaS Development Practices and Patterns

e I build a routing function that acts as the cen-
tral entry point and dispatches requests to other
functions.

e I externalize state between FaaS calls in a key/-
value datastore, such as Redis.

o I chain function calls to increase or work around
timeouts.

e [ping functions to keep containers warm.

e [select more memory for my functions than re-
quired because I want to get a stronger CPU.

e [build FaaS systems or applications from scratch.

e I build FaaS systems or applications by gradu-
ally migrating an existing system or application.

e Are there any other, similar recurring patterns
of FaaS development that were not listed previ-
ously? Please describe them briefly below.

e How do you typically test FaaS functions?

e Which of the following third-party libraries have
you used for deploying and interacting with FaaS
services?

Mental Model

e Building FaaS applications requires a different
mindset or mental model than building an ap-
plication with EC2 or Docker.

e The mental model behind FaaS is difficult to
grasp for developers.

e Novice developers may actually have an easier
time getting started with FaaS as they do not
need to "unlearn" so much previous knowledge
about cloud application development.

e Knowledge or experience with which of the fol-
lowing techniques or practices is helpful to un-
derstand the mental model behind FaaS better?

o Feel free to comment on the mental model when
using FaaS.

Advantages and Challenges

e Select what the most significant advantage of
using FaaS is for you.

e Select which of the following you consider signif-
icant challenges for using current FaaS services.

e Do you think that using FaaS at the moment is
cheap in terms of cloud hosting costs?

The Future

e Do you plan to use or continue to use a FaaS
service in the future?
e Why not?

ID Author

Al Mike Roberts

A2 Matt Wood

A3 Paul Kinlan

A4 Alex Ellis

A5 Pete Johnson

A6 Kevin Vandenborne

A7 Bryan Liston

A8 Guy Podjarny

A9 Dmitri Zimine
A10 Marc Cuva
A1l Joe Stech
A12 David Wells
A13 Obie Fernandez
Al4 Kevin Deisz
A15 Ron Miller
Al16 Charity Majors
A17 Rafal Gancarz
Al18 Ryan Kelly
A19 Andrew Walker
A20 Todd Hoff

Table 3:

Complete Article List

Article Title and Link

Published

Serverless Architectures

Serverless Map/Reduce

Serverless Data Sync in Web Apps with Bit Torrent
Your Serverless Raspberry Pi cluster with Docker

30K Page Views for $0.21: A Serverless Story

Serverless: A lesson learned. The hard way.

Going Serverless: Migrating an Express Application to
Amazon API Gateway and AWS Lambda

Serverless Security implications—from infra to OWASP
Serverless is cheaper, not simpler

Writing a cron job microservice with Serverless and AWS
Lambda,

Going Serverless: AWS and Compelling Science Fiction
How To Schedule Posts for Static Site Generators (Jekyll,
Hugo, Phenomic etc.)

What if we didn’t need an app server anymore?
Serverless Slackbots Powered by AWS

AWS Lambda Makes Serverless Applications A Reality
WTF IS OPERATIONS? #SERVERLESS

Serverless Takes DevOps to the Next Level

Going Serverless with AWS Lambda and API Gateway
Google not Amazon. Make fantastic savings in a server-
less world

Is Serverless The New Visual Basic?

Tables [3] and [] provide a full list and hyperlinks to
all articles analyzed as part of the multi-vocal literature
review. All hyperlinks have been visited on April 27, 2018.
Note that article A42 has been deleted by the platform
Medium and is not available any longer.

24

04 August 2016
03 November 2016
June 14 2016

20 August 2017
16 August 2016
n/a

04 October 2016

19 April 2017
28 August 2017
30 January 2017

11 October 2016
07 March 2017

30 November 2015
08 March 2016

24 November 2015
31 May 2016

28 April 2017

07 August 2016
19 July 2017

15 May 2017

Complete list of analyzed articles (results for search keyword “serverless”).

https://martinfowler.com/articles/serverless.html
http://tothestars.io/blog/2016/11/2/serverless-mapreduce
https://paul.kinlan.me/serverless-sync-in-web-apps/
https://blog.alexellis.io/your-serverless-raspberry-pi-cluster/
https://fmlnerd.com/2016/08/16/30k-page-views-for-0-21-a-serverless-story/
https://sourcebox.be/blog/2017/08/07/serverless-a-lesson-learned-the-hard-way/
https://aws.amazon.com/blogs/compute/going-serverless-migrating-an-express-application-to-amazon-api-gateway-and-aws-lambda/
https://aws.amazon.com/blogs/compute/going-serverless-migrating-an-express-application-to-amazon-api-gateway-and-aws-lambda/
https://snyk.io/blog/serverless-security-implications-from-infra-to-owasp
https://medium.freecodecamp.org/serverless-is-cheaper-not-simpler-a10c4fc30e49
https://blog.readme.io/writing-a-cron-job-microservice-with-serverless-and-aws-lambda/
https://blog.readme.io/writing-a-cron-job-microservice-with-serverless-and-aws-lambda/
http://compellingsciencefiction.com/blog/2016-11-10.html
https://serverless.com/blog/static-site-post-scheduler/
https://serverless.com/blog/static-site-post-scheduler/
https://medium.com/in-pursuit-of-serverless-architecture/what-if-we-didn-t-need-an-app-server-anymore-f5b6586c58f4
https://eng.localytics.com/serverless-slackbots-powered-by-aws/
https://techcrunch.com/2015/11/24/aws-lamda-makes-serverless-applications-a-reality/?ncid=rss
https://charity.wtf/2016/05/31/wtf-is-operations-serverless/
https://www.infoq.com/articles/serverless-takes-devops-next-level
http://blog.ryankelly.us/2016/08/07/going-serverless-with-aws-lambda-and-api-gateway.html
https://in.3wks.com.au/google-not-amazon-make-fantastic-savings-in-a-serverless-world-b6d37710839c
https://in.3wks.com.au/google-not-amazon-make-fantastic-savings-in-a-serverless-world-b6d37710839c
http://highscalability.com/blog/2017/5/15/is-serverless-the-new-visual-basic.html

ID Author Article Title and Link Published

A21 “Flynn” 3 Reasons AWS Lambda Is Not Ready for Prime Time 09 February 2016

A22 n/a Dirt Cheap Recurring Payments with Stripe and AWS 05 May 2017
Lambda

A23 Larry Land The future is now, and it’s using AWS Lambda 16 May 2015

A24 Jim Pick Introducing lambda-comments 05 May 2016

A25 n/a Ask HN: How was your experience with AWS Lambda in] n/a
production?

A26 Nick Malcolm Using AWS Lambda to call and text you when your servers 05 December 2016
are down

A27 Sumit Maingi Best practices — AWS Lambda function 02 March 2017

A28 Sumit Maingi .Net Core Web API on AWS Lambda Performance 13 Februar 2017

A29 Vineet Gopal Powering CRISPR with AWS Lambda. 25 September 2015

A30 Matthew Fuller AWS Lambda: “Occasionally Reliable Caching” 07 December 2015

A31 Chris Anderson Azure Functions with Serverless, Node.js and FaunaDB 06 September 2017

A32 Troy Hunt Azure Functions in practice 22 September 2016

A33 Paul Batum Processing 100,000 Events Per Second on Azure Functions 19 Swptember 2017

A34 Tamizhvendan S Scale Up Azure Functions in F# Using Suave n/a

A35 Thomas Ardal Configure and deploy Azure Functions with Kudu 29 March 2017

A36 Brent Schooley How to Send Daily SMS Reminders Using C#, Azure| 24 January 2017
Functions and Twilio

A37 Frederic Lardinois Microsoft’s Azure Functions adds support for Java 04 October 2017

A38 Thomas Ardal Monitoring Azure Functions with the Portal and elmah.io, 06 April 2017

A39 Thomas Ardal An introduction to Azure Functions and why we migrate 20 March 2017

A40 Thomas Ardal Migrating a Topshelf consumer to a Function running on 23 March 2017
Azure

A41 James Thomas Playing With OpenWhisk 22 April 2016

A42 n/a OpenWhisk loves Python 3 and you should too... (Ar- 20 April 2017
ticle removed by Medium during the preparation of this
manuscript.)

A43 Alex Glikson Extending OpenWhisk to the IoT Edge with Node-RED, 14 February 2017
Docker and resin.io

A44 James Thomas OpenWhisk and MQTT 15 June 2016

A45 Joab Jackson IBM Launches Bluemix OpenWhisk, an Event-driven Pro- 22 February 2016
gramming Service

A46 Markus Thommes |Uncovering the magic: How serverless platforms reallyl 11 October 2016
work!

A47 Carl Osipov Polyglot serverless computing using Docker and Open- 08 June 2016
Whisk

A48 Ryan S. Brown Interview: Andreas Nauerz Of OpenWhisk/Bluemix 16 May 2016

A49 James Thomas Serverless APIs With OpenWhisk and API Connect 26 April 2016

A50 Lionel Villard Deploying Express.js apps to OpenWhisk (Part 1) 03 May 2017

Table 4: Complete list of analyzed articles (results for search keywords “aws lambda”,

” @

25

azure functions”, and “openwhisk” in order).

https://www.datawire.io/3-reasons-aws-lambda-not-ready-prime-time/?utm_content=buffer5d2eb&utm_medium=social&utm_source=twitter.com&utm_campaign=buffer
http://normal-extensions.com/2017/05/05/simple-recurring/
http://normal-extensions.com/2017/05/05/simple-recurring/
https://lg.io/2015/05/16/the-future-is-now-and-its-using-aws-lambda.html
https://jimpick.com/2016/05/05/introducing-lambda-comments/
https://news.ycombinator.com/item?id=14601809
https://news.ycombinator.com/item?id=14601809
https://thisdata.com/blog/using-aws-lambda-to-call-and-text-you-when-your-servers-are-down/
https://thisdata.com/blog/using-aws-lambda-to-call-and-text-you-when-your-servers-are-down/
https://cloudncode.blog/2017/03/02/best-practices-aws-lambda-function/
https://cloudncode.blog/2017/02/13/net-core-web-api-lambda-performance/
https://benchling.engineering/powering-crispr-with-aws-lambda-f22c151a1ffc?hn
http://blog.matthewdfuller.com/2015/12/aws-lambda-occasionally-reliable-caching.html
https://fauna.com/blog/azure-functions-with-serverless-node-js-and-faunadb
https://www.troyhunt.com/azure-functions-in-practice/
https://blogs.msdn.microsoft.com/appserviceteam/2017/09/19/processing-100000-events-per-second-on-azure-functions/
http://blog.tamizhvendan.in/blog/2016/09/19/scale-up-azure-functions-in-f-number-using-suave/
https://blog.elmah.io/configure-and-deploy-azure-functions-with-kudu/
https://www.twilio.com/blog/2017/01/how-to-send-daily-sms-reminders-using-c-azure-functions-and-twilio.html
https://www.twilio.com/blog/2017/01/how-to-send-daily-sms-reminders-using-c-azure-functions-and-twilio.html
https://techcrunch.com/2017/10/04/microsofts-azure-functions-adds-support-for-java/
https://blog.elmah.io/monitoring-azure-functions-with-the-portal-and-elmah-io/
https://blog.elmah.io/migrating-from-windows-services-to-azure-functions/
https://blog.elmah.io/migrating-a-topshelf-consumer-to-a-function-running-on-azure/
https://blog.elmah.io/migrating-a-topshelf-consumer-to-a-function-running-on-azure/
http://jamesthom.as/blog/2016/04/22/openwhisk/
https://medium.com/openwhisk/extending-openwhisk-to-the-iot-edge-with-node-red-docker-and-resin-io-bec7f30ea2de
https://medium.com/openwhisk/extending-openwhisk-to-the-iot-edge-with-node-red-docker-and-resin-io-bec7f30ea2de
http://jamesthom.as/blog/2016/06/15/openwhisk-and-mqtt/
https://thenewstack.io/ibm-launches-bluemix-openwhisk-event-driven-program-service/
https://thenewstack.io/ibm-launches-bluemix-openwhisk-event-driven-program-service/
https://medium.com/openwhisk/uncovering-the-magic-how-serverless-platforms-really-work-3cb127b05f71
https://medium.com/openwhisk/uncovering-the-magic-how-serverless-platforms-really-work-3cb127b05f71
https://medium.com/@osipov/polyglot-serverless-computing-using-docker-and-openwhisk-c6ff14e7ed8
https://medium.com/@osipov/polyglot-serverless-computing-using-docker-and-openwhisk-c6ff14e7ed8
https://serverlesscode.com/post/interview-andreas-nauerz-bluemix-openwhisk/
http://jamesthom.as/blog/2016/04/26/serverless-apis-with-openwhisk-and-api-connect/
https://medium.com/openwhisk/deploying-express-js-apps-to-openwhisk-part-1-9133ba5f262c

