29 Nov 2018

| e |

DC

arXiv:1811.11978v1 [cs

FogBus: A Blockchain-based Lightweight Framework for Edge and Fog Computing

Shreshth Tuli'?>, Redowan Mahmud', Shikhar Tuli*®, Rajkumar Buyya'

Abstract

The requirement of supporting both latency sensitive and computing intensive Internet of Things (IoT) applications is consistently
boosting the necessity for integrating Edge, Fog and Cloud infrastructure. Although there are a number of real-world frameworks at-
tempt to support such integration, they have many limitations from various perspectives including platform independence, security,
resource management and multi-application assistance. To address these limitations, we propose a simplified but effective frame-
work, named FogBus for facilitating end-to-end IoT-Fog(Edge)-Cloud integration. FogBus offers a platform independent interface
to IoT applications and computing instances for execution and interaction. It not only assists developers in building applications
but also helps users in running multiple applications at a time and service providers to manage their resources. In addition, FogBus
applies Blockchain, authentication and encryption techniques to secure operations on sensitive data. Because of its lightweight and
cross platform software systems, it is easy to deploy, scalable and cost efficient. We demonstrate the effectiveness of our framework
by creating a computing environment with it that integrates finger pulse oximeter as [oT devices with Smartphone-based gateway
and Raspberry Pi-based Fog nodes for Sleep Apnea analysis. We also run several experiments on this computing environment
varying FogBus settings. The experimental results show that different FogBus settings can improve latency, energy, network and
CPU usage of the computing infrastructure.

Keywords: Fog Computing, Edge Computing, Cloud Computing, Internet of Things(IoT), Blockchain.

1. Introduction When a large number of IoT devices simultaneously initiate
transferring the data to Cloud datacenters through global Inter-
net, severe network congestion occurs. To overcome these lim-
itations of Cloud-centric IoT model, Fog and Edge computing
paradigms are emerged [4]. Both of them prefer to utilize edge
resources provided by local computing instances for executing
real-time [oT applications. Smart devices with computing pro-
cessors such as Raspberry Pi devices, personal computers, mo-
bile phones, network switches, routers and micro-datacenters
can offer potential edge resources [3]. Based on the capabilities
of these edge resources, many consider Fog and Edge comput-
ing similar and use them interchangeably. Conversely, others
treat Edge computing as a subset of Fog computing [6].

Fog computing manages an intermediate layer between IoT-
enabled systems and Cloud computing. The computing in-
stances of Fog computing are commonly known as Fog nodes
and deployed across the edge network in distributed manner.
Through these nodes, Fog provides Cloud-like services such
as infrastructure, platform and software closer to the IoT data
sources and supports application execution. Consequently, it
reduces service delivery time and network congestion, and im-
proves Quality of Service (QoS) and user experience [7]. How-
ever, unlike Cloud datacenters, Fog nodes are resource con-
strained and heterogeneous. With limited resources, it is not

Internet of Things (IoT) paradigm enables different sensors,
digital machines and objects to perceive the external environ-
ment and connects them to the global Internet for exchang-
ing data. It also supports integration and analysis of generated
data through application software so that events of interest can
be identified and necessary physical actions can be triggered
through actuators. Thus, it paves the way for building smart
systems with limited human intervention [[1]. Based on the cur-
rent trends, it is expected that by 2025 such systems will incor-
porate over 1 trillion IoT devices with 50% increased demand
of latency sensitive applications [2]. So far, Cloud is considered
as the fundamental computing paradigm to deal with these large
number of geographically distributed IoT devices and host cor-
responding IoT applications. However, Cloud datacenters re-
side at multi-hop distance from IoT devices that increase com-
munication delay in both transferring the data and receiving the
application service [3]]. For latency-sensitive applications such
as healthcare and smart city, this high-latency interaction be-
tween IoT devices and Cloud datacenters is unacceptable and
can degrade the service quality drastically. In addition, [oT de-
vices can generate a huge amount of data within a minimal time.

Cloud Computing and Distributed Systems (CLOUDS) Laboratory

School of Computing and Information Systems possible to accommodate every compute intensive IoT applica-
The University of Melbourne, Australia tion at the Fog layer. Therefore, seamless integration of IoT-
Email: mahmudm@student.unimelb.edu.au enabled systems with Fog and Cloud infrastructure is required
2Department of Computer Science,
. . S so that both edge and remote resources can be harnessed ac-
Indian Institute of Technology (IIT), Delhi, India R . X o
3Department of Electrical Engineering, cording to dynamics and requirements of the application [8].
Indian Institute of Technology (IIT), Delhi, India In this integration, Cloud-centric top-down approach for man-

Preprint submitted to Journal of BIEX Templates November 30, 2018



aging Fog-based resources becomes infeasible when IoT-data
is being received at a higher frequency for processing. On
such occurrence, rather than relying on centralized resource
management policies, it is effective to take decisions locally
and provision resources following distributed bottom-up ap-
proach. Moreover, while placing and executing applications on
this environment, both internal and external operations get ob-
structed by the heterogeneity of computing instances. In such
circumstances, generalized techniques those are able to cope
with varying contexts, can overcome the impediments of node
to node communication and application runtime environment.
Nevertheless, the implementation of an integrated environment
going beyond the infrastructure and platform-level diversity
with decentralized resource management policies is a challeng-
ing task. Its complexity is further intensified due to coexistence
of multiple decision making entities, multi-dimensional scal-
ing, unaware network topology and security issues [9].

In literature, there exists a number of works implementing
software frameworks for integrating IoT-enabled systems, Fog
and Cloud infrastructure [10] [11] [12]] [13]. However, these
frameworks barely support simultaneous execution of multiple
applications and platform independence. Moreover, they offer
narrow scope to application developers and users to tune the
framework according to individual requirements. These frame-
works exploit Cloud resources for data storage and often com-
pel energy constrained IoT devices to process the raw data. To
reduce the management overhead, existing frameworks apply
centralized techniques that eventually degrade the QoS. They
also confine the concentration on few security aspects which in
consequence increases vulnerability of the integrated environ-
ment. In order to overcome such limitations of available frame-
works, we develop a lightweight framework named FogBus.

FogBus allows an end-to-end implementation of integrated
IoT-Fog-Cloud environment through a wide range of devices.
FogBus provides platform independent application execution
environment and node-to-node interaction. It assists develop-
ers in building applications, users in customizing services and
providers in managing resources. Furthermore, FogBus facili-
tates execution of latency sensitive and compute intensive ap-
plications through Fog nodes and Cloud datacenters. Thus,
it supports various types of applications simultaneously. To
ensure data integrity, protection and privacy, FogBus also im-
plements Blockchain and applies authentication and encryption
techniques which consequently increase its reliability.

The major contributions of this work are listed as:

e Propose a lightweight framework named FogBus for inte-
grating [oT enabled systems, Fog and Cloud infrastructure
to harnesses both edge and remote resources according to
application requirements.

e Design of platform independent application execution and
node-to-node interaction overcoming heterogeneity within
the integrated environment.

e Present a Platform-as-a-Service (PaaS) model that assists
application developers, users and services providers to
pursue individual interests.

e Development of a prototype application system for Sleep
Apnea analysis in integrated IoT-Fog-Cloud environment.

e Implementation of Blockchain technique to ensure data in-
tegrity while transferring confidential data.

e Performance evaluation of FogBus in terms of latency, en-
ergy, network and CPU usage.

The rest of the paper is organized as follows. Section [2| high-
lights key elements of several existing frameworks and compare
them with our proposed framework. In Section [3] the descrip-
tion of FogBus framework is provided. The design and imple-
mentation of FogBus are discussed in Section ] In Section [3]
and [6] a case study on Sleep Apnea analysis and performance
of FogBus are presented respectively. Section [/|concludes the
paper proposing future works to improve FogBus.

2. Related Work

The existing frameworks that integrate different [oT-enabled
systems with Fog and Cloud infrastructure are roughly classi-
fied into two types. The first type focuses on application spe-
cific prototypes while the other offers generalized PaaS model.
Table | provides a brief summary of these frameworks.

Amir et al. [10] develop a prototype-based framework for
IoT-enabled health-care system, enlightening the architecture of
a smart gateway for facilitating local storage and data process-
ing. In this framework, Cloud acts as a backend system for data
analysis and decision making. To strengthen the framework,
security featues of operating systems are used. Another proto-
type framework for smart health-care is developed by Dubey et
al. [[L1]. Intel Edison and Raspberry Pi circuits are used in the
framework as Fog nodes. Through role-based authentication,
the framework ensures privacy of the data. In this framework,
Cloud is partially adopted for storing the data. Azimi et al. [14]]
also discuss a hierarchical prototype framework for health-care
solutions. The health analytics are divided into two parts to be
placed separately in Cloud and Fog infrastructure. The frame-
work follows MAPE-K model proposed by IBM to conduct the
computations that inherently supports execution of diverse ap-
plications and provides encryption-based security.

Moreover, Gia et al. [[L5] present a low-cost remote health
monitoring framework that facilitates autonomic analysis of
IoT data and notification generation. The IoT devices are
designed with computational capabilities so that they can
pre-process raw data and forward to the Fog nodes for fur-
ther processing consuming less energy. In Fog layer dis-
tributed database is managed for data categorization and secu-
rity. Orestis et al. [16] also develop a prototype framework that
allows users to share health data and notify during emergency.
Each operation within the framework is managed by a Spark
IoT Platform Core residing at the Cloud. The framework uses
encryption and authentication techniques for security.

Chen et al. [17] and Razvan et al. [18] develop separate
prototype framework for smart city surveillance and gas-leak
monitoring system respectively. In both frameworks the Fog
infrastructure conducts necessary data processing and decision



Table 1: Summary of the literature study

Work Integrates Platform indepen- Security features Supports  multi- Targets Decentralized
dent applications management

IoT | Fog | Cloud Integrity | Authentication Encryption Developers | Users

Amir et al. [10] v v v v v v v

Dubey et al. [L1] v v v v v v

Azimi et al. [14] v v v v v v v v

Giaet al. [15] v v v v v v

Orestis et al. [10] v v v v v v

Chen et al. [[17] v v v v

Razvan et al. [18] v v v v

Hu et al. [19] v v v v

Yangui et al. [12] v v v v v v v v

Bruneo et al. [[13] v v v v v v v

Verba et al. [20] v v v v v v v v

Yietal. [21] v v v v v v v v

Korosh et al. [22] v v v v v v v v

Chang et al. [23] v v v v v v v v

Nader et al. [24] v v v v v v v v v

FogBus [this work] v v v v v v v v v v v

making operations. Remote Cloud is partially adopted in these
frameworks for managing a record of IoT-data. However, the
authors neither mention any security features nor techniques
for managing heterogeneity of the Fog nodes within the frame-
work. Likewise, Hu et al. [19] omit the security issues of their
developed prototype framework for face identification system.
In this framework, a centralized Cloud manages all resources of
integrated environment and offloads partial computational tasks
to Fog infrastructure. After completing tasks on Fog, only the
results are sent back to Cloud for further analysis and storage.

To promote IoT, Fog and Cloud integration, a Cloud-centric
PaaS framework is developed by Yangui et al. [12] that au-
tomates the provisioning of applications. The PaaS facilitates
developing diverse applications, their deployment and manage-
ment of Fog nodes. The framework can deal with heterogeneity
of the nodes. In addition, security features from Cloud Foundry
architecture are extended in the framework. Similarly, Bruneo
et al. [13] propose a Fog-centric PaaS framework for deploy-
ing and executing multiple applications over computationally
sound IoT devices. There, Fog infrastructure acts as a central-
ized programmable coordinator. The framework applies Cloud-
based security features and deal with diverse applications sur-
passing heterogeneity of the instances.

In addition Verba et al. [20] propose a gateway architecture
that offers PaaS for integrating Fog nodes and IoT devices. The
gateways assist messaging communication with authentication
techniques. The framework supports horizontal integration of
gateways and Cloud datacenters for application deployment and
task migration. In another work Yi et al. [21]] propose a com-
prehensive PaaS framework for integrated environment. To im-
plement the framework, resource-enriched Fog nodes, such as
Cloudlet and ParaDrop, are required where each node including
IoT devices should be virtualized. For securing the framework
operations, existing authentication techniques are applied. Ko-
rosh et al. [22] also develop a PaaS framework that manages
electricity usage in a home and in micro grid levels over Fog
infrastructure. It can deal with the heterogeneity of Fog nodes
and IoT devices and ensure data encryption.

The PaaS framework proposed by Chang et al. [23] utilizes
user’s networking devices to execute IoT applications. In this

framework, core services and resource management instruc-
tions are extended from Cloud datacenters to Fog nodes based
on application requirements. It supports Cluster of Fog nodes
and incorporates user’s hand-held devices as well. For secu-
rity, it runs a registry service. Nader et al. [24] also discuss a
service oriented framework for managing smart-city based ser-
vices through Fog and Cloud infrastructures. In this framework,
services are classified in two types. The first one manages the
core operations of the framework including resource manage-
ment and security. and another type incorporates the require-
ments of specific applications. The security of the framework
is ensured by authentication and access control mechanisms.

In the aforementioned frameworks, security issues are ex-
ploited from limited perspective. Furthermore, the computing
capabilities of both edge and remote resources have not been
fully leveraged. In some cases, pushing computation towards
ToT devices or resource enriched Fog nodes increases overall
deployment cost and energy consumption. In addition, most
of the frameworks overlook the heterogeneity within the com-
puting infrastructures. It is very difficult for them to support
multiple applications simultaneously. However, our proposed
FogBus combines the concept of prototype and platform-based
frame-work so that it can offer service tuning facility to both
users and service providers. It ensures data integrity through
Blockchain and assists user authentication and data encryption
side by side. FogBus expands the execution platform for dif-
ferent IoT applications from resource constrained Fog nodes to
Cloud datacenters going beyond their diversity.

3. FogBus Framework

The FogBus framework integrates diverse hardware instru-
ments through software components that offer structured com-
munication and platform independent execution interfaces.
High level view of integrated loT-Fog-Cloud environment using
FogBus is presented in Fig[I] The FogBus framework includes
the following elements.



loT Devices

Fog Gateway
Nodes

Broker

Fog Infrastructure

Fog Computational
Nodes

Cloud Infrastructure

Nodes

Repository N

= General
Computing
Nodes -

- =
e — 14

Nodes N R

Figure 1: High level view of integrating IoT-Fog and Cloud through FogBus framework

3.1. Hardware Instruments

The hardware instruments that form the basis of FogBus such
as [oT devices, Fog Gateway Nodes (FGN), Fog Computational
Nodes (FCN) and Cloud datacenters are discussed below.

IoT devices: 10T devices contain sensors that perceive the
external environment and actuators that convert any given com-
mand to physical actions. Usually, [oT devices are energy and
resource constrained and act as mere data producer or con-
sumer. In some cases, IoT devices are equipped with limited
computation capabilities to preprocess raw data generated in
real-time. FogBus allows IoT devices to connect with proxi-
mate gateways via wireless or wired communication protocols
such as Zigbee, Bluetooth and NFC. The sensing frequency of
IoT devices can be tuned according to context of the system
where the format of IoT-data varies from device to device.

Fog Gateway Nodes (FGN): In FogBus framework, Fog
Gateway Nodes (FGN) are the entry points of distributed com-
puting infrastructure. FGNs assist IoT devices to get configured
with integrated environment for placing and executing corre-
sponding applications. Through FGNs, the FogBus framework
offers user interfaces of applications so that the users can set
authentication credentials, access the backend program, con-
vey service expectations, receive service outcome, manage loT-
devices and request resources from computing infrastructure
according to their affordability. In addition, FGNs operate data
filtration and organize them in a general format. FGNs also
aggregate the data received from different sources of a particu-
lar smart system. For large scale processing of the data, FGNs
forward them to other computing instances of integrated envi-
ronment. In attaining this purpose, FGNs maintain rapid and
dynamic communication with accessible Fog nodes by the use
of either Constrained Application Protocol (CoAP) or Simple
Network Management Protocol (SNMP) [25]].

Fog Computational Nodes (FCN): FogBus is designed to
deal with numerous Fog Computational Nodes (FCNs) simul-
taneously. FCNs are heterogeneous in terms of capacity and re-
source architecture. They are equipped with processing cores,
memory, storage and bandwidth to conduct various FogBus op-
erations. Based on these operations, FCNs can act in three dif-

ferent roles:

1. Broker nodes: To handle the back-end processing of IoT-
applications, FogBus facilitates the corresponding FGN's
to connect with any of the accessible FCNs. This FCN ini-
tiates back-end processing of the application provided that
required resources for the operation are available within it.
If it fails to meet application’s requirements by itself, as a
broker node it communicates with other FCNs and Cloud
datacenters on behalf the FGN to provision required re-
sources for executing the back-end application. In this
case, it distributes the computational tasks over multiple
FCNs and seamlessly monitors, synchronizes and coordi-
nates their activities. FogBus supports such broker nodes
with adequate security features and fault tolerant tech-
niques such as Blockchain and replication so that they can
ensure reliability in communication and exchanging data
among FGNs, FCNs and Cloud datacenters.

2. General Computing Nodes (GCNs): For security issues,
FogBus does not expose all FCNs as directly accessible to
the FGNs. They are used for general computing purposes
and accessible via broker nodes. The broker nodes also ex-
plicitly manage their resources and forwards the data along
with executable back-end applications for processing. A
general computing node can simultaneously serve multi-
ple broker nodes without degrading consistency of their
individual operations. In addition, computing nodes form
clusters among themselves under the supervision of spe-
cific broker node while executing distributed applications.

3. Repository nodes: Apart from conducting brokering and
computing operations, some FCNs manage distributed
database to facilitate data sharing, replication, recovery
and secured storage. The repository nodes offer interfaces
for instant access and analysis of historical data. They
maintain meta-data of various applications including ap-
plication model, runtime requirements and dependencies.
Moreover, these nodes can preserve some intermediate
data during application execution so that data processing
can be started from any anomaly-driven stopping point.



Application

User Interface
@FGN
; Broker ‘

Service
@ Broker Node

Resource‘ S
Data .| Manager e
Manager Security
Cloud _—’—17
Integrator

Computing

| Service |7
Resource
Monitor

Repository |

™ Service
Credential
Archive |

Executor

Application Security
Dilator: Catalogue Manager

Cloud

Application
Executor

Data |
Container )“—

@ Broker / Repository Node / GCN l

@ Broker Node / GCN

Figure 2: Interaction of different software components within FogBus frame-
work

Cloud datacenters: When Fog infrastructure becomes over-
loaded or service requirements are latency-tolerant, FogBus ex-
tends resources from Cloud datacenters to execute back-end
IoT applications. Through Cloud datacenters, FogBus expands
the computing platform for IoT applications across the globe.
In association with Fog repository nodes, it facilitates extensive
data storage and distribution so that access and processing of
data become location independent.

3.2. Software components

To simplify IoT-Fog-Cloud integration, FogBus provides var-
ious interrelated and platform-independent software compo-
nents. These components are broadly classified into three types
of System Services. The Broker service manages all the func-
tionalities of a broker node and initiates other software compo-
nents according to the necessity, whereas the Computing ser-
vice is responsible for controlling the operations of a general
computing node. When a broker node itself starts the execu-
tion of back-end applications, the computing service is trig-
gered within it. Conversely, Repository service can run across
all the Fog nodes to mange repository-related operations. The
interaction among different FogBus software components are
presented in Fig. The details of FogBus software compo-
nents are discussed as follows.

3.2.1. Broker Service

Broker Security Manager: After receiving user’s authen-
tication credentials from particular FGN, the Broker Security
Manager verifies them in association with Credential Archive
of Repository Service. The Credential Archive also assist this
component with required security certificates for remote Cloud
integration. The Broker Security Manager itself generates the
public and private key value pairs to facilitate port knocking,
privileged port authentication and attribute-based encryption
for securing the communication of corresponding broker node
with other Fog nodes. Additionally, this component acts as the
Blockchain interface for ensuring integrity while exchanging

data with multiple entities. In this case, with the help of Data
Manager it creates new blocks from the received data. The hash
values and proof-of-work for each block are sent to Credential
Archive for distributing among other nodes so that consistent
verification of the chain can be ensured at different destinations.
The Broker Security Manager along with Credential Archive
and Executor Security Manager of Computing service manage
further security issues within FogBus and offers other compo-
nents flexible accesses to the required information.

Resource Manager: This component is responsible for se-
lecting suitable resources to execute applications. It identi-
fies the requirements of different applications from Application
Catalogue of Repository service and perceives the resource sta-
tus within each broker and general computing nodes through
Resource Monitor of Computing service. The Cloud Integrator
assists the Resource Manager with contextual data of Cloud-
based instances such as virtual machines and containers. After
attaining all information regarding resources and applications,
Resource Manager provisions required resources on FCNs and
Cloud for applications. In this case, Application Executor from
Computing service and internal software system of FCNs and
Cloud receptively helps the Resource Manager. Moreover, Fog-
Bus facilitates service providers to apply various policies in Re-
source Manager, while provisioning resources for applications.
In addition, it maintains a resource configuration file that tracks
the addresses of FCNs and Cloud instances along with deployed
applications so that subsequent data of the streams can directly
be sent to the allocated resources for processing. This file is
also shared with Cloud for recovering the placement informa-
tion during failure of the corresponding nodes.

Data Manager: This component receives the sensed and pre-
processed data from the IoT devices. It can also aggregate data
from multiple sources and calibrate data receiving frequency
according to the context. However, with this data, blocks and
their chains are created for maintaining integrity in association
with the Broker Security Manager. Later it forwards the data to
Application Executor of Computing service for processing and
stores them in encrypted manner on Data Container of Reposi-
tory service for further usage. After deployment of applications
on allocated resources, Resource Manager shares the resource
configuration file to Data Manager so that it can directly send
subsequent data of the stream to the processing destination.

Cloud Integrator: All interactions of FogBus framework
with Cloud are handled by Cloud Integrator. It notifies the
context of Cloud instances to the framework and forwards the
storage and resource provisioning commands to the Cloud.
Through this component, FogBus not only offers interface
to the providers for developing customized Cloud-integration
scripts but also facilitates access to third-party software systems
to deal with multiple Cloud datacenters simultaneously.

3.2.2. Repository Service

Credential Archive: Users authentication credentials are set
during IoT device configuration and are preserved in Credential
archive. It distributes the security keys and details of each data
block generated by the Broker Service to others. This compo-
nent also provides the Secure Socket Layer (SSL) and Transport



Layer Security (TLS) certificates for Cloud integration. In ad-
dition, it supports Data Container for encrypting and decrypting
the stored data. Through Cloud Dilator of Repository service,
it periodically updates its image on Cloud so that security at-
tributes can be recovered and distributed among others easily
after uncertain failure of the corresponding nodes.

Application Catalogue: This component is responsible for
maintaining the details about various types of applications in-
cluding their operation, execution and programming model.
Moreover, it specifies resource requirements and dependen-
cies of the applications and their member tasks. The Applica-
tion Catalogue can extend this information from Cloud through
Cloud Dilator. Based on its provided specifications, Resource
Manager of Broker service provisions resources for an applica-
tion. According to the commands of Resource Manager, it also
synchronizes the applications on allocated resources in associ-
ation with the Application Executor of Computing service.

Data Container: Data received from IoT devices is stored
in Data container so that it can be used for long term analysis.
Here data privacy is ensured by applying encryption techniques.
During application execution, it also receives some intermedi-
ate data from Application Executor that helps FogBus to restart
the processing of data from any halting point. Moreover, in
FogBus, the schema of Data Container based databases can be
customized and shared according to the requirements of differ-
ent [oT-enabled systems. In addition, Data Container maintains
simultaneous association with Cloud Dilator to grasp the re-
mote data and disperse the local data through Cloud.

Cloud Dilator: This component facilitates other software
components of Repository service to interact with Cloud. In
this case, the Cloud Integrator of Broker service assists Cloud
dilator with required commands for extending application spec-
ifications, transferring security attributes and exchanging data.

3.2.3. Computing Services

Executor Security Manager: While conducting computing
operations, the seamless secured interactions of an FCN with
others are managed by the Executor Security Manager. In this
case, the Credential Archive of Repository service assist this
component with required security attributes. Along with Cre-
dential Archive and Broker Security Manager, this component
plays a significant role in verifying the Blockchains.

Resource Monitor: Both busy and idle status of computing
resources are monitored by this component in association with
the Application Executor. These perceived information helps
Resource Manager to provision resources for different applica-
tions. It also tracks the runtime QoS requirements of the appli-
cation and the performance of the resources in meeting them.
When allocated resources perform less than expectations, in
dealing with the application or their uncertain failure occurs,
this component immediately notifies the Resource Manager to
initiate required actions such as dynamic resource provisioning,
application execution migration and intermediate data storage.

Application Executor: Based on the provisioning instruc-
tions issued by the Resource Manager, this component allocates
resources for different applications on corresponding FCN. It

Cloud

* Broker Nodes are the Masters

* Other FCNs are the Workers
Router

Fog
Gateway

Gateway

|
Repository
Node

Repository
Node

Computing
Node

Computing
Node

Computing
Node '

Figure 3: Network Structure of FogBus framework

also extends the application executables from Application Cat-
alogue to deployment on allocated resources. Once the appli-
cation deployment is conducted, it begins to receive data for-
warded by Data Manager for processing. In addition, this com-
ponent periodically informs the status of resources to the Re-
source Monitor. When any anomaly is detected or predicted,
this component is asked by the Resource Manager to extract in-
termediate data from application execution and store them on
Data Container to make the framework fault tolerant.

3.3. Network Structure

The software components of FogBus share numerous data
and information among themselves. To facilitate their interplay,
persistent and stable network communication among hardware
instruments of the framework is necessary. It is also required to
ensure that hardware instruments do not become overwhelmed
with the communication burden. In addition, the FogBus net-
working should be secured, scalable and fault tolerant. Tak-
ing cognizance of these facts, we design the FogBus network
structure as shown in Fig. (3| Different aspects of the network
structure are described as follows.

Topology: The master-worker topology is applied in design-
ing the network structure for FogBus framework. Here, bro-
ker nodes are the masters while other FCNs function as the
workers. Being master, a broker node receives the data stream
and user information from the FGNs and discovers workers
for processing and storing them. During application runtime
it manages functionalities of the workers and delivers the ser-
vice result to FGNs derived from the application execution. In
addition, it connects the Fog infrastructure of a FogBus enabled
system with the Cloud infrastructure. To foster data sharing and
reduce overhead from the masters, worker nodes also commu-
nicate among themselves under the explicit supervision of the
masters. The masters, workers and FGNs of a FogBus-enabled
system are connected with a common wireless local area net-
work (WLAN) that is managed by one or multiple routers.

Scalability: FogBus framework allows service providers to
scale-up the number of active Fog nodes according to context of



the system. An FCN connected with the same WLAN can sim-
ply become a worker by making itself accessible to the corre-
sponding master. Later, the master configures required software
components on that FCN to conduct desired operations. The
FogBus supports coexistence of multiple masters in a WLAN so
that FGN’s can get diverse options to dispatch the data streams
for processing. The masters also share workers among them-
selves. In this case, the data integrity and privacy are not af-
fected since each master maintains its own chain of blocks and
separate database on the workers. In addition, the software
components running at the masters facilitate Fog infrastructure
to integrate with multiple Cloud datacenters simultaneously.
Reliability: The facility of running multiple masters implic-
itly eradicates the inherent single point failure limitation of
master-worker model within FogBus. Additionally, the frame-
work allows each master to replicate their image over one of its
worker nodes. During uncertain failure of that master, this repli-
cation operation helps corresponding worker to get the master
privileges and defend the collapse of communication network
as shown in Fig. 4] Here, the platform-independent character-
istic of FogBus software components plays the key role. The
masters also periodically check status of its workers and store
their intermediate data and configurations including deployed
applications in different places. When a worker fails, the mas-
ters share the worker’s information with other workers so that
residual data processing can start immediately. If all the work-
ers of a master are overloaded, workers of other masters are
taken into account. In this case, all the masters maintain an
internal communication among themselves. Thus, the compu-
tation facility remains always available within the framework.

CHMaster [ Worker

Worker converted to Master

Figure 4: Ensuring reliability in FogBus framework

Security: The inclusion of FGNs and FCNs in FogBus pro-
vided network require proper authentication. It is explicitly
handled by the routers managing the WLAN. The masters also
apply network level access control and packet filtration tech-
niques to resist the network infrastructure from being compro-
mised and eliminate the malicious contents. In FogBus, multi-
ple communication links also exist to reach different Fog nodes.
It eventually helps to readjust the routing path when any net-
work anomaly is perceived. Cloud provided network security
policies are further used in FogBus framework while interact-
ing with different Cloud infrastructures.

Performance: FogBus framework utilizes the network band-
width dedicatedly for a specific system. Since the network re-

sources are not shared with external entities, the overall per-
formance of the system from network perspective does not de-
grade. If the service providers intent to increase the number of
FCNs in the framework, requirements for additional network
resources will not be very high as well. In addition, it facilitates
easy deployment of the Fog nodes and faster service delivery to
the users. As a localized network, its throughput also remains
at an acceptable level with the course of time. Additionally,
FogBus supports periodic adjustment of network resources so
that it can deal with any frequency and volume of incoming
traffic. Moreover, the network structure of FogBus does not de-
pend much on external hardware instruments for managing and
configuring the network operations that implicitly reduce the
capital and the operational expenditure for the service provider.

4. Design and Implementation

The functionalities of FogBus encapsulated Application Pro-
gramming Interfaces (API), execution environment, scripting
and programming languages are supported by all hardware of
the integrated environment. It eventually helps FogBus to func-
tion beyond the infrastructure heterogeneity. The implementa-
tion of different FogBus elements are described as follows.

4.1. System Services

The System Services such as Broker service, Repository ser-
vice and Computing service of FogBus are implemented as web
programs. They are developed on PHP, an HTML-embedded
server-side scripting language and use HTTP protocol based
RESTful APIs to exchange data and share information among
different FCNs within the WLAN. Usually these PHP based
web programs can function in every operating system such as
Unix, Windows, Linux and NetWare. On the other hand, most
of the embedded, networking and IoT devices are either de-
signed with built-in protocol stacks for HTTP communication
or support their easy installation. Thus, the System Services of
FogBus can run across different types of platforms. In FogBus,
an Apache server is setup in each FCN to run the web pro-
grams of corresponding System Service. In addition, MySQL
servers are installed in Broker and Repository nodes to manage
databases and their operations. Each System Service of FogBus
is divided into Service Interface and Management Activity.
Apart from Blockchain, the Service Interface and Management
Activity of each System Service handles other security aspects
of the FogBus. Moreover, at masters, the Service Interface as-
sists in receiving data and user’s specifications from the gate-
way devices and presents the service results. Service providers
also notify the workers IP addresses to masters through this in-
terface. The Management Activity within the master contains
the resource provisioning policies and updates the configura-
tion files. Additionally, it forwards commands for the workers.
The worker’s Service Interface functions as a receptor of the
corresponding node and is responsible to decode the output file
of applications to masters. Based on the master’s signals, the
Management Activity at worker functions monitoring of the re-
sources, circulating their status to the masters and allocation of



resources. It also stores the received data in relational databases
and creates input file for backend program of applications.

4.2. Blockchain

Maintaining integrity of data and ensuring that data is not
sent by an unregistered source are very important for credibil-
ity of the system. For data integrity and data prevention from
tampering, Blockchain technology is recently adopted in many
real-time systems [26]. Theoretically, Blockchain is a set of
distributed ledgers that can be programmed to record and track
the value of anything. In Blockchain, whenever new data is
received by an entity of the distributed system, it forms the
data into a block. This block possesses a hash value that is
usually created by using the corresponding data, index of the
block in the chain, the timestamp of the data reception and the
hash of its previous block within the chain. Additionally, the
node mines the block with other blocks of the chain to create
a proof-of-work for that block so that its hash follows a sim-
ilar pattern with others. Later, the data, copy of the block is
sent to other nodes for linking with their local chains. In this
operation, nodes mine the block to certify the proof-of-work.
Digital signature is also used to veryfy source of the block at
the destination. However, if the data of any block is altered on
a node, the hash of that block will change and mismatch with
its hash saved in the next block. As a consequence, the later
part of the chain will become invalid. To make the chain valid
again, hash of the invalid blocks are required to be recalculated.
Besides, the proof-of-work of each block requires to be gener-
ated again. Both of these operations are time consuming and
compute intensive. Moreover, this fraudulent manipulation of
data in a Blockchain will not be successful unless 50% of its
distributed copies are individually reformed by following the
same set of operations. Thus, it becomes very hard to alter any
data in Blockchain within rigid time limit [27].

In FogBus, the masters create the blocks from received data
and calculate the hash of each block based on the data, hash
of the previous block, time stamp and a nonce value using
SHA256 algorithm [28]. Masters also create random pub-
lic/private key pairs that help to generate unique signatures with
the original data. Later they share Blockchain details, digi-
tal signature attributes and the data in Base64 encoding format
with workers. With the received public key of the masters, the
workers are able to verify that the data is coming from a legiti-
mate source. If any other key is used, that data is rejected. The
public-private key pair in this case is kept dynamic per block
to prevent the generation of private key using brute force tech-
niques. Additionally, each block and its hash are verified at the
workers by mining the nonce value that supports the proof-of-
work. If any worker reports error in terms of Blockchain tam-
pering or signature forgery, then the Blockchain in majority of
the network is copied to that node. FogBus also offers users and
service providers to track the data/block flow through the Ser-
vice Interface running at masters by displaying the latest hashes
of the Blockchain copy at each worker. Thus, it helps users
and service providers to take necessary action on suspicious ac-
tivity within the FogBus network. In FogBus, the Blockchain
is developed in Java programming language. Compiled Java

programs usually run on Java Virtual Machine (JVM), which
can be easily installed across various platforms. Hence, the
Blockchain utility of FogBus can function in wide range of op-
erating systems. In different FCNs of FogBus, this utility di-
rectly interacts with the corresponding System Service.

4.3. Cloud Plugin

In FogBus, the Service Interface running at master prompts
the user to specify their intention regarding Cloud integration
for data processing. If users wish to extend Cloud resources
for computation, only then the Cloud Plugin of FogBus which
is deployed on the master, becomes activated. For other op-
erations such as storage and distribution, the Management Ac-
tivity at masters directly communicates with the Cloud. How-
ever, FogBus offers flexibility to providers for using different
customized or third-party Cloud Plugin services to integrate
Cloud and Fog infrastructure for computing purposes. In the
case of running third-party Cloud Plugin services, the master is
required to configure according to the requirements of that plu-
gin. However, to develop customized plugin, it is preferable to
use cross-platform programming languages. In the current ver-
sion of FogBus, Aneka, a third-party software is used for Cloud
integration to perform computational operations.

Aneka is a PaaS framework for facilitating the management
of Cloud-based applications [29]. The Aneka framework func-
tions in a service-oriented manner. It is equipped with a set
of software components to configure, operate, and monitor an
Aneka-Cloud environment. The Aneka-Cloud can be formed
with heterogeneous instances from either public or private, or
hybrid Cloud. Aneka offers the developers diverse APIs for pro-
visioning and scheduling both physical and virtual resources in
the Aneka-Cloud. Developers formulate the logic of applica-
tions using different programming models and set the runtime
environments for their deployment and execution. Currently
Aneka platform supports the Bag of tasks, Distributed threads,
MapReduce and Parameter sweep model. In the Aneka-based
Cloud plugin of FogBus, IP addresses of Cloud instances are
specified by the providers. This plugin can initiate both task
and thread model in Aneka-Cloud to conduct data processing
on single and multiple Cloud instances respectively [30].

According to the built-in resource provisioning policy of
FogBus, at first Fog infrastructure is exploited to process data,
later Cloud infrastructure is referred. For the second case in
FogBus, the Management Activity at a master stores the data in
a Cloud input file. The Aneka-based Cloud plugin at the master
parses this file in every 500 milliseconds of polling period and
checks for the pending data for processing. If any pending data
exists, it forms either a task or threads; encapsulating the data at
Aneka-Cloud and launches to one or multiple Cloud instances.
In this case, Blockchain is also applied to ensure data integrity.

4.4. Application

FogBus framework supports the execution and deployment
of applications of different loT-enabled systems. In FogBus
these applications are divided into user interface and backend
program. Although applications are not the part of FogBus soft-
ware components, FogBus offers developers some guidelines to



-@Oxwmeﬁer

ﬂ Bluetooth
[

e

Broker/Master

’—> pache

Server
\
; L]
Parse request

Smartphone
Gat y HTTP_POST
@ <<Interface>> ) Master’s Service
> ) ~—»  User Interface dispatch Interface
+
6 + usernam: extend| |, :::S]r(:
+ passwort " i
User + database_info : ;e.rr\.l/-:r_élg_\;(a)l_lP AT _EI=T
+ uploadData(Oximeter) | return +HTTP_POST()

+ getAnalysisResults()
+ saveResults()

i

Oximeter
+ID
+ record_ID

Record

+ record_ID
+ user_ID

Token
+ token_ID
+user_ID

<<Interface>>
Service Interface
t t

Load Balancer -

" available

v
Y

- Workers

yes)
' :
Forward request |
to Worker

Resource
Management

1

Relational
Database

| <<Interface>>

Service Interface
- B

+SPO, + status + token_value i P

+ PUIse + token_ID B e e — : y

*+ timestamp | Worker Repository > Worker GCN
Rege Worker GCN <<Interface>>

7 Sservice Interface

Data Analysis
@» Backend Program

Data Analysis
@ Backend Program

Figure 5: FogBus framework enabled system model for Sleep Apnea analysis

build their user interface and back-end programs aligned with
the features of FogBus framework. The required specifications
of user interface and back-end program of applications are de-
scribed as follows.

4.4.1. User Interface

The user interface of applications runs in FGNs. The under-
lying platform of most of the FGNs are Android, i0S, Win-
dows, Tizen, WebOS and RTOS. In this case, the programming
language for developing the user interface should be supported
by these platforms. Moreover, for some applications, user in-
terface requires to store data temporarily. On that note, the de-
velopers should use compatible database system and schema to
these platforms. Besides, the user interface deals with the in-
coming data from IoT devices. The majority of IoT devices run
Bluetooth Low Energy network technology for communication
as they are energy constraint. To handle this issue, the user in-
terface should support both general and low energy Bluetooth
interactions. In FogBus framework, user interface is directly
correlated with the Service Interface running at the masters for
forwarding IoT data and user information, and receiving the
service outcome. For simplicity of the interaction, the user in-
terface can be designed in such a way that easily parses the web
programs of master’s Service Interface.

4.4.2. Backend Program

In FogBus, the backend program of applications is executed
in the FCNs. Since the FCNs are distributed, to fully lever-
age their capabilities it is preferable to build the backend pro-
gram in distributed manner. In this case, modular development
of backend program can be applied by the developers. In ad-
dition, the execution of backend program should not be ob-
structed by the heterogeneity of FCNs. To address this issue,
developers can use cross platform programming languages to

develop the backend program. While developing the backend
program some specific points within the script should be spec-
ified so that application’s intermediate data on those points can
be stored during execution. Furthermore, the backend program
should be able to extract the input file and update the output file
at the workers.

5. A Case Study : Sleep Apnea Analysis

In this work, FogBus framework has been adopted for de-
ploying and executing a real-world application named Sleep
Apnea Analysis. Sleep Apnea is a disease in which air stops
flowing into the lungs for 10 seconds or even longer period of
time during sleep. Hence, it reduces oxygen level in blood of
the patient, downs the heartbeat rate and resembles that the pa-
tient has stopped breathing. It can happen very frequently and
create severe obstruction in sound-sleep of the patient. Further-
more, if oxygen saturation becomes significantly low for aged
and asthma patients, Sleep Apnea could provoke cardiac failure
or brain stroke. However, Sleep Apnea is a very common dis-
ease although most of the people either ignore or unaware of it.
To determine the intensity of Sleep Apnea, it is required to mon-
itor oxygen saturation rate in blood time to time. If the intensity
becomes higher than normal, it is recommended to consult with
the Doctor before it occurs other complications [31].

Usually, Sleep Apnea analysis is difficult and cumbersome
since it requires an overnight sleep study to grasp the neces-
sary data. In this procedure, pulse oximeter and Electrocar-
diogram (ECG) machines are hooked up with various parts of
the patient’s body during sleep time. Based on the received
peripheral capillary oxygen saturation, SpO2 and ECG data,
the doctors determine Apnea Hypopnea Index (AHI) of the pa-
tients that presents the Sleep Apnea intensity in proportional
manner. Currently, to conduct the Sleep Apnea analysis, hospi-



Figure 6: Real-world implementation of FogBus-based Sleep Apnea analysis

tal or laboratory-based machineries are required which are ex-
pensive to own by individuals. Besides, this analysis becomes
very latency sensitive while critical patients are being moni-
tored. Therefore, we develop a prototype for low cost Sleep ap-
nea analysis using FogBus framework that gathers both SpO2
and heart beat rate from a finger pulse oximeter and har-
ness local resources for their processing. It is affordable for pa-
tients, easily configurable and provides faster results compared
to Cloud-based processing. The detail of FogBus-enabled Sleep
Apnea analysis prototype is described as follows.

5.1. System Configuration

The system setup for FogBus-enabled Sleep Apnea analysis
prototype is presented in Fig. [5] The configuration of different
hardware instruments are given below.

IoT Device: Jumper JPD-500F Finger Pulse Oximeter, 1.5V,
Bluetooth Low Energy v4.2 (BLE), UTF-8 data encoding.

Gateway: Smartphone, Oppo A73 CPH1725, Android 7.1.1.

Broker/Master Node: Dell Latitude D630 Laptop, Intel(R)
Core(TM)2 Duo CPU E6550 @ 2.33GHz 2GB DDR2 RAM, 32-
bit, Windows 7, Apache HTTP Server 2.4.34, Java SE Runtime
Environment (JRE) 1.6, MySQL 5.6, .net 3.5, Aneka 3.1.

Other FCN/Worker Node: Raspberry Pi 3 B+, ARM Cortex-
A53 quad-core SoC CPU @ [1.4GHz 1GB LPDDR2 SDRAM,
IEEE 802.11, 64-bit, Raspbian Stretch, Apache HTTP Server
2.4.34,JRE 1.6, MySQL 5.6.

Public Cloud: Microsoft Azure B1s Machine, 1vCPU, 1GB
RAM, 2GB SSD, Windows Server 2016, .NET 3.5, Aneka 3.1.

Fig. [6]depicts the real implementation of this system model.

5.2. Installed Package

The developed prototype for Sleep Apnea analysis is mostly
Fog infrastructure centric. However, if Fog infrastructure is
unable to process the data, using built-in Aneka-based Cloud
Plugin of FogBus, the data is sent to Azure VM. The applica-
tion package for Sleep Apnea analysis installed in the prototype
consists of an android user interface and a data analytic backend
program. Description of the installed package is given below.

10

HealthKeeper

Welcome to

HealthKeeper

mild

Apnea Graph

(b)

Figure 7: (a) Home and (b) Session Screen of the android interface

5.2.1. Android Interface at Smart Phone Gateway

An android executable named HealthKeeper launches the an-
droid interface to the prototype operator. The executable in-
stalled on the Smartphone allows the device to act as an me-
diator between the Pulse Oximeter and the Master. It is de-
veloped on MIT App Inventor, an open source platform [33].
The interface is divided into Home and Session screen (Fig. [7).
The Home screen helps operator to pair the Oximeter with the
Smartphone for receiving patient data using Bluetooth and enter
the master’s IP address. The Session screen handles all interac-
tion with the master including data transmission. In this case,
rather than sending data manually through the HTML form, the
interface records and transmits data automatically. An empty
data list is initialized and timer is reset when recording starts.
Each data value received from the Oximeter is appended to the
list. When the recording is stopped, the list is sent to the master
for storage and distribution to the workers. This screen also ex-
tends the Service Interface running at the master and displays
the result to operators once they become available to the master.

5.2.2. Data Analytic at Worker Computing Nodes

The data analytic for Sleep Apnea analysis encapsulates two
open source programs found in [34][35]]. These Java programs
are stored in the repository worker and based on the command
of master, they are forwarded to the computing workers for in-
stallation. The data analytic takes the input data as a file. From
the input file the first, second and third columns are parsed as
the timestamp, heart beat rate and blood oxygen level respec-
tively. In the analytic, a Boolean variable tracks whether there
is a dip in oxygen level or not. Whenever the oxygen level goes
below 88, the dip Boolean variable turns to true and stays true
till oxygen level is above 88. It is verified by the rise of heart
beat rate in nearby timestamps of the dip occurrence in oxy-
gen level. A counter variable in the analytic narrates how many
times the dip Boolean variable has been changed to true. This
count is known as the Apnea - Hypopnea Index, AHI that is used
to determine the intensity of Sleep Apnea. AHI based cases for
Sleep Apnea analysis are given below.

No/Minimal, for AHI < 5 per hour
Sleep Apnea = Mild, for 5 > AHI < 15 per hour
Moderate, for 15 > AHI < 30 per hour
Severe, for AHI > 30 per hour



‘ Oximeter ‘

Smartphone ‘

1:Poweron !
||2: Enter credentials

|
H
2.1: Display validation

3: Sense data
3.1: Send data signg|

|

i
i
:
- i
;
— :

'
l

i 3.1.1:Send data
1 ' 3.1.1.1 Update database
: ‘ i 3.1.1.2: Acknowledgement

4: Request data analysis
T

i
4.1: Send analysis signal |
tblinnt b i

4.1.1: Analyse data.

4.1.1.2:Return data

& application executable
4.1.2: Dataanalysis

— 1

4.1.1.1:Request data l

4.1.3: Return resul

.4.2: Return result i
5: Return result H ' i
t i

i

i

Figure 8: Sequence of communication during Sleep Apnea analysis

However, as additional information, the data analytic stores the
minimum oxygen level for the given period of time. For the
heart rate data, minimum and maximum value are identified.
The average heart rate and average rise or fall of the heart rates
are also determined. In addition, heart beat pattern during the
dips in oxygen level are filtered and ECG is generated. Af-
ter identifying these information and Sleep Apnea intensity, the
analytic delivers the result in a file. This file is later parsed by
the master’s Service Interface to notify the prototype operator.

5.3. Sequence of Communication

In the prototype of FogBus-enabled Sleep Apnea analysis, all
hardware instruments belongs to same WLAN. Their sequence
of communication is presented in Fig. [§] This sequence ini-
tiates by configuring the Pulse Oximeter with the Smartphone
using required credentials of the operator. The Oximeter senses
patient’s SpO2 and heart beat rate and forwards to the Smart-
phone through bluetooth communication. From Smartphone,
these data are sent to the master. The master later stores the
data on repository worker. After the storage operation acknowl-
edgement is confirmed from the repository worker to the mas-
ter. Since the Smartphone extends master’s Service Interface,
this acknowledgement becomes visible to the operator.

After recording the data for a certain period of time, the oper-
ator prompts a request to the master via Smartphone for analyz-
ing the stored data. Then, the master communicates with a suit-
able computing worker and issues required privileges for data
analysis to it. The computing worker requests the stored data
and analytic executable from the repository worker. On recep-
tion of these elements, the computing worker starts the analysis
operation. Once the analysis operation is finished, the result is
sent back to the master. The Smartphone pulls the result from
the master and displays to the operator.

6. Performance Evaluation

6.1. Experimental Setup

The prototype for Sleep Apnea analysis discussed in Sec-
tion [3]is used to evaluate the performance of FogBus in terms

‘Master‘ ‘ComputingWorker‘ ‘RepositoryWorker

11

of latency, energy, processor (CPU), memory (RAM), storage
(Cache) and network usage. For the experiment, data from mul-
tiple pulse oximeters are recorded for a specific period of time,
later the master sequentially generates analysis tasks for each
recorded data chunk to the computing worker. Here, each ex-
periment scenario is modelled under the following settings.

1. With / Without Interval: In With Interval setting, master
sends the next analysis task to its computing worker after
5 seconds of receiving the outcome for previous task. This
time interval helps both master and computing worker to
reduce their overhead. On the contrary, in Without Interval
case, master sends the next task to its computing worker as
soon as the outcome of the previous task becomes avail-
able. It ensures that the FogBus framework remains con-
sistently active and there exists no idle time on the nodes.

2. With | Without Blockchain: FogBus offers flexibility to
either enable or disable its Blockchain security feature
according to the requirements of the users and service
providers. The segments of this experiment setting differs
from each other based on the status of Blockchain security
feature in the FogBus-based prototype.

3. Fog / Cloud Only / Integrated: FogBus supports applica-
tion execution across diverse computing infrastructures.
This experiment setting refers whether the application ex-
ecution is solely conducted on Fog or Cloud, or integrated
infrastructure.

During the experiments, data parameters are recorded using Mi-
crosoft Performance Monitor at the Master and the Azure VM
whereas at the Raspberry Pi circuits NMON Performance Mon-
itor is used [36] [37]. Apart from the system model parameters
specified in Section additional parameters used for the ex-
periments are given in Table

Table 2: Experiment parameters

Parameter Value

Analysis Task:

Duration of sequential task generation 5 minute

Data recording time per task 3 minute

Pulse Oximeter:

Signal length 18 KB

Sensing frequency 2 signal per second
WLAN:

Download Speed 7 Mbps

Upload Speed 2 Mbps

6.2. Result Analysis

6.2.1. Number of Tasks

Fig. [9] depicts the number of tasks generated in FogBus on
different experiment settings. It is observed that the number of
tasks is higher in the Fog Only setting compared to the Cloud
Only and Integrated Fog-Cloud case. It happens since Fog in-
frastructure quickly delivers outcome of the previous task. Dur-
ing Without Interval setting, this value rises significantly than
the With Interval setting since tasks are generated continuously
by the master. It is also noticed that, if Blockchain feature of
FogBus is turned off, comparatively higher number of tasks are
generated. In this case, as lower amount of additional data is



shared and processed over the infrastructure, it consequently
improves the speed of receiving outcome for the previous task.
Based on these observations, it is understood that if there exists
higher amount of tasks to be handled with less security require-
ments, FogBus can be set to Fog Only setting with disabled
Blockchain feature. However, in such state the management
and processing overhead of the infrastructures will increase in
proportion to the number of tasks and the size of data chunk
for individual task. It can be managed by tuning the interval
between subsequent tasks creation.

Number of Tasks (With Blockchain) Number of Tasks (Without Blockchain)

HFogOnly

10 m
® 5
% m
% 135
) 3
2
I I T

‘Without Intenval

ROoudOnly B inegrated og Coud ufogOnly mCoudOnly  wIntegrated FogCloud

With Interval With Interval

(b)

Figure 9: Number of tasks (a) With and (b) Without Blockchain

Wihout Interval

(a)

6.2.2. Latency

Fig. [I0|presents the impact of different settings of FogBus on
service delivery latency. Here service delivery latency is mod-
elled as the summation of network propagation delay and task
completion or application execution time. It is known that com-
putational capability of Fog infrastructure is not enriched but it
resides closer to the data source. As a consequence, network
propagation delay is quite less for Fog infrastructure. Further-
more, if the size of data chunk for a particular task is not huge,
its completion time will not differ significantly whether the ap-
plication is executed in Fog or Cloud. Since, in this experiment,
size of data chunk for a task is not huge, the service delivery la-
tency much depends on the network propagation delay. As a re-
sult, in Fog Only setting of the FogBus, service delivery latency
is minimal compared to Cloud Only and Integrated Fog-Cloud
case. This latency becomes much lower on disabled state of
Blockchain feature since its management add some more time
to complete the tasks. Moreover, the With Interval setting re-
duces overhead from the infrastructure and network in this case;
that also contributes to improve the service delivery latency.
Therefore, it can be realized that these settings assist FogBus
to deal with the tasks having stringent deadline.

6.2.3. Network Usage

Network usage in different settings of FogBus are presented
in Fig. [T1} In this experiment, Fog Only setting provides im-
proved performance than Cloud Only and Integrated Fog-Cloud
case, since it solely utilizes the local networking resources. The
disabled Blockchain features also reduces the network usage as
less amount of security attributes are required to be transferred

12

Latency (With Blockchain)in sec Latency (Without Blockchain) in sec

HFogOnly

2
34
1%
)
i P 3%
i 1
0
0se
I l :

With nterval

(b)

RCoudOnly - W ntegrated og:Coud uFogOnly wCloudOrly m Integraed Fog Cloud

Wihout Interval Wih Intenal Wehout Interval

(a)

Figure 10: Latency (a) With and (b) Without Blockchain

across the infrastructures. However, network usage gets ele-
vated when continuously tasks are generated and their associ-
ated data and information are exchanged. In this case, tuning
of subsequent task generation interval can reduce the network
usage to a certain scale. Thus, these adjustments make Fog-
Bus operational even when less amount of network resources
are allocated for a particular IoT-enabled system.

Network Usage (With Blockchain) in bps Network Usage (Without Blockchain) in bps

NFogOnly W Cloud Only W Itegrated Fog.Coud uFogOrly WCoudOnly  m Integrated Fog:Cloud

82

mn
1m5

5287 I I
3286
0 —

Wihout Intenal

B8

With Intenal

1621
nu

I :

Wihout Interval

12678
759
03

With ntenl

(@) (b)

Figure 11: Network usage (a) With and (b) Without Blockchain

6.2.4. Energy

Fig. [I2] presents how different settings of FogBus influence
energy consumption of the infrastructure. In Cloud Only setting
the Fog nodes are used for networking and Cloud VMs conduct
the computation whereas in Fog Only setting both the network-
ing and computation are handled by Fog nodes. Nevertheless in
Integrated Fog-Cloud case computational tasks are distributed
to both the infrastructures according to the context of the sys-
tem. Since, Cloud VMs consume much more energy compared
to the Fog nodes, in Fog Only setting less energy is required to
conduct the operations. Besides, to manage the Blockchain fea-
ture of the FogBus, additional energy is devoured. In this case,
disabled Blockchain feature saves some energy for FogBus. In
addition, energy consumption of an infrastructure during busy
time is higher compared to its idle time. Therefore, interval
between subsequent task creation assists to improve the energy
usage of the infrastructure. However, it leads FogBus to pro-
cess less number of tasks which can be overcome by efficient
tuning of the interval time. However, these configurations help
FogBus to execute applications under the energy constraints.



Consumed Energy (With Blockchain) in joule Consumed Energy (Without Blockchain) in joule

WFogOnly WCloud Only M Integrated Fog:Cloud wFogOnly mCloud Only W Integrated FogCloud

B

31048
Jith]

Wthout Interval

288
27654 ms

4
. -
|

Without Interval

19835

WithIntenal

BT
26869
6047

With Intenval

(@) (b)

Figure 12: Energy consumption (a) With and (b) Without Blockchain
CPU Usage %

RAM Usage % Cache Usage (EO8 bytes)

(©)

() (b)

Figure 13: (a) CPU, (b) RAM and (c) Cache utilization of master

6.2.5. CPU, RAM, Cache Usage of Broker / Master

The Fig. [13] shows the CPU, RAM and Cache usage of
broker/master for various FogBus settings such as Fog Only-
Without Blockchain, Cloud Only-Without Blockchain, Fog
Only-With Blockchain and Cloud Only-With Blockchain. The
parameter values for Fog Only setting are much lower com-
pared to Cloud Only case since it reduces the overhead of run-
ning Cloud Plugins and storing the Cloud communication at-
tributes. Even Without Blockchain, these parameter values also
decrease as hash and proof-of-work creation for each data block
are eliminated. Moreover, on any resource constrained master,
these settings can ensure acceptable performance of the Fog-
Bus framework. However, since the software components of
FogBus do not release their allocated resources after operations
by themselves, the RAM and the cache usage for master in all
settings remain almost same. In this case, the interval in subse-
quent task generation does not improve the state of resources.
It is left to be resolved in the next version of FogBus.

7. Conclusion and Future Works

In this work, we propose the FogBus framework that can in-
tegrate different [oT-enabled systems to both Fog and Cloud in-
frastructures. The framework is lightweight and can harness
both edge and remote resources for IoT application deploy-
ment, monitoring and management. FogBus is developed in
cross platform programming languages that helps to overcome
the heterogeneity of the infrastructure during application ex-
ecution and end-to-end interaction. Additionally, the FogBus

13

framework functions as a Platform-as-a-Service (PaaS) model
for integrated Fog Cloud environment that not only assists ap-
plication developers to build different types of IoT applications
but also supports users to customize the services, and service
providers to manage the resources according to the context of
the system. Since some IoT-enabled systems such as health
monitoring and utility service metering deal with sensitive data,
FogBus applies authentication for data privacy and Blockchain
for data integrity. To procure data transfer across less secure
network, encryption techniques are applied in FogBus. Based
on the principles of FogBus, a cost efficient prototype for Sleep
Apnea analysis is also developed in this work. Applying dif-
ferent FogBus settings on the prototype, it is demonstrated that
FogBus performs well even when large number of tasks are re-
quired to be processed, the execution of tasks are latency sen-
sitive, network resources are not abundant, energy usage is re-
stricted and computing instances are not resource enriched.

Although FogBus is capable of enhancing service quality
across diverse infrastructures, it can be still improved in a larger
scope under the following aspects.

Resource management policies: FogBus provides flexibility
to apply customized provisioning polices while allocating re-
sources for different applications. Dynamic resource manage-
ment policies on top of existing static management policy can
be developed targeting load balancing among the computing in-
frastructures and the QoS enhancement.

Fog infrastructure virtualization: FogBus assists integra-
tion of Fog and Cloud computing with IoT-enabled systems.
Although Cloud computing can be virtualized, in depth explo-
ration is required to virtualize the Fog infrastructure in FogBus.

Artificial Intelligence: Currently FogBus does not support
any artificial intelligence techniques for controlling the opera-
tions in different infrastructure and improving the resilience of
the system. Inclusion of Artificial Intelligence techniques can
be a significant contribution towards FogBus.

Application placement techniques: FogBus inherently sup-
ports distributed application execution. While placing applica-
tions in distributed manner, service latency, user expectations
and deployment cost become predominant. In this case, differ-
ent efficient application placement techniques can be added to
the software stack of FogBus.

Runtime application migration: Migration of applications
during runtime is very crucial if any anomaly is predicted. Dif-
ferent runtime application migration strategies for FogBus can
be developed to handle such uncertain events.

Lightweight security features: Existing security features
of FogBus require comparatively higher computational assis-
tance. This consequently affects the service delivery latency,
energy and network usage. Therefore, lightweight but effec-
tive security features can be helpful for further uplift of FogBus.

The FogBus software along with source codes, users
and developers manual is available from https:
//github.com/Cloudslab/FogBus


https://github.com/Cloudslab/FogBus
https://github.com/Cloudslab/FogBus

References

(1]

[2

—

3

=

[4

=

[5]

(6]
(7]

[8]

[9

—

(10]

(11]

[12]

(13]

(14]

[15]

(16]

[17]

(18]

Jayavardhana Gubbi and Rajkumar Buyya and Slaven Marusic and
Marimuthu Palaniswami, Internet of Things (IoT): A vision, architec-
tural elements, and future directions, Future Generation Computer Sys-
tems 29 (7) (2013) 1645 — 1660.

McKinsey & Company, The Internet of Things: How to capture the value
of IoT (May, 2018).

M. Afrin, M. R. Mahmud, M. A. Razzaque, Real time detection of speed
breakers and warning system for on-road drivers, in: Proc. of the IEEE
International WIE Conference on Electrical and Computer Engineering
(WIECON-ECE), 2015, pp. 495-498.

F. Bonomi, R. Milito, J. Zhu, S. Addepalli, Fog Computing and Its Role in
the Internet of Things, in: Proc. of the First Edition of the MCC Workshop
on Mobile Cloud Computing, MCC *12, ACM, 2012, pp. 13-16.

R. Mahmud, K. Ramamohanarao, R. Buyya, Latency-aware application
module management for fog computing environments, ACM Transactions
on Internet Technology (TOIT).

R. Mahmud, R. Kotagiri, R. Buyya, Fog computing: A taxonomy, survey
and future directions, Springer, 2018, pp. 103-130.

R. Mahmud, S. N. Srirama, K. Ramamohanarao, R. Buyya, Qual-
ity of experience (qoe)-aware placement of applications in fog
computing environments, Journal of Parallel and Distributed Com-
putingdoi:https://doi.org/10.1016/j.jpdc.2018.03.004.
URL http://www.sciencedirect.com/science/article/pii/
S0743731518301771

R. Mahmud, F. L. Koch, R. Buyya, Cloud-fog interoperability in iot-
enabled healthcare solutions, in: Proceedings of the 19th International
Conference on Distributed Computing and Networking, ICDCN ’18,
ACM, New York, NY, USA, 2018, pp. 32:1-32:10.

H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, R. Buyya, iFogSim: A Toolkit
for Modeling and Simulation of Resource Management Techniques in the
Internet of Things, Edge and Fog Computing Environments, Software:
Practice and Experience 47 (9) (2017) 1275-1296.

A. M. Rahmani, T. N. Gia, B. Negash, A. Anzanpour, I. Azimi, M. Jiang,
P. Liljeberg, Exploiting smart e-Health gateways at the edge of health-
care Internet-of-Things: A fog computing approach, Future Generation
Computer Systems 78 (2018) 641-658.

H. Dubey, A. Monteiro, N. Constant, M. Abtahi, D. Borthakur, L. Mahler,
Y. Sun, Q. Yang, U. Akbar, K. Mankodiya, Fog computing in medi-
cal internet-of-things: architecture, implementation, and applications, in:
Handbook of Large-Scale Distributed Computing in Smart Healthcare,
Springer, 2017, pp. 281-321.

S. Yangui, P. Ravindran, O. Bibani, R. H. Glitho, N. B. Hadj-Alouane,
M. J. Morrow, P. A. Polakos, A platform as-a-service for hybrid cloud/fog
environments, in: Local and Metropolitan Area Networks (LANMAN),
2016 IEEE International Symposium on, IEEE, 2016, pp. 1-7.

D. Bruneo, S. Distefano, F. Longo, G. Merlino, A. Puliafito, V. D’ Amico,
M. Sapienza, G. Torrisi, Stack4Things as a fog computing platform for
Smart City applications, in: Computer Communications Workshops (IN-
FOCOM WKSHPS), 2016 IEEE Conference on, IEEE, 2016, pp. 848—
853.

I. Azimi, A. Anzanpour, A. M. Rahmani, T. Pahikkala, M. Levorato,
P. Liljeberg, N. Dutt, HiCH: Hierarchical fog-assisted computing archi-
tecture for healthcare IoT, ACM Transactions on Embedded Computing
Systems (TECS) 16 (5s) (2017) 174.

T. N. Gia, M. Jiang, V. K. Sarker, A. M. Rahmani, T. Westerlund, P. Lil-
jeberg, H. Tenhunen, Low-cost fog-assisted health-care IoT system with
energy-efficient sensor nodes, in: Wireless Communications and Mobile
Computing Conference (IWCMC), 2017 13th International, IEEE, 2017,
pp. 1765-1770.

O. Akrivopoulos, I. Chatzigiannakis, C. Tselios, A. Antoniou, On the
deployment of healthcare applications over fog computing infrastructure,
in: Computer Software and Applications Conference (COMPSAC), 2017
IEEE 41st Annual, Vol. 2, IEEE, 2017, pp. 288-293.

N. Chen, Y. Chen, X. Ye, H. Ling, S. Song, C.-T. Huang, Smart city
surveillance in fog computing, in: Advances in Mobile Cloud Computing
and Big Data in the 5G Era, Springer, 2017, pp. 203-226.

R. Craciunescu, A. Mihovska, M. Mihaylov, S. Kyriazakos, R. Prasad,
S. Halunga, Implementation of Fog computing for reliable E-health appli-
cations, in: Signals, Systems and Computers, 2015 49th Asilomar Con-
ference on, IEEE, 2015, pp. 459-463.

14

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

P. Hu, H. Ning, T. Qiu, Y. Zhang, X. Luo, Fog computing based face iden-
tification and resolution scheme in internet of things, IEEE transactions
on industrial informatics 13 (4) (2017) 1910-1920.

N. Verba, K.-M. Chao, A. James, D. Goldsmith, X. Fei, S.-D. Stan, Plat-
form as a service gateway for the Fog of Things, Advanced Engineering
Informatics 33 (2017) 243-257.

S. Yi, Z. Hao, Z. Qin, Q. Li, Fog computing: Platform and applications,
in: 2015 Third IEEE Workshop on Hot Topics in Web Systems and Tech-
nologies (HotWeb), IEEE, 2015, pp. 73-78.

K. Vatanparvar, A. Faruque, M. Abdullah, Energy management as a ser-
vice over fog computing platform, in: Proceedings of the ACM/IEEE
Sixth International Conference on Cyber-Physical Systems, ACM, 2015,
pp. 248-249.

C. Chang, S. N. Srirama, R. Buyya, Indie fog: An efficient fog-computing
infrastructure for the internet of things, Computer 50 (9) (2017) 92-98.
N. Mohamed, J. Al-Jaroodi, S. Lazarova-Molnar, 1. Jawhar, S. Mah-
moud, A service-oriented middleware for cloud of things and fog
computing supporting smart city applications, in: 2017 IEEE Smart-
World, Ubiquitous Intelligence & Computing, Advanced & Trusted Com-
puted, Scalable Computing & Communications, Cloud & Big Data
Computing, Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), IEEE, 2017.

M. Slabicki, K. Grochla, Performance evaluation of coap, snmp and net-
conf protocols in fog computing architecture, in: NOMS 2016 - 2016
IEEE/IFIP Network Operations and Management Symposium, 2016, pp.
1315-1319.

G. Zyskind, O. Nathan, et al., Decentralizing privacy: Using blockchain
to protect personal data, in: Security and Privacy Workshops (SPW), 2015
IEEE, IEEE, 2015, pp. 180-184.

M. Swan, Blockchain: Blueprint for a new economy, ” O’Reilly Media,
Inc”, 2015.

A. Brownworth, How Blockchain Works, http://blockchain.mit.
edu/how-blockchain-works, [Online; accessed 28-August-2018]
(2017).

R. N. Calheiros, C. Vecchiola, D. Karunamoorthy, R. Buyya, The aneka
platform and qos-driven resource provisioning for elastic applications on
hybrid clouds, Future Generation Computer Systems 28 (6) (2012) 861—
870.

R. N. Calheiros, A. N. Toosi, C. Vecchiola, R. Buyya, A coordinator
for scaling elastic applications across multiple clouds, Future Generation
Computer Systems 28 (8) (2012) 1350-1362.

J. He, M. H. Kryger, F. J. Zorick, W. Conway, T. Roth, Mortality and
apnea index in obstructive sleep apnea: experience in 385 male patients,
Chest 94 (1) (1988) 9-14.

C. A. Nigro, E. Dibur, E. Rhodius, Pulse oximetry for the detection of
obstructive sleep apnea syndrome: can the memory capacity of oxygen
saturation influence their diagnostic accuracy?, Sleep disorders, Hindawi
2011.

M. M. Lab, App Inventor, http://appinventor.mit.edu/
appinventor-sources/, [Online; accessed 28-August-2018] (2015).
S. Manigadde, Sleep Apnea, https://github.com/
subrahmanyamanigadde/sleepapnea, [Online; accessed 28-August-
2018] (2018).

M. [Initiative, Sleep Apnea Clustering, https://github.com/
monarch-initiative/sleep-apnea-clustering, [Online; ac-
cessed 28-August-2018] (2017).

Microsoft, Windows Performance Toolkit, https://docs.microsoft.
com/en-us/windows-hardware/test/wpt/, [Online; accessed 28-
August-2018] (2017).

Splunkbase, Nigel’s Performance Monitor, https://splunkbase.
splunk.com/app/1753/, [Online; accessed 28-August-2018] (2018).


http://www.sciencedirect.com/science/article/pii/S0743731518301771
http://www.sciencedirect.com/science/article/pii/S0743731518301771
http://www.sciencedirect.com/science/article/pii/S0743731518301771
http://dx.doi.org/https://doi.org/10.1016/j.jpdc.2018.03.004
http://www.sciencedirect.com/science/article/pii/S0743731518301771
http://www.sciencedirect.com/science/article/pii/S0743731518301771
http://blockchain.mit.edu/how-blockchain-works
http://blockchain.mit.edu/how-blockchain-works
http://appinventor.mit.edu/appinventor-sources/
http://appinventor.mit.edu/appinventor-sources/
https://github.com/subrahmanyamanigadde/sleepapnea
https://github.com/subrahmanyamanigadde/sleepapnea
https://github.com/monarch-initiative/sleep-apnea-clustering
https://github.com/monarch-initiative/sleep-apnea-clustering
https://docs.microsoft.com/en-us/windows-hardware/test/wpt/
https://docs.microsoft.com/en-us/windows-hardware/test/wpt/
https://splunkbase.splunk.com/app/1753/
https://splunkbase.splunk.com/app/1753/

	1 Introduction
	2 Related Work
	3 FogBus Framework
	3.1 Hardware Instruments
	3.2 Software components
	3.2.1 Broker Service
	3.2.2 Repository Service
	3.2.3 Computing Services

	3.3 Network Structure

	4 Design and Implementation
	4.1 System Services
	4.2 Blockchain
	4.3 Cloud Plugin
	4.4 Application
	4.4.1 User Interface
	4.4.2 Backend Program


	5 A Case Study : Sleep Apnea Analysis
	5.1 System Configuration
	5.2 Installed Package
	5.2.1 Android Interface at Smart Phone Gateway
	5.2.2 Data Analytic at Worker Computing Nodes

	5.3 Sequence of Communication

	6 Performance Evaluation
	6.1 Experimental Setup
	6.2 Result Analysis
	6.2.1 Number of Tasks
	6.2.2 Latency
	6.2.3 Network Usage
	6.2.4 Energy
	6.2.5 CPU, RAM, Cache Usage of Broker / Master


	7 Conclusion and Future Works

