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Abstract 

Requirements prioritization is an important issue that determines the way requirements are 
selected and processed in software projects. There already exist specific methods to classify 

and prioritize requirements, most of them based on quantitative measures. However, most of 

existing approaches do not consider collisions, which are an important concern in large-scale 

requirements sets and, more specifically, in agile development processes where requirements 

have to be uniquely selected for each software increment. In this paper, we propose QMPSR 

(Qualitative Method for Prioritizing Software Requirements), an approach that features the 

prioritization of requirements by considering qualitative elements that are related to the project’s 

priorities. Our approach highlights a prioritization method that has proven to reduce collisions in 
software requirements rankings. Furthermore, QMPSR improves accuracy in classification when 

facing large-scale requirements sets, featuring no scalability problems as the number of 

requirements increases. We formally introduce QMPSR and then define prioritization effort and 

collision metrics to carry out comprehensive experiments involving different sets of 

requirements, comparing our approach with well-known existing prioritization methods. The 

experiments have provided satisfactory results, overcoming existing approaches and ensuring 

scalability. 
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1. Introduction 

Requirements prioritization is a core activity intended to elicit essential requirements for 

software development (Pohl & Rupp, 2011). In general, this task is manually achieved as part of 



activities related to requirements engineering. Currently, even though there are several 

prioritization methods to systematize this task (Achimugu, et al., 2014), there are still challenges 

and lack of evidence about their validation (Daneva, et al., 2014).  

Different authors (Curcio, et al., 2018; Daneva, et al., 2014; Achimugu, et al., 2014; Babar, et 

al., 2011) identified specific challenges that prioritization methods should face in order to carry 

out an efficient and systematic prioritization of requirements. These challenges are mainly 

related to key factors such as the way a method behaves when the number of requirements 

increases (i.e., scalability). It was also identified that, most of the time, results obtained from 

prioritization methods do not exactly match the expected requirements ranking desired by 

stakeholders. This is due to the fact that most of prioritization methods operate considering 
quantitative information only, which may result in a conflict of interests with respect to the 

stakeholders’ perspective (Babar, et al., 2011). At the same time, this also generates obstacles 

related to the lack of accuracy on estimations (Curcio, et al., 2018).  

Another important concern when classifying and prioritizing requirements automatically is the 
probability of producing collisions. Collisions have been barely addressed in the prioritization of 

requirements (Gaur & Soni, 2010). In general, overlapping problems, mainly related to quality 

assurance fails, are much more common and easier to find in software engineering literature 

(Alshazly, et al., 2014; Zalazar, et al., 2017; Zhang, et al., 2014). However, collisions comprise a 

quite different and technical problem that arises from the execution of the algorithms used to 

classify and prioritize software requirements. Nevertheless, in other disciplines, collisions are 

meant as a well-known problem that occurs naturally in the creation of rankings and prioritized 
sets of any domain using automatic algorithms (Cantu, et al., 2017; Kwon, et al., 2016; Zhou & 

Liao, 2012). In the case of requirements prioritization, a collision occurs when two or more 

requirements have the same prioritization value in a ranking, which implies that the automatic 

prioritization method should be in charge of minimizing or resolving this problem. Requirements 

collisions should not be confused with requirements conflicts or conflicting requirements, mainly 

addressed by the requirements engineering (Pohl, 2010). 

Requirements collisions should be addressed conveniently in order to maintain the 

effectiveness of the automatic prioritization approach. In general, most of the existing 

prioritization methods do not address this issue, and they experiment important collision 

problems (as will be evaluated later on in Section 6) due to their quantitative nature. In this way, 

it becomes important to automatically discern the relevance level (priority) in requirements sets, 

enhancing prioritization for decision-making and verifying the consistency and accuracy of 
assessments in rankings as the number of requirements increases. 

1.1 Contributions 

The aim of this paper is to address the aforementioned drawbacks by introducing a novel 
prioritization method. We have considered previously published research on requirements 

prioritization (see Table 1), in order to build upon the knowledge already consolidated in the 

field and spotlight our contribution. 



More specifically, the main contributions presented in our work are the following: 

• The development of QMPSR (Qualitative Method for Prioritizing Software 
Requirements). Our method drives the prioritization process through the software 

project’s most relevant aspects and elements. This allows to discern the relevance level 

of the requirements involved, obtaining a prioritized classification to reduce collisions.  

• The development of a set of experiments for the evaluation of QMPSR. More 

specifically, we have defined two metrics: prioritization effort and collision, and we 
carried out 9 experiments on those metrics to assess our approach against 6 well-

known existing prioritization methods: MoSCoW (Moran, 2015), Value-Oriented (Azar, 

et al., 2007), Wiegers (Wiegers & Beatty, 2013; Wiegers, 1999), Product Definition 

(Fraser, 2002), AHP (Saaty, 2008; Saaty, 1980) and Kano (Kim, et al., 2017; Kano, et 

al., 1984). To carry out this task, an experimental framework has been defined. The 

results obtained have proven that QMPSR outperforms uniformly all the prioritization 

methods featured, reducing collisions and improving the ranking accuracy in large-scale 
sets of requirements without presenting scalability problems. Experiments 

demonstrated that the proposed method generates less collided requirements as the 

number of prioritization dimensions and requirements increase. Likewise, results 

provided evidence for the validation of QMPSR. 

Our approach addresses in a novel way the following issues related to requirements 

prioritization that can be considered relevant in the area: 

• It implicitly specifies the relevance of a set of requirements in order to reduce the 
number of iterations in the negotiation phases among practitioners – i.e., requirement 

engineers and stakeholders (clients and users in most cases). This is especially useful 

in agile processes where quick decisions have to be made. In general, this aspect is 

sometimes overlooked, and it is commonly solved in other approaches by reiterating the 

evaluation or proposing an informal negotiation among decision-makers. 

• While other prioritization methods are mainly focused on efficiency or capacity of finding 
several solutions in Pareto’s optimal fronts, our method addresses the identification of 

different levels of evaluation for the requirements that help decision-makers focus on 

relevant information during the prioritization process. This allows a deeper analysis of 

the different aspects to obtain the priority for a given requirement. 

• It researches on requirements collisions, which have been barely tackled in the 

literature about software requirements, from an experimental perspective.  

Table 1  

Analysis of previously published research on requirements prioritization methods. 

Reference Summary of the issues addressed Issues contributed by our approach 
Achimugu 
et al (2014) 

This work identifies the difficulties that 
most proposals have when prioritizing 
requirements, such as scalability and 
exclusive usage of quantitative 

These issues have been tackled by our 
approach, increasing scalability by using 
qualitative elements in order to clarify 
inconsistencies and requirements 



information. collisions during the prioritization process. 
Pergher 
and Rossi 
(2013) 

The scalability issue has been also 
pointed out by these authors, together 
with the necessity of researching 
other variables related to the number 
of errors that can affect the final result 
of the prioritization. 

Our approach investigates requirements 
collisions, which have not been analyzed 
previously. 

Riegel and 
Doerr 
(2015) 

Authors identified what aspects 
(prioritization criteria) should be taken 
into consideration in order to 
determine the value of the 
requirements by means of the  
identification and definition of the 
project’s relevant aspects. 

In order to discern the relevance level of 
requirements, we found out that software 
projects should consider mainly, but not 
exclusively, aspects such as Usability, 
Strategy-Related Benefit, and Business 
Value. In real settings, these aspects are 
indicated in a generic way and 
collectively negotiated among decision-
makers according to each project’s main 
guidelines. More specifically, our 
approach allows to deal with an unlimited 
number of aspects that can be defined for 
a concrete project under demand. 

Pitangueira 
et al. (2013) 

This research proposes to increase 
the scale of the experimentation by 
using larger sets of requirements. 
Authors also highlight the importance 
of stakeholders participation. This 
issue comprises an important factor 
that can lead to have better results 
closer to the stakeholders' 
requirements. 

Our experimental framework analyzes the 
prioritization methods’ behavior in large 
sets of requirements. Results 
demonstrate that our method behaves 
better with larger requirements sets. On 
the other hand, our proposal provides 
mechanisms to include the stakeholder’s 
opinion through the formal definition of 
aspects and elements associated with the 
stakeholders’ particular interests. 

Ma (2009) The author states that most medium-
sized studies utilize a subjective 
improvement measure based on the 
user’s perception. 

We analyzed this issue in our work, 
providing mechanisms to reduce 
subjectivity and improve objectivity. 

Herrmann 
and Daneva 
(2008) 

This work studies the specification 
and estimation of cost and benefit in 
software prioritization. This work also 
reports on the importance of 
researching on the requirements’ 
dependency. 

The specification and estimation of cost 
and benefit have certain relationship with 
our activities, as we consider aspects and 
elements that will be used to prioritize the 
requirements. Regarding the 
requirements’ dependency, the 
association factor in our approach can be 
seen as a way of addressing 
dependencies among requirements, 
identifying the elements associated with 
the requirements and providing an 
association factor to weight the elements 
that have more related requirements. 

1.2 Methodology and Structure 

The research method followed to conduct our work has been inspired by Design Science 
applied to information systems (Hevner, et al., 2004), which provides a framework to present 

and evaluate design-science research in the field. In this way, we followed the seven principal 

guidelines stated by Design Science. First, we have created an innovative purposeful artifact 

(guideline 1) based on a new algorithm for requirements prioritization in a specific problem 

domain, which is the reduction of collisions (guideline 2). The solution proposed is suitable for 



the problem stated (guideline 3), as it has been demonstrated through the evaluation carried 

out, which provided evidence of being more effective than existing approaches (guideline 4). On 

the other hand, the proposal has been formally described using mathematical descriptions and 

internal properties (guideline 5), providing a search process whereby the problem space is 

constructed and the prioritization mechanism is posed to find an effective solution through the 

comparison with different prioritization methods (guideline 6). Finally, both the solution and 
results have been communicated through this paper to a technical and managerial audience 

(guideline 7). 

Accordingly, this paper is organized as follows. Section 1 introduced the motivation of our work 

through the problem stated and the solution proposed. Section 2 presents related work. Section 
3 describes, in a formal way, QMPSR, our proposed prioritization method. Section 4 presents 

an example of application through a specific scenario. Section 5 introduces a framework 

intended to carry out experimental evaluations with different prioritization methods. Section 6 

describes the experiments accomplished to evaluate QMPSR against other existing 

prioritization methods, also reporting on the results obtained. Section 7 reports on threats to 

validity (Wohlin, et al., 2012; Wieringa, 2014), while section 8 describes the limitations of our 

method. Finally, section 9 presents conclusions and future work. 

2. Related Work 

Currently, there is a great variety of prioritization methods used in traditional and agile software 

development processes (Schön, et al., 2017; Pitangueira, et al., 2015; Achimugu, et al., 2014). 

Among these methods, the Analytic Hierarchy Process (AHP) method (Saaty, 2008; Saaty, 
1980) is one of the most popular and cited (Achimugu, et al., 2014). AHP is used in the field of 

requirements prioritization to identify the priority of each requirement through a pairwise 

comparison matrix. The use of AHP is widespread due to its ease of application and structure, 

as well as its intuitive way of computing (Ishizaka & Labib, 2009). This is one of the reasons 

why there are several prioritization methods based on AHP.  

For example, the Power Analytic Hierarchy Process (PAHPT) method (Ibrahim & Nosseir, 2016) 

is based on AHP, and it deals with specific issues such as power, which is of interest for some 

stakeholders. The Cost–Value method (Karlsson & Ryan, 1997) also uses AHP to prioritize 

requirements based on their perceived value and the implementation cost. Similarly, the 

Pairwise Analysis method (Karlsson, 1996) is based on AHP, and it prioritizes requirements by 

comparing each pairs to determine the requirement to be selected. The Case-Based Ranking 

(CBRank) method (Perini, et al., 2013) is also influenced by AHP, but it uses a machine learning 
technique that reduces human effort in the input information required, keeping up the accuracy 

of the final ranking.  

In a similar way, DRank (Shao, et al., 2017), Fuzzy AHP (Lima, et al., 2011) and Hierarchy AHP 
(Karlsson, et al., 1998) methods utilize AHP and machine learning techniques in order to reduce 

the required number of pairwise comparisons. DRank presents improvements with respect to 

CBRank, considering the stakeholders’ preferences and dependencies between requirements. 



Fuzzy AHP carries out prioritization through fuzzy goals and weights for ranking requirements, 

dealing with ambiguous and vague data. In the Hierarchy AHP, stakeholders propose a fixed 

set of requirements, ranging from general to specific, in order to be prioritized. 

Similarly, the Interactive Genetic Algorithm (IGA) method (Tonella, et al., 2013) is also based on 

AHP, featuring however a genetic algorithm to reduce the number of elicited pairs and thus 

obtaining the user’s knowledge about the relevance level for each pair of requirements. Finally, 

the Cognitive-Driven method (Carod & Cechich, 2010) combines the utilization of AHP and 

cognitive psychology to evaluate the ability of stakeholders regarding the suggested software 

before the requirements prioritization process starts. 

All in all, one of the most common limitations of the methods mentioned above (AHP, PAHPT, 

Cost–Value, Pairwise Analysis, CBRank, DRank, Fuzzy AHP, Hierarchy AHP, IGA and 

Cognitive-Driven) is that they do not specifically address requirements collisions throughout the 

prioritization process. In fact, they turn out to be time-consuming for large sets of requirements, 

being hardly scalable (Karlsson, et al., 1998; Hudaib, et al., 2018) in the long run as well. 
Besides, most of existing methods rely on prioritization mechanisms based on individual 

evaluation of requirements through pairwise comparisons. This misses a global understanding 

of the project’s relevant aspects in order to guide the requirements prioritization process, also 

missing qualitative elements for helping reduce requirements collisions. 

Carrying on with the analysis of the prioritization approaches, the Quality Functional 

Deployment (QFD) method (Franceschini, 2016; Crow, 1994) is the second most-cited 

prioritization approach (Achimugu, et al., 2014). It uses a matrix to represent the stakeholder’s 

needs and expectations. Another similar approach is the Correlation-Based Priority Assessment 

framework (CBPA) method (Liu, et al., 2006), which utilizes a relationship matrix to prioritize 

requirements coming from multiple stakeholders, thus considering inter-perspective 

relationships in requirements. The Kano method (Kim, et al., 2017; Kano, et al., 1984) also 
allows prioritizing requirements based on the stakeholders’ preferences. Nevertheless, it is 

focused on the characteristics of the product’s differences.  

Similarly, the Lanchester Theory method (Fehlmann, 2008) uses a quantitative model to drive 

the requirements prioritization, where requirements are prioritized according to business 
objectives and market share. Likewise, the Wiegers method (Wiegers & Beatty, 2013; Wiegers, 

1999) estimates the relative priorities of requirements through a scheme based on the QFD 

concept of customer value. Finally, the Product Definition method (Fraser, 2002) prioritizes 

requirements taking into consideration the users’ perspective, technology and business, as well 

as encouraging the involvement of stakeholders, user experience experts and technical 

analysts. 

In general, the aforementioned prioritization methods (QFD, CBPA, Kano, Lanchester Theory, 

Wiegers and Product Definition) allow capturing diverse elements to obtain a global conception 

of the project (business objectives, client expectations and stakeholder needs) to drive the 

prioritization of requirements. However, such methods are mostly suitable for small sets of 

requirements due to scalability problems (Avesani, et al., 2005). Similarly, they also have 



limitations regarding the subjective use of ordinal scales and ratings (Achimugu, et al., 2014). 

This makes it difficult to provide objective qualitative elements in order to clarify inconsistencies 

and requirements collisions during the prioritization process. 

On the other hand, the Binary Search Tree (BST) method (Anand & Dinakaran, 2017; Hopcroft, 

1983) features a binary tree where the nodes are labeled with requirements in a hierarchical 

order (parent-child relationship). Similarly, the B-Tree method (Beg, et al., 2009) also allows to 

organize the requirements in nodes that are compared to establish the relevance level using a 

weighted scale, thus reducing the number of comparisons. 

Nevertheless, these prioritization methods (BST and B-Tree) present some limitations related to 

scalability problems (Aasem, et al., 2010) and the absence of priority values for the final ranking 

of requirements (Duan, et al., 2009). Additionally, the assessments achieved in requirements 

prioritization are neither based on qualitative measures nor related to relevant aspects that 

define the project’s priorities. This makes it difficult to analyze requirements collisions and the 

precision of the final ranking. 

It is also possible to identify prioritization methods specifically used in agile software 

development, such as Planning Game, MoSCoW, $100 Allocation, Dot Voting, Value-Oriented, 

Multi-Voting System, Round-the-Group Prioritization, Theme Screening and Weighted Criteria 
Analysis (Curcio, et al., 2018; Racheva, et al., 2008; Racheva, et al., 2010). To focus on the 

most important ones, the Moscow method (Moran, 2015) prioritizes those requirements with a 

higher value for the system, while the Value-Oriented method (Azar, et al., 2007) evaluates 

requirements according to core business and the stakeholders’ values. These prioritization 

methods are oriented to small sets of requirements, facilitating their application by dynamic 

development teams. Nonetheless, in most cases, these prioritization methods are mainly 

focused on requirements classification, overlooking dependencies among requirements and 

missing a collisions management. Moreover, they also suffer from scalability problems as the 
number of requirements increases (Aasem, et al., 2010; Hatton, 2008). 

In a nutshell, it is possible to affirm that existing prioritization methods do not consider nor 

evaluate requirements collisions in order to validate and improve the ranking accuracy. In 

addition, the project’s priorities are ignored or not formally captured to verify the consistency of 
the principal concerns related to requirements. Finally, most of existing approaches are based 

on quantitative measures, undergoing scalability problems in environments featuring large-scale 

and dynamic-management requirements. 

3. The Proposal 

We propose QMPSR, a Qualitative Method for Prioritizing Software Requirements. Our 

approach formalizes the assessment of requirements prioritization and focuses on the project’s 

relevant aspects and elements that define the priority of such requirements. Thus, our proposal 

allows a high degree of generality to deal with different types of requirements such as functional 

requirements, security requirement (Vilela, et al., 2017), design restrictions, implementation 



requirements, user interface requirements (Sánchez & Macías, 2019; Cayola & Macías, 2018), 

physical requirements and so on. 

The main motivation to create a qualitative method is to take into consideration qualitative 

issues related to decisions made by participants in the requirements prioritization process. As 

the literature demonstrates (Schön, et al., 2017; Pitangueira, et al., 2015; Achimugu, et al., 

2014), most of the existing proposals do not provide mechanisms to validate the different 

valuations provided to each requirement during the requirements prioritization process. In this 

way, the utilization of suitable aspects and qualitative elements (i.e., the requirements’ 

characteristics) allows to get an easy agreement among stakeholders, improving the 

prioritization process and obtaining more accurate results. Likewise, our motivation is aimed at 
facilitating the management of requirements, regardless of their type and size, without 

presenting scalability problems. The objective is to concentrate on defining the qualitative 

elements that drive the requirements prioritization process. In addition, collision problems, which 

have never been addressed in previous approaches, provide motivation to carry out our 

research. 

  

Fig. 1. QMPSR phases. 

QMPSR is presented in Fig. 1, including 4 main phases that aim at driving the requirements 

prioritization process. The project’s relevant aspects are described and composed of a set of 

elements. The requirements prioritization is materialized according to the elements of the 

project’s relevant aspects. The different phases of QMPSR are described below. 

3.1. Phase 1: Identify the Project’s Relevant Aspects that Lead the Assessment in the 
Requirements Prioritization Process 

The first phase is composed of three steps: 

a) Identify and Define the Project’s Relevant Aspects 



The project’s relevant aspects correspond to significant issues that drive the assessment in the 

requirements prioritization. In other words, these are the issues that decision-makers consider 

when prioritizing requirements that are valuable for the project.  

Riegel and Doerr (2015) identified, by means of a systematic review of bibliography, what 

aspects (prioritization criteria) should be taken into consideration in order to determine the 

requirements’ values. Hence, the model proposed by Riegel and Doerr allows to support 

identification and definition of the project’s relevant aspects. According to that, in order to 

discern the relevance level of each requirement, software projects should consider mainly, but 

not exclusively, aspects such as Usability, Strategy-Related Benefit, and Business Value, 

among others. In a real setting, these aspects are indicated in a generic way and collectively 
negotiated among decision-makers according to the main guidelines of each project. More 

specifically, our approach allows to deal with an unlimited number of aspects that can be 

defined for a concrete project under demand. 

b) Define the Priority of the Project's Relevant Aspects  

The Priority of the Project's Relevant Aspects is established in terms of the set of aspects 

identified in the project, generating a ranking of them sorted by relevance. Priorities are 

collectively assigned among decision-makers in order to identify preferences. Accordingly, for a 
total of n relevant aspects defined in a project, the aspect with lowest relevance is assigned with 

1, while the aspect with highest relevance is assigned with n.  

c) Define the Normalized Priority of the Project’s Relevant Aspects 

The Normalized Priority of the Project’s Relevant Aspects (P) is used to represent the priority 

with regard to the total number of relevant aspects defined in the project. Furthermore, a 

normalized definition is adopted to guarantee that P will take values between 0 and 1, as it is 

suggested by Botta (2007). 

Let 𝐴 = {𝑎%,… , 𝑎(,… , 𝑎)}	be an ordered finite collection of a project’s relevant aspects, where 

𝑎( ∈ 𝐴, such that k represents the priority order of importance, and n is the total number of the 

project's relevant aspects {𝑛 ∈ ℕ: 𝑛 ≥ 1}. We define the Normalized Priority of a Project’s 

Relevant Aspect 𝑎( as:  

𝑃(𝑎() =
	𝑘	
		|𝐴|		,	

(1) 

where 𝑃(𝑎7) > 𝑃(𝑎() means that aspect 𝑎7 (𝑎7 ∈ 𝐴) has a higher priority than 𝑎(.  

3.2. Phase 2: Identify the Elements of the Project’s Relevant Aspects 

The second phase is composed of two steps: 

a) Identify and Define the Elements of the Project’s Relevant Aspects 

Every project’s relevant aspect includes a set of common elements used to drive the valuation 
for the requirements prioritization. In QMPSR this step consists of identifying and describing 

those elements for each defined aspect. Taking into consideration the aspects identified by 

Riegel and Doerr (2015), those may be refined and divided into different subcategories, allowing 



to support the identification and definition of specific elements for the project’s relevant aspects. 

For instance, in a software project on electronic commerce some of the elements related to the 

relevant aspect of the Business Value may correspond to, among others, Sales Service 

Management, Inventory Management and Additional Revenue Streams. These elements are 

indicated in a generic way and collectively negotiated among decision-makers. Our approach 

allows to deal with an unlimited number of elements that can be associated with aspects 
defined for a concrete project. 

b) Define the Priority of the Elements Assigned to each Project’s Relevant Aspect  

This step consists of identifying the priority of the elements assigned to each aspect defined 

above. We consider three different priorities: high, medium or low. This allows to compare the 

priority among different elements of an aspect, regardless of the number of elements.  

Let 𝐸 = :𝑒%%,… , 𝑒%<,… , 𝑒(%,… , 𝑒(=,… , 𝑒)%,… , 𝑒)>? be a finite collection of elements, where z, p and 

q correspond to the total number of elements for aspects 𝑎%, 𝑎( and 𝑎), respectively, {𝑧, 𝑝, 𝑞 ∈

ℕ: 𝑧, 𝑝, 𝑞 ≥ 1}. The priority of the element 𝑒(= is formally defined in terms of the function	𝐿(𝑒(=), 

where	𝐿: 𝐸 → {1,2,3}, each of the values having the following interpretation: 

𝐿(𝑒(=) = G
1, if		element	𝑒(=	has	𝑙𝑜𝑤	priority;
2, if		element	𝑒(=	has	𝑚𝑒𝑑𝑖𝑢𝑚	priority;
3, if		element	𝑒(=	has	ℎ𝑖𝑔ℎ	priority.

 (2) 

3.3. Phase 3: Requirements Prioritization Process Based on Elements of the Project's 
Relevant Aspects 

The third phase in QMPSR aims at obtaining the requirements prioritization through the 

elements of a project’s relevant aspects. In this phase, requirements prioritization is performed 

by identifying the relationships between the elements of the project’s relevant aspects and the 

requirements. In this case, one element may be associated with one or many different 
requirements and a requirement can be associated with one, many or no elements of the 

project’s relevant aspects. Such relationships are specified and collectively negotiated among 

decision-makers in order to represent the assessment of requirements prioritization. For 

example, a requirement identifying a business asset ready for sale may be associated with the 

element Inventory Management of the aspect Business Value. The identification of these 

relationships allows decision-makers to focus on the discussion of the requirements' priority on 

qualitative elements (of the project's relevant aspects) and formally argue their relevance 
(priority).  

Let 𝑅 = {𝑟%,… , 𝑟c, … , 𝑟d} be a finite collection of requirements, where 𝑟c is a requirement of the 

project and m is the total number of requirements defined {𝑚 ∈ ℕ:𝑚 ≥ 1}. The relationship 

among the requirement 𝑟c and the element 𝑒(e (𝑒(e ∈ 𝐸) is formally defined in terms of the 

function 𝐶(𝑒(e, 𝑟c), where 𝐶: 𝐸𝑥𝑅 ⟶ {0,1}, each of the values having the following interpretation:  

𝐶(𝑒(e, 𝑟c) = j1, if	element	𝑒(e	is	related	to	req. 𝑟c;
0, otherwise.  (3) 



3.4. Phase 4: Compute the Final Ranking 

The last phase in QMPSR aims at generating a final ranking of requirements based on the 
project’s relevant aspects. This phase includes two steps: 

a) Compute the Relevance Level of the Requirements by Aspect  

This step consists of identifying the relevance level of the requirements according to the 

project’s aspects. The relevance level of a requirement by aspect is expressed in percentage 

value and grouped by aspect. More specifically, the relevance of a particular requirement with 

regard to a specific aspect corresponds to the percentage that represents the sum of the 

priorities of the elements of a project’s relevant aspect associated with the requirement plus an 

Association Factor (G). In this manner, G corresponds to the ratio between the number of 
requirements related to the element and the maximum number of requirements that an element 

of the same relevant aspect may be associated with. Thus, G allows to differentiate the 

relevance level among elements with equal priority depending on the number of associated 

requirements. As a result, elements with the same priority but with different number of 

associated requirements have different relevance level.  

In this way, the total number of requirements related to the element 𝑒(e is defined as:  

𝑇𝐶(𝑒(e) =o𝐶(𝑒(e, 𝑟c),
d

cp%

 (4) 

where 𝐶(𝑒(e, 𝑟c) identifies whether or not the element 𝑒(e is related to the requirement 𝑟c, 
computed with the formula shown in (3), and m indicates the total number of requirements 

defined. Hence, the association factor of the element 𝑒(e is defined as:  

𝐺(𝑒(e, 𝑒(r) =
𝑇𝐶(𝑒(e)
𝑇𝐶(𝑒(r)

, (5) 

where 𝑇𝐶(𝑒(r) is the maximum number of requirements that an element of the aspect 𝑎( has 

been associated with, and 𝑒(r ∈ 𝐸, ∀𝑒(t ∈ 𝐸, 𝑇𝐶(𝑒(r) ≥ 𝑇𝐶(𝑒(t). 

Fig. 2 illustrates the requirements prioritization, also showing the implication of G on the 

Relevance Level of the Requirements by Aspect (𝜆). Requirements 𝑟% and 𝑟v are associated 

with elements 𝑒(% and 𝑒(w, respectively, which have equal priority (high) but different 𝜆 because 

G is different for each element (1 and 0.5, respectively). Thus, a greater number of 

requirements associated with an element corresponds to a greater G and so its priority is 

higher. It can also be observed that the requirement 𝑟w gets the highest 𝜆(𝑎(, 𝑟w). This relevance 

level is justified by the association of elements 𝑒(% and 𝑒(v with the requirement 𝑟w.  



 

Fig. 2. Influence of the Association Factor (G) on the Relevance Level of the Requirements by 

Aspect (λ). 

The priority of an element 𝑒(e of the project’s relevant aspect 𝑎(, associated with the 

requirement 𝑟c, and taking also into consideration its G, is formally defined in terms of the 

function 𝐼: 𝐸𝑥𝑅 → ℝ, depicted as follows: 

𝐼(𝑒(e, 𝑟c) = j𝐿(𝑒(e) + 𝐺(𝑒(e, 𝑒(r), if	𝐶(𝑒(e, 𝑟c) = 1;
0, otherwise.  (6) 

Where 𝐿(𝑒(e) defines the priority function for the element 𝑒(e, as per (2), while 

𝐺(𝑒(e, 𝑒(r)	defines the association factor for the element 𝑒(e, computed with the formula shown 

in (5). Moreover, 𝐶(𝑒(e, 𝑟c) identifies whether or not the element 𝑒(e is related to the requirement 

𝑟c, as defined in (3).  

Let 𝐸( = :𝑒(%,… , 𝑒(=? be a finite sub-collection of all elements related to aspect 𝑎( (𝐸( ⊂ 𝐸)	, 

where |𝐸(| corresponds to the total number of elements (𝑝 = |𝐸(|). Hence, the total number of 

elements of the aspect 𝑎( assigned to the requirement 𝑟c is defined as:  

𝑇𝐼(𝑎(, 𝑟c) =o𝐼(𝑒(e, 𝑟c)
||}|

ep%

, (7) 

where |𝐸(| indicates the total number of the elements defined for the aspect 𝑎(. Finally, we 

define the relevance level of the requirement 𝑟c with regard to the aspect 𝑎( in percentage terms 

as:  

𝜆(𝑎(, 𝑟c) =
𝑇𝐼(𝑎(, 𝑟c)

∑ ��𝐿(𝑒(e) + 𝐺(𝑒(e, 𝑒(r)�𝑇𝐶(𝑒(e)�
||}|
ep%

100, (8) 

where 𝜆(𝑎(, 𝑟c) > 𝜆�𝑎(, 𝑟�� means that 𝑟c has higher priority than 𝑟� for the aspect 𝑎(. For 

example, Fig. 2 allows to observe the relevance level of the requirements 𝑟%, 𝑟w and 𝑟v with 

regard to the aspect 𝑎(, where these requirements obtained 29%, 46% and 25%, respectively, 

as a result of the application of λ. 

b) Compute the Final Ranking of Requirements According to the Relevance Level of 
each Requirement by Aspect  

The Final Ranking of Requirements (FR) attempts to classify the requirements considering their 

relevance level for all aspects defined in the project. FR is computed through two sequential 



steps: the first step aims at generating the Relevance Ranking of Requirement by Aspect (W), 

and the second step attempts to weight W through P. 

On the one hand, in order to have W it is necessary to compute a sorted list of requirements 

according to 𝜆. In this way, the order of relevance between the requirements 𝑟c and 𝑟� with 

respect to the aspect 𝑎( is formally defined in terms of the function 𝑀𝜆(𝑎(, 𝑟c, 𝑟�), where 

𝑀𝜆:𝐴𝑥𝑅𝑥𝑅 ⟶ {0,1}, each of the values having the following interpretation: 

𝑀𝜆(𝑎(, 𝑟c , 𝑟�) = j1, if	𝜆(𝑎(, 𝑟c) > 𝜆�𝑎(, 𝑟��;
0, otherwise.

 (9) 

Where 𝜆(𝑎(, 𝑟c) defines the relevance level function for the requirement 𝑟c with regard to the 

aspect 𝑎( in percentage terms, as defined in (8). In this way, the total number of requirements 

that have a higher relevance level than requirement 𝑟c with respect to the aspect 𝑎( is defined 

as:  

𝑇𝑀𝜆(𝑎(, 𝑟c) =o𝑀𝜆�𝑎(, 𝑟c, 𝑟��,
d

�p%

 (10) 

where 𝑀𝜆�𝑎(, 𝑟c , 𝑟�� defines the order of relevance for requirements 𝑟c and 𝑟� with respect to the 

aspect 𝑎(, as described in (9), and m represents the total number of requirements. In this way, 

we formally define the ranking of the requirement 𝑟c for the aspect 𝑎( in terms of the function W, 

where 𝑊:𝐴𝑥𝑅 → {1, . . . ,𝑚}	and {𝑊(𝑎(, 𝑟c) ∈ ℕ: 1 ≤ 𝑊(𝑎(, 𝑟c) ≤ 𝑚}, so that m is the total number 

of requirements of the project. This ranking is carried out by applying a set of rules conducted 

by the Relevance Level of the Requirements by Aspect (𝜆): 

𝑊(𝑎(, 𝑟c) = j 1, if	𝜆(𝑎(, 𝑟c) = 0;
𝑚 − 𝑇𝑀𝜆(𝑎(, 𝑟c), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.  (11) 

Where 𝜆(𝑎(, 𝑟c) defines the relevance level for the requirement 𝑟c with regard to the relevant 

aspect 𝑎( in percentage terms, as defined in (8).  

On the other hand, 𝑇𝑀𝜆(𝑎(, 𝑟c) identifies the total number of requirements that have a higher 

relevance level than requirement 𝑟c with respect to 𝑎(, computed with the formula shown in (10). 

Finally, we define the final ranking of the requirement 𝑟c taking into consideration all the project's 

relevant aspects as: 

𝐹𝑅(𝑟c) =o𝑊(𝑎7, 𝑟c)𝑃(𝑎7)
)

7p%

, (12) 

where 𝑃(𝑎7) defines the Normalized Priority function for the Project’s Relevant Aspect 𝑎7, as 

per (1), and n is the total number of relevant aspects defined in the project. Finally, 𝐹𝑅(𝑟c) >

𝐹𝑅(𝑟�) means that 𝑟c has higher priority in the final ranking than 𝑟�. Nevertheless, 𝐹𝑅(𝑟c) =

𝐹𝑅(𝑟�) means that there is a requirements collision between 𝑟c and 𝑟�, which will be addressed in 

detail in Section 5.  



In the next section, an example of implementation of QMPSR through an application scenario is 

presented, in order to provide a better understanding of the phases described above. 

4. Application Scenario 

The verification of QMPSR has been addressed through the application of the method to a 

practical example of development. To carry out this task, the phases described in Section 3 will 

be applied sequentially. 

4.1. General Guidelines 

The application chosen to carry out the verification of our approach is a web-based learning 

management system intended for academic use. The objective of this application is to carry out 

the main processes of enrollment, management and monitoring of university courses. Likewise, 

the final users of this information system are students, instructors and administrative staff of a 

given university. In this way, it is required the implementation of a web application with the 

following features: 

• Instructors and administrators can create, edit and consult the courses. 

• Instructors and students can deal with the courses in an integrated environment. 

• Instructors can create and edit evaluation activities for each course. 

• Students can interact with evaluation activities for each course. 

• Administrators can configure the profiles of both students and instructors. 

• Administrators can manage course enrollment. 

According to the general guidelines outlined above, the requirements for this information system 
are presented in Table 2. 

Table 2  

Requirements for the system proposed. 

R Requirements 
𝑟% Create and configure courses included in the university curricula. 
𝑟w Manage courses in an integrated environment. 
𝑟v Create and edit assessment activities. 
𝑟� Configure the students and instructors’ profiles. 
𝑟� Manage the enrollment of students in different courses. 
𝑟� Link and provide documents in different formats, associated with the courses. 
𝑟� Consult one course’s events and tasks. 
𝑟� Check the information about the students’ progress. 
𝑟� Allow to review the results of the assessment activities and notify about the required 

cycles. 
𝑟%� Allow to attach and link digital documents with assessment activities. 
𝑟%% Create discussion environments for the members of the courses. 
𝑟%w Provide a centralized virtual space to store and maintain digital information. 
𝑟%v Create virtual classrooms that allow online teaching. 
𝑟%� Allow to adapt the information system according to different profiles. 



A real work team (decision-makers related to the project) has been formed to implement the 

QMPSR method, in order to carry out the management of the project requirements. A total of 5 

software engineers (Mage=38.8 years, SD=11.2, range=28-55 years; 80% male) participated in 

the implementation of QMPSR. Participants had skills in computer science, specifically in topics 

related to software-project management in agile environments and related tools. 

The general guidelines, requirements and prioritization criteria proposed by (Riegel & Doerr, 

2015) were the input for decision-makers to work collectively and collaboratively by themselves 

in the requirements prioritization, carrying out the different phases of QMPSR presented in 

Section 3. 

4.2.1. Phase 1: Identify the Project’s Relevant Aspects that Lead the Assessment in the 
Requirements Prioritization Process 

This initial task helps identify the relevant aspects of the project – i.e., aspects have to be 

defined and ranked by relevance. In addition, standardized priority for each relevant aspect has 

to be calculated (see Section 3.1). This task is collectively negotiated among decision-makers 

according to the project’s main guidelines and requirements. 

Table 3 

Relevant aspects of the learning management system. 

Aspects (A) Priority Normalized Priority (𝑷(𝒂)) 
Usability 3 1 
Content 2 0.66 
Business Value 1 0.33 

The result of this task is presented in Table 3. As it can be seen, Usability, Content and 

Business Value aspects have been defined to formally consider the priorities related to end 
users, the information architecture and the project itself, respectively, during the prioritization 

process. These aspects have been selected and prioritized due to the type of application 

domain (academic environment), where these aspects result more relevant than, for example, 

the cost of implementing the project, the risk of carrying it out or the expected economic benefit. 

As mentioned above, Riegel & Doerr (2015) provide a set of aspects that can be considered to 

support this task. 

On the other hand, Usability, Content and Business Value aspects have a priority of 3, 2 and 1, 

respectively, where 3 (Usability) indicates the most important priority and 1 (Business Value) the 

least important one. According to that, these three aspects have a normalized priority (P) of 1, 

0.66 and 0.33, respectively, as defined in formula (1). Thus, the requirements prioritization 

process would be mainly driven by the preferences related to the final users of the project 

(Usability). In this way, the output of this task is the prioritized set of relevant aspects of the 
learning management system, as specified in Table 3. 

 



4.2.2. Phase 2: Identify the Elements of the Project’s Relevant Aspects 

This task consists in identifying and prioritizing the elements related to the aspects stated in the 
previous task. This task is also collectively negotiated among decision-makers according to the 

main guidelines, requirements and relevant aspects of the project provided above. Table 4 

shows the resulting elements identified for each relevant aspect of the project. 

Table 4 

Elements for the relevant aspects of the learning management system. 

Aspects 
(A) 

Elements 
(E) 

Priority Priority 
(𝑳(𝒆𝒌𝒑)) 

Usability Adaptability. High 3 
Ease of learning. High 3 
Content accessibility. High 3 
Reduced cognitive burden. Medium 2 
Error tolerance. Low 1 
Ease of remembrance. High 3 

Content Personal information of students. Medium 2 
Content of knowledge units. High 3 
Personal information of instructors. Low 1 
Communications between students and instructors. Medium 2 
Preferences of the students. High 3 
Description of knowledge units. High 3 
Feedback of evaluation activities. High 3 
Registration of student activities. High 3 

Business 
Value 

Manage the students’ progress. Medium 2 
Manage the students’ enrollment. High 3 
Monitor the students’ learning process. High 3 
Manage knowledge units. High 3 
Organize the storage of information. Medium 2 
Coordinate composition of knowledge units. High 3 

As well as aspects, elements were selected and prioritized according to their relevance for the 

web-based environment proposed. For instance, for the Usability aspect, the element “Ease of 

learning” was defined, with the objective of formally considering the importance of providing an 

effective interaction with the system. In fact, this element is given a higher priority than the 

element “Error tolerance” (High and Low, respectively). As mentioned above, the aspects 

identified by Riegel & Doerr (2015) can be refined into subcategories to support their 

identification and definition. These elements have been obtained and prioritized according to the 

requirements and the characteristics of the project. It is worth noting that there is no direct 

relationship between the proposed prioritization criteria and the aspects and elements defined, 

because the latter were identified and adjusted based on the specific characteristics of the 
project. However, it is possible to consider prioritization criteria, identified by Riegel & Doerr 

(2015), more related to the aspects and elements defined, which correspond to Benefit and 

Product / System Quality categories and their subcategories such as Business Value, Business 

importance and Gain for Organization, Ease of Use / Convenience, Scalability, Sustainability of 

Solution, Changeable Solution, Uniform Solution, Performance, Stability, Security, Integrity, 

Availability, Testability and Accuracy, respectively. 



As shown in Table 4, Usability, Content and Business Value aspects are composed of 6, 8 and 

6 elements, respectively. Likewise, each element is assigned a priority (L), using the High, 

Medium or Low scale, computed with the formula (2). In this way, the output of this task is the 

set of elements according to the relevant aspects of the learning management system proposed 

(Table 4). 

4.2.3. Phase 3: Requirements Prioritization Process Based on Elements of the Project's 
Relevant Aspects 

Once the learning management system’s aspects and relevant elements have been identified, 

the next task corresponds to the prioritization of the requirements. This task implies to identify 

the relationship between the elements of the relevant aspects (see Table 4) and the 
requirements (see Table 2). These relationships are collectively identified among decision-

makers according to the main guidelines, requirements and elements of the relevant aspects of 

the project. 

The output of this task is presented in Table 5. As it can be seen, while the first and second 
columns depict the aspects and elements, respectively, the following columns represent the 

project’s requirements. In this way, it is possible to identify the requirements (marked with 1) 

related to each element, as defined in formula (3).  

Table 5 

Requirements prioritization process based on elements of the project's relevant aspects. 

Aspects Elements R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 

U
sa

bi
lit

y 

Adaptability. 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
Ease of learning. 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
Content accessibility. 0 0 0 1 0 0 1 1 0 0 0 0 1 1 
Reduce cognitive burden. 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
Error tolerance. 1 0 1 0 0 1 0 0 0 1 0 0 0 0 
Ease of remembrance. 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

C
on

te
nt

 

Students’ personal information. 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
Content of knowledge units. 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
Instructors’ personal information. 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
Communications between 
students and instructors. 

0 0 0 0 0 0 0 0 0 0 1 0 0 0 

Students’ preferences. 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Description of knowledge units. 1 1 0 0 0 0 0 0 1 0 0 0 0 0 
Feedback of evaluation activities. 0 0 1 0 0 0 0 0 1 0 0 0 0 0 
Registration of student’s activities. 0 0 0 0 0 0 0 1 0 1 0 0 0 0 

Bu
si

ne
ss

 V
al

ue
 

Manage the students’ progress. 0 1 0 0 0 0 0 0 0 0 0 0 1 0 
Manage the students’ enrollment. 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
Monitor the students’ learning 
process. 

0 0 1 0 0 0 0 0 1 0 0 0 0 0 

Manage knowledge units. 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
Organize the storage of 
information. 

0 0 0 0 1 0 0 0 0 0 0 1 0 0 

Coordinate composition of 
knowledge units. 

1 0 0 1 1 1 0 0 1 0 0 0 0 0 

 



4.2.4. Phase 4: Compute the Final Ranking 

Once the linking with the requirements has been generated among decision-makers, the last 
task consists of generating the Final Ranking of Requirements (FR). This task implies 

computing automatically the FR in two steps, according to the relationships previously 

established (see Table 5, which is the main input for this task) and the formulas defined in 

section 3.4.  

This first step consists of identifying the relevance level of the requirements according to the 

project’s aspects. In this way, the total number of requirements related to each element is 

computed with the formula shown in (4). For example, the element “Content accessibility” of the 

Usability aspect includes 5 related requirements. This element has the maximum number of 

requirements that an element of the Usability aspect has been associated with. Therefore, its 

Association Factor (G) is 1 according to formula (5). This allows to compute formula (6). For 

instance, the priority of the previous element, associated with the requirement 𝑟�, is 4 taking into 

consideration its G. However, a complete understanding of the requirements’ relevance level 

also implies considering all the elements associated with each aspect, and comparing the 

results with all the requirements. The above is obtained by computing the formulas (7) and (8). 

Thus, the relevance level of each requirement (i.e., from 𝑟% to 𝑟%�) with regard to the Usability 

aspect, obtained values of 4.62%, 24.62%, 4.62%, 10.26%, 0%, 4.62%, 15.9%, 10.26%, 0%, 

4.62%, 0%, 0%, 10.26% and 10.26%, respectively, as the result of the application of Relevance 

Level of the Requirements by Aspect (λ). In this way, results for requirements 𝑟% (4.62%) and 𝑟w 

(24.62%) indicate that 𝑟w has higher priority than 𝑟% for the Usability aspect. 

The second step is to generate the Relevance Ranking of Requirements by Aspect (W). It is 
intended to weight W through P. To obtain W, the order of relevance for the requirements 

related to each aspect is calculated according to formulas (9) and (10). In this way, a set of 

rules conducted by λ is applied to the sorted list of requirements, as defined in (11). According 

to that, the ranking of the requirements (i.e., from 𝑟% to 𝑟%�) for the Usability aspect in terms of 

the function W corresponds to: 8, 14, 8, 12, 1, 8, 13, 12, 1, 8, 1, 1, 12 and 12, respectively. 

Finally, the FR is generated, considering the level of relevance for each requirement by aspect 

and its normalized priority (P), computed with the formula (12).  

Table 6 presents the FR for the requirements of the learning management system proposed. As 

it can be seen, the requirements are sorted according to their FR, calculated with the formula 

(12). In this way, 𝑟w and 𝑟%w are the requirements with the highest and lowest priority, 

respectively. These requirements obtain a final ranking of 24.56 and 4.3, respectively.  

Table 6 

Final ranking of requirements for the learning management system proposed. 

ID Requirements Final 
Ranking (FR) 

𝑟w Manage courses in an integrated environment. 24.56 
𝑟� Configure the students and instructors’ profiles. 22.89 
𝑟% Create and configure courses included in the university curricula. 20.54 
𝑟� Check the information about the students’ progress. 19.59 



𝑟v Create and edit assessment activities. 18.23 
𝑟� Link and provide documents in different formats, associated with the 

courses. 
16.25 

𝑟%� Allow to attach and link digital documents with assessment activities. 15.59 
𝑟%v Create virtual classrooms that allow online teaching. 15.3 
𝑟� Allow to review the results of the assessment activities and notify 

about the required cycles. 
14.53 

𝑟� Consult one course’s events and tasks. 13.99 
𝑟%� Allow to adapt the information system according to different profiles. 12.99 
𝑟� Manage the enrollment of students in different courses. 6.28 
𝑟%% Create discussion environments for the members of the courses. 5.29 
𝑟%w Provide a centralized virtual space to store and maintain digital 

information. 
4.3 

It is worth noting the ability of the QMPSR prioritization method to minimize possible 

requirements collisions through this application scenario. For example, requirements 𝑟v and 𝑟� 

are associated with elements that have the same priority (see Table 4 and Table 5). That is, 

these requirements are associated with an element of the Usability aspect with Low priority, an 

element of the Content aspect with High priority, and an element of the Business Value aspect 

with High priority. However, requirements 𝑟v and 𝑟� obtain different final ranking (FR) values 

(18.23 and 16.25, respectively), as the Association Factor (G), computed with the formula (5), is 

different for each element. It can be observed in Table 5 that the requirements 𝑟v and 𝑟� are 

related to elements "Feedback of evaluation activities" and "Content of knowledge units", 

respectively, both of High priority and belonging to the Content aspect. However, the element 

"Feedback of evaluation activities" has a greater number of associated requirements (see Table 

5), generating, as a result, a higher priority. In this way, as already mentioned in Section 3.4, an 

element with a greater number of associated requirements corresponds to a greater G and, 

consequently, its priority is higher. This allows to reduce collisions between requirements 
associated with elements with the same priority, generating precise results in the final ranking of 

requirements.  

It is worth mentioning that phases 1 and 2 required the lowest and highest manual effort for 
decision-makers, respectively, as they had to work collaboratively to concrete aspects and 

related elements. Due to the dynamic nature of the prioritization process, some effort was also 

required during the phase 3 to adjust and define elements coming from phase 2.  

All in all, this application scenario is only an example to illustrate the method. In the next 
section, we provide experiments, including higher sets of requirements, to evaluate QMPSR 

against other existing prioritization methods and thus demonstrate the advantages of our 

approach. 

5. Comparative Framework for the Empirical Evaluation of Prioritization Methods 

The challenge of assessing different prioritization methods can be faced in different ways. One 

of the most common solutions is setting up an empirical case scenario with synthetic data and 

virtual subjects (Achimugu, et al., 2014; Greer & Ruhe, 2004; Wiegers, 1999; Kaiya, et al., 

2002). This approach allows to appreciate the features of every proposal lacking, however, 

implementation in a real-world project and comparative assessment of its features with other 



prioritization methods. Another approach is to conduct the evaluation of prioritization methods 

through experiments with real subjects by setting case studies in real-world projects (Karlsson & 

Ryan, 1997; Logue & McDaid, 2008; Azar, et al., 2007). This would enable to review the results 

on the characteristics of the proposals. However, one of the main problems with this approach 

is the shortfall of ground truth (called true ranking in requirements prioritization), which leads to 

the lack of a quantitative measure of the quality concerning the resulting priority rank (Perini, et 
al., 2013). 

It is worth noting that the assessment of prioritization methods is usually focused on reviewing 

the results of the features without conducting a comparative analysis with other proposals. 

Although there are specific researches that focus on achieving such comparative assessments 
(Karlsson, et al., 1998; Alshehri & Benedicenti, 2013; Ahl, 2005), these validations put emphasis 

exclusively on the analysis of the users' feedback through the utilization of subjective measures 

(e.g., ease of use, reliability of results or fault tolerance). Some other approaches are based on 

objective measures, but exclusively focused on the required number of decisions or time 

elapsed (Berander, et al., 2006).  

Perini et al. (2013) proposed simulations combining synthetic data and a case study with 

stakeholders (real-world project) in order to assess the CBRank prioritization method. This was 

indeed achieved using the AHP method, featuring both methods’ (CBRank and AHP) similar 

characteristics (Avesani, et al., 2003). This facilitates carrying out comparative evaluations 

without identifying similarities or connections with other prioritization methods.  

Given the discussion in this section, it could be stated that there are no proposals on 

prioritization methods that evaluate the performance of a particular feature through a 

comparative analysis of its results with different methods under similar conditions in order to 

discover relationships, differences or similarities in the studied approaches. The heterogeneity 

of the prioritization methods, with regard to the type of configuration required for both 
implementation and evaluation, makes it difficult to contrast and evaluate the same feature in 

different proposals. One approach to address and drive the abovementioned drawback is to 

define a comparative framework in order to determine similarities and common patterns among 

prioritization methods. In fact, it is essential to compose frameworks to accomplish experiments 

with different proposals under similar conditions.  

Taking up such challenge, we have created a framework to carry out the comparative analysis 

of prioritization methods based on specific features. This also allows to provide evidence about 

the validation of the prioritization methods (Daneva, et al., 2014). In this way, a number of 

prioritization methods have been selected and evaluated in our comparative framework in order 

to observe and compare requirements collisions generated by each of them. Although this 

measurement criterion (requirements collisions) has not been considered in previous research 
studies (Daneva, et al., 2014; Berander, et al., 2006), it becomes relevant in different issues of 

the requirements prioritization process. For example, a large number of requirements collisions 

increases the time for decision-making and reduces the ability to discern the relevance level of 

the requirements. On the other hand, a moderate number of requirements collisions allows to 



minimize scalability problems, ensures the consistency of the assessments and facilitates the 

accuracy of the ranking as the number of requirements increases.  

Specifically, we have considered the following prioritization methods, all presented in Section 2, 

in order to analyze collisions: QMPSR (our approach), MoSCoW, Value-Oriented, Wiegers, 

Product Definition, AHP and Kano. These methods have been considered mainly due to their 

popularity, their representativeness with respect to other methods and their facilities to fit the 

guidelines defined for the comparative framework. In fact, we defined the following general 

guidelines: 

Common Definition of Prioritization Effort: prioritization methods use different conceptions 

and judgments on how the requirements prioritization should be accomplished. Consequently, 

the first step required to obtain a comparative framework is the creation of a common definition 

of what is understood as prioritization effort. Firesmith (2004) argues that prioritization 

dimensions are the factors that influence the priority of a requirement. According to Berander 

and Andrews (2005), requirements can be prioritized along many different, related and even 
opposite prioritization dimensions (e.g., importance, business value, penalty, cost, time, and 

risk). According to that, we consider prioritization effort as the establishment of the relevance 

level (e.g., a numerical scale between 0 and 10) of a requirement in a particular prioritization 

dimension (e.g., business value). It should be noted that the prioritization dimensions in QMPSR 

correspond to the project’s relevant aspects (𝐴), and the establishment of the relevance level is 

carried out through the association between elements and aspects of a given requirement – i.e., 

𝐶(𝑒(e, 𝑟c) = 1, where v corresponds to the total number of elements for aspect 𝑎( and 𝑟c is a 

requirement of the project. This is what we call NPD (Number of Prioritization Dimensions) in 

our approach, which can be defined as follows: 𝑁𝑃𝐷 = {1,… , 𝜄}, i.e., a finite collection of 

prioritization dimensions, such that 𝜄 is the total number of the prioritization dimensions 

{𝜄 ∈ ℕ: 𝜄 ≥ 1}. 

Coordination of Prioritization Effort: together with getting a common understanding of what 

priority effort is, it is also required to accomplish different experiments with methods using the 

same level of prioritization effort in order to obtain comparable results. Therefore, the second 

step needed to compose a comparative framework consists of having a coordinated generation 

of the prioritization effort between different methods.  

Definition of Prioritization Effort Levels: in the last step needed to compose a comparative 

framework, different Prioritization Effort Levels (PEL) are defined with the aim of accomplishing 

experiments with prioritization methods having different performance conditions. PEL value 

allows to identify and select the number of the prioritization dimensions that will be used to 

prioritize requirements. In our framework, PEL can be defined as follows: 𝑃𝐸𝐿 =

{𝑟𝑎𝑛𝑑𝑜𝑚,𝑚𝑖𝑛𝑖𝑚𝑢𝑚,𝑚𝑎𝑥𝑖𝑚𝑢𝑚}, i.e.,	a finite collection of prioritization dimensions. For a random 

PEL, the NPD for each of the requirements is randomly identified (between 1 and the total NPD 

value defined for each experiment). For a minimum PEL, only one of the prioritization 

dimensions defined for each experiment is randomly identified. Finally, for a maximum PEL, all 

prioritization dimensions defined are selected for each requirement.   



These general guidelines allow to arrange different experimental scenarios for each 

prioritization method in a coordinated manner. Fig. 3 presents the different arrangements that 

our comparative framework is able to configure. 

 

Fig. 3. Different arrangements for the experiments in terms of PEL and NPD. 

As we can see in Fig. 3, 9 different experimental scenarios have been created, varying the PEL 

(random, minimum and maximum) and the NPD (2, 4 and 8). Thus, each experiment is 

identified by the PEL and NPD used together with a unique identifier (a capital letter between A 

and I). Examples of random PEL can be observed in experiments A, B and C appearing in Fig. 

3, where 4, 2 and 8 prioritization dimensions, respectively, are defined. Similarly, examples of 

minimum PEL can be observed in experiments D, E and F appearing in Fig. 3, where 4, 2 and 8 
prioritization dimensions, respectively, are defined. Finally, experiments G, H and I, appearing in 

Fig. 3, present examples of maximum PEL, using 4, 2 and 8 prioritization dimensions, 

respectively. These experiments will be explained in detail in the next section, featuring formal 

terminology (Wohlin, et al., 2012). 

6. An Experiment on Collided Requirements 

As previously mentioned, a requirements collision corresponds to the situation where two or 

more requirements have the same prioritization value in a final ranking. A large number of 

collided requirements negatively affects the requirements prioritization process, as it does not 



allow to establish differences to prioritize accordingly. Therefore, few collided requirements 

provide a discernible and accurate ranking. We can identify collided requirements as follows: 

Given a final ranking for a set of requirements R, called FR as defined in (12), the collision of 

requirement 𝑟c (where 𝑟c ∈ 𝑅) is formally defined in terms of the function	𝐾(𝑟c), where 𝐾:𝑅 →

{0,1}, each of the values having the following interpretation: 

𝐾(𝑟c) = j1, if	∃𝑟� ≠ 𝑟c, 𝑟� ∈ 𝑅, 𝐹𝑅(𝑟�) = 𝐹𝑅(𝑟c);
0, otherwise.  (13) 

In this way, the total number of collided requirements in a particular final ranking is defined as:  

𝑇𝐾 =o𝐾(𝑟c)
d

cp%

, (14) 

where 𝐾(𝑟c) defines the collision function for the requirement 𝑟c, as described in (13), and m 

represents the total number of requirements.  

6.1. Configuration Parameters for the Assessment of the Prioritization Methods 

Table 7 identifies some characteristics of the selected prioritization methods to be used through 

the experiments (Sections 6.2 and 6.3, respectively).  

Table 7  

Description of the Methods. Summary of the main characteristics of the prioritization methods. 

The Prioritization Dimensions column in Table 7 is used to identify the prioritization dimensions 

that each method features. As we can see, prioritization dimensions such as aspects, 

stakeholders, core business and requirements correspond to those used in QMPSR, MoSCoW, 

Value-Oriented and AHP methods, respectively. Similarly, benefit, penalty, cost and risk 
correspond to the 4 prioritization dimensions used in the Wiegers method, while technical, 

creative, user and business correspond to the 4 prioritization dimensions used in the Product 

Definition method. Finally, present and absent correspond to the 2 prioritization dimensions 

used in the Kano method.  

Methods Prioritization 
Dimensions Size Maximum NPD Type of Evaluation of the  

Prioritization Dimension  
QMPSR Aspects Adaptable unlimited Elements of each 

Aspects 
MoSCoW Stakeholders Adaptable unlimited Must, should, could, 

won't 
Value-
Oriented 

Core business Adaptable unlimited 0-10 

Wiegers Benefit, penalty, 
cost, risk 

Semi-
adaptable 

4 0-9 

Product 
Definition 

Technical, 
creative, user, 
business 

Semi-
adaptable 

4 0-5 

AHP Requirements  Semi-
adaptable 

Total number of 
requirements 

1-9 

Kano Present, absent Non-
adaptable 

2 Like, expect, don 't care,  
live with, dislike 



The Size column in Table 7 is used to identify whether the methods allow to adapt the NPD to 

prioritize each requirement. The adaptable value indicates that the method allows to adapt the 

NPD, whereas the semi-adaptable value illustrates that the method defines a maximum NPD 

that can be adapted for a specific use. Likewise, the non-adaptable value indicates that the 

method defines a fixed NPD to prioritize each requirement. As shown in Table 7, QMPSR, 

MoSCoW and Value-Oriented methods allow to adapt the NPD. On the other hand, Wiegers, 
Product Definition and AHP methods define a maximum NPD (e.g., the Wiegers method defines 

4 prioritization dimensions – i.e., benefit, penalty, cost and risk). However, they allow to adapt 

the NPD value. In the case of AHP, it allows the application of the local stopping rule (Harker, 

1987), facilitating to adapt pairwise comparisons of requirements. Finally, Kano method defines 

a fixed NPD to prioritize each requirement.  

The Maximum NPD column in Table 7 is used to identify whether the methods define a 

maximum NPD. As shown in Table 7, QMPSR, MoSCoW and Value-Oriented methods do not 

define a maximum NPD (unlimited). In contrast, the set of prioritized requirements corresponds 

to the maximum NPD defined in the AHP method (the total number of requirements is used as 

the local stopping rule, in order to identify an acceptable error threshold). Finally, the maximum 

NPD defined in Wiegers and in Product Definition methods corresponds to 4, while in Kano 
method it corresponds to 2. 

Finally, the Type of Evaluation of the Prioritization Dimension column in Table 7 is used to 

identify how the requirements prioritization is carried out in each method. As shown in Table 7, 

Value-Oriented, Wiegers, Product Definition and AHP methods achieve the requirements 
prioritization by allocating a numerical scale in each prioritization dimension (e.g., the Value-

Oriented method uses a numerical scale between 0 and 10 to prioritize each core business 

prioritization dimension). On the other hand, Moscow and Kano methods carry out the 

requirements prioritization by considering a qualitative scale in each prioritization dimension 

(e.g., the MoSCoW method uses the scale must, should, could, and won't to prioritize each 

stakeholder). Finally, our approach (QMPSR) accomplishes the prioritization through the 

association between elements and aspects (prioritization dimensions) for each requirement, as 

explained in Section 3.  

6.2. Research Questions and Experimental Development 

In order to follow Design Science, our evaluation and validation have been inspired by the 

guidelines reported by Hevner et al. (2004) and Wieringa (2009). Our research is based on a 

problem-driven investigation focused on both goal and impact. In this way, we want to diagnose 
collision problems in other requirements prioritization algorithms and investigate the impact of 

the realized implementation (i.e., our approach). For this reason, we have tested our approach 

through an experimental evaluation, using simulations with synthetic data.  

A set of research questions are stated to conduct the work. These will be answered through the 

results obtained:  



• RQ1: To what extent does the newly proposed method QMPSR reduce the amount of 

requirements collisions?  

• RQ2: To what extent does QMPSR outperform other prioritization methods in terms of 
requirements collisions?  

• RQ3: Can QMPSR overcome scalability problems as the number of input requirements 

increases?  

A set of 9 experiments was accomplished to assess the prioritization methods in order to 

investigate the collisions generated under different performance conditions.  

Independent variables considered for the experiments were: Prioritization Method (QMPSR, 
MoSCoW, Value-Oriented, Wiegers, Product Definition, AHP, Kano), PEL (random, minimum or 

maximum), NPD (2, 4, 8) and the input sets of synthetic requirements (25, 50, 75, 100, 125, 

150, 175 and 200). On the other hand, the dependent variable was the number of collided 

requirements.  

Table 8 

Experiment identifiers and the methods evaluated in each experiment. 

Methods Experiment Identifier 
A B C D E F G H I 

QMPSR x x x x  x x x x x 
Value-Oriented x x x x x x x x x 
MoSCoW x x x x x x x x x 
Wiegers x x  x x  x x  
Product Definition x x  x x  x x  
Kano        x  
AHP x  x    x  x 

Table 8 depicts the methods evaluated in each experiment. QMPSR, MoSCoW and Value-

Oriented methods were evaluated in all experiments due to their capability to adapt the NPD 

(see the Size column in Table 7). On the other hand, Wiegers and Product Definition methods 
were only evaluated in experiments involving an NPD of 2 or 4 – i.e., these methods were not 

evaluated in experiments with an NPD higher than its Maximum NPD (see the Maximum NPD 

column in Table 7). Likewise, the AHP method was only evaluated in experiments A, C, G, H 

and I as it allows to semi-adapt the NPD to use (see the Size column in Table 7). However, we 

evaluated AHP in experiments where the total prioritization effort, computed with the formula 

shown in (16), was twice higher than the number of prioritized requirements. Finally, the Kano 

method was only evaluated in experiment H, as this method defines a fixed NPD (present and 

absent) to prioritize each requirement (see the Prioritization Dimensions column in Table 7). 

6.3. Experiments Execution 

Experiments were accomplished applying the Experiment Execution Process illustrated in Fig. 

4. The Experiment Execution Process was carried out through the execution of different 

algorithms. These algorithms were created according to the general guidelines of the 
comparative framework and the configuration parameters for each method. This means that 



there was no interaction with people in the requirements specification process or in the 

prioritization.  

The input data for each experiment were: a value for PEL (random, minimum or maximum), a 

value for NPD (2, 4 or 8) and sets of synthetic requirements (25, 50, 75, 100, 125, 150, 175 and 

200). Synthetic data have been used in the specification of requirements, without considering a 

level of abstraction or domain as commonly recommended (Lauesen, 2002) and used in 

practice, in order to concentrate on the performance of the methods analyzed. The output was 

the final ranking of requirements for each prioritization method from which we obtain the number 

of collided requirements. For example, every method involved in experiment A (see Table 8) 

performed the Experiment Execution Process with PEL=random and NPD=4 for every set of 
requirements. Steps followed in the Experiment Execution Process are described below (see 

Fig. 4): 

 

Fig. 4. Experiment Execution Process. 

1. Calculate Prioritization Effort: the first step of the process aims at establishing, for every 

set of requirements, the Prioritization Effort for each single Requirement (PER), in order to 

produce the same level of prioritization effort in all evaluated methods, obtaining comparable 

results for each of them. 

For each set of requirements, PER is identified in accordance with PEL and NPD, both defined 

for each experiment (see Fig. 3). In this way, given an experiment that considers a particular 

PEL and an NPD, the prioritization effort for the requirement 𝑟c	 is defined formally in terms of 

the function 𝑃𝐸𝑅: 𝑅𝑥𝑁𝑃𝐷𝑥𝑃𝐸𝐿 → ℕ as: 

𝑃𝐸𝑅(𝑟c, 𝑁𝑃𝐷, 𝑃𝐸𝐿) = �
𝛽(1, 𝑁𝑃𝐷), if	𝑃𝐸𝐿	is	𝑟𝑎𝑛𝑑𝑜𝑚;

1, if	𝑃𝐸𝐿	is	𝑚𝑖𝑛𝑖𝑚𝑢𝑚;
𝑁𝑃𝐷, if	𝑃𝐸𝐿	is	𝑚𝑎𝑥𝑖𝑚𝑢𝑚.

 (15) 



Where 𝛽(1, 𝑁𝑃𝐷) is a random number in the interval (𝜅,	𝜂) (𝜅 ∈ 𝑍 and 𝜂 ∈ 𝑄), formally defined in 

terms of the function 𝛽, where 𝛽: 𝑍𝑥𝑄 → ℕ and {𝜅, 𝜂 ∈ ℕ: 𝜅 ≤ 𝜂}, and being Z and Q collections 

of natural numbers (𝑍,𝑄 ⊂ ℕ). More specifically, in this case 𝛽 identifies a random number 

ranged between 1 and NPD. Hence, 𝑃𝐸𝑅(𝑟c, 𝑁𝑃𝐷, 𝑃𝐸𝐿) > 𝑃𝐸𝑅(𝑟�, 𝑁𝑃𝐷,𝑃𝐸𝐿) means that 𝑟c 

involves a higher number of selected prioritization dimensions than 𝑟� to determine its relevance 

level. It is worth noting that the PER value is the same in all experiments with a maximum or 

minimum PEL – i.e., PER=PEL in experiments with a maximum PEL, while PER=1 in 

experiments with a minimum PEL. By way of example, in Fig. 3 the prioritization effort for 

requirements 𝑟% and 𝑟w in experiment C (where PEL=random and NPD=8) is 2 and 4, 

respectively, as a result of the application of PER on both requirements.  

In this way, given an experiment, the total prioritization effort for a given set of requirements is 

defined as: 

𝑇𝑃𝐸𝑅(𝑁𝑃𝐷, 𝑃𝐸𝐿) =o𝑃𝐸𝑅(𝑟c, 𝑁𝑃𝐷, 𝑃𝐸𝐿)
d

cp%

, (16) 

where 𝑃𝐸𝑅(𝑟c, 𝑁𝑃𝐷, 𝑃𝐸𝐿) defines the prioritization effort function for the requirement 𝑟c, as 

defined in (15), and m represents the total number of requirements included in a specific set.  

2. Generate Requirements Prioritization: the second step in the process aims at establishing 
the requirements prioritization for each method.  

First, a PER random number, as defined in (15), is calculated for each requirement. Let 𝑃𝐷 =
{𝑑%,… , 𝑑(,… , 𝑑¤¥¦}	be a finite collection of prioritization dimensions, where 𝑑( ∈ 𝑃𝐷, such that 

NPD is the total number of prioritization dimensions defined in the experiment. The relationship 

between the requirement 𝑟c and the prioritization dimension 𝑑( is formally defined in terms of the 

function 𝜙(𝑑(, 𝑟c), where 𝜙: 𝑃𝐷	𝑥	𝑅 ⟶ {0,1}, each of the values having the following 

interpretation:  

𝜙(𝑑(, 𝑟c) = j1, if	𝑑(	is	selected	for	𝑟c;
0, otherwise.  (17) 

In this way, given an experiment that considers a particular PEL and an NPD, the total number 

of prioritization dimensions randomly selected for the requirement 𝑟c (𝑇𝜙) is defined as:  

𝑇𝜙(𝑟c, 𝑁𝑃𝐷, 𝑃𝐸𝐿) =

⎩
⎪
⎨

⎪
⎧o𝜙(𝑑7, 𝑟c)
¤¥¦

7p%

, if	𝑃𝐸𝐿	is	𝑟𝑎𝑛𝑑𝑜𝑚;

1, if	𝑃𝐸𝐿	is	𝑚𝑖𝑛𝑖𝑚𝑢𝑚;
𝑁𝑃𝐷, if	𝑃𝐸𝐿	is	𝑚𝑎𝑥𝑖𝑚𝑢𝑚.

 (18) 

Where 𝜙(𝑑7, 𝑟c) identifies whether or not the prioritization dimension 𝑑7 is selected for the 

requirement 𝑟c, computed with the formula shown in (17). Furthermore, the function 

𝑇𝜙(𝑟c ,𝑁𝑃𝐷,𝑃𝐸𝐿) also has the following property Tϕ(r¯, 𝑁𝑃𝐷,𝑃𝐸𝐿) = PER(r¯, 𝑁𝑃𝐷, 𝑃𝐸𝐿). Hence, 

∀(𝑟c , 𝑟�) ∈ 𝑅, 𝑇𝜙(𝑟c ,𝑁𝑃𝐷, 𝑃𝐸𝐿) > 𝑇𝜙�𝑟�,𝑁𝑃𝐷, 𝑃𝐸𝐿� means that the requirement 𝑟c has a higher 

number of selected prioritization dimensions than requirement 𝑟�.   



Secondly, the requirements prioritization is carried out by assigning an evaluation in each 

selected prioritization dimension for each requirement. Thus, the prioritization is randomly  

accomplished in accordance with the evaluation type of each method (see the Type of 

Evaluation of the Prioritization Dimension column of Table 7).  

Initially, the evaluation type for each method needs to be represented in order to achieve the 

requirements prioritization. Let 𝑆 = :𝑙%, … , 𝑙>,… , 𝑙7? be a finite collection of rating-scale values, 

where 𝑙´ ∈ 𝑆, such that h is the total number of the rating-scale values considered. The 

evaluation of the requirement 𝑟c in the prioritization dimension 𝑑(, using the rating scale S, is 

formally defined in terms of the function 𝜓(𝑑(, 𝑟c), where 𝜓:𝑃𝐷	𝑥	𝑅 ⟶ 𝑆, defined as follows:  

𝜓(𝑑(, 𝑟c) = j𝑙¶(%,|·|), if	𝜙(𝑑(, 𝑟c) = 1;
0, otherwise.

 (19) 

Where 𝛽(1, |𝑆|) identifies a random number ranged between 1 and the total number of the 

rating-scale values considered (|𝑆|), 𝑙¶(%,|·|) ∈ 𝑆, and 𝜙(𝑑(, 𝑟c) identifies whether or not the 

prioritization dimension 𝑑( is selected for the requirement 𝑟c, computed with the formula shown 

in (17). Thus, if the prioritization dimension 𝑑( is selected for the requirement 𝑟c – i.e., 

𝜙(𝑑(, 𝑟c) = 1, then the prioritization of the requirement 𝑟c in the prioritization dimension 𝑑( is 

carried out by randomly assigning a rating-scale value (𝑙¶(%,|·|)). Otherwise, the prioritization of 

the requirement 𝑟c in the prioritization dimension 𝑑( is not carried out because the prioritization 

dimension 𝑑( is not selected for the requirement 𝑟c – i.e., 𝜙(𝑑(, 𝑟c) = 0. 

For instance, as shown in Table 7, for the Value-Oriented method a numerical scale between 0 

and 10 – i.e., 𝑆 = {0…10}, will be randomly used for each selected prioritization dimension (in 

this case: core business) in order to prioritize each requirement. In QMPSR, by contrast, 
prioritization is carried out through the association between the requirement’s elements and 

aspects. In this way, QMPSR requires the following steps to prioritize each requirement: 

a) Identification of the Number of Elements for each Selected Aspect: In this case, 

PD=A, thus for each aspect 𝑑( (𝑑( ∈ 𝐴), the number of elements associated with the 

requirement 𝑟c is randomly arranged. The number of elements associated with aspect 

𝑑( for the requirement 𝑟c is formally defined in terms of the function 𝐸𝑁(𝑟c, 𝑑(), where 

𝐸𝑁:𝑅𝑥𝐴 → ℕ, defined as follows:  

𝐸𝑁(𝑟c , 𝑑() = j𝛽(1, |𝐸(|), if	𝜙(𝑑(, 𝑟c) = 1;
0, otherwise.  (20) 

Where 𝛽(1, |𝐸(|) identifies a random number ranged between 1 and the total number of 

elements of the aspect 𝑑( (|𝐸(|), and 𝜙(𝑑(, 𝑟c) identifies whether or not the aspect 𝑑( is 

selected for the requirement 𝑟c, as defined in (17). Thus, if the aspect 𝑑( is selected for 

the requirement 𝑟c – i.e., 𝜙(𝑑(, 𝑟c) = 1, then a random number of elements for the aspect 

𝑑( – i.e., 𝛽(1, |𝐸(|) is identified for the requirement 𝑟c. Otherwise, no element for the 

aspect 𝑑(	is identified for the requirement 𝑟c. Hence, 𝐸𝑁(𝑟c, 𝑑() > 𝐸𝑁(𝑟c , 𝑑7) means that 



the aspect 𝑑( has a higher number of elements associated with the requirement 𝑟c than 

the aspect 𝑑7 (where 𝑑7 ∈ 𝐴). 

b) Association between the Elements of a Selected Aspect and the Requirements: A 

random number of EN, as defined in (20), associated with aspect 𝑑( is calculated for 

the requirement 𝑟c. The total number of elements of the aspect 𝑑( randomly associated 

with the requirement 𝑟c is defined formally in terms of the function 𝑇𝜏(𝑟c , 𝑑(), where 

𝑇𝜏: 𝑅𝑥𝐴 ⟶ ℕ, as follows: 

𝑇𝜏(𝑟c, 𝑑() =o𝐶(𝑒(e, 𝑟c)
||}|

ep%

, (21) 

where 𝐶(𝑒(e, 𝑟c) identifies whether or not the element 𝑒(e is related to the requirement 𝑟c, 

as defined in (3), and 𝐸( is a finite sub-collection of all elements related to aspect 𝑎( 

(𝐸( ⊂ 𝐸). Thus |𝐸(| identifies the total number of elements of the aspect 𝑑(. The 

function 𝑇𝜏(𝑟c, 𝑑() also has the following property: 𝑇𝜏(𝑟c, 𝑑() = 𝐸𝑁(𝑟c, 𝑑(). Finally, 

𝑇𝜏(𝑟c, 𝑑() > 𝑇𝜏�𝑟�, 𝑑(� means that requirement 𝑟c has a higher number of associated 

elements for the aspect 𝑑( than requirement 𝑟�. 

3. Compute the Final Ranking: the final step in the experiment execution is to compute the 

final ranking of requirements for each prioritization method. Each method applies its own 

procedure. For instance, QMPSR computes the final ranking of requirements according to the 

formula shown in (12).  

In general, each of the 7 methods involved was executed performing the Experiment Execution 

Process 10 times with the same data set. As a result, the methods included in experiment A 

(see the first two columns in Table 8) performed the Experiment Execution Process 80 times (10 

executions for each of the 8 sets of requirements, with a PEL=random and NPD=4). Thus, 

experiment A generated a total number of 480 executions of the Experiment Execution Process 
for the 6 prioritization methods considered. 

6.3.1 Synthetic Data 

We utilized two different kinds of synthetic data. The first one corresponds to synthetic data that 

do not vary through the different experiments and have a general specification. This is the case 

for the sets of requirements (25, 50, 75, 100, 125, 150, 175 and 200), which do not include any 

abstraction or domain information in its specification. They were used in all the experiments. 

This is also the case for the Number of Prioritization Dimension (NPD) for each requirement in 

experiments where there was a maximum Prioritization Effort Level (PEL). 

On the other hand, we also utilized synthetic data generated in a random manner, according to 

a previously defined set of possibilities (specified in Table 7). For example, the Prioritization 

Effort for each single Requirement (PER) was randomly defined according to the Number of 

Prioritization Dimension (NPD) for each experiment. Another example is the Type of Evaluation 
of the Prioritization Dimension, which was randomly assigned to each selected requirement. It is 

worth noting that the synthetic data generated in a random way can imply certain variability in 



the behavior / performance of the methods. However, these data were also necessary to 

produce scenarios with different conditions to evaluate the prioritization methods. 

In this way, different actions were implemented in order to address the sensitivity to input data. 

In the first place, all the instances susceptible of being generated in a random way were 

identified, so that the results could not be determined in advance in any case. Secondly, 

random results were recorded in order to be replicated for all methods. For example, the 

Prioritization Effort randomly identified for each single requirement was the same for all the 

methods involved. Finally, the results obtained correspond to an average of 10 executions for 

each set of requirements. All this helps reduce the variability in the results. 

6.4 Results and Discussion 

Table 9 reports the total prioritization effort, computed with the formula shown in (16), generated 

in each experiment for sets of 25, 50, 75, 100, 125, 150, 175 and 200 requirements. The total 

prioritization effort represents the number of evaluations carried out for each set of input 

requirements in order to determine their relevance level.  

Table 9 
Prioritization Effort.  

Experi- 
ments 

Number of Prioritized Requirements 
25 50 75 100 125 150 175 200 

A 65 129 191 246 311 374 435 501 
B 38 74 112 149 191 223 264 300 
C 112 220 336 458 551 672 781 898 
D 25 50 75 100 125 150 175 200 
E 25 50 75 100 125 150 175 200 
F 25 50 75 100 125 150 175 200 
G 100 200 300 400 500 600 700 800 
H 50 100 150 200 250 300 350 400 
I 200 400 600 800 1000 1200 1400 1600 

As a result of the aforementioned executions, collided requirements can be represented and 

analyzed.  

On the one hand, Fig. 5, 6 and 7 represent the results obtained from experiments A, B and C, 

respectively. Each graph shows the number of collided requirements (y-axis), computed via 

(14), for 25, 50, 75, 100, 125, 150, 175 and 200 prioritized requirements (x-axis). The collided 

requirements were calculated as an average over 10 executions considering a random PEL and 

prioritization dimensions configured with different sizes (4, 2 and 8 prioritization dimensions in 

experiments A, B and C, respectively). In addition, and for the case of our approach (QMPSR), 

we included SD error bars for each execution in order to observe the obtained dispersion. 

Besides, Mann-Whitney-Wilcoxon test was used to evaluate the difference of the means among 
the number of collided requirements obtained by QMPSR and the other methods in experiments 

A, B and C. In all calculations, the p-value was < 0.05, indicating that the differences obtained 

were statistically significant.    



On the other hand, Fig. 8, 9 and 10 present the results obtained from experiments D, E and F, 

respectively. Each graph shows the number of collided requirements (y-axis), computed via 

(14), for 25, 50, 75, 100, 125, 150, 175 and 200 prioritized requirements (x-axis). The number of 

collided requirements was calculated as an average over 10 executions considering a minimum 

PEL and prioritization dimensions configured with different sizes (4, 2 and 8 prioritization 

dimensions in experiments D, E and F, respectively). In these experiments, Mann-Whitney-
Wilcoxon test was not calculated because they produced a similar number of collided 

requirements for each set of requirements. Furthermore, and for the case of our approach, we 

incorporated SD error bars for each execution with the purpose of examining the dispersion. 

Finally, Fig. 11, 12 and 13 illustrate the results obtained from experiments G, H and I, 
respectively. Each graph presents the number of collided requirements (y-axis), calculated via 

(14), for 25, 50, 75, 100, 125, 150, 175 and 200 prioritized requirements (x-axis). The number of 

collided requirements was computed as an average over 10 executions considering a maximum 

PEL and prioritization dimensions configured with different sizes (4, 2 and 8 prioritization 

dimensions in experiments G, H and I, respectively). Moreover, and for the case of QMPSR, we 

incorporated SD error bars for each execution with the aim of examining the dispersion. In 

addition, Mann-Whitney-Wilcoxon test was used to evaluate the difference of the means among 
the number of collided requirements obtained by QMPSR and the other methods in experiments 

G, H and I. In all calculations, the p-value was < 0.05, indicating that the differences obtained 

were statistically significant.    

6.5 Discussion 

In this section, the results of the 9 experiments are analyzed and discussed in order to find 

answers to research questions RQ1, RQ2 and RQ3.  

Experiments A, B and C provide evidence of the collisions generated by each prioritization 

method with a random PEL and an NPD of 4, 2 and 8, respectively. In all cases, QMPSR 
outperforms all compared methods. 

 

Fig. 5. Experiment A. Number of collided requirements (y axis) for all methods evaluated: 
QMPSR, Value-Oriented, Moscow, Wiegers, Product Definition and AHP. Values obtained as 

an average over 10 executions for 25, 50, 75, 100, 125, 150, 175 and 200 prioritized 



requirements (x axis), considering PEL=random and NPD=4. Error bars (SD) are included for 
our approach (QMPSR) to show the dispersion. 

On the one hand, results obtained from experiment A (see Fig. 5) show that QMPSR generates 

less collided requirements for all sets of input requirements. Even when the Value-Oriented 

method obtains the second-best performance (- i.e., QMPSR and Value-Oriented methods 

obtain an average of 19.9% (SD=3.82) and 51.41% (SD=19.31) collided requirements, 

respectively), the difference with respect to the QMPSR increases when the number of input 

requirements grows.  

On the other hand, experiment B (see Fig. 6) also provides evidence of less collided 

requirements for all sets of requirements. Only for sets of 25 and 50 requirements the Value-

Oriented method gets similar results to QMPSR. Here the difference of collided requirements 

between Value-Oriented and QMPSR methods is less than 12%, while for all other sets of 
requirements the number of collided requirements is greater than 35%.  

 

Fig. 6. Experiment B. Number of collided requirements (y axis) for all methods evaluated: 
QMPSR, Value-Oriented, Moscow, Wiegers and Product Definition. Values obtained as an 

average over 10 executions for 25, 50, 75, 100, 125, 150, 175 and 200 prioritized requirements 
(x axis), considering PEL=random and NPD=2. Error bars (SD) are included for our approach 

(QMPSR) to show the dispersion. 
It is also worth mentioning that in experiment B, Value-Oriented and QMPSR methods generate 
a higher number of collided requirements than in experiment A. In experiment B, Value-Oriented 

and QMPSR methods produce an average of 64.00% (SD=41.88) and 182.83% (SD=33.83) 

higher collided requirements than in experiment A. However, the experiment B involves a lower 

number of evaluations for each set of input requirements than in experiment A – i.e., the 

experiment B presents an average of 40.41% (SD=1.34) less prioritization effort than the 

experiment A (see the first two rows in Table 9). Thus, these methods are affected by a reduced 

NPD and prioritization effort (number of evaluations for each set of input requirements), 

especially QMPSR. However, QMPSR generates less collided requirements in all sets of 
requirements in comparison with all other methods. 

With respect to experiment C (see Fig. 7), QMPSR generates less collided requirements than in 

experiments A and B. For instance, in experiment C, QMPSR generates an average of 5.81% 

(SD=1.07) collided requirements, while in experiments A and B it obtains 19.9% (SD=3.82) and 
55.22% (SD=7.97), respectively. It is also worth noting that in experiment C the average of 



prioritization effort is 77.57% (SD=4.85) and 198.05% (SD=5.49) higher than in experiments A 

and B, respectively (see the first three rows in Table 9). Therefore, it can be stated that when 

QMPSR is evaluated with a random PEL, it generates less collided requirements as the NPD 

and prioritization effort increase. Similarly, we can also see that differences among QMPSR and 

the rest of methods increase when considering larger sets of requirements. 

 

Fig. 7. Experiment C. Number of collided requirements (y axis) for all methods evaluated: 
QMPSR, Moscow, Value-Oriented and AHP. Values obtained as an average over 10 executions 

for 25, 50, 75, 100, 125, 150, 175 and 200 prioritized requirements (x axis), considering 
PEL=random and NPD=8. Error bars (SD) are included for our approach (QMPSR) to show the 

dispersion. 
As for experiments D, E and F (see Fig. 8, 9 and 10, respectively), they allow to analyze the 

collisions generated in prioritization methods when there is a minimum PEL and an NPD of 4, 2 

and 8, respectively. Results obtained from these experiments provide empirical evidence that all 
compared methods generate a similar number of collided requirements for each set of 

requirements. 

 

Fig. 8. Experiment D. Number of collided requirements (y axis) for all methods evaluated: 
QMPSR, Moscow, Value-Oriented, Wiegers and Product Definition. Values obtained as an 

average over 10 executions for 25, 50, 75, 100, 125, 150, 175 and 200 prioritized requirements 
(x axis), considering PEL=minimum and NPD=4. Error bars (SD) are included for our approach 

(QMPSR) to show the dispersion. 
In experiment D (see Fig. 8), QMPSR obtains an average of 87.94% (SD=17.8) collided 

requirements, while the other methods obtain values reaching 91%. Similarly, in experiment E 

(see Fig. 9), QMPSR produces an average of 84.59% (SD=5.91) collided requirements, 



whereas values obtained from the other methods reach 96%. However, as we can see in Fig. 9, 

QMPSR generates less collided requirements in all sets of requirements. Finally, in experiment 

F (see Fig. 10), our method generates an average of 86.92% (SD=16.97) collided requirements, 

while the other methods get values reaching 96%. In this experiment, QMPSR stands out above 

the others for the set of 25 requirements, producing 48% collided requirements, while other 

methods get values reaching 92%.  

 

Fig. 9. Experiment E. Number of collided requirements (y axis) for all methods evaluated: 
QMPSR, Value-Oriented, Moscow, Wiegers and Product Definition. Values obtained as an 

average over 10 executions for 25, 50, 75, 100, 125, 150, 175 and 200 prioritized requirements 
(x axis), considering PEL=minimum and NPD=2. Error bars (SD) are included for our approach 

(QMPSR) to show the dispersion. 
One of the factors that may explain the above-described results is the considerable decrease of 

prioritization effort in experiments D, E and F. Although experiments A, B and C include the 

same NPD as experiments D, E and F, respectively, experiments D, E and F include only one of 

the prioritization dimensions defined (randomly identified) to determine the value for each 

requirement – i.e., they generate less prioritization effort. For example, in experiment D, 

methods generate an average of 151.98% (SD=4.99) less prioritization effort than in experiment 

A. Similarly, in experiments E and F, methods generate an average of 50.08% (SD=1.67) and 
347.26% (SD=5.54) less prioritization effort than in experiments B and D, respectively. In 

addition, the configuration in these experiments (using only one of the dimensions to prioritize 

the requirements) is not representative of a real setting, as methods are not provided with 

enough information to distinguish the relevance of each requirement, and thus hinder the 

identification of collided requirements. 



 

Fig. 10. Experiment F. Number of collided requirements (y axis) for all methods evaluated: 
QMPSR, Value-Oriented and Moscow. Values obtained as an average over 10 executions for 

25, 50, 75, 100, 125, 150, 175 and 200 prioritized requirements (x axis), considering 
PEL=minimum and NPD=8. Error bars (SD) are included for our approach (QMPSR) to show 

the dispersion. 
Regarding experiments G, H and I (see Fig. 11, 12 and 13, respectively), they provide the 

collisions produced by each prioritization method with a maximum PEL and an NPD of 4, 2 and 

8, respectively. Results obtained from these experiments strongly demonstrate that QMPSR 

outperforms the other compared methods. 

 

Fig. 11. Experiment G. Number of collided requirements (y axis) for all methods evaluated: 
QMPSR, Value-Oriented, Moscow, Wiegers, Product Definition and AHP. Values obtained as 

an average over 10 executions for 25, 50, 75, 100, 125, 150, 175 and 200 prioritized 
requirements (x axis), considering PEL=maximum and NPD=4. Error bars (SD) are included for 

our approach (QMPSR) to show the dispersion. 
Results from experiment G (see Fig. 11) show that QMPSR generates less collided 

requirements for all sets of requirements. Moreover, the QMPSR provides less collided 
requirements in comparison with other experiments including the same NPD (4) but different 

PEL (random and minimum in experiments A and D, respectively). For example, in experiment 

G, QMPSR generates an average of 4.33% and 36.63% less collided requirements than in 

experiments A and D, respectively. However, the experiment G involves a higher number of 

selected prioritization dimensions to determine the value for each requirement than in 

experiments A and D – i.e., the experiment G generates an average of 58.79% (SD=3.11) and 

300% (SD=0) higher prioritization effort than in experiments A and D, respectively (see the first, 

fourth and seventh row in Table 9). Therefore, it can be confirmed that when QMPSR is 



evaluated with 4 prioritization dimensions considering different PEL values, there are less 

collided requirements as the prioritization effort increases.  

Likewise, results from experiment H (see Fig. 12) illustrate that QMPSR, Value-Oriented and 

AHP methods obtain a similar number of collided requirements for the set of 25 prioritized 

requirements. Nevertheless, the difference in the number of collided requirements between 

QMPSR and the other methods becomes more explicit as the number of input requirements 

increases. In this experiment, QMPSR produces less collided requirements for all sets of 

requirements, particularly for the sets of 25 and 50, where the average of collided requirements 

is only 37% (SD=1.41). 

 

Fig. 12. Experiment H. Number of collided requirements (y axis) for all methods evaluated: 
QMPSR, Value-Oriented, Moscow, Wiegers, Product Definition, Kano and AHP. Values 
obtained as an average over 10 executions for 25, 50, 75, 100, 125, 150, 175 and 200 

prioritized requirements (x axis), considering PEL=maximum and NPD=2. Error bars (SD) are 
included for our approach (QMPSR) to show the dispersion. 

Results obtained from the last experiment (see experiment I in Fig. 13) demonstrate that 

QMPSR also generates less collided requirements for all sets of requirements. In this 
experiment, our method only produces an average of 5.59% (SD=1.34) collided requirements, 

while the other methods obtain values reaching 63%. The Value-Oriented method appears as 

the second best, but for sets of 25, 50 and 75 requirements it shows an average of 20.44% 

(SD=8.67) collided requirements, whereas QMPSR provides an average of 6% (SD=2) collided 

requirements for the same set of input requirements. 

 



Fig. 13. Experiment I. Number of collided requirements (y axis) for all methods evaluated: 
QMPSR, Value-Oriented, Moscow and AHP. Values obtained as an average over 10 executions 

for 25, 50, 75, 100, 125, 150, 175 and 200 prioritized requirements (x axis), considering 
PEL=maximum and NPD=8. Error bars (SD) are included for our approach (QMPSR) to show 

the dispersion. 
It can be noted that in experiments G, H and I (PEL=maximum), the evaluated methods utilize 

all prioritization dimensions defined to determine the value for each requirement. Thus, the 

experiment I produces an average of 200% (SD=0) and 400% (SD=5.49) higher prioritization 

effort than in experiments G and H, respectively (see the last three rows in Table 9). In general, 

QMPSR generates less collided requirements in experiment I than in experiments G and H. For 

example, in experiment I our method produces an average of 191.78% (SD=67.12) and 
902.17% (SD=330.05) less collided requirements than in experiments G and H, respectively. 

Therefore, it can be stated that when QMPSR is arranged with a maximum PEL, there are less 

collided requirements as the NPD increases.  

We can observe that QMPSR obtains the best results in all experiments involving a random or 
maximum PEL and 8 prioritization dimensions. In fact, the average of collided requirements is 

less than 6% in these cases. Similarly, in experiments with 4 prioritization dimensions and a 

random or maximum PEL, the average of collided requirements is less than 20%. By contrast, 

QMPSR generates a greater number of collided requirements in all experiments with a minimum 

PEL, obtaining an average of around 86% collided requirements, whereas the other methods 

obtain values reaching 91%.  

Table 10 

Percentages of Requirements Collisions. Collided requirements generated by the methods 
through all the experiments. 

  

Methods  

QMPSR Value- 
Oriented MoSCoW Wiegers Product 

Definition  AHP Kano 

Mean 46.03% 68.68% 97.03% 93.93% 99.08%  87.42% 98.95% 
SD 35.19 24.6 3.68 4.15 0.49  3.45 0 
Max 87.94% 96.8% 100% 98.98% 100%  91.24% 98.95% 
Min 5.59% 32.24% 88.52% 89.05% 98.64%  82.35% 98.95% 

Finally, the results obtained provide enough evidence to answer the previously stated research 

questions: 

• RQ1: Results obtained from all experiments demonstrate that QMPSR reduces the 

number of collided requirements in comparison with all other methods. Our qualitative 

approach, based on an established relationships among the requirements’ aspects and 
elements, allows to better discriminate between requirements associated with the same 

priority elements thanks to the Association Factor previously defined, which produces 

accurate results in the final ranking of requirements.  

• RQ2: To demonstrate how our approach outperforms the rest of the methods in terms 

of requirements collisions, Table 10 summarizes the collided requirements produced by 

the compared methods through all the experiments. In general, maintaining the same 
prioritization effort for all methods in each experiment, our approach produces less 



collided requirements. The results obtained show that QMPSR outperforms all 

compared methods, obtaining an average of 46.03% (SD=35.19) collided requirements. 

This best result is followed by Value-Oriented, AHP, Wiegers, MoSCoW, Kano and 

Product Definition methods, which produce the following averages of collided 

requirements: 68.68% (SD=24.6), 87.42% (SD=3.45), 93.93% (SD=4.15), 97.03% 

(SD=3.68), 98.95% (SD=0) and 99.08% (SD=0.49), respectively. It is worth mentioning 
that the minimum value was obtained by our approach (5.59% of collided requirements) 

in experiment I where, as previously analyzed, QMPSR achieved the best results under 

adverse conditions. 

• RQ3: To demonstrate how our approach overcomes scalability problems as the number 

of input requirements increases, we analyzed the graphics obtained through all the 

experiments (Fig. 5-13). We carried out a linear regression for all the methods studied, 
obtaining satisfactory R squared values in all cases as an indicator of an accurate 

straight-line fitting (M=0.99, SD=0.01). In this way, the scalability was studied in terms 

of the slope of the resulting lines for all methods in each experiment, which indicates 

how each method behaves when the number of input requirement increases. A slope 

value closer to 1 indicates a linear growth of collisions as the number of input 

requirement increases. On the other hand, a slop value closer to 0 corresponds to the 

ideal case to prevent scalability problems, since the slope of the line (first derivative) is 

almost constant. By contrast, a slope value over 1 indicates a quick growth of collided 
requirements as the number of input requirements increases (the worst situation). Table 

11 reports the slopes of the straight-line fitting for each method through the 

experiments. As we can see, QMPSR outperforms all compared methods, obtaining an 

average slope of 0.49 (SD=0.38), which is a slope under 1 and not far away from 0. 

This best result is followed by Value-Oriented, Wiegers, AHP, Product Definition, 

MoSCoW and Kano methods, which produce the following averages slopes: 0.78 

(SD=0.2), 0.96 (SD=0.02), 0.96 (SD=0.02), 0.99 (SD=0.01), 0.99 (SD=0.01) and 0.99 
(SD=0), respectively. It is also worth mentioning the minimum slope value obtained by 

our approach in experiment I (0.05). In this experiment, the slope of the line becomes 

almost constant, which is a good indicator of how our method behaves under adverse 

conditions. 

Table 11 

Fitting-line Slopes for all Methods. Slopes of the fitting lines for the compared methods in all 
experiments.  

  Methods 
 QMPSR Value- 

Oriented MoSCoW Wiegers Product 
Definition AHP Kano 

Mean 0.49 0.78 0.99 0.96 0.99 0.96 0.99 
SD 0.38 0.2 0.01 0.02 0.01 0.02 0 
Max 0.96 0.99 1 0.99 1 0.99 0.99 
Min 0.05 0.43 0.97 0.93 0.99 0.93 0.99 

 



7. Threats to Validity 

We have presented a set of controlled experiments, where the same data were systematically 
applied to evaluate all featured algorithms. It is worth mentioning that, according to our 

experimental framework, we have applied multiple experiments that have been somehow 

replicated using different conditions before representing and analyzing the results. On the other 

hand, results were calculated as an average over 10 executions with the same data set. The 

prioritization effort calculated helps ensure reliable results per experiment.  

As for internal validity, the relationship existing among the independent variables and the 

dependent one can be considered as straightforward according to the numerical interpretation 

of the results obtained from each experiment. On the one hand, we do not foresee 

unanticipated events that affected the dependent variable. In general, changes in the dependent 

variable were due to normal developmental processes operating through the different conditions 

stated. The only issue to comment is the selection of methods for each experiment, which has 

been explicitly carried out according to the characteristics of each of them. However, we do not 
think that this would be a threat for the group design in this case and for the interpretation of the 

results either. On the other hand, and due to the fact that we are applying the experiments to 

single groups (prioritization methods), single group threats have to be considered. In this sense, 

and due to the nature of the data, we do not foresee threats related to history, instrumentation, 

statistical regression (the subjects were classified into experimental groups based on previous 

experiments), selection, mortality or ambiguity about direction of causal influence. It is worth 

mentioning, however, threats related to maturation and testing. As for maturation (the subjects 
react differently as time passes), we observe different behavior when the number of 

requirements increases. This is not specifically related to time but to the number of 

requirements provided as input in different steps of the experiment. Causes and results are 

explained in Section 6.5, where a discussion about the results obtained is presented. With 

respect to the testing threat, admittedly the experiments are repeated and the prioritization 

methods respond differently at different times. However, and due to the nature of the data and 

the fact that we have not involved humans, this threat is reduced as there is no familiarization 

with the test nor unintended learning is perceived. 

As for external validity, in our approach the number of requirements in sets, used as one of the 

independent variables, has been increased from a minimal value (25) to a maximal one (200); 

25 at a time. However, we think that this does not affect the reliability of the results, as this 

sample-size range is sufficiently representative to be considered in real settings depending on 
the project size. In addition, the trend lines included in the experimental charts clearly predict 

the behavior for broader sample-size sets. Another issue that might affect the external validity is 

the nature of the data. We have certainly used synthetic data to carry out the experiments. 

However, this ensures the right processing of the information for all the methods to be 

compared, due to the inherent heterogeneity of all of them. In general, our approach can be 

applied to any kind of context regardless of the requirements’ domain; the utilization of synthetic 

data to carry out the evaluations provides evidence of this. Although the generation of synthetic 



data in a random way can imply certain variability in the behavior / performance of the methods, 

different actions were implemented in order to address the sensitivity to input data. In the first 

place, all the instances susceptible of being generated in a random way were identified, so that 

the results could not be determined in advance in any case. Secondly, random results were 

recorded in order to be replicated in all methods. For example, the Prioritization Effort randomly 

identified for each single requirement was the same for all the methods involved. Finally, the 
results obtained correspond to an average of 10 executions for each set of requirements. All 

this helps reduce the variability in the results. Although real requirements in an industrial context 

might provide more realistic conclusions, this does not represent a definitive limit to 

generalizability, as the presented method drives the requirements prioritization through the most 

relevant aspects and elements in a software project, allowing to discern the relevance level of 

the requirements involved. This is regardless of the context and the domain of the requirements 

used. In this way, although no real requirements have been used, synthetic data helped obtain 

comparative findings to observe collided requirements, which is the main objective of the study. 
This means that most common external validity threats, such as the interaction and treatment of 

selection, setting and history, do not imply a representative threat in our approach. This is due 

to the fact that such threats can be reduced by stating and reporting the characteristics of the 

environment to show the applicability, as we have detailed in previous sections of the paper.    

With respect to construct validity, we have based our study on a single dependent variable to 

measure the collided requirements through different experiments involving different algorithms. 

The main objective was to demonstrate that QMPSR outperforms other prioritization methods in 

terms of requirements collisions and scalability when the number of input requirements 

increases. In this sense, to demonstrate the construct validity we have compared QMPSR with 

other prioritization methods under the same conditions in each experiment, obtaining results 

with statistical significance. As for the scalability testing, a linear regression obtaining 
satisfactory R squared values was used as an indicator to study the scalability in terms of the 

slope for all methods, indicating how each method behaves when the number of input 

requirements increases. This guarantees that the experiments and the statistical methods used 

help corroborate main research questions and obtain the measure pursued to compare our 

algorithm against the selected methods, which was the objective of the study. In this sense, 

there is not inadequate preoperational explication of constructs (due to the fact that the 

construct is no sufficiently defined before it is translated into measures), mono-operation bias 

(we consider more than one independent variable), confounding constructs and levels of 
constructs, interaction of different treatments, interaction of testing and treatment or restricted 

generalizability across constructs. Social threats are not applicable in this case. As for the 

mono-method bias threat, we use a single type of measure (number of collided requirements). 

The comparisons among the collided requirements on the different prioritization methods are 

based on objective and measurable values, reducing the possibility that the experiments may 

bias the measures. Measurement bias results from poorly measuring the outcome, which is not 

the case in our proposal. 



Finally, conclusion validity can be assumed by considering the statistical evidence presented 

throughout the paper. As indicated in our reflection on construct validity, the utilization of a 

single dependent variable drastically reduces specific threats related to the complexity of the 

construct. In fact, main research questions can be answered considering the results obtained 

for requirements collisions. Due to the data utilized in our experiments (random synthetic data), 

results do not fall into threats such as fishing and error rate, nor it is necessary to prove specific 
issues in this case related to heterogeneity or restriction of range. As for statistical power, we 

utilized Mann-Whitney-Wilcoxon test to evaluate the difference of the means among the number 

of collided requirements obtained by QMPSR and the other methods. The power in this test is 

high enough and the representation through graphical comparisons among the different 

prioritization methods provides evidence of the differences found. Due to this, we did not use 

assumptions on the normality of the distribution (threat on violated assumptions of statistical 

test). The random nature of the data prevents the fishing threat, whereas obtaining objective 

measures that can be repeated with the same outcome prevents the threat on reliability of 
measures.  

8. Limitations  

Our method has 5 main limitations that are described below: 

1. The definition and prioritization of an appropriate set of aspects and elements is highly 

dependent on the expertise of the corresponding decision-makers. This challenges 

requirements engineering researchers to create theories that explain and predict the 

acceptance of qualitative elements relevant to drive the requirements prioritization process. 
Similarly, it is necessary to formalize knowledge about how decision-makers have to think in 

terms of aspects, elements and requirements. In this way, a method is required to analyze in 

depth the quality of the prioritization depending on the context, in order to obtain an 

understanding of the decision-making process. This includes identifying problems that may 

affect the final classification according to small changes in the input data. 

2. The mechanism used to define the priorities of aspects and elements (ordering the aspects 

according to their priority and assigning a scale of priorities to each element) can be somewhat 

subjective and arbitrary. In fact, more elaborated and advanced mechanisms could be used to 

assign these priorities. However, the initial decision was to simplify this process, focusing the 

discussion on the identification of relationships among the elements of the project's relevant 

aspects. We aim at promoting formal argumentations regarding the different decisions made at 

each stage of the process. 

3. Another limitation to consider is related to how the priority of aspects and elements affects 

the final ranking. Notably, changes in the aspects’ priorities produce important alterations in the 

calculation of the final ranking of requirements. This implies that the use of our approach 
requires a clear definition of priorities from the initial stages of the prioritization process. 

However, evaluation scales (normalized priority) have been used to minimize this impact in the 

calculation of the final ranking. 



4. It is worth mentioning that our proposal requires the formal establishment of a minimum set of 

priorities (i.e., business value, preferences of users and customers, organizational strategy, 

etc.) to conduct the requirements prioritization process. In this way, our method is not 

appropriate for informal environments that do not require a strict management of prioritization 

settings. On the other hand, the most appropriate environments to use our proposal correspond 

to those that require a formal arrangement, or at least a formal agreement in the decisions 
made by stakeholders, resulting in a better traceability and validation of requirements with 

respect to their importance in the project.  

5. Even though our method does not present limitations regarding the number of aspects and 

qualitative elements to be managed, the definition of larger sets of aspects and elements could 
reduce the speed and effectiveness of the prioritization process. To minimize this limitation, it is 

necessary to consider the cognitive limits related to the number of aspects and elements to be 

managed during the prioritization process (Riegel & Doerr, 2015). 

9. Conclusions and Future Work 

This paper presents a qualitative method for prioritizing software requirements, considering 

aspects and elements that define the relevance of the project’s software requirements. It also 

deals with project priorities in order to verify the ranking accuracy. Our prioritization method, 
named QMPSR (Qualitative Method for Prioritizing Software Requirements), aims at driving the 

requirements prioritization process through the use of qualitative elements.  

A complete formulation of the method has been presented along the paper, including the most 

important definitions and properties. Likewise, we have presented a real application scenario 
using QMPSR, which allows to describe in detail the application of the method and the solving 

of requirements collisions. In addition, we contribute with an experimental framework to 

compare our approach with existing prioritization methods, allowing to determine similarities and 

common patterns among them. The proposed comparative framework achieves a high degree 

of standardization, homogeneity and reuse for different concepts and components that enable 

to perform comparisons and evaluations of a same feature in different prioritization methods. 

Using our experimental framework, we have defined prioritization effort and collision metrics to 

accomplish 9 experiments involving different requirements sets, comparing our approach with 6 

well-known existing prioritization methods (MoSCoW, Value-Oriented, Wiegers, Product 

Definition, AHP and Kano). The experiments allowed to carry out an in-depth analysis of 

collisions generated by the selected prioritization methods.  

Results from the experiments provided an answer to the research questions. In this way, it is 

possible to affirm that, maintaining the same prioritization effort for all methods in each 

experiment, QMPSR provides better results, proving that QMPSR uniformly outperforms all 

prioritization methods with a random or maximum PEL (Prioritization Effort Level), regardless of 
the NDP (Number of Prioritization Dimensions). Likewise, it produces less collided requirements 

as the NPD and input requirements increase. This highlights the capability of QMPSR to adapt 

to complex and dynamic environments without presenting scalability problems. 



Our paper has some implications to theory. Using Gregor's classification (Gregor, 2006), our 

proposed method can be considered as a Type V theory. That is to say, this paper describes in 

detail how to carry out the requirements prioritization process in the development of information 

systems, presenting explicit prescriptions (a novel method) to construct an artifact. Likewise, it is 

possible to mention that our proposal addresses the conditions that are suggested by (March & 

Smith, 1995; Hevner, et al., 2004) to produce a contribution of this type of knowledge. More 
specifically, the utility for a given community of users is described. The mapping of requirements 

on a scale of importance for the stakeholders is carried out in a novel way, and the results of the 

various experiments are provided to demonstrate the efficiency. 

Our proposal and its results also have implications for professionals and practitioners. Our 
approach suggests that an organization should strive to formalize the qualitative aspects and 

elements that drive the prioritization process in each project. This qualitative approach opens 

the opportunity for organizations to lead and map software projects with their strategic 

objectives. Qualitative aspects can represent different groups of interest in the organization, 

which can formalize knowledge and expert judgment to optimize the decision-making process 

(Macías 2012; Veral & Macías, 2019). 

Even in scenarios where our method generates collided requirements, qualitative elements can 

be used to efficiently support the task of establishing valuation differences among requirements. 

Likewise, qualitative elements used to prioritize requirements open up the possibility to describe 

and consider the stakeholders’ perspective in agile software development methodologies (Rojas 

& Macías, 2015). In a similar vein, qualitative elements can also be related to the sprint's 
objectives in order to help distinguish what requirements will be developed first, or even 

recalculate the priority of the requirements backlog when new ones are added or their priority 

changes over time. 

As for future work, we expect to extend our approach by proposing a formal language to 
represent, validate and semantically analyze the description of relevant aspects and elements 

of a software project. We also expect to integrate more prioritization methods in our framework, 

evaluating other metrics through new comparative experiments. We want to explore situations 

in which the priority values of two requirements are very close to each other, in order to extend 

the analysis to situations in which decision-makers need to understand the real priority 

(relevance level) of two requirements. Similarly, we will address the issue of collisions in cases 

when there is dependency between requirements, in order to improve decision-making during 

the requirements prioritization process. We also expect to carry out real case studies that 
analyze in depth and qualitatively how difficult it is for decision-makers to think in terms of the 

main characteristics of our proposal (that is, definition and prioritization of aspects and 

elements, requirements prioritization driven by the identification of relationships with elements, 

etc.). Finally, we expect to build an easy-to-use CASE tool (Macías 2008; Macías & Castells 

2001; Macías & Castells 2002), which will be used to implement QMPSR in order to 

automatically provide a semantic support, recommendations and a database of knowledge to 

carry out comparative experiments in the long-term.  
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