
A Topological Analysis of Communication Channels for

Knowledge Sharing in Contemporary GitHub Projects

Jirateep Tantisuwankulb, Yusuf Sulistyo Nugrohoa, Raula Gaikovina Kulaa,
Hideaki Hataa, Arnon Rungsawangb, Pattara Leelapruteb, Kenichi

Matsumotoa

aNara Institute of Science and Technology, Japan
bKasetsart University, Thailand

Abstract

With over 28 million developers, success of the GitHub collaborative plat-
form is highlighted through an abundance of communication channels among
contemporary software projects. Knowledge is broken into two forms and its
sharing (through communication channels) can be described as externaliza-
tion or combination by the SECI model. Such platforms have revolutionized
the way developers work, introducing new channels to share knowledge in
the form of pull requests, issues and wikis. It is unclear how these channels
capture and share knowledge. In this research, our goal is to analyze these
communication channels in GitHub. First, using the SECI model, we are
able to map how knowledge is shared through the communication channels.
Then in a large-scale topology analysis of seven library package projects (i.e.,
involving over 70 thousand projects), we extracted insights of the different
communication channels within GitHub. Using two research questions, we
explored the evolution of the channels and adoption of channels by both pop-
ular and unpopular library package projects. Results show that (i) contem-
porary GitHub Projects tend to adopt multiple communication channels, (ii)
communication channels change over time and (iii) communication channels
are used to both capture new knowledge (i.e., externalization) and updating
existing knowledge (i.e., combination).

Preprint submitted to The Journal of Systems and Software September 10, 2019

ar
X

iv
:1

90
5.

03
59

3v
3

 [
cs

.S
E

]
 9

 S
ep

 2
01

9

1. Introduction

A key ingredient to the emergence and success of software projects on
collaborative platforms such as GitHub1 has been its distributed informa-
tion sharing nature, which is the ability to interact and share information
between software developers. With over 28 million developers and 67 million
repositories reported in 2018, GitHub hosts a multitude of diverse devel-
oper ecosystem (also referred to as communities)2. As well as hosting tradi-
tional software projects, GitHub is also the home to sometimes trivial library
projects [1] and have been the focus of recent studies [2, 3, 4, 5, 6, 7, 8]. For
instance, package managers like npm3 host around 700 thousand packages
on GitHub. Interestingly, we find that a single npm developer could be the
maintainer for hundreds of these packages.

Investing in knowledge creates value during software development, espe-
cially in the context of human capital [9]. This knowledge can then be rep-
resented and shared in contemporary software through social and technical
‘communication channels’, mostly used to improve and maintain a project’s
presence in an ecosystem. Examples of such channels include forking, pull
requests, the readme file documentation and so on. According to the busi-
ness management perspective, communication channels can be distinguished
into either tacit and explicit knowledge, with its transfer being described as
externalization and combination (using the SECI model [10]). In fact, open
source projects heavily rely on social markers and its popularity (i.e., star
counts and forks) for measuring their abilities to attract and maintain their
contributors. Although much work has covered the different communication
channels, a mapping of all these communication channels and the knowledge
shared has not yet been studied.

The research gap that this paper fills is understanding at the topological
level of how knowledge is shared between communication channels of contem-
porary projects. There has been work that has studied the social collabora-
tions between projects, but not an analysis of multi-channels over large-scale
ecosystem of libraries. A study by Storey et al. [11] showed that communities
of FLOSS (Free Libre Open Source Software) projects are shaped through
social and communication channels (also referred to as social coding). Re-

1https://github.com/
2The survey result is available at https://octoverse.github.com/
3website at https://www.npmjs.com/

2

https://github.com/
https://octoverse.github.com/
https://www.npmjs.com/

cently, Aniche et al. [12] confirmed that news channels also play an important
role in shaping and sharing knowledge among developers.

In this paper, we investigate communication channels to understand how
projects share knowledge at the software ecosystem level. Inspired by the
knowledge-based theory of the firm [13], our study is to validate the underly-
ing theory behind the transferable of knowledge within these library ecosys-
tems, and to investigate how ecosystems influence social practices within and
outside their ecosystems. To achieve our goal that is to analyze how com-
munication channels share knowledge over projects, we first identify different
knowledge forms of channels in over 210 thousand library projects from seven
different library ecosystems. We then explore the evolution of these chan-
nels and distinguish differences between these seven ecosystems. Similar to a
study by Lertwittayatrai et al. [14], we use topological data analysis to gen-
erate topologies that cover three years (i.e., 2015 to 2017). Using topology
data analysis, the results of the study show that (i) contemporary GitHub
Projects tend to adopt multiple communication channels, (ii) communication
channels change over time, and (iii) communication channels are used to cap-
ture new knowledge (i.e., externalization) and updating existing knowledge.
The contributions of the study are two-fold. First, we present a manual cate-
gorization of channels forms in software projects. The second contribution is
a large-scale analysis of channels for software projects over seven ecosystems
using the topological analysis of software library projects for seven different
software ecosystems.

The rest of the paper is organized as follows. Section 2 describes our
initial work to classify the communication channels into tacit or explicit.
Section 3 details our experiments using the topological data analysis of the
seven GitHub library ecosystems. Section 4 is the evaluation of our topo-
logical data analysis technique. Section 5 discuss the implication of the
experimental results, with Section 6 defining the threats of validity. We
present the related works in Section 7, and finally conclude the papers and
summarize potential avenues for future work in Section 8. The replication
package that contains all the dataset and experiment details are accessible
from https://github.com/NAIST-SE/TDA_Communication_Channels.

3

https://github.com/NAIST-SE/TDA_Communication_Channels

2. Preliminary Study: Communication Channels and Knowledge
Sharing in Software Projects

Before we proceed with the study, we first carried out a preliminary study
to first understand what knowledge exists and is transferred through the
communication channels.

2.1. Motivation

The study of knowledge sharing has had an impact in fields like Sharing
Architectural Knowledge [15], where architectural decision-making and has
been shown to increase project consistency, coordination, and communica-
tion coherence over time. To understand knowledge sharing, we apply and
distinguish different knowledge forms to communication channels. We use
existing models of knowledge and how they are transferred. We carry out
an empirical study to analyze and answer the formulated research question:
PS1: Are we able to distinguish knowledge within the communi-
cation channels of GitHub projects?

2.2. Approach

Our approach to answer the preliminary study question is through analy-
sis of historical information. We first carried-out an investigation of possible
communication channels, which we then methodologically classify into the
different knowledge forms. We then use the SECI model to understand the
knowledge transfer within these channels.

As shown in Table 1, there are two knowledge forms [16, 17, 10]. The
first is tacit knowledge (know-how) where the knowledge is embedded in
the human mind through experience and jobs. Personal wisdom and ex-
perience, context-specific are more difficult to extract and codify. In addi-
tion, tacit knowledge includes insights and intuitions. The second is explicit
knowledge (know-that) which is codified and digitized in books, documents,
reports, memos, etc. This type of knowledge is easily identified, articu-
lated, shared and employed that can facilitate action. To classify the trans-
fer (through sharing) of knowledge within each communication channel, we
used the SECI knowledge model. Nonaka and Takeuchi’s SECI model is a
model of knowledge dimensions that describes the transformation of tacit
and explicit knowledge into organizational knowledge [10]. Since it was first
introduced by Nonaka [18], SECI model has been used in many area of stud-
ies. Dávideková et al. [19] used SECI model to analyze various information

4

Table 1: Distinctions between Tacit and Explicit Knowledge4

Tacit Knowledge Explicit Knowledge

T1: Subjective, cognitive, experiential learning E1: Objective, rational, technical
T2: Personal E2: Structured
T3: Context sensitive/specific E3: Fixed content
T4: Dynamically created E4: Context independent
T5: Internalized E5: Externalized
T6: Difficult to capture and codify E6: Easily documented
T7: Difficult to share E7: Easy to codify
T8: Has high value E8: Easy to share
T9: Hard to document E9: Easily to transferred/taught/learned
T10: Hard to transfer/teach/learn E10: Exists in high volumes
T11: Involves a lot of human interpretation

and communication technology (ICT) tools in bridging virtual collaboration
between team members without their physical presence. In comparison with
traditional teams that requires the presence of individuals, virtual collabo-
ration demands the motivation of team members, support from team leader,
and appropriate technology. Therefore, the preference of such suitable ICT
tools for each activity in organizations is necessary. As shown in Table 2,
SECI model contains four dimensions of knowledge which together form the
acronym “SECI”. In this paper, we focus specifically on the externalization
and combination in our classifications.

The identification of knowledge within communication channels was per-
formed by a group consensus among three of the authors, with rationale
clearly aligned with the formal definitions.

2.3. Data Collection

For the preliminary study, the authors used the libraries.io5 collection
of GitHub software projects. This dataset includes various communication
channels and covers the largest range of ecosystems. According to its web-
site, libraries.io indexes data from over 3 million library packages from 36
package managers. Package managers represent different ecosystems of li-
braries. For example, libraries belonging to the nodeJS package manager
(npm) are part of the bigger JavaScript ecosystem of projects. Furthermore,

4https://www.tlu.ee/~sirvir/Information%20and%20Knowledge%20Management/

Key_Concepts_of_IKM/tacit_and_explicit_knowledge.html
5https://libraries.io/data

5

https://www.tlu.ee/~sirvir/Information%20and%20Knowledge%20Management/Key_Concepts_of_IKM/tacit_and_explicit_knowledge.html
https://www.tlu.ee/~sirvir/Information%20and%20Knowledge%20Management/Key_Concepts_of_IKM/tacit_and_explicit_knowledge.html
https://libraries.io/data

Table 2: Taken from Nonaka and Takeuchi [10], four dimensions of knowledge transfer

Dimension Knowledge Transfer Description

Socialization Tacit to Tacit Social interaction as tacit to tacit knowledge
transfer

Externalization Tacit to Explicit Articulating tacit knowledge through dia-
logue and reflection. When tacit knowledge
is made explicit, knowledge is crystallized,
thus allowing it to be shared by others, and
it becomes the basis of new knowledge

Combination Explicit to Explicit Systemizing and applying explicit knowledge
and information

Internalization Explicit to Tacit Learning and acquiring new tacit knowledge
in practice

Table 3: Seven Library Package Platform Ecosystems

Library Programming Typical Usage # Stars

Package Manager Language Domain Min Max Median Mean
Go GoLang Developed by Google

Applications
592 92,227 6,866.24 2,559

npm nodeJS JavaScript Web Services 569 122,630 8,479.49 3,372
Packagist PHP Server-side web develop-

ment
8 122,630 194.13 23

RubyGems Ruby Web Applications 11 90,383 433.96 48
PyPI Python General scripting 10 122,630 439.77 39
Bower JavaScript Web Services 5 122,630 866.11 43
Maven Java-based languages Languages that use Java

Virtual Machine
107 122,630 1,755.45 454

libraries.io also monitors and stores package releases, analyzes each project’s
code, ecosystem, distribution and documentation, and map the relationships
between packages. Our dataset has also been used in recent empirical studies
[7, 8].

As shown in Table 3, our collected raw dataset is a subset of the seven
largest library ecosystems from the libraries.io dataset. Furthermore,
we used the star count to as to get the more popular repositories within
each ecosystem [20]. The higher star ensures that the package has value to
the ecosystem. Thus, the top 10,000 ranked projects from each ecosystem
was collected. Two authors then identified and mapped 13 communication
channels from the raw dataset features. Details of the mapping are discussed

6

in the replication package and presented in Table 4.
Each library ecosystem is described below. Go6 is a package manager in

GoLang programming language which is developed by Google. The npm7

and Bower8 which are renowned for the JavaScript are mostly used in the
website development. Similar to the npm and Bower, Packagist9 is very com-
mon for the website development but in server-side. The language used for
this package is PHP. Meanwhile, RubyGems10 is a framework of library man-
agement contains functions that can be called by a Ruby program. Finally,
the python-based library manager, PyPI11 works for writing script in gen-
eral, while the Java-based language that use Java Virtual Machine (JVM) is
Maven12.

2.4. Analysis

Answering PS1: Using the collected dataset, we labeled each of commu-
nication channel to a knowledge form (i.e., tacit or explicit). The manual
labeling was performed by one author and later validated by other co-authors.
Based on Table 1, we found that labeling T2, T3, T4, E2, E3 and E4 were
the most identifiable distinctions. To reduce bias, the first author and second
author did independent labeling. Then, in a round table, other authors were
consulted for any conflicts. In Table 4, we provide a full rationale for each
feature.

2.5. Results

We now present the results of classifying knowledge of each channel.

2.5.1. PS1: Are we able to distinguish knowledge within the com-
munication channels of GitHub projects?

Yes, we are able to distinguish knowledge forms channels in soft-
ware projects.

6https://golang.org/
7https://www.npmjs.com/
8https://bower.io/
9https://packagist.org/

10https://rubygems.org/
11https://pypi.org/
12https://maven.apache.org/

7

https://golang.org/
https://www.npmjs.com/
https://bower.io/
https://packagist.org/
https://rubygems.org/
https://pypi.org/
https://maven.apache.org/

Table 4: Summary of 13 channels classified with rationale.

Coding (Table 1)
Dimensions Channels Rationale

Source
Externalization GitHub Pages T2, T3

Personal webpage of a project, the content is specific, and it has no standard template to create.
https://help.github.com/en/articles/what-is-github-pages

Readme T3, T4
The content is specific and is created dynamically without a template.
https://help.github.com/en/articles/about-readmes

Security Audit T2, E3
Although the audit is personal, the contents are fixed.
https://help.github.com/en/articles/reviewing-the-audit-log-for-your-organization

Wiki T2, T3
Similar to GitHub Pages, the contents of wiki are personal and specific. It has no specific template to create.
https://help.github.com/en/articles/about-wikis

Combination Changelog E2, E3
The changes are documented in a structured manner, the contents are fix and cannot be customized.
https://github.blog/2018-05-03-introducing-the-github-changelog/

Code of Conduct E2, E3
There is a standard template to make the contents of code of conduct.
https://help.github.com/en/articles/adding-a-code-of-conduct-to-your-project

Contributing E2, E3, E4
Guidelines The contents are structured, fixed and independent. It is created by following a template.

https://help.github.com/en/articles/setting-guidelines-for-repository-contributors

Fork E2, E3, E4
Fork has structured and fixed content. The context is independent.
https://help.github.com/en/articles/about-forks

Issue Tracker E2, E4
The contents are independent and adopted from a system in a structured way.
https://en.wikipedia.org/wiki/Issue_tracking_system

License E2, E3
The contents of license are structured and fixed.
https://help.github.com/en/articles/licensing-a-repository

Security Threat E2, E3, E4
Model The security regulations that are structured, fixed and independent.

http://www.agilemodeling.com/artifacts/securityThreatModel.htm

of Forks E2, E4
The content is structured and independent.
https://help.github.com/en/articles/fork-a-repo

of Open Issues E2, E4
Structured and independent content.
https://help.github.com/en/articles/opening-an-issue-from-code

Table 4 shows that channels with tacit forms of knowledge being exter-
nalized (i.e., externalized dimension of SECI). Since the classification of tacit
and explicit knowledge is not trivial, we applied the most distinguishable fea-
tures taken from Table 1 (i.e. T2, T3, T4, E2, E3, and E4). In general we
used the following rationale as guidance:

• T2 - Personal : The knowledge possessed by any individual. Usually
accumulated through observation or experiences. For the study, we
characterize individual additions with no structure.

• T3 - Context sensitive/specific: The content is specific to its original
context. It depends on particular time and space. Similar to T2, here

8

https://help.github.com/en/articles/what-is-github-pages
https://help.github.com/en/articles/about-readmes
https://help.github.com/en/articles/reviewing-the-audit-log-for-your-organization
https://help.github.com/en/articles/about-wikis
https://github.blog/2018-05-03-introducing-the-github-changelog/
https://help.github.com/en/articles/adding-a-code-of-conduct-to-your-project
https://help.github.com/en/articles/setting-guidelines-for-repository-contributors
https://help.github.com/en/articles/about-forks
https://en.wikipedia.org/wiki/Issue_tracking_system
https://help.github.com/en/articles/licensing-a-repository
http://www.agilemodeling.com/artifacts/securityThreatModel.htm
https://help.github.com/en/articles/fork-a-repo
https://help.github.com/en/articles/opening-an-issue-from-code

the project customizes the channel specific to the project requirements
or nature (i.e., library or framework, programming language)

• T4 - Dynamically created: The content is capable to change or cus-
tomize. Since GitHub has templates, we regard these features are not
in the templates.

• E2 - Structured: The information is organized in a predictable way and
usually classified with metadata. For instance, a workflow tool usually
has structure to is, when compared to a wiki.

• E3 - Fixed content: The content that is not, under normal circum-
stances, subject to change. This feature is more common with workflow
and tools that serve as channels.

• E4 - Context independent: The content is unaffected by contextual
relevance. For instance, the channel can serve different purpose for
different projects.

Interestingly, we find that the security audit is a mix of tacit and explicit
forms. Although the audit tends to personal, the contents that describe the
strategy, policy and the process related to the management are fixed. Thus,
we conclude that the developers can provide the guidelines with regards to
reducing the risk of misrepresentation of knowledge when developing software
[21].

3. A Topological Analysis of Communication Channels Across GitHub
Ecosystems

Taking the results from the preliminary study, we are now able to study
the knowledge topology of these channels. This topology mapping analysis
presents a visual representation of channels within and across projects in the
GitHub ecosystems.

3.1. Topological Data Analysis

Due to the vast amount of data and the different communication chan-
nels, we apply the Topological Data Analysis (TDA) technique. TDA is an
approach to extract meaningful information from such data that is insensi-
tive to the chosen metric, high-dimensional, noisy and incomplete without

9

A. Original Point Cloud B. Coloring by filter value

C. Binning by filter value D. Clustering and network construction

Figure 1: Taken from Lum et al. [22], A) 3D object (hand) represented as a point cloud,
B) A filter value is applied to the point cloud and the object is then colored by the values
of the filter function, C) The dataset is binned by filter value, D) Each bin is clustered
and a network is built. Within each cluster, groups of nodes determine the shape.

initiating a query or hypothesis [22]. TDA has been employed in many re-
search fields for data exploration and mapping. Lum et al. [22] showed the
significance of understanding the “shape” of data by implemented topology
to analyze three different types of data: data of breast tumors to show gene
expression, data of voting behavior from members of the United States House
of Representatives and performance data of the NBA players. In software
engineering, TDA was also applied in a study of software testing by Costa
et al. [23]. Similar to Lertwittayatrai et al. [14], a topology of the dataset is
generated to provide a visual interpretation of multi-dimensions data analy-
sis.

Figure 1 provides an example of how a TDA is constructed. TDA assumes
a choice of a filter or its combination that can be viewed as a map to a space
of metric to provides insights based on clustering the various subsets of the
dataset related the choices of filter values. As shown, each node is represented
as a set of data points, and the connection between nodes occurs if and only
if their corresponding collections of data points have a point in common. The
topology is constructed by clusters of nodes (i.e., nodes connected together).

10

Then within the cluster, we can find groups of nodes that form a shape of the
dataset. The density of the nodes and their shape gives an indication of the
dominant of the features. Tailored to our study, each point is a project that
are clustered according to the different features extracted in the preliminary
study. The use of color highlights the dominance of a feature, which indicates
high occurrence of that channel.

For TDA, the clustering is performed using the t-Distributed Stochas-
tic Neighbor Embedding (t-SNE) [24]. In detail, the algorithm starts by
calculating the probability of similarity of points in high-dimensional space,
computing in proportion to their probability density under a Gaussian (nor-
mal distribution) algorithm. Multi-dimensional data are then mapped by
the t-SNE to a lower dimensional space and attempts to find patterns in the
data by identifying observed clusters based on similarity of data points with
multiple features.

3.2. Motivation

Our motivation for the topological mapping study is to present a repre-
sentation and overview of channels that exists within large-scale ecosystems.
As such we formulated two research questions as follows:

• RQ1: Do communication channels change over time?
In this research question, our motivation is to investigate how channels
evolve and change over time.

• RQ2: Do communication channels differ within ecosystems?
For this, we take a closer look at the ecosystem. By studying the seven
ecosystems, we are able to understand whether there are differences in
knowledge.

3.3. Approach

Our approach to answer the two research questions is through the TDA
mapping technique. The TDA mapper algorithm [25] uses combinatorial
representations of geometric information about high-dimensional point cloud
data, which is implemented with the Knotter tool [25]. The tool provides
a common framework which includes the notions of density clustering trees,
disconnectivity graphs, and Reeb graphs, but which substantially generalizes
all three. We use the t-Distributed Stochastic Neighbor Embedding (t-SNE)

11

[24], a technique for dimensionality reduction and clustering, and our defined
features as the filters for the visualization construction. For RQ1, we analyze
the map by identifying the most dense clusters (i.e., majority of projects)
and then find the dominant features for those clusters. For RQ2, to find
dominant features, we identify groups of nodes within the cluster and label.

3.4. Data Collection

As with the preliminary study, the same dataset from libraries.io was
used in our experiments. The results of the preliminary study in Table 4 were
used as feature inputs in the topological mapper construction. For RQ1, we
selected only projects between 2015 and 2017 because (i) they contained the
youngest projects and (ii) all seven ecosystems had sufficient sample projects
within this time period. Part of the data preparation involved normalizing
each of the 13 features into a value that ranges from 0 to 1. Based on the
type column in Table 4, we normalize the int, string and boolean values.
For integers, we calculate the ratio of the Xi,j,k and Xi,j,max which Xi,j,k is
the value of feature i in project k which is in platform j and Xi,j,max is the
maximum value of feature i in platform j. For boolean and string types, we
represent 1 to them if the value is TRUE that indicates the channel exists.
On the other hand, represent as 0 if the project does not use that channel.
The tool limited the maximum number of projects selected to 10,000, which
resulted in selecting the top 10,000 most popular projects (based on the star
count).

3.5. Analysis

Table 5 shows that on average we used up to 30,000 projects for each of the
seven ecosystems from the libraries.io13. Note that for RQ1, we prepared an
evolutionary set of topologies, dividing the dataset into three time periods
(i.e., 2015, 2016 and 2017). Generation is approximated at up to 20–70
minutes for each of the 28 topologies.

Answering RQ1: To answer RQ1, we split the projects to separate the
older projects from the younger ones using the date that they were created
(2015, 2016 or 2017). Shown in Table 5, we generate a topology that highlight
the influencing features to explore differences between the older and younger
projects. First, we identify main clusters of points. Then we compare these

13dataset available at https://libraries.io/

12

https://libraries.io/

Table 5: Statistics of Generated Topologies including the Topology Build-time

Library Ecosystem Pop. Size RQ1 #proj. RQ1 #proj. RQ1 #proj. RQ2 #proj.
created 2015 created 2016 created 2017

Go 743,841 10,000 10,000 509 20,000
npm 447,306 10,000 10,000 10,000 20,000
Packagist 176,608 10,000 10,000 10,000 20,000
RubyGems 93,377 10,000 10,000 8,611 20,000
PyPI 69,895 10,000 10,000 10,000 20,000
Bower 64,271 10,000 10,000 6,472 20,000
Maven 62,654 10,000 7,526 428 20,000
build-time per 35.03 29.60 20.22 70
topology (mins.)

Totals 1,657,952 70,000 67,526 46,020

clusters over the three years. Note that the color filter helps to identify
dominant features.

Answering RQ2: To answer RQ2, we construct seven library specific topolo-
gies to find whether projects that are popular (i.e., has the most stars in that
ecosystem) share similar channels across ecosystems. First, we identify and
analyze the dominant features of nodes. Then, using the median score of
stars per project within those nodes, we identify the group that contains
more popular projects (i.e., labeled as Popular Group) when compared to
the other groups (i.e., labeled as Non-Popular Group).

3.6. Results

We now introduce our answer to the research questions and then describe
the results.

RQ1: Do communication channels change over time?

‘Younger projects adopt different channels compared to older projects’

We observed two main findings. First, from Table 6, the topology reveals
that younger projects are adopting different channels mechanisms when com-
pared to the older projects. To make the topology easier to read, we assigned
the color (blue indicates existence while red indicates no existence) to the
Contributing Guidelines feature. Note that Cluster 1 always indicates the
highest number of points (refer to Table 6). Therefore, we can see that the

13

(a) Projects created in 2015

0.0 1.0
Contributing Guidelines

Cluster 1 Cluster 2

Cluster 3

(b) Projects created in 2016

0.0 1.0
Contributing Guidelines

Cluster 1

Cluster 2 Cluster 3

(c) Projects created in 2017

Figure 2: Generated Topologies for projects created in (a) 2015, (b) 2016 and (c) 2017

14

Table 6: Evolution of Externalization and Combination between 2015 and 2017

Period Cluster #Nodes #Points
Externalization Combination

GitHub Security Wiki Changelog Contributing Fork Issue License
Pages Audit Guidelines Tracker

2015 1 376 16,906 X - X X X X X X
2 4,943 15,638 - - X - - - X X
3 3,257 5,138 X - X - - - X X

2016 1 6,289 46,800 X X X X X X X X
2 1,377 7,650 - - X - - - X -
3 4,038 3,088 X - X - - - X X

2017 1 973 14,098 - - X - - - X X
2 1,595 8,794 - - X - - - X -
3 354 5,046 X - X X X X X X

blue nodes first are dominant in Cluster 1 in (i.e., Figure 2(a)), but tend to
become less dominant in 2016 and 2017 (i.e., Figure 2(c)).

Second, as shown in the Table 6, we see that although some communi-
cation channels have changed over time (i.e. GitHub Pages, Security Audit,
Changelog, Contributing Guidelines, and Fork), we also find that others (i.e.
Wiki, Issue Tracker, and License) are still consistently used by most projects
(Cluster 1).

RQ2: Do communication channels differ within ecosystems?

‘Library ecosystems employ channels that capture new knowledge
(i.e., externalization). Channels updating existing knowledge (i.e.,
Combination knowledge) varies from one ecosystem to another’

In terms of the topology shape, Figure 3 depicts ecosystems (i.e. Bower,
PyPI and RubyGems) having triangular shape topology with three main
group points. This is consistent for the rest of the studied ecosystems.
Under further investigation, we see that one of the group represents the
popular projects (i.e., popular), while the other two group points were the
non-popular data points (i.e., non-popular 1 and 2).

Table 7 shows two results. For both popular and non-popular projects, we
find that the issue tracker has been a consistent communication channel for
applying explicit knowledge (i.e., combination). Combining with the results
of RQ1, one explanation could be that these are older projects. Second, each
ecosystem depicts a different set of explicit dominant features. For example,
the Bower ecosystem includes combination knowledge transfer forms (i.e.,
Code of Conduct, License, Contributing Guidelines, Wiki, Issue Tracker),

15

(a) Topology for Bower libraries

(b) Topology for PyPI libraries (c) Topology for RubyGems libraries

Figure 3: Topology for three of the seven ecosystems (a) Bower, (b) PyPI, and (c)
RubyGems

16

Table 7: Dominant Extracted Features Topologies across the Ecosystems

Topology Cluster Features Dimensions Bower PyPI Go npm RubyGems Packagist Maven
Popular Code of Conduct Combination X X - - X - -

Contributing Guidelines Combination X - X X X X -
Issue Tracker Combination X X X X X X X
License Combination X - X X X X X
Wiki Externalization X X - - - - X

Non-popular Code of Conduct Combination - - XX - - - -
Contributing Guidelines Combination - - - - - - -
Issue Tracker Combination XX XX X XX XX XX X
License Combination X X X X - X X
Wiki Externalization XX XX X - X XX -

while PyPI projects are less likely to include a license or contributing guide-
lines. One reason could be that the license information is embedded in other
locations, such as a webpage. For example, the python library scikit-learn
has its license information on the python ecosystem website14.

Our study results also confirm that issue tracker as an important com-
munication channel is common for both popular and non popular projects,
as described in Figure 3 and Table 7. Issue trackers serve not only as part
of the workflow and process (code maintenance and evolution) for software
development, but also plays a significant role of communication in a software
development process that store a large amount of data, such as discussion
during triage meetings, reproduction step clarifications between the person
who created an issue and its owner, etc [26]. Other work such as Dingsøyr
and Røyrvik [27] confirms that issue tracker builds up a substantial amount of
information concerning the issue reports from customers, partially complete
feature ideas, and the communication surrounding the software development.
This large amount of information is often beneficial for both the organization
and the software project team on a number of different levels.

4. Topology Evaluation

In comparison with other analysis methods, TDA has been proven to deal
with both small and large scale patterns that often other techniques fail to
detect. Other more traditional method of analysis is the principal compo-
nent analysis (PCA), multidimensional scaling (MDS), and cluster analysis.
Unlike traditional statistical methods, TDA does not provide any statistical
test that is performed to support the observation. To evaluate and validate

14license at https://pypi.org/project/scikit-learn/

17

https://pypi.org/project/scikit-learn/

Figure 4: A replication of RQ1 using PCA. PCA does show location of the ecosystems of
different platforms, but since the features are combined, we cannot identify the dominant
channels.

our use of TDA, we compared our method to the PCA method. The main
different with PCA is that it simplifies the complexity in high-dimensional
data by transforming the data into fewer dimensions (i.e., usually into a x
and y axis, depicted by a scatterplot), which act as summaries of features.

In our approach, we apply the PCA method using the sklearn.decomposition
python library15 to visually examine the results. For the evaluation, we will
regenerate the results for RQ2 and determine if we can visually identify dom-
inant features within each ecosystem.

Figure 4 shows the results of evaluating the TDA technique against the
statistical Principle Component Analysis (i.e., PCA) method. The PCA
method shows the location of the ecosystems of different platforms and is

15documentation at https://scikit-learn.org/stable/modules/generated/

sklearn.decomposition.PCA.html

18

https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

able to summarize the features into two principle components. However, the
analysis is unable to show details of each feature, outlining (i) which features
are dominant and (ii) how the features are different to each other.

5. Implications

Based on our results, we discuss three implications of the results in re-
lation to the nature of communication channels for both researchers and
practitioners.

1. Contemporary GitHub Projects will continue to adopt multiple Commu-
nication Channels. Results indicate that GitHub projects are adopting
13 communication channels. Thus the topological mapping is able to
cluster together projects with similar channels. As shown in the topo-
logical evaluation, other techniques is able to map these relationships.
The implication for researchers and practitioners is that knowledge is
not stored in one channel, thus multiple channels must be considered
to fully understand the knowledge shared in software projects.

2. Communication Channels will change and evolve over time. Results
indicate that communications are constantly changing. For instance
in RQ1, channels like contributing guidelines have changed over time
compared with the consistent ones like issue tracker. Furthermore,
in RQ2, we find that there are differences between popular and non-
popular projects in different ecosystems. Results indicate that some
channels are ecosystem specific. For example, contributing guidelines
are commonly used by seven targeted ecosystems, except PyPI and
Maven. While PyPI and Maven use wiki pages alongside Bower where
this channel is not prevalence for the other ecosystems. This means the
higher starred projects tend to move from externalization to combina-
tion. The implication for researchers and practitioners is that under-
standing the popular channels will help understand where knowledge
is shared. For instance, we envision researchers should keep up with
the newer channels to understand knowledge sharing within younger
projects.

3. Knowledge in Communication Channels is both external and combi-
nation. Communication channels are used to capture new knowledge
(i.e., externalization knowledge). For example, the externalization of
the Wiki is very popular. As shown in the preliminary study, the Wiki

19

has some tacit features of being personalized to match the individual
project.
In contrast, updating existing knowledge in communication channels is
common. As mentioned by GitHub, contributing guidelines help them
(developers) verify that they’re submitting well-formed pull requests and
opening useful issues16. GitHub projects are also encouraged to use
the platform workflow, with the Issue Tracker becoming a popular tool
and communication channel for developers. The final example is the
License channel. Putting a license has become increasingly important,
especially for projects intended for library reuse. This practice may
also be community driven. For example, according to Lertwittayatrai
et al. [14], npm projects tend to use the MIT license in their projects.
The implication for researchers and practitioners is that understanding
where new knowledge is shared. This information could be very useful,
for instance, especially for newbies to a project.

6. Threats to Validity

We discuss three key threats to the validity of the study. The first relates
to the categorization of knowledge. Nonaka and Takeuchi’s categorization
has been contested in CSCW [28], especially in terms of the tacit knowledge.
By adopting the SECI model, we identify channels that have a possibility to
capture tacit knowledge. Furthermore, we focus on channels and how they
are important for project attractiveness and sustainability.

The second threat is related to the experiment setup and methodology.
In this work, we extract common collaborative channels as shown in prior
works [20, 29, 30, 31, 32], providing confidence in our channel selection. To
reduce feature bias, we used a normalized score in formulating features for
the TDA. One key threat is the quality of the channel. For example, the exis-
tence of readme files in a project doesn’t mean it is used or contains valuable
information. This is outside the current scope of work, however, future in-
vestigations will focus on quality of these channels and how much knowledge
they contain. Finally, we use the star count rating in our project selection,
yet this metric has been related to skewedness and not being normalized.
Since we assume that social coding is related to the social sharing nature of

16https://help.github.com/en/articles/setting-guidelines-for-repository-contributors

20

https://help.github.com/en/articles/setting-guidelines-for-repository-contributors

communication channels, we believe our use of star count is a useful proxy
of projects that are more likely to actively use communication channels.

The third threats to validity are the accuracy and the limitation of the
tools, especially whether results will change according different sample sizes.
As such, we use the largest sample of 10,000 points to ensure confidence
in our result. As shown by Lertwittayatrai et al. [14], the result tends to
stabilize as more points are added.

7. Related Work

In this section, we present related works that complement this study
organized into these (i) Communication Channels, (ii) Sharing Architectural
Knowledge and (iii) the use of Topological Data Analysis.

7.1. Communication Channels

Several studies in other fields analyzed channels as the exchange of in-
formation. In organization management, communication methods, whether
verbal or nonverbal messages to produce meanings in heterogeneous contexts,
cultures and media [33]. Channels are practical in a complex network of rela-
tionships where messages are created, delivered and received by individuals,
as well as other communication practices that allow larger democracy [33]. A
study by Wang et al. [34] investigated the usability, purposes and challenges
of channels in industry during safety analysis. Related to software develop-
ment, communication between developers is possible to augment through col-
laborative programming [35], or direct communication between team mem-
bers [36]. Therefore, the channels design or the necessary of social skills in
organization management receive more attention from researchers. Lindsjørn
et al. [37] analyzed communication technique to measure the teamwork qual-
ity in influencing the performance of software teams and the successful of
their team members. The finding indicates that the quality of teamwork in
agile teams does not tend to be higher than traditional teams in other simi-
lar survey. Team performance is the only effect of teamwork quality which is
greater for agile teams than traditional teams. Our study complements these
studies, showing how communication channels are indicators of knowledge in
a software organization.

In the field of Software Engineering, research into channels is based on
social practices. Social practice characterizes the existence of activities which
are related to each other [38]. These collaborative works are conducted

21

through (i) distributed teleo-affective structures for software design and de-
velopment, (ii) shared common or specific knowledge of the software de-
velopment requirements, and (iii) clear procedures and regulations governing
people to accomplish specific activities17. Social practices are not confined to
only industry-related practices, but more broadly, they can be implemented
in open source software projects. In addition to requiring a shared under-
standing of the requirements to become a project member, a development of
open source products performed by complying with common rules as well,
and by using a shared teleo-affective. Therefore, the activities of each indi-
vidual can be connected from the initial of the development to the end of
the project. The example of the requirements in the open source projects is
also described by Scacchi [39]. This study analyzes channels from a knowl-
edge perspective instead of social collaborations. Our topology confirms that
the collaborative and participatory nature of software development continues
to evolve, shape, and be shaped by communication channels that are used
by development-related communities of practice [40]. A study undertaken by
Treude and Storey [41] shows that different media artifacts and channels used
for knowledge sharing have different implications for software development.
We believe that the methods such as ecosystem topology can provide us a
more empirical means to assess inconspicuous patterns within an ecosystem.
For example, the topology can reveal the type of channels that were used by
most projects.

There is related work that specifically studied GitHub projects, especially
library ecosystems and their social collaborations. The social features used in
a social coding platform, such as GitHub, has attracted many researchers to
analyze. The collaborative features used in their studies, including open bug
repositories [29], project fork [20, 30], the usage of a software license [31, 42],
and the use of wiki [32]. Open bug repositories, such as the Bugzilla18, are
mostly managed by open source projects to allow users to be more contribut-
ing. Anvik et al. [29] stated that even though these repositories are often
used as a reference by open source developers, however the data availability
on how they interact with the issues tracking systems is limited. A work
carried out by Borges et al. [20] studied that the popularity of a project
on GitHub relies on some factors such as the language that developers used

17https://en.wikipedia.org/wiki/Practice_theory
18https://www.bugzilla.org/ (July 2018)

22

https://en.wikipedia.org/wiki/Practice_theory
https://www.bugzilla.org/

to program and the domain of the application. These main elements were
presumed to impact on the number of stars of a project. A prior study also
analyzed the evolution of software licenses empirically [31]. To complement
prior work, this work looks at all channels to provide a holistic viewpoint of
all the different channels.

7.2. Sharing Architectural Knowledge

The impact of communication channels in Sharing Architectural Knowl-
edge has been highlighted in several studies outside of Software Engineering.
For instance, Borrego et al. [43] conducted an empirical study to investigate
agile methodologies articulation in unstructured and textual electronic me-
dia (such as emails, forums, chats etc.) in global software development. The
findings show the involvement of aspects in architectural knowledge in the
unstructured and textual electronic media in the teams. Architectural knowl-
edge in the unstructured media is also perceived as important, regardless the
interaction frequency.

In a software engineering context, other work studied how knowledge in
communication channels impact project and their ecosystem success. Failing
FLOSS projects provide insights into some of the outside forces that detract
developers from making contributions. A study by Coelho et al. [44] found
the following reasons for failing projects: usurped by competitor, obsolete
project, lack of time and interest, outdated technologies, low maintainabil-
ity, conflicts among developers, legal problems, and acquisition. To mitigate
these reasons, projects need to attract as well as retain its existing base of
contributors. In fact, Hata et al. [45] suggests that improving the code writing
mechanisms (i.e., wikis, official webpage, contributing and coding guidelines
and using multi-language formats) leads to more sustainable projects. A
study by Storey et al. [11] showed that ecosystems of FLOSS projects are
shaped through social and communication channels (sometimes referred to as
social coding). Recently, Aniche et al. [12] confirmed that news channels also
play an important role in shaping and sharing knowledge among developers.
Hence, owners of projects could boost their social presence through partic-
ipation on recent topics from news aggregators such as reddit19, Hacker

News20 and slashdot21. In addition, a study conducted by Tamburri et

19https://www.reddit.com
20https://news.ycombinator.com
21https://slashdot.org

23

https://www.reddit.com
https://news.ycombinator.com
https://slashdot.org

al. [46] described that the characteristics of ecosystem measurement can also
be utilized to explain the structure of open-source ecosystem pattern. Our
results complement these work and have the similar goal of understanding
how projects can attract developer contributions.

7.3. Topological Data Analysis (TDA)

The TDA technique has been applied in different research fields outside
of software engineering. For instance, a study by Lum et al. [22] used TDA
to investigate three different cases, namely, patient identification in breast
cancer, implicit networks of the US House of Representatives, and NBA team
stratification. The study shows that TDA can handle various types and high-
dimensional datasets using three real world examples. From the analysis, the
TDA shows the shapes of the breast cancer gene expression networks that
allow to identify subtle but potentially biologically relevant subgroups, the
shapes of the networks formed across the years about the voting patterns of
the members of The US House of Representatives, and the playing styles of
the NBA players.

In the software engineering context, the TDA topology has also been
applied in such studies. Lertwittayatrai et al. [14] use topological methods
to visualize the high-dimensional datasets from a software ecosystem. In
the study, the TDA allows the analysis of relationships between six related
dataset features of a package, that is, author, author domain, license, tagged
keywords, version released, and number of dependencies. In our work, we
combine all communication channels to understand at a higher level how
projects in the ecosystem use communication channels to capture and share
knowledge.

8. Conclusion

To understand what knowledge sharing occurs in communication chan-
nels, we conducted an analysis of channels in 70 thousand GitHub projects.
First we conducted a preliminary study to identify and map what knowl-
edge exists and is transferred through the 14 channels. We then used the
topological mapper to provide a high-dimensional visual shape of the com-
munications over time and for different library ecosystems. Our work shows
that GitHub projects tend to adopt multiple channels. Furthermore, these
channels changing over time and can be classified as either capturing new
knowledge or updating the existing knowledge.

24

Based on this work, which established the role of multiple communication
channels with knowledge sharing, there are many open avenues for future
work: understanding the role and the different combination usage of channels,
further studies into cross-channel knowledge, and tool support for channel
recommendations, to name a few.

Acknowledgement

This work has been supported by JSPS KAKENHI Grant Number 16H05857,
17H00731, and 18H04094.

References

References

[1] R. Abdalkareem, O. Nourry, S. Wehaibi, S. Mujahid, E. Shihab, Why Do
Developers Use Trivial Packages? An Empirical Case Study on Npm, in:
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017, pp. 385–395, 2017

[2] T. Mens, An Ecosystemic and Socio-Technical View on Software Mainte-
nance and Evolution, in: 2016 IEEE International Conference on Software
Maintenance and Evolution (Invited Paper), ICSME’16, 2016

[3] R.G. Kula, D.M. German, A. Ouni, T. Ishio, K. Inoue, Do Developers
Update Their Library Dependencies?, Emp. Softw. Engg. 23, pp. 384–
417, 2018

[4] S. Mirhosseini, C. Parnin, Can automated pull requests encourage soft-
ware developers to upgrade out-of-date dependencies?, In Proceedings of
the 32nd IEEE/ACM International Conference on Automated Software
Engineering, pp. 84–94, 2017.

[5] J.M. Gonzalez-Barahona, P. Sherwood, G. Robles, D. Izquierdo, Tech-
nical lag in software compilations: Measuring how outdated a software
deployment is, IFIP International Conference on Open Source Systems,
pp. 182–192, 2017.

[6] J. Hejderup, A. van Deursen, G. Gousios, Software Ecosystem Call Graph
for Dependency Management, in: Proceedings of the 40th Intl. Conf. on
Soft. Eng: NIER, ICSE-NIER ’18, pp. 101–104, 2018

25

[7] R. Kikas, G. Gousios, M. Dumas, D. Pfahl, Structure and Evolution of
Package Dependency Networks, in: Proceedings of the 14th International
Conference on Mining Software Repositories, pp. 102–112, 2017

[8] A. Decan, T. Mens, E. Constantinou, On the impact of security vulner-
abilities in the npm package dependency network, in: Proceedings of the
15th Intl Work. on Min. Soft. Repo. - MSR ’18th, 2018

[9] S. Onoue, H. Hata, R.G. Kula, K. Matsumoto, Human Capital in Soft-
ware Engineering: A Systematic Mapping of Reconceptualized Human
Aspect Studies, CoRR abs/1805.03844, 2018

[10] I. Nonaka, H. Takeuchi, The Knowledge-creating Company: How
Japanese Companies Create the Dynamics of Innovation, Everyman’s li-
brary, Oxford University Press, 1995

[11] M. A. Storey, A. Zagalsky, F. F. Filho, L. Singer, D. M. German, How
Social and Communication Channels Shape and Challenge a Participa-
tory Culture in Software Development, IEEE Transactions on Software
Engineering 43, pp. 185–204, 2017

[12] M. Aniche, C. Treude, I. Steinmacher, I. Wiese, G. Pinto, M-A. Storey,
M.A. Gerosa, How Modern News Aggregators Help Development Com-
munities Shape and Share Knowledge, International Conference on Soft-
ware Engineering (ICSE18), 2018

[13] R.M. Grant, Toward a knowledge-based theory of the firm, Strategic
Management Journal 17, pp. 109–122, 1996

[14] N. Lertwittayatrai, R.G. Kula, S. Onoue, H. Hata, A. Rungsawang, P.
Leelaprute, K. Matsumoto, Extracting insights from the topology of the
javascript package ecosystem, In 2017 24th Asia-Pacific Software Engi-
neering Conference (APSEC), pp. 298-307. IEEE, 2017.

[15] M. Zahedi, M. Shahin, M.A. Babar, A systematic review of knowledge
sharing challenges and practices in global software development, Interna-
tional Journal of Information Management 36, pp. 995–1019, 2016

[16] M. Polanyi, Tacit Knowing: Its Bearing on Some Problems of Philoso-
phy, Rev. Mod. Phys. 34, pp. 601–616, 1962

26

[17] M. Polanyi, The Logic of Tacit Inference, Philosophy 41, pp. 1–18, 1966

[18] I. Nonaka, Management of knowledge creation: A theory of organiza-
tional knowledge creation, Tokyo: Nihon Keizai Shinbun-sha, 1990

[19] M. Dávideková, J. Hvorecký, Collaboration Tools for Virtual Teams in
Terms of the SECI Model, Interactive Collaborative Learning, Springer
International Publishing, pp. 97–111, 2017

[20] H. Borges, A. Hora, M. T. Valente, Understanding the Factors That
Impact the Popularity of GitHub Repositories, In 2016 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME), pp.
334–344, 2016

[21] X. Lingzi, L. Zhi, An Overview of Source Code Audit, 2015 International
Conference on Industrial Informatics - Computing Technology, Intelligent
Technology, Industrial Information Integration, pp. 26-29, 2015

[22] P.Y. Lum, G. Singh, A. Lehman, T. Ishkanov, M. Vejdemo-Johansson,
M. Alagappan, J. Carlsson, G. Carlsson, Extracting insights from the
shape of complex data using topology, Scientific Reports 3, 2013

[23] J. Pita Costa, T. Galinac Grbac, The Topological Data Analysis of Time
Series Failure Data in Software Evolution, in: Proceedings of the 8th
ACM/SPEC on International Conference on Performance Engineering
Companion, ICPE ’17 Companion, pp. 25–30, 2017

[24] L. Van Der Maaten, G. Hinton, Visualizing Data using t-SNE, Journal
of Machine Learning Research 9, pp. 2579–2605, 2008

[25] G. Singh, F. Memoli, G. Carlsson, Topological Methods for the Analysis
of High Dimensional Data Sets and 3D Object Recognition, Eurograph-
ics Symposium on Point-Based Graphics, The Eurographics Association,
2007

[26] D. Bertram, A. Voida, S. Greenberg, R. Walker, Communication, Col-
laboration, and Bugs: The Social Nature of Issue Tracking in Small,
Collocated Teams, in: Proceedings of the 2010 ACM Conference on Com-
puter Supported Cooperative Work, CSCW ’10, pp. 291–300, 2010

27

[27] T. Dingsøyr, E. Røyrvik, An Empirical Study of an Informal Knowledge
Repository in a Medium-sized Software Consulting Company, Proceed-
ings of the 25th International Conference on Software Engineering, ICSE
’03, pp. 84–92, 2003

[28] K. Schmidt, The Trouble with ‘Tacit Knowledge’, Comput. Supported
Coop. Work 21, pp. 163–225, 2012

[29] J. Anvik, L. Hiew, G.C. Murphy, Coping with an Open Bug Repository,
in: Proceedings of the 2005 OOPSLA Workshop on Eclipse Technology
eXchange, eclipse ’05, pp. 35–39, 2005

[30] C. Hauff, G. Gousios, Matching GitHub Developer Profiles to Job Ad-
vertisements, in: Proceedings of the 12th Working Conference on Mining
Software Repositories, MSR ’15, pp. 362–366, 2015

[31] C. Vendome, M. Linares-Vasquez, G. Bavota, M. Di Penta, D. German,
D. Poshyvanyk, License Usage and Changes: A Large-Scale Study of
Java Projects on GitHub, in: 2015 IEEE 23rd International Conference
on Program Comprehension, pp. 218–228, 2015

[32] A.L. Burrow, Negotiating Access Within Wiki: A System to Construct
and Maintain a Taxonomy of Access Rules, in: Proceedings of the Fif-
teenth ACM Conference on Hypertext and Hypermedia, HYPERTEXT
’04, pp. 77–86, 2004

[33] J. Keyton, Communication in Organizations, Annual Review of Orga-
nizational Psychology and Organizational Behavior 4, pp. 501–526, 2017

[34] Y. Wang, D. Graziotin, S. Kriso, S. Wagner, Communication channels in
safety analysis: An industrial exploratory case study, Journal of Systems
and Software 153, pp. 135–151, 2019

[35] L. Williams, R. Kessler, Pair Programming Illuminated, Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2002

[36] K. Schwaber, M. Beedle, Agile Software Development with Scrum, Pren-
tice Hall PTR, Upper Saddle River, NJ, USA, 1st edition, 2001

28

[37] Y. Lindsjørn, D.I. Sjøberg, T. Dingsøyr, G.R. Bergersen, T. Dyb̊a,
Teamwork quality and project success in software development: A sur-
vey of agile development teams, Journal of Systems and Software 122,
pp. 274–286, 2016

[38] Y. Dittrich, What does it mean to use a method? Towards a practice
theory for software engineering, Information and Software Technology 70,
pp. 220–231, 2016

[39] W. Scacchi, Understanding the requirements for developing open source
software systems, IEEE Proceedings - Software 149, pp. 24–39, 2002

[40] F. Lanubile, Social software as key enabler of collaborative development
environments, 2013. [Online] Available: https://www.slideshare.net/
lanubile/lanubilesse2013-25350287

[41] C. Treude, M-A. Storey, Effective Communication of Software Devel-
opment Knowledge Through Community Portals, in: Proceedings of the
19th ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering, ESEC/FSE ’11, ACM, New York,
USA, pp. 91–101, 2011

[42] Y. Wu, Y. Manabe, T. Kanda, D.M. German, K. Inoue, Analysis of
License Inconsistency in Large Collections of Open Source Projects, Em-
pirical Softw. Engg. 22, pp. 1194–1222, 2017

[43] G. Borrego, A. L. Morn, R. Palacio, O.M. Rodrguez, Understanding Ar-
chitectural Knowledge Sharing in AGSD Teams: An Empirical Study, in:
2016 IEEE 11th International Conference on Global Software Engineering
(ICGSE), pp. 109–118, 2016

[44] J. Coelho, M. T. Valente, Why Modern Open Source Projects Fail, in:
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017, pp. 186–196, 2017

[45] H. Hata, T. Todo, S. Onoue, K. Matsumoto, Characteristics of Sus-
tainable OSS Projects: A Theoretical and Empirical Study, in: 2015
IEEE/ACM 8th International Workshop on Cooperative and Human As-
pects of Software Engineering, pp. 15–21, 2015

29

https://www.slideshare.net/lanubile/lanubilesse2013-25350287
https://www.slideshare.net/lanubile/lanubilesse2013-25350287

[46] D. A. Tamburri, F. Palomba, A. Serebrenik, A. Zaidman, Discovering
community patterns in open-source: a systematic approach and its eval-
uation, Empirical Software Engineering, 2018

30

	1 Introduction
	2 Preliminary Study: Communication Channels and Knowledge Sharing in Software Projects
	2.1 Motivation
	2.2 Approach
	2.3 Data Collection
	2.4 Analysis
	2.5 Results
	2.5.1 PS1: Are we able to distinguish knowledge within the communication channels of GitHub projects?

	3 A Topological Analysis of Communication Channels Across GitHub Ecosystems
	3.1 Topological Data Analysis
	3.2 Motivation
	3.3 Approach
	3.4 Data Collection
	3.5 Analysis
	3.6 Results

	4 Topology Evaluation
	5 Implications
	6 Threats to Validity
	7 Related Work
	7.1 Communication Channels
	7.2 Sharing Architectural Knowledge
	7.3 Topological Data Analysis (TDA)

	8 Conclusion

