

 Repositorio Institucional de la Universidad Autónoma de Madrid

https://repositorio.uam.es

 Esta es la versión de autor del artículo publicado en:
 This is an author produced version of a paper published in:

Journal of Systems and Software 158 (2019): 110417

DOI: https://doi.org/ 10.1016/j.jss.2019.110417

Copyright: © 2019 Elsevier Inc. All rights reserved

 El acceso a la versión del editor puede requerir la suscripción del recurso

Access to the published version may require subscription

https://repositorio.uam.es/
https://doi.org/10.1016/j.jss.2019.110417

Toward Collisions Produced in Requirements Rankings: A Qualitative
Approach and Experimental Study

Luis A. Rojasa and José A. Macíasb

aLuis Alberto Rojas Pino. Ph.D. in Computer Science. Universidad Andres Bello.

Facultad de Ingeniería. Antonio Varas 880. 7500971 Santiago. Chile. Phone: +56 2

27708861. E-mail: luis.rojas@unab.cl.

bJosé Antonio Macías Iglesias. Ph.D. in Computer Science. Universidad Autónoma de

Madrid. Escuela Politécnica superior. Tomás y Valiente 11. 28049 Madrid. Spain.

Phone: +34 914976241. E-mail: j.macias@uam.es (corresponding author).

Abstract

Requirements prioritization is an important issue that determines the way requirements are
selected and processed in software projects. There already exist specific methods to classify

and prioritize requirements, most of them based on quantitative measures. However, most of

existing approaches do not consider collisions, which are an important concern in large-scale

requirements sets and, more specifically, in agile development processes where requirements

have to be uniquely selected for each software increment. In this paper, we propose QMPSR

(Qualitative Method for Prioritizing Software Requirements), an approach that features the

prioritization of requirements by considering qualitative elements that are related to the project’s

priorities. Our approach highlights a prioritization method that has proven to reduce collisions in
software requirements rankings. Furthermore, QMPSR improves accuracy in classification when

facing large-scale requirements sets, featuring no scalability problems as the number of

requirements increases. We formally introduce QMPSR and then define prioritization effort and

collision metrics to carry out comprehensive experiments involving different sets of

requirements, comparing our approach with well-known existing prioritization methods. The

experiments have provided satisfactory results, overcoming existing approaches and ensuring

scalability.

Keywords: Requirement Prioritization, Requirement Collision, Qualitative Prioritization Method.

1. Introduction

Requirements prioritization is a core activity intended to elicit essential requirements for

software development (Pohl & Rupp, 2011). In general, this task is manually achieved as part of

activities related to requirements engineering. Currently, even though there are several

prioritization methods to systematize this task (Achimugu, et al., 2014), there are still challenges

and lack of evidence about their validation (Daneva, et al., 2014).

Different authors (Curcio, et al., 2018; Daneva, et al., 2014; Achimugu, et al., 2014; Babar, et

al., 2011) identified specific challenges that prioritization methods should face in order to carry

out an efficient and systematic prioritization of requirements. These challenges are mainly

related to key factors such as the way a method behaves when the number of requirements

increases (i.e., scalability). It was also identified that, most of the time, results obtained from

prioritization methods do not exactly match the expected requirements ranking desired by

stakeholders. This is due to the fact that most of prioritization methods operate considering
quantitative information only, which may result in a conflict of interests with respect to the

stakeholders’ perspective (Babar, et al., 2011). At the same time, this also generates obstacles

related to the lack of accuracy on estimations (Curcio, et al., 2018).

Another important concern when classifying and prioritizing requirements automatically is the
probability of producing collisions. Collisions have been barely addressed in the prioritization of

requirements (Gaur & Soni, 2010). In general, overlapping problems, mainly related to quality

assurance fails, are much more common and easier to find in software engineering literature

(Alshazly, et al., 2014; Zalazar, et al., 2017; Zhang, et al., 2014). However, collisions comprise a

quite different and technical problem that arises from the execution of the algorithms used to

classify and prioritize software requirements. Nevertheless, in other disciplines, collisions are

meant as a well-known problem that occurs naturally in the creation of rankings and prioritized
sets of any domain using automatic algorithms (Cantu, et al., 2017; Kwon, et al., 2016; Zhou &

Liao, 2012). In the case of requirements prioritization, a collision occurs when two or more

requirements have the same prioritization value in a ranking, which implies that the automatic

prioritization method should be in charge of minimizing or resolving this problem. Requirements

collisions should not be confused with requirements conflicts or conflicting requirements, mainly

addressed by the requirements engineering (Pohl, 2010).

Requirements collisions should be addressed conveniently in order to maintain the

effectiveness of the automatic prioritization approach. In general, most of the existing

prioritization methods do not address this issue, and they experiment important collision

problems (as will be evaluated later on in Section 6) due to their quantitative nature. In this way,

it becomes important to automatically discern the relevance level (priority) in requirements sets,

enhancing prioritization for decision-making and verifying the consistency and accuracy of
assessments in rankings as the number of requirements increases.

1.1 Contributions

The aim of this paper is to address the aforementioned drawbacks by introducing a novel
prioritization method. We have considered previously published research on requirements

prioritization (see Table 1), in order to build upon the knowledge already consolidated in the

field and spotlight our contribution.

More specifically, the main contributions presented in our work are the following:

• The development of QMPSR (Qualitative Method for Prioritizing Software
Requirements). Our method drives the prioritization process through the software

project’s most relevant aspects and elements. This allows to discern the relevance level

of the requirements involved, obtaining a prioritized classification to reduce collisions.

• The development of a set of experiments for the evaluation of QMPSR. More

specifically, we have defined two metrics: prioritization effort and collision, and we
carried out 9 experiments on those metrics to assess our approach against 6 well-

known existing prioritization methods: MoSCoW (Moran, 2015), Value-Oriented (Azar,

et al., 2007), Wiegers (Wiegers & Beatty, 2013; Wiegers, 1999), Product Definition

(Fraser, 2002), AHP (Saaty, 2008; Saaty, 1980) and Kano (Kim, et al., 2017; Kano, et

al., 1984). To carry out this task, an experimental framework has been defined. The

results obtained have proven that QMPSR outperforms uniformly all the prioritization

methods featured, reducing collisions and improving the ranking accuracy in large-scale
sets of requirements without presenting scalability problems. Experiments

demonstrated that the proposed method generates less collided requirements as the

number of prioritization dimensions and requirements increase. Likewise, results

provided evidence for the validation of QMPSR.

Our approach addresses in a novel way the following issues related to requirements

prioritization that can be considered relevant in the area:

• It implicitly specifies the relevance of a set of requirements in order to reduce the
number of iterations in the negotiation phases among practitioners – i.e., requirement

engineers and stakeholders (clients and users in most cases). This is especially useful

in agile processes where quick decisions have to be made. In general, this aspect is

sometimes overlooked, and it is commonly solved in other approaches by reiterating the

evaluation or proposing an informal negotiation among decision-makers.

• While other prioritization methods are mainly focused on efficiency or capacity of finding
several solutions in Pareto’s optimal fronts, our method addresses the identification of

different levels of evaluation for the requirements that help decision-makers focus on

relevant information during the prioritization process. This allows a deeper analysis of

the different aspects to obtain the priority for a given requirement.

• It researches on requirements collisions, which have been barely tackled in the

literature about software requirements, from an experimental perspective.

Table 1

Analysis of previously published research on requirements prioritization methods.

Reference Summary of the issues addressed Issues contributed by our approach
Achimugu
et al (2014)

This work identifies the difficulties that
most proposals have when prioritizing
requirements, such as scalability and
exclusive usage of quantitative

These issues have been tackled by our
approach, increasing scalability by using
qualitative elements in order to clarify
inconsistencies and requirements

information. collisions during the prioritization process.
Pergher
and Rossi
(2013)

The scalability issue has been also
pointed out by these authors, together
with the necessity of researching
other variables related to the number
of errors that can affect the final result
of the prioritization.

Our approach investigates requirements
collisions, which have not been analyzed
previously.

Riegel and
Doerr
(2015)

Authors identified what aspects
(prioritization criteria) should be taken
into consideration in order to
determine the value of the
requirements by means of the
identification and definition of the
project’s relevant aspects.

In order to discern the relevance level of
requirements, we found out that software
projects should consider mainly, but not
exclusively, aspects such as Usability,
Strategy-Related Benefit, and Business
Value. In real settings, these aspects are
indicated in a generic way and
collectively negotiated among decision-
makers according to each project’s main
guidelines. More specifically, our
approach allows to deal with an unlimited
number of aspects that can be defined for
a concrete project under demand.

Pitangueira
et al. (2013)

This research proposes to increase
the scale of the experimentation by
using larger sets of requirements.
Authors also highlight the importance
of stakeholders participation. This
issue comprises an important factor
that can lead to have better results
closer to the stakeholders'
requirements.

Our experimental framework analyzes the
prioritization methods’ behavior in large
sets of requirements. Results
demonstrate that our method behaves
better with larger requirements sets. On
the other hand, our proposal provides
mechanisms to include the stakeholder’s
opinion through the formal definition of
aspects and elements associated with the
stakeholders’ particular interests.

Ma (2009) The author states that most medium-
sized studies utilize a subjective
improvement measure based on the
user’s perception.

We analyzed this issue in our work,
providing mechanisms to reduce
subjectivity and improve objectivity.

Herrmann
and Daneva
(2008)

This work studies the specification
and estimation of cost and benefit in
software prioritization. This work also
reports on the importance of
researching on the requirements’
dependency.

The specification and estimation of cost
and benefit have certain relationship with
our activities, as we consider aspects and
elements that will be used to prioritize the
requirements. Regarding the
requirements’ dependency, the
association factor in our approach can be
seen as a way of addressing
dependencies among requirements,
identifying the elements associated with
the requirements and providing an
association factor to weight the elements
that have more related requirements.

1.2 Methodology and Structure

The research method followed to conduct our work has been inspired by Design Science
applied to information systems (Hevner, et al., 2004), which provides a framework to present

and evaluate design-science research in the field. In this way, we followed the seven principal

guidelines stated by Design Science. First, we have created an innovative purposeful artifact

(guideline 1) based on a new algorithm for requirements prioritization in a specific problem

domain, which is the reduction of collisions (guideline 2). The solution proposed is suitable for

the problem stated (guideline 3), as it has been demonstrated through the evaluation carried

out, which provided evidence of being more effective than existing approaches (guideline 4). On

the other hand, the proposal has been formally described using mathematical descriptions and

internal properties (guideline 5), providing a search process whereby the problem space is

constructed and the prioritization mechanism is posed to find an effective solution through the

comparison with different prioritization methods (guideline 6). Finally, both the solution and
results have been communicated through this paper to a technical and managerial audience

(guideline 7).

Accordingly, this paper is organized as follows. Section 1 introduced the motivation of our work

through the problem stated and the solution proposed. Section 2 presents related work. Section
3 describes, in a formal way, QMPSR, our proposed prioritization method. Section 4 presents

an example of application through a specific scenario. Section 5 introduces a framework

intended to carry out experimental evaluations with different prioritization methods. Section 6

describes the experiments accomplished to evaluate QMPSR against other existing

prioritization methods, also reporting on the results obtained. Section 7 reports on threats to

validity (Wohlin, et al., 2012; Wieringa, 2014), while section 8 describes the limitations of our

method. Finally, section 9 presents conclusions and future work.

2. Related Work

Currently, there is a great variety of prioritization methods used in traditional and agile software

development processes (Schön, et al., 2017; Pitangueira, et al., 2015; Achimugu, et al., 2014).

Among these methods, the Analytic Hierarchy Process (AHP) method (Saaty, 2008; Saaty,
1980) is one of the most popular and cited (Achimugu, et al., 2014). AHP is used in the field of

requirements prioritization to identify the priority of each requirement through a pairwise

comparison matrix. The use of AHP is widespread due to its ease of application and structure,

as well as its intuitive way of computing (Ishizaka & Labib, 2009). This is one of the reasons

why there are several prioritization methods based on AHP.

For example, the Power Analytic Hierarchy Process (PAHPT) method (Ibrahim & Nosseir, 2016)

is based on AHP, and it deals with specific issues such as power, which is of interest for some

stakeholders. The Cost–Value method (Karlsson & Ryan, 1997) also uses AHP to prioritize

requirements based on their perceived value and the implementation cost. Similarly, the

Pairwise Analysis method (Karlsson, 1996) is based on AHP, and it prioritizes requirements by

comparing each pairs to determine the requirement to be selected. The Case-Based Ranking

(CBRank) method (Perini, et al., 2013) is also influenced by AHP, but it uses a machine learning
technique that reduces human effort in the input information required, keeping up the accuracy

of the final ranking.

In a similar way, DRank (Shao, et al., 2017), Fuzzy AHP (Lima, et al., 2011) and Hierarchy AHP
(Karlsson, et al., 1998) methods utilize AHP and machine learning techniques in order to reduce

the required number of pairwise comparisons. DRank presents improvements with respect to

CBRank, considering the stakeholders’ preferences and dependencies between requirements.

Fuzzy AHP carries out prioritization through fuzzy goals and weights for ranking requirements,

dealing with ambiguous and vague data. In the Hierarchy AHP, stakeholders propose a fixed

set of requirements, ranging from general to specific, in order to be prioritized.

Similarly, the Interactive Genetic Algorithm (IGA) method (Tonella, et al., 2013) is also based on

AHP, featuring however a genetic algorithm to reduce the number of elicited pairs and thus

obtaining the user’s knowledge about the relevance level for each pair of requirements. Finally,

the Cognitive-Driven method (Carod & Cechich, 2010) combines the utilization of AHP and

cognitive psychology to evaluate the ability of stakeholders regarding the suggested software

before the requirements prioritization process starts.

All in all, one of the most common limitations of the methods mentioned above (AHP, PAHPT,

Cost–Value, Pairwise Analysis, CBRank, DRank, Fuzzy AHP, Hierarchy AHP, IGA and

Cognitive-Driven) is that they do not specifically address requirements collisions throughout the

prioritization process. In fact, they turn out to be time-consuming for large sets of requirements,

being hardly scalable (Karlsson, et al., 1998; Hudaib, et al., 2018) in the long run as well.
Besides, most of existing methods rely on prioritization mechanisms based on individual

evaluation of requirements through pairwise comparisons. This misses a global understanding

of the project’s relevant aspects in order to guide the requirements prioritization process, also

missing qualitative elements for helping reduce requirements collisions.

Carrying on with the analysis of the prioritization approaches, the Quality Functional

Deployment (QFD) method (Franceschini, 2016; Crow, 1994) is the second most-cited

prioritization approach (Achimugu, et al., 2014). It uses a matrix to represent the stakeholder’s

needs and expectations. Another similar approach is the Correlation-Based Priority Assessment

framework (CBPA) method (Liu, et al., 2006), which utilizes a relationship matrix to prioritize

requirements coming from multiple stakeholders, thus considering inter-perspective

relationships in requirements. The Kano method (Kim, et al., 2017; Kano, et al., 1984) also
allows prioritizing requirements based on the stakeholders’ preferences. Nevertheless, it is

focused on the characteristics of the product’s differences.

Similarly, the Lanchester Theory method (Fehlmann, 2008) uses a quantitative model to drive

the requirements prioritization, where requirements are prioritized according to business
objectives and market share. Likewise, the Wiegers method (Wiegers & Beatty, 2013; Wiegers,

1999) estimates the relative priorities of requirements through a scheme based on the QFD

concept of customer value. Finally, the Product Definition method (Fraser, 2002) prioritizes

requirements taking into consideration the users’ perspective, technology and business, as well

as encouraging the involvement of stakeholders, user experience experts and technical

analysts.

In general, the aforementioned prioritization methods (QFD, CBPA, Kano, Lanchester Theory,

Wiegers and Product Definition) allow capturing diverse elements to obtain a global conception

of the project (business objectives, client expectations and stakeholder needs) to drive the

prioritization of requirements. However, such methods are mostly suitable for small sets of

requirements due to scalability problems (Avesani, et al., 2005). Similarly, they also have

limitations regarding the subjective use of ordinal scales and ratings (Achimugu, et al., 2014).

This makes it difficult to provide objective qualitative elements in order to clarify inconsistencies

and requirements collisions during the prioritization process.

On the other hand, the Binary Search Tree (BST) method (Anand & Dinakaran, 2017; Hopcroft,

1983) features a binary tree where the nodes are labeled with requirements in a hierarchical

order (parent-child relationship). Similarly, the B-Tree method (Beg, et al., 2009) also allows to

organize the requirements in nodes that are compared to establish the relevance level using a

weighted scale, thus reducing the number of comparisons.

Nevertheless, these prioritization methods (BST and B-Tree) present some limitations related to

scalability problems (Aasem, et al., 2010) and the absence of priority values for the final ranking

of requirements (Duan, et al., 2009). Additionally, the assessments achieved in requirements

prioritization are neither based on qualitative measures nor related to relevant aspects that

define the project’s priorities. This makes it difficult to analyze requirements collisions and the

precision of the final ranking.

It is also possible to identify prioritization methods specifically used in agile software

development, such as Planning Game, MoSCoW, $100 Allocation, Dot Voting, Value-Oriented,

Multi-Voting System, Round-the-Group Prioritization, Theme Screening and Weighted Criteria
Analysis (Curcio, et al., 2018; Racheva, et al., 2008; Racheva, et al., 2010). To focus on the

most important ones, the Moscow method (Moran, 2015) prioritizes those requirements with a

higher value for the system, while the Value-Oriented method (Azar, et al., 2007) evaluates

requirements according to core business and the stakeholders’ values. These prioritization

methods are oriented to small sets of requirements, facilitating their application by dynamic

development teams. Nonetheless, in most cases, these prioritization methods are mainly

focused on requirements classification, overlooking dependencies among requirements and

missing a collisions management. Moreover, they also suffer from scalability problems as the
number of requirements increases (Aasem, et al., 2010; Hatton, 2008).

In a nutshell, it is possible to affirm that existing prioritization methods do not consider nor

evaluate requirements collisions in order to validate and improve the ranking accuracy. In

addition, the project’s priorities are ignored or not formally captured to verify the consistency of
the principal concerns related to requirements. Finally, most of existing approaches are based

on quantitative measures, undergoing scalability problems in environments featuring large-scale

and dynamic-management requirements.

3. The Proposal

We propose QMPSR, a Qualitative Method for Prioritizing Software Requirements. Our

approach formalizes the assessment of requirements prioritization and focuses on the project’s

relevant aspects and elements that define the priority of such requirements. Thus, our proposal

allows a high degree of generality to deal with different types of requirements such as functional

requirements, security requirement (Vilela, et al., 2017), design restrictions, implementation

requirements, user interface requirements (Sánchez & Macías, 2019; Cayola & Macías, 2018),

physical requirements and so on.

The main motivation to create a qualitative method is to take into consideration qualitative

issues related to decisions made by participants in the requirements prioritization process. As

the literature demonstrates (Schön, et al., 2017; Pitangueira, et al., 2015; Achimugu, et al.,

2014), most of the existing proposals do not provide mechanisms to validate the different

valuations provided to each requirement during the requirements prioritization process. In this

way, the utilization of suitable aspects and qualitative elements (i.e., the requirements’

characteristics) allows to get an easy agreement among stakeholders, improving the

prioritization process and obtaining more accurate results. Likewise, our motivation is aimed at
facilitating the management of requirements, regardless of their type and size, without

presenting scalability problems. The objective is to concentrate on defining the qualitative

elements that drive the requirements prioritization process. In addition, collision problems, which

have never been addressed in previous approaches, provide motivation to carry out our

research.

Fig. 1. QMPSR phases.

QMPSR is presented in Fig. 1, including 4 main phases that aim at driving the requirements

prioritization process. The project’s relevant aspects are described and composed of a set of

elements. The requirements prioritization is materialized according to the elements of the

project’s relevant aspects. The different phases of QMPSR are described below.

3.1. Phase 1: Identify the Project’s Relevant Aspects that Lead the Assessment in the
Requirements Prioritization Process

The first phase is composed of three steps:

a) Identify and Define the Project’s Relevant Aspects

The project’s relevant aspects correspond to significant issues that drive the assessment in the

requirements prioritization. In other words, these are the issues that decision-makers consider

when prioritizing requirements that are valuable for the project.

Riegel and Doerr (2015) identified, by means of a systematic review of bibliography, what

aspects (prioritization criteria) should be taken into consideration in order to determine the

requirements’ values. Hence, the model proposed by Riegel and Doerr allows to support

identification and definition of the project’s relevant aspects. According to that, in order to

discern the relevance level of each requirement, software projects should consider mainly, but

not exclusively, aspects such as Usability, Strategy-Related Benefit, and Business Value,

among others. In a real setting, these aspects are indicated in a generic way and collectively
negotiated among decision-makers according to the main guidelines of each project. More

specifically, our approach allows to deal with an unlimited number of aspects that can be

defined for a concrete project under demand.

b) Define the Priority of the Project's Relevant Aspects

The Priority of the Project's Relevant Aspects is established in terms of the set of aspects

identified in the project, generating a ranking of them sorted by relevance. Priorities are

collectively assigned among decision-makers in order to identify preferences. Accordingly, for a
total of n relevant aspects defined in a project, the aspect with lowest relevance is assigned with

1, while the aspect with highest relevance is assigned with n.

c) Define the Normalized Priority of the Project’s Relevant Aspects

The Normalized Priority of the Project’s Relevant Aspects (P) is used to represent the priority

with regard to the total number of relevant aspects defined in the project. Furthermore, a

normalized definition is adopted to guarantee that P will take values between 0 and 1, as it is

suggested by Botta (2007).

Let 𝐴 = {𝑎%,… , 𝑎(,… , 𝑎)}	be an ordered finite collection of a project’s relevant aspects, where

𝑎(∈ 𝐴, such that k represents the priority order of importance, and n is the total number of the

project's relevant aspects {𝑛 ∈ ℕ: 𝑛 ≥ 1}. We define the Normalized Priority of a Project’s

Relevant Aspect 𝑎(as:

𝑃(𝑎() =
	𝑘	
		|𝐴|		,	

(1)

where 𝑃(𝑎7) > 𝑃(𝑎() means that aspect 𝑎7 (𝑎7 ∈ 𝐴) has a higher priority than 𝑎(.

3.2. Phase 2: Identify the Elements of the Project’s Relevant Aspects

The second phase is composed of two steps:

a) Identify and Define the Elements of the Project’s Relevant Aspects

Every project’s relevant aspect includes a set of common elements used to drive the valuation
for the requirements prioritization. In QMPSR this step consists of identifying and describing

those elements for each defined aspect. Taking into consideration the aspects identified by

Riegel and Doerr (2015), those may be refined and divided into different subcategories, allowing

to support the identification and definition of specific elements for the project’s relevant aspects.

For instance, in a software project on electronic commerce some of the elements related to the

relevant aspect of the Business Value may correspond to, among others, Sales Service

Management, Inventory Management and Additional Revenue Streams. These elements are

indicated in a generic way and collectively negotiated among decision-makers. Our approach

allows to deal with an unlimited number of elements that can be associated with aspects
defined for a concrete project.

b) Define the Priority of the Elements Assigned to each Project’s Relevant Aspect

This step consists of identifying the priority of the elements assigned to each aspect defined

above. We consider three different priorities: high, medium or low. This allows to compare the

priority among different elements of an aspect, regardless of the number of elements.

Let 𝐸 = :𝑒%%,… , 𝑒%<,… , 𝑒(%,… , 𝑒(=,… , 𝑒)%,… , 𝑒)>? be a finite collection of elements, where z, p and

q correspond to the total number of elements for aspects 𝑎%, 𝑎(and 𝑎), respectively, {𝑧, 𝑝, 𝑞 ∈

ℕ: 𝑧, 𝑝, 𝑞 ≥ 1}. The priority of the element 𝑒(= is formally defined in terms of the function	𝐿(𝑒(=),

where	𝐿: 𝐸 → {1,2,3}, each of the values having the following interpretation:

𝐿(𝑒(=) = G
1, if		element	𝑒(=	has	𝑙𝑜𝑤	priority;
2, if		element	𝑒(=	has	𝑚𝑒𝑑𝑖𝑢𝑚	priority;
3, if		element	𝑒(=	has	ℎ𝑖𝑔ℎ	priority.

 (2)

3.3. Phase 3: Requirements Prioritization Process Based on Elements of the Project's
Relevant Aspects

The third phase in QMPSR aims at obtaining the requirements prioritization through the

elements of a project’s relevant aspects. In this phase, requirements prioritization is performed

by identifying the relationships between the elements of the project’s relevant aspects and the

requirements. In this case, one element may be associated with one or many different
requirements and a requirement can be associated with one, many or no elements of the

project’s relevant aspects. Such relationships are specified and collectively negotiated among

decision-makers in order to represent the assessment of requirements prioritization. For

example, a requirement identifying a business asset ready for sale may be associated with the

element Inventory Management of the aspect Business Value. The identification of these

relationships allows decision-makers to focus on the discussion of the requirements' priority on

qualitative elements (of the project's relevant aspects) and formally argue their relevance
(priority).

Let 𝑅 = {𝑟%,… , 𝑟c, … , 𝑟d} be a finite collection of requirements, where 𝑟c is a requirement of the

project and m is the total number of requirements defined {𝑚 ∈ ℕ:𝑚 ≥ 1}. The relationship

among the requirement 𝑟c and the element 𝑒(e (𝑒(e ∈ 𝐸) is formally defined in terms of the

function 𝐶(𝑒(e, 𝑟c), where 𝐶: 𝐸𝑥𝑅 ⟶ {0,1}, each of the values having the following interpretation:

𝐶(𝑒(e, 𝑟c) = j1, if	element	𝑒(e	is	related	to	req. 𝑟c;
0, otherwise. (3)

3.4. Phase 4: Compute the Final Ranking

The last phase in QMPSR aims at generating a final ranking of requirements based on the
project’s relevant aspects. This phase includes two steps:

a) Compute the Relevance Level of the Requirements by Aspect

This step consists of identifying the relevance level of the requirements according to the

project’s aspects. The relevance level of a requirement by aspect is expressed in percentage

value and grouped by aspect. More specifically, the relevance of a particular requirement with

regard to a specific aspect corresponds to the percentage that represents the sum of the

priorities of the elements of a project’s relevant aspect associated with the requirement plus an

Association Factor (G). In this manner, G corresponds to the ratio between the number of
requirements related to the element and the maximum number of requirements that an element

of the same relevant aspect may be associated with. Thus, G allows to differentiate the

relevance level among elements with equal priority depending on the number of associated

requirements. As a result, elements with the same priority but with different number of

associated requirements have different relevance level.

In this way, the total number of requirements related to the element 𝑒(e is defined as:

𝑇𝐶(𝑒(e) =o𝐶(𝑒(e, 𝑟c),
d

cp%

 (4)

where 𝐶(𝑒(e, 𝑟c) identifies whether or not the element 𝑒(e is related to the requirement 𝑟c,
computed with the formula shown in (3), and m indicates the total number of requirements

defined. Hence, the association factor of the element 𝑒(e is defined as:

𝐺(𝑒(e, 𝑒(r) =
𝑇𝐶(𝑒(e)
𝑇𝐶(𝑒(r)

, (5)

where 𝑇𝐶(𝑒(r) is the maximum number of requirements that an element of the aspect 𝑎(has

been associated with, and 𝑒(r ∈ 𝐸, ∀𝑒(t ∈ 𝐸, 𝑇𝐶(𝑒(r) ≥ 𝑇𝐶(𝑒(t).

Fig. 2 illustrates the requirements prioritization, also showing the implication of G on the

Relevance Level of the Requirements by Aspect (𝜆). Requirements 𝑟% and 𝑟v are associated

with elements 𝑒(% and 𝑒(w, respectively, which have equal priority (high) but different 𝜆 because

G is different for each element (1 and 0.5, respectively). Thus, a greater number of

requirements associated with an element corresponds to a greater G and so its priority is

higher. It can also be observed that the requirement 𝑟w gets the highest 𝜆(𝑎(, 𝑟w). This relevance

level is justified by the association of elements 𝑒(% and 𝑒(v with the requirement 𝑟w.

Fig. 2. Influence of the Association Factor (G) on the Relevance Level of the Requirements by

Aspect (λ).

The priority of an element 𝑒(e of the project’s relevant aspect 𝑎(, associated with the

requirement 𝑟c, and taking also into consideration its G, is formally defined in terms of the

function 𝐼: 𝐸𝑥𝑅 → ℝ, depicted as follows:

𝐼(𝑒(e, 𝑟c) = j𝐿(𝑒(e) + 𝐺(𝑒(e, 𝑒(r), if	𝐶(𝑒(e, 𝑟c) = 1;
0, otherwise. (6)

Where 𝐿(𝑒(e) defines the priority function for the element 𝑒(e, as per (2), while

𝐺(𝑒(e, 𝑒(r)	defines the association factor for the element 𝑒(e, computed with the formula shown

in (5). Moreover, 𝐶(𝑒(e, 𝑟c) identifies whether or not the element 𝑒(e is related to the requirement

𝑟c, as defined in (3).

Let 𝐸(= :𝑒(%,… , 𝑒(=? be a finite sub-collection of all elements related to aspect 𝑎((𝐸(⊂ 𝐸)	,

where |𝐸(| corresponds to the total number of elements (𝑝 = |𝐸(|). Hence, the total number of

elements of the aspect 𝑎(assigned to the requirement 𝑟c is defined as:

𝑇𝐼(𝑎(, 𝑟c) =o𝐼(𝑒(e, 𝑟c)
||}|

ep%

, (7)

where |𝐸(| indicates the total number of the elements defined for the aspect 𝑎(. Finally, we

define the relevance level of the requirement 𝑟c with regard to the aspect 𝑎(in percentage terms

as:

𝜆(𝑎(, 𝑟c) =
𝑇𝐼(𝑎(, 𝑟c)

∑ ��𝐿(𝑒(e) + 𝐺(𝑒(e, 𝑒(r)�𝑇𝐶(𝑒(e)�
||}|
ep%

100, (8)

where 𝜆(𝑎(, 𝑟c) > 𝜆�𝑎(, 𝑟�� means that 𝑟c has higher priority than 𝑟� for the aspect 𝑎(. For

example, Fig. 2 allows to observe the relevance level of the requirements 𝑟%, 𝑟w and 𝑟v with

regard to the aspect 𝑎(, where these requirements obtained 29%, 46% and 25%, respectively,

as a result of the application of λ.

b) Compute the Final Ranking of Requirements According to the Relevance Level of
each Requirement by Aspect

The Final Ranking of Requirements (FR) attempts to classify the requirements considering their

relevance level for all aspects defined in the project. FR is computed through two sequential

steps: the first step aims at generating the Relevance Ranking of Requirement by Aspect (W),

and the second step attempts to weight W through P.

On the one hand, in order to have W it is necessary to compute a sorted list of requirements

according to 𝜆. In this way, the order of relevance between the requirements 𝑟c and 𝑟� with

respect to the aspect 𝑎(is formally defined in terms of the function 𝑀𝜆(𝑎(, 𝑟c, 𝑟�), where

𝑀𝜆:𝐴𝑥𝑅𝑥𝑅 ⟶ {0,1}, each of the values having the following interpretation:

𝑀𝜆(𝑎(, 𝑟c , 𝑟�) = j1, if	𝜆(𝑎(, 𝑟c) > 𝜆�𝑎(, 𝑟��;
0, otherwise.

 (9)

Where 𝜆(𝑎(, 𝑟c) defines the relevance level function for the requirement 𝑟c with regard to the

aspect 𝑎(in percentage terms, as defined in (8). In this way, the total number of requirements

that have a higher relevance level than requirement 𝑟c with respect to the aspect 𝑎(is defined

as:

𝑇𝑀𝜆(𝑎(, 𝑟c) =o𝑀𝜆�𝑎(, 𝑟c, 𝑟��,
d

�p%

 (10)

where 𝑀𝜆�𝑎(, 𝑟c , 𝑟�� defines the order of relevance for requirements 𝑟c and 𝑟� with respect to the

aspect 𝑎(, as described in (9), and m represents the total number of requirements. In this way,

we formally define the ranking of the requirement 𝑟c for the aspect 𝑎(in terms of the function W,

where 𝑊:𝐴𝑥𝑅 → {1, . . . ,𝑚}	and {𝑊(𝑎(, 𝑟c) ∈ ℕ: 1 ≤ 𝑊(𝑎(, 𝑟c) ≤ 𝑚}, so that m is the total number

of requirements of the project. This ranking is carried out by applying a set of rules conducted

by the Relevance Level of the Requirements by Aspect (𝜆):

𝑊(𝑎(, 𝑟c) = j 1, if	𝜆(𝑎(, 𝑟c) = 0;
𝑚 − 𝑇𝑀𝜆(𝑎(, 𝑟c), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒. (11)

Where 𝜆(𝑎(, 𝑟c) defines the relevance level for the requirement 𝑟c with regard to the relevant

aspect 𝑎(in percentage terms, as defined in (8).

On the other hand, 𝑇𝑀𝜆(𝑎(, 𝑟c) identifies the total number of requirements that have a higher

relevance level than requirement 𝑟c with respect to 𝑎(, computed with the formula shown in (10).

Finally, we define the final ranking of the requirement 𝑟c taking into consideration all the project's

relevant aspects as:

𝐹𝑅(𝑟c) =o𝑊(𝑎7, 𝑟c)𝑃(𝑎7)
)

7p%

, (12)

where 𝑃(𝑎7) defines the Normalized Priority function for the Project’s Relevant Aspect 𝑎7, as

per (1), and n is the total number of relevant aspects defined in the project. Finally, 𝐹𝑅(𝑟c) >

𝐹𝑅(𝑟�) means that 𝑟c has higher priority in the final ranking than 𝑟�. Nevertheless, 𝐹𝑅(𝑟c) =

𝐹𝑅(𝑟�) means that there is a requirements collision between 𝑟c and 𝑟�, which will be addressed in

detail in Section 5.

In the next section, an example of implementation of QMPSR through an application scenario is

presented, in order to provide a better understanding of the phases described above.

4. Application Scenario

The verification of QMPSR has been addressed through the application of the method to a

practical example of development. To carry out this task, the phases described in Section 3 will

be applied sequentially.

4.1. General Guidelines

The application chosen to carry out the verification of our approach is a web-based learning

management system intended for academic use. The objective of this application is to carry out

the main processes of enrollment, management and monitoring of university courses. Likewise,

the final users of this information system are students, instructors and administrative staff of a

given university. In this way, it is required the implementation of a web application with the

following features:

• Instructors and administrators can create, edit and consult the courses.

• Instructors and students can deal with the courses in an integrated environment.

• Instructors can create and edit evaluation activities for each course.

• Students can interact with evaluation activities for each course.

• Administrators can configure the profiles of both students and instructors.

• Administrators can manage course enrollment.

According to the general guidelines outlined above, the requirements for this information system
are presented in Table 2.

Table 2

Requirements for the system proposed.

R Requirements
𝑟% Create and configure courses included in the university curricula.
𝑟w Manage courses in an integrated environment.
𝑟v Create and edit assessment activities.
𝑟� Configure the students and instructors’ profiles.
𝑟� Manage the enrollment of students in different courses.
𝑟� Link and provide documents in different formats, associated with the courses.
𝑟� Consult one course’s events and tasks.
𝑟� Check the information about the students’ progress.
𝑟� Allow to review the results of the assessment activities and notify about the required

cycles.
𝑟%� Allow to attach and link digital documents with assessment activities.
𝑟%% Create discussion environments for the members of the courses.
𝑟%w Provide a centralized virtual space to store and maintain digital information.
𝑟%v Create virtual classrooms that allow online teaching.
𝑟%� Allow to adapt the information system according to different profiles.

A real work team (decision-makers related to the project) has been formed to implement the

QMPSR method, in order to carry out the management of the project requirements. A total of 5

software engineers (Mage=38.8 years, SD=11.2, range=28-55 years; 80% male) participated in

the implementation of QMPSR. Participants had skills in computer science, specifically in topics

related to software-project management in agile environments and related tools.

The general guidelines, requirements and prioritization criteria proposed by (Riegel & Doerr,

2015) were the input for decision-makers to work collectively and collaboratively by themselves

in the requirements prioritization, carrying out the different phases of QMPSR presented in

Section 3.

4.2.1. Phase 1: Identify the Project’s Relevant Aspects that Lead the Assessment in the
Requirements Prioritization Process

This initial task helps identify the relevant aspects of the project – i.e., aspects have to be

defined and ranked by relevance. In addition, standardized priority for each relevant aspect has

to be calculated (see Section 3.1). This task is collectively negotiated among decision-makers

according to the project’s main guidelines and requirements.

Table 3

Relevant aspects of the learning management system.

Aspects (A) Priority Normalized Priority (𝑷(𝒂))
Usability 3 1
Content 2 0.66
Business Value 1 0.33

The result of this task is presented in Table 3. As it can be seen, Usability, Content and

Business Value aspects have been defined to formally consider the priorities related to end
users, the information architecture and the project itself, respectively, during the prioritization

process. These aspects have been selected and prioritized due to the type of application

domain (academic environment), where these aspects result more relevant than, for example,

the cost of implementing the project, the risk of carrying it out or the expected economic benefit.

As mentioned above, Riegel & Doerr (2015) provide a set of aspects that can be considered to

support this task.

On the other hand, Usability, Content and Business Value aspects have a priority of 3, 2 and 1,

respectively, where 3 (Usability) indicates the most important priority and 1 (Business Value) the

least important one. According to that, these three aspects have a normalized priority (P) of 1,

0.66 and 0.33, respectively, as defined in formula (1). Thus, the requirements prioritization

process would be mainly driven by the preferences related to the final users of the project

(Usability). In this way, the output of this task is the prioritized set of relevant aspects of the
learning management system, as specified in Table 3.

4.2.2. Phase 2: Identify the Elements of the Project’s Relevant Aspects

This task consists in identifying and prioritizing the elements related to the aspects stated in the
previous task. This task is also collectively negotiated among decision-makers according to the

main guidelines, requirements and relevant aspects of the project provided above. Table 4

shows the resulting elements identified for each relevant aspect of the project.

Table 4

Elements for the relevant aspects of the learning management system.

Aspects
(A)

Elements
(E)

Priority Priority
(𝑳(𝒆𝒌𝒑))

Usability Adaptability. High 3
Ease of learning. High 3
Content accessibility. High 3
Reduced cognitive burden. Medium 2
Error tolerance. Low 1
Ease of remembrance. High 3

Content Personal information of students. Medium 2
Content of knowledge units. High 3
Personal information of instructors. Low 1
Communications between students and instructors. Medium 2
Preferences of the students. High 3
Description of knowledge units. High 3
Feedback of evaluation activities. High 3
Registration of student activities. High 3

Business
Value

Manage the students’ progress. Medium 2
Manage the students’ enrollment. High 3
Monitor the students’ learning process. High 3
Manage knowledge units. High 3
Organize the storage of information. Medium 2
Coordinate composition of knowledge units. High 3

As well as aspects, elements were selected and prioritized according to their relevance for the

web-based environment proposed. For instance, for the Usability aspect, the element “Ease of

learning” was defined, with the objective of formally considering the importance of providing an

effective interaction with the system. In fact, this element is given a higher priority than the

element “Error tolerance” (High and Low, respectively). As mentioned above, the aspects

identified by Riegel & Doerr (2015) can be refined into subcategories to support their

identification and definition. These elements have been obtained and prioritized according to the

requirements and the characteristics of the project. It is worth noting that there is no direct

relationship between the proposed prioritization criteria and the aspects and elements defined,

because the latter were identified and adjusted based on the specific characteristics of the
project. However, it is possible to consider prioritization criteria, identified by Riegel & Doerr

(2015), more related to the aspects and elements defined, which correspond to Benefit and

Product / System Quality categories and their subcategories such as Business Value, Business

importance and Gain for Organization, Ease of Use / Convenience, Scalability, Sustainability of

Solution, Changeable Solution, Uniform Solution, Performance, Stability, Security, Integrity,

Availability, Testability and Accuracy, respectively.

As shown in Table 4, Usability, Content and Business Value aspects are composed of 6, 8 and

6 elements, respectively. Likewise, each element is assigned a priority (L), using the High,

Medium or Low scale, computed with the formula (2). In this way, the output of this task is the

set of elements according to the relevant aspects of the learning management system proposed

(Table 4).

4.2.3. Phase 3: Requirements Prioritization Process Based on Elements of the Project's
Relevant Aspects

Once the learning management system’s aspects and relevant elements have been identified,

the next task corresponds to the prioritization of the requirements. This task implies to identify

the relationship between the elements of the relevant aspects (see Table 4) and the
requirements (see Table 2). These relationships are collectively identified among decision-

makers according to the main guidelines, requirements and elements of the relevant aspects of

the project.

The output of this task is presented in Table 5. As it can be seen, while the first and second
columns depict the aspects and elements, respectively, the following columns represent the

project’s requirements. In this way, it is possible to identify the requirements (marked with 1)

related to each element, as defined in formula (3).

Table 5

Requirements prioritization process based on elements of the project's relevant aspects.

Aspects Elements R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14

U
sa

bi
lit

y

Adaptability. 0 1 0 0 0 0 0 0 0 0 0 0 0 0
Ease of learning. 0 1 0 0 0 0 0 0 0 0 0 0 0 0
Content accessibility. 0 0 0 1 0 0 1 1 0 0 0 0 1 1
Reduce cognitive burden. 0 0 0 0 0 0 1 0 0 0 0 0 0 0
Error tolerance. 1 0 1 0 0 1 0 0 0 1 0 0 0 0
Ease of remembrance. 0 1 0 0 0 0 0 0 0 0 0 0 0 0

C
on

te
nt

Students’ personal information. 0 0 0 1 0 0 0 0 0 0 0 0 0 0
Content of knowledge units. 0 0 0 0 0 1 0 0 0 0 0 0 0 0
Instructors’ personal information. 0 0 0 1 0 0 0 0 0 0 0 0 0 0
Communications between
students and instructors.

0 0 0 0 0 0 0 0 0 0 1 0 0 0

Students’ preferences. 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Description of knowledge units. 1 1 0 0 0 0 0 0 1 0 0 0 0 0
Feedback of evaluation activities. 0 0 1 0 0 0 0 0 1 0 0 0 0 0
Registration of student’s activities. 0 0 0 0 0 0 0 1 0 1 0 0 0 0

Bu
si

ne
ss

 V
al

ue

Manage the students’ progress. 0 1 0 0 0 0 0 0 0 0 0 0 1 0
Manage the students’ enrollment. 0 0 0 0 1 0 0 0 0 0 0 0 0 0
Monitor the students’ learning
process.

0 0 1 0 0 0 0 0 1 0 0 0 0 0

Manage knowledge units. 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Organize the storage of
information.

0 0 0 0 1 0 0 0 0 0 0 1 0 0

Coordinate composition of
knowledge units.

1 0 0 1 1 1 0 0 1 0 0 0 0 0

4.2.4. Phase 4: Compute the Final Ranking

Once the linking with the requirements has been generated among decision-makers, the last
task consists of generating the Final Ranking of Requirements (FR). This task implies

computing automatically the FR in two steps, according to the relationships previously

established (see Table 5, which is the main input for this task) and the formulas defined in

section 3.4.

This first step consists of identifying the relevance level of the requirements according to the

project’s aspects. In this way, the total number of requirements related to each element is

computed with the formula shown in (4). For example, the element “Content accessibility” of the

Usability aspect includes 5 related requirements. This element has the maximum number of

requirements that an element of the Usability aspect has been associated with. Therefore, its

Association Factor (G) is 1 according to formula (5). This allows to compute formula (6). For

instance, the priority of the previous element, associated with the requirement 𝑟�, is 4 taking into

consideration its G. However, a complete understanding of the requirements’ relevance level

also implies considering all the elements associated with each aspect, and comparing the

results with all the requirements. The above is obtained by computing the formulas (7) and (8).

Thus, the relevance level of each requirement (i.e., from 𝑟% to 𝑟%�) with regard to the Usability

aspect, obtained values of 4.62%, 24.62%, 4.62%, 10.26%, 0%, 4.62%, 15.9%, 10.26%, 0%,

4.62%, 0%, 0%, 10.26% and 10.26%, respectively, as the result of the application of Relevance

Level of the Requirements by Aspect (λ). In this way, results for requirements 𝑟% (4.62%) and 𝑟w

(24.62%) indicate that 𝑟w has higher priority than 𝑟% for the Usability aspect.

The second step is to generate the Relevance Ranking of Requirements by Aspect (W). It is
intended to weight W through P. To obtain W, the order of relevance for the requirements

related to each aspect is calculated according to formulas (9) and (10). In this way, a set of

rules conducted by λ is applied to the sorted list of requirements, as defined in (11). According

to that, the ranking of the requirements (i.e., from 𝑟% to 𝑟%�) for the Usability aspect in terms of

the function W corresponds to: 8, 14, 8, 12, 1, 8, 13, 12, 1, 8, 1, 1, 12 and 12, respectively.

Finally, the FR is generated, considering the level of relevance for each requirement by aspect

and its normalized priority (P), computed with the formula (12).

Table 6 presents the FR for the requirements of the learning management system proposed. As

it can be seen, the requirements are sorted according to their FR, calculated with the formula

(12). In this way, 𝑟w and 𝑟%w are the requirements with the highest and lowest priority,

respectively. These requirements obtain a final ranking of 24.56 and 4.3, respectively.

Table 6

Final ranking of requirements for the learning management system proposed.

ID Requirements Final
Ranking (FR)

𝑟w Manage courses in an integrated environment. 24.56
𝑟� Configure the students and instructors’ profiles. 22.89
𝑟% Create and configure courses included in the university curricula. 20.54
𝑟� Check the information about the students’ progress. 19.59

𝑟v Create and edit assessment activities. 18.23
𝑟� Link and provide documents in different formats, associated with the

courses.
16.25

𝑟%� Allow to attach and link digital documents with assessment activities. 15.59
𝑟%v Create virtual classrooms that allow online teaching. 15.3
𝑟� Allow to review the results of the assessment activities and notify

about the required cycles.
14.53

𝑟� Consult one course’s events and tasks. 13.99
𝑟%� Allow to adapt the information system according to different profiles. 12.99
𝑟� Manage the enrollment of students in different courses. 6.28
𝑟%% Create discussion environments for the members of the courses. 5.29
𝑟%w Provide a centralized virtual space to store and maintain digital

information.
4.3

It is worth noting the ability of the QMPSR prioritization method to minimize possible

requirements collisions through this application scenario. For example, requirements 𝑟v and 𝑟�

are associated with elements that have the same priority (see Table 4 and Table 5). That is,

these requirements are associated with an element of the Usability aspect with Low priority, an

element of the Content aspect with High priority, and an element of the Business Value aspect

with High priority. However, requirements 𝑟v and 𝑟� obtain different final ranking (FR) values

(18.23 and 16.25, respectively), as the Association Factor (G), computed with the formula (5), is

different for each element. It can be observed in Table 5 that the requirements 𝑟v and 𝑟� are

related to elements "Feedback of evaluation activities" and "Content of knowledge units",

respectively, both of High priority and belonging to the Content aspect. However, the element

"Feedback of evaluation activities" has a greater number of associated requirements (see Table

5), generating, as a result, a higher priority. In this way, as already mentioned in Section 3.4, an

element with a greater number of associated requirements corresponds to a greater G and,

consequently, its priority is higher. This allows to reduce collisions between requirements
associated with elements with the same priority, generating precise results in the final ranking of

requirements.

It is worth mentioning that phases 1 and 2 required the lowest and highest manual effort for
decision-makers, respectively, as they had to work collaboratively to concrete aspects and

related elements. Due to the dynamic nature of the prioritization process, some effort was also

required during the phase 3 to adjust and define elements coming from phase 2.

All in all, this application scenario is only an example to illustrate the method. In the next
section, we provide experiments, including higher sets of requirements, to evaluate QMPSR

against other existing prioritization methods and thus demonstrate the advantages of our

approach.

5. Comparative Framework for the Empirical Evaluation of Prioritization Methods

The challenge of assessing different prioritization methods can be faced in different ways. One

of the most common solutions is setting up an empirical case scenario with synthetic data and

virtual subjects (Achimugu, et al., 2014; Greer & Ruhe, 2004; Wiegers, 1999; Kaiya, et al.,

2002). This approach allows to appreciate the features of every proposal lacking, however,

implementation in a real-world project and comparative assessment of its features with other

prioritization methods. Another approach is to conduct the evaluation of prioritization methods

through experiments with real subjects by setting case studies in real-world projects (Karlsson &

Ryan, 1997; Logue & McDaid, 2008; Azar, et al., 2007). This would enable to review the results

on the characteristics of the proposals. However, one of the main problems with this approach

is the shortfall of ground truth (called true ranking in requirements prioritization), which leads to

the lack of a quantitative measure of the quality concerning the resulting priority rank (Perini, et
al., 2013).

It is worth noting that the assessment of prioritization methods is usually focused on reviewing

the results of the features without conducting a comparative analysis with other proposals.

Although there are specific researches that focus on achieving such comparative assessments
(Karlsson, et al., 1998; Alshehri & Benedicenti, 2013; Ahl, 2005), these validations put emphasis

exclusively on the analysis of the users' feedback through the utilization of subjective measures

(e.g., ease of use, reliability of results or fault tolerance). Some other approaches are based on

objective measures, but exclusively focused on the required number of decisions or time

elapsed (Berander, et al., 2006).

Perini et al. (2013) proposed simulations combining synthetic data and a case study with

stakeholders (real-world project) in order to assess the CBRank prioritization method. This was

indeed achieved using the AHP method, featuring both methods’ (CBRank and AHP) similar

characteristics (Avesani, et al., 2003). This facilitates carrying out comparative evaluations

without identifying similarities or connections with other prioritization methods.

Given the discussion in this section, it could be stated that there are no proposals on

prioritization methods that evaluate the performance of a particular feature through a

comparative analysis of its results with different methods under similar conditions in order to

discover relationships, differences or similarities in the studied approaches. The heterogeneity

of the prioritization methods, with regard to the type of configuration required for both
implementation and evaluation, makes it difficult to contrast and evaluate the same feature in

different proposals. One approach to address and drive the abovementioned drawback is to

define a comparative framework in order to determine similarities and common patterns among

prioritization methods. In fact, it is essential to compose frameworks to accomplish experiments

with different proposals under similar conditions.

Taking up such challenge, we have created a framework to carry out the comparative analysis

of prioritization methods based on specific features. This also allows to provide evidence about

the validation of the prioritization methods (Daneva, et al., 2014). In this way, a number of

prioritization methods have been selected and evaluated in our comparative framework in order

to observe and compare requirements collisions generated by each of them. Although this

measurement criterion (requirements collisions) has not been considered in previous research
studies (Daneva, et al., 2014; Berander, et al., 2006), it becomes relevant in different issues of

the requirements prioritization process. For example, a large number of requirements collisions

increases the time for decision-making and reduces the ability to discern the relevance level of

the requirements. On the other hand, a moderate number of requirements collisions allows to

minimize scalability problems, ensures the consistency of the assessments and facilitates the

accuracy of the ranking as the number of requirements increases.

Specifically, we have considered the following prioritization methods, all presented in Section 2,

in order to analyze collisions: QMPSR (our approach), MoSCoW, Value-Oriented, Wiegers,

Product Definition, AHP and Kano. These methods have been considered mainly due to their

popularity, their representativeness with respect to other methods and their facilities to fit the

guidelines defined for the comparative framework. In fact, we defined the following general

guidelines:

Common Definition of Prioritization Effort: prioritization methods use different conceptions

and judgments on how the requirements prioritization should be accomplished. Consequently,

the first step required to obtain a comparative framework is the creation of a common definition

of what is understood as prioritization effort. Firesmith (2004) argues that prioritization

dimensions are the factors that influence the priority of a requirement. According to Berander

and Andrews (2005), requirements can be prioritized along many different, related and even
opposite prioritization dimensions (e.g., importance, business value, penalty, cost, time, and

risk). According to that, we consider prioritization effort as the establishment of the relevance

level (e.g., a numerical scale between 0 and 10) of a requirement in a particular prioritization

dimension (e.g., business value). It should be noted that the prioritization dimensions in QMPSR

correspond to the project’s relevant aspects (𝐴), and the establishment of the relevance level is

carried out through the association between elements and aspects of a given requirement – i.e.,

𝐶(𝑒(e, 𝑟c) = 1, where v corresponds to the total number of elements for aspect 𝑎(and 𝑟c is a

requirement of the project. This is what we call NPD (Number of Prioritization Dimensions) in

our approach, which can be defined as follows: 𝑁𝑃𝐷 = {1,… , 𝜄}, i.e., a finite collection of

prioritization dimensions, such that 𝜄 is the total number of the prioritization dimensions

{𝜄 ∈ ℕ: 𝜄 ≥ 1}.

Coordination of Prioritization Effort: together with getting a common understanding of what

priority effort is, it is also required to accomplish different experiments with methods using the

same level of prioritization effort in order to obtain comparable results. Therefore, the second

step needed to compose a comparative framework consists of having a coordinated generation

of the prioritization effort between different methods.

Definition of Prioritization Effort Levels: in the last step needed to compose a comparative

framework, different Prioritization Effort Levels (PEL) are defined with the aim of accomplishing

experiments with prioritization methods having different performance conditions. PEL value

allows to identify and select the number of the prioritization dimensions that will be used to

prioritize requirements. In our framework, PEL can be defined as follows: 𝑃𝐸𝐿 =

{𝑟𝑎𝑛𝑑𝑜𝑚,𝑚𝑖𝑛𝑖𝑚𝑢𝑚,𝑚𝑎𝑥𝑖𝑚𝑢𝑚}, i.e.,	a finite collection of prioritization dimensions. For a random

PEL, the NPD for each of the requirements is randomly identified (between 1 and the total NPD

value defined for each experiment). For a minimum PEL, only one of the prioritization

dimensions defined for each experiment is randomly identified. Finally, for a maximum PEL, all

prioritization dimensions defined are selected for each requirement.

These general guidelines allow to arrange different experimental scenarios for each

prioritization method in a coordinated manner. Fig. 3 presents the different arrangements that

our comparative framework is able to configure.

Fig. 3. Different arrangements for the experiments in terms of PEL and NPD.

As we can see in Fig. 3, 9 different experimental scenarios have been created, varying the PEL

(random, minimum and maximum) and the NPD (2, 4 and 8). Thus, each experiment is

identified by the PEL and NPD used together with a unique identifier (a capital letter between A

and I). Examples of random PEL can be observed in experiments A, B and C appearing in Fig.

3, where 4, 2 and 8 prioritization dimensions, respectively, are defined. Similarly, examples of

minimum PEL can be observed in experiments D, E and F appearing in Fig. 3, where 4, 2 and 8
prioritization dimensions, respectively, are defined. Finally, experiments G, H and I, appearing in

Fig. 3, present examples of maximum PEL, using 4, 2 and 8 prioritization dimensions,

respectively. These experiments will be explained in detail in the next section, featuring formal

terminology (Wohlin, et al., 2012).

6. An Experiment on Collided Requirements

As previously mentioned, a requirements collision corresponds to the situation where two or

more requirements have the same prioritization value in a final ranking. A large number of

collided requirements negatively affects the requirements prioritization process, as it does not

allow to establish differences to prioritize accordingly. Therefore, few collided requirements

provide a discernible and accurate ranking. We can identify collided requirements as follows:

Given a final ranking for a set of requirements R, called FR as defined in (12), the collision of

requirement 𝑟c (where 𝑟c ∈ 𝑅) is formally defined in terms of the function	𝐾(𝑟c), where 𝐾:𝑅 →

{0,1}, each of the values having the following interpretation:

𝐾(𝑟c) = j1, if	∃𝑟� ≠ 𝑟c, 𝑟� ∈ 𝑅, 𝐹𝑅(𝑟�) = 𝐹𝑅(𝑟c);
0, otherwise. (13)

In this way, the total number of collided requirements in a particular final ranking is defined as:

𝑇𝐾 =o𝐾(𝑟c)
d

cp%

, (14)

where 𝐾(𝑟c) defines the collision function for the requirement 𝑟c, as described in (13), and m

represents the total number of requirements.

6.1. Configuration Parameters for the Assessment of the Prioritization Methods

Table 7 identifies some characteristics of the selected prioritization methods to be used through

the experiments (Sections 6.2 and 6.3, respectively).

Table 7

Description of the Methods. Summary of the main characteristics of the prioritization methods.

The Prioritization Dimensions column in Table 7 is used to identify the prioritization dimensions

that each method features. As we can see, prioritization dimensions such as aspects,

stakeholders, core business and requirements correspond to those used in QMPSR, MoSCoW,

Value-Oriented and AHP methods, respectively. Similarly, benefit, penalty, cost and risk
correspond to the 4 prioritization dimensions used in the Wiegers method, while technical,

creative, user and business correspond to the 4 prioritization dimensions used in the Product

Definition method. Finally, present and absent correspond to the 2 prioritization dimensions

used in the Kano method.

Methods Prioritization
Dimensions Size Maximum NPD Type of Evaluation of the

Prioritization Dimension
QMPSR Aspects Adaptable unlimited Elements of each

Aspects
MoSCoW Stakeholders Adaptable unlimited Must, should, could,

won't
Value-
Oriented

Core business Adaptable unlimited 0-10

Wiegers Benefit, penalty,
cost, risk

Semi-
adaptable

4 0-9

Product
Definition

Technical,
creative, user,
business

Semi-
adaptable

4 0-5

AHP Requirements Semi-
adaptable

Total number of
requirements

1-9

Kano Present, absent Non-
adaptable

2 Like, expect, don 't care,
live with, dislike

The Size column in Table 7 is used to identify whether the methods allow to adapt the NPD to

prioritize each requirement. The adaptable value indicates that the method allows to adapt the

NPD, whereas the semi-adaptable value illustrates that the method defines a maximum NPD

that can be adapted for a specific use. Likewise, the non-adaptable value indicates that the

method defines a fixed NPD to prioritize each requirement. As shown in Table 7, QMPSR,

MoSCoW and Value-Oriented methods allow to adapt the NPD. On the other hand, Wiegers,
Product Definition and AHP methods define a maximum NPD (e.g., the Wiegers method defines

4 prioritization dimensions – i.e., benefit, penalty, cost and risk). However, they allow to adapt

the NPD value. In the case of AHP, it allows the application of the local stopping rule (Harker,

1987), facilitating to adapt pairwise comparisons of requirements. Finally, Kano method defines

a fixed NPD to prioritize each requirement.

The Maximum NPD column in Table 7 is used to identify whether the methods define a

maximum NPD. As shown in Table 7, QMPSR, MoSCoW and Value-Oriented methods do not

define a maximum NPD (unlimited). In contrast, the set of prioritized requirements corresponds

to the maximum NPD defined in the AHP method (the total number of requirements is used as

the local stopping rule, in order to identify an acceptable error threshold). Finally, the maximum

NPD defined in Wiegers and in Product Definition methods corresponds to 4, while in Kano
method it corresponds to 2.

Finally, the Type of Evaluation of the Prioritization Dimension column in Table 7 is used to

identify how the requirements prioritization is carried out in each method. As shown in Table 7,

Value-Oriented, Wiegers, Product Definition and AHP methods achieve the requirements
prioritization by allocating a numerical scale in each prioritization dimension (e.g., the Value-

Oriented method uses a numerical scale between 0 and 10 to prioritize each core business

prioritization dimension). On the other hand, Moscow and Kano methods carry out the

requirements prioritization by considering a qualitative scale in each prioritization dimension

(e.g., the MoSCoW method uses the scale must, should, could, and won't to prioritize each

stakeholder). Finally, our approach (QMPSR) accomplishes the prioritization through the

association between elements and aspects (prioritization dimensions) for each requirement, as

explained in Section 3.

6.2. Research Questions and Experimental Development

In order to follow Design Science, our evaluation and validation have been inspired by the

guidelines reported by Hevner et al. (2004) and Wieringa (2009). Our research is based on a

problem-driven investigation focused on both goal and impact. In this way, we want to diagnose
collision problems in other requirements prioritization algorithms and investigate the impact of

the realized implementation (i.e., our approach). For this reason, we have tested our approach

through an experimental evaluation, using simulations with synthetic data.

A set of research questions are stated to conduct the work. These will be answered through the

results obtained:

• RQ1: To what extent does the newly proposed method QMPSR reduce the amount of

requirements collisions?

• RQ2: To what extent does QMPSR outperform other prioritization methods in terms of
requirements collisions?

• RQ3: Can QMPSR overcome scalability problems as the number of input requirements

increases?

A set of 9 experiments was accomplished to assess the prioritization methods in order to

investigate the collisions generated under different performance conditions.

Independent variables considered for the experiments were: Prioritization Method (QMPSR,
MoSCoW, Value-Oriented, Wiegers, Product Definition, AHP, Kano), PEL (random, minimum or

maximum), NPD (2, 4, 8) and the input sets of synthetic requirements (25, 50, 75, 100, 125,

150, 175 and 200). On the other hand, the dependent variable was the number of collided

requirements.

Table 8

Experiment identifiers and the methods evaluated in each experiment.

Methods Experiment Identifier
A B C D E F G H I

QMPSR x x x x x x x x x
Value-Oriented x x x x x x x x x
MoSCoW x x x x x x x x x
Wiegers x x x x x x
Product Definition x x x x x x
Kano x
AHP x x x x

Table 8 depicts the methods evaluated in each experiment. QMPSR, MoSCoW and Value-

Oriented methods were evaluated in all experiments due to their capability to adapt the NPD

(see the Size column in Table 7). On the other hand, Wiegers and Product Definition methods
were only evaluated in experiments involving an NPD of 2 or 4 – i.e., these methods were not

evaluated in experiments with an NPD higher than its Maximum NPD (see the Maximum NPD

column in Table 7). Likewise, the AHP method was only evaluated in experiments A, C, G, H

and I as it allows to semi-adapt the NPD to use (see the Size column in Table 7). However, we

evaluated AHP in experiments where the total prioritization effort, computed with the formula

shown in (16), was twice higher than the number of prioritized requirements. Finally, the Kano

method was only evaluated in experiment H, as this method defines a fixed NPD (present and

absent) to prioritize each requirement (see the Prioritization Dimensions column in Table 7).

6.3. Experiments Execution

Experiments were accomplished applying the Experiment Execution Process illustrated in Fig.

4. The Experiment Execution Process was carried out through the execution of different

algorithms. These algorithms were created according to the general guidelines of the
comparative framework and the configuration parameters for each method. This means that

there was no interaction with people in the requirements specification process or in the

prioritization.

The input data for each experiment were: a value for PEL (random, minimum or maximum), a

value for NPD (2, 4 or 8) and sets of synthetic requirements (25, 50, 75, 100, 125, 150, 175 and

200). Synthetic data have been used in the specification of requirements, without considering a

level of abstraction or domain as commonly recommended (Lauesen, 2002) and used in

practice, in order to concentrate on the performance of the methods analyzed. The output was

the final ranking of requirements for each prioritization method from which we obtain the number

of collided requirements. For example, every method involved in experiment A (see Table 8)

performed the Experiment Execution Process with PEL=random and NPD=4 for every set of
requirements. Steps followed in the Experiment Execution Process are described below (see

Fig. 4):

Fig. 4. Experiment Execution Process.

1. Calculate Prioritization Effort: the first step of the process aims at establishing, for every

set of requirements, the Prioritization Effort for each single Requirement (PER), in order to

produce the same level of prioritization effort in all evaluated methods, obtaining comparable

results for each of them.

For each set of requirements, PER is identified in accordance with PEL and NPD, both defined

for each experiment (see Fig. 3). In this way, given an experiment that considers a particular

PEL and an NPD, the prioritization effort for the requirement 𝑟c	 is defined formally in terms of

the function 𝑃𝐸𝑅: 𝑅𝑥𝑁𝑃𝐷𝑥𝑃𝐸𝐿 → ℕ as:

𝑃𝐸𝑅(𝑟c, 𝑁𝑃𝐷, 𝑃𝐸𝐿) = �
𝛽(1, 𝑁𝑃𝐷), if	𝑃𝐸𝐿	is	𝑟𝑎𝑛𝑑𝑜𝑚;

1, if	𝑃𝐸𝐿	is	𝑚𝑖𝑛𝑖𝑚𝑢𝑚;
𝑁𝑃𝐷, if	𝑃𝐸𝐿	is	𝑚𝑎𝑥𝑖𝑚𝑢𝑚.

 (15)

Where 𝛽(1, 𝑁𝑃𝐷) is a random number in the interval (𝜅,	𝜂) (𝜅 ∈ 𝑍 and 𝜂 ∈ 𝑄), formally defined in

terms of the function 𝛽, where 𝛽: 𝑍𝑥𝑄 → ℕ and {𝜅, 𝜂 ∈ ℕ: 𝜅 ≤ 𝜂}, and being Z and Q collections

of natural numbers (𝑍,𝑄 ⊂ ℕ). More specifically, in this case 𝛽 identifies a random number

ranged between 1 and NPD. Hence, 𝑃𝐸𝑅(𝑟c, 𝑁𝑃𝐷, 𝑃𝐸𝐿) > 𝑃𝐸𝑅(𝑟�, 𝑁𝑃𝐷,𝑃𝐸𝐿) means that 𝑟c

involves a higher number of selected prioritization dimensions than 𝑟� to determine its relevance

level. It is worth noting that the PER value is the same in all experiments with a maximum or

minimum PEL – i.e., PER=PEL in experiments with a maximum PEL, while PER=1 in

experiments with a minimum PEL. By way of example, in Fig. 3 the prioritization effort for

requirements 𝑟% and 𝑟w in experiment C (where PEL=random and NPD=8) is 2 and 4,

respectively, as a result of the application of PER on both requirements.

In this way, given an experiment, the total prioritization effort for a given set of requirements is

defined as:

𝑇𝑃𝐸𝑅(𝑁𝑃𝐷, 𝑃𝐸𝐿) =o𝑃𝐸𝑅(𝑟c, 𝑁𝑃𝐷, 𝑃𝐸𝐿)
d

cp%

, (16)

where 𝑃𝐸𝑅(𝑟c, 𝑁𝑃𝐷, 𝑃𝐸𝐿) defines the prioritization effort function for the requirement 𝑟c, as

defined in (15), and m represents the total number of requirements included in a specific set.

2. Generate Requirements Prioritization: the second step in the process aims at establishing
the requirements prioritization for each method.

First, a PER random number, as defined in (15), is calculated for each requirement. Let 𝑃𝐷 =
{𝑑%,… , 𝑑(,… , 𝑑¤¥¦}	be a finite collection of prioritization dimensions, where 𝑑(∈ 𝑃𝐷, such that

NPD is the total number of prioritization dimensions defined in the experiment. The relationship

between the requirement 𝑟c and the prioritization dimension 𝑑(is formally defined in terms of the

function 𝜙(𝑑(, 𝑟c), where 𝜙: 𝑃𝐷	𝑥	𝑅 ⟶ {0,1}, each of the values having the following

interpretation:

𝜙(𝑑(, 𝑟c) = j1, if	𝑑(is	selected	for	𝑟c;
0, otherwise. (17)

In this way, given an experiment that considers a particular PEL and an NPD, the total number

of prioritization dimensions randomly selected for the requirement 𝑟c (𝑇𝜙) is defined as:

𝑇𝜙(𝑟c, 𝑁𝑃𝐷, 𝑃𝐸𝐿) =

⎩
⎪
⎨

⎪
⎧o𝜙(𝑑7, 𝑟c)
¤¥¦

7p%

, if	𝑃𝐸𝐿	is	𝑟𝑎𝑛𝑑𝑜𝑚;

1, if	𝑃𝐸𝐿	is	𝑚𝑖𝑛𝑖𝑚𝑢𝑚;
𝑁𝑃𝐷, if	𝑃𝐸𝐿	is	𝑚𝑎𝑥𝑖𝑚𝑢𝑚.

 (18)

Where 𝜙(𝑑7, 𝑟c) identifies whether or not the prioritization dimension 𝑑7 is selected for the

requirement 𝑟c, computed with the formula shown in (17). Furthermore, the function

𝑇𝜙(𝑟c ,𝑁𝑃𝐷,𝑃𝐸𝐿) also has the following property Tϕ(r¯, 𝑁𝑃𝐷,𝑃𝐸𝐿) = PER(r¯, 𝑁𝑃𝐷, 𝑃𝐸𝐿). Hence,

∀(𝑟c , 𝑟�) ∈ 𝑅, 𝑇𝜙(𝑟c ,𝑁𝑃𝐷, 𝑃𝐸𝐿) > 𝑇𝜙�𝑟�,𝑁𝑃𝐷, 𝑃𝐸𝐿� means that the requirement 𝑟c has a higher

number of selected prioritization dimensions than requirement 𝑟�.

Secondly, the requirements prioritization is carried out by assigning an evaluation in each

selected prioritization dimension for each requirement. Thus, the prioritization is randomly

accomplished in accordance with the evaluation type of each method (see the Type of

Evaluation of the Prioritization Dimension column of Table 7).

Initially, the evaluation type for each method needs to be represented in order to achieve the

requirements prioritization. Let 𝑆 = :𝑙%, … , 𝑙>,… , 𝑙7? be a finite collection of rating-scale values,

where 𝑙´ ∈ 𝑆, such that h is the total number of the rating-scale values considered. The

evaluation of the requirement 𝑟c in the prioritization dimension 𝑑(, using the rating scale S, is

formally defined in terms of the function 𝜓(𝑑(, 𝑟c), where 𝜓:𝑃𝐷	𝑥	𝑅 ⟶ 𝑆, defined as follows:

𝜓(𝑑(, 𝑟c) = j𝑙¶(%,|·|), if	𝜙(𝑑(, 𝑟c) = 1;
0, otherwise.

 (19)

Where 𝛽(1, |𝑆|) identifies a random number ranged between 1 and the total number of the

rating-scale values considered (|𝑆|), 𝑙¶(%,|·|) ∈ 𝑆, and 𝜙(𝑑(, 𝑟c) identifies whether or not the

prioritization dimension 𝑑(is selected for the requirement 𝑟c, computed with the formula shown

in (17). Thus, if the prioritization dimension 𝑑(is selected for the requirement 𝑟c – i.e.,

𝜙(𝑑(, 𝑟c) = 1, then the prioritization of the requirement 𝑟c in the prioritization dimension 𝑑(is

carried out by randomly assigning a rating-scale value (𝑙¶(%,|·|)). Otherwise, the prioritization of

the requirement 𝑟c in the prioritization dimension 𝑑(is not carried out because the prioritization

dimension 𝑑(is not selected for the requirement 𝑟c – i.e., 𝜙(𝑑(, 𝑟c) = 0.

For instance, as shown in Table 7, for the Value-Oriented method a numerical scale between 0

and 10 – i.e., 𝑆 = {0…10}, will be randomly used for each selected prioritization dimension (in

this case: core business) in order to prioritize each requirement. In QMPSR, by contrast,
prioritization is carried out through the association between the requirement’s elements and

aspects. In this way, QMPSR requires the following steps to prioritize each requirement:

a) Identification of the Number of Elements for each Selected Aspect: In this case,

PD=A, thus for each aspect 𝑑((𝑑(∈ 𝐴), the number of elements associated with the

requirement 𝑟c is randomly arranged. The number of elements associated with aspect

𝑑(for the requirement 𝑟c is formally defined in terms of the function 𝐸𝑁(𝑟c, 𝑑(), where

𝐸𝑁:𝑅𝑥𝐴 → ℕ, defined as follows:

𝐸𝑁(𝑟c , 𝑑() = j𝛽(1, |𝐸(|), if	𝜙(𝑑(, 𝑟c) = 1;
0, otherwise. (20)

Where 𝛽(1, |𝐸(|) identifies a random number ranged between 1 and the total number of

elements of the aspect 𝑑((|𝐸(|), and 𝜙(𝑑(, 𝑟c) identifies whether or not the aspect 𝑑(is

selected for the requirement 𝑟c, as defined in (17). Thus, if the aspect 𝑑(is selected for

the requirement 𝑟c – i.e., 𝜙(𝑑(, 𝑟c) = 1, then a random number of elements for the aspect

𝑑(– i.e., 𝛽(1, |𝐸(|) is identified for the requirement 𝑟c. Otherwise, no element for the

aspect 𝑑(is identified for the requirement 𝑟c. Hence, 𝐸𝑁(𝑟c, 𝑑() > 𝐸𝑁(𝑟c , 𝑑7) means that

the aspect 𝑑(has a higher number of elements associated with the requirement 𝑟c than

the aspect 𝑑7 (where 𝑑7 ∈ 𝐴).

b) Association between the Elements of a Selected Aspect and the Requirements: A

random number of EN, as defined in (20), associated with aspect 𝑑(is calculated for

the requirement 𝑟c. The total number of elements of the aspect 𝑑(randomly associated

with the requirement 𝑟c is defined formally in terms of the function 𝑇𝜏(𝑟c , 𝑑(), where

𝑇𝜏: 𝑅𝑥𝐴 ⟶ ℕ, as follows:

𝑇𝜏(𝑟c, 𝑑() =o𝐶(𝑒(e, 𝑟c)
||}|

ep%

, (21)

where 𝐶(𝑒(e, 𝑟c) identifies whether or not the element 𝑒(e is related to the requirement 𝑟c,

as defined in (3), and 𝐸(is a finite sub-collection of all elements related to aspect 𝑎(

(𝐸(⊂ 𝐸). Thus |𝐸(| identifies the total number of elements of the aspect 𝑑(. The

function 𝑇𝜏(𝑟c, 𝑑() also has the following property: 𝑇𝜏(𝑟c, 𝑑() = 𝐸𝑁(𝑟c, 𝑑(). Finally,

𝑇𝜏(𝑟c, 𝑑() > 𝑇𝜏�𝑟�, 𝑑(� means that requirement 𝑟c has a higher number of associated

elements for the aspect 𝑑(than requirement 𝑟�.

3. Compute the Final Ranking: the final step in the experiment execution is to compute the

final ranking of requirements for each prioritization method. Each method applies its own

procedure. For instance, QMPSR computes the final ranking of requirements according to the

formula shown in (12).

In general, each of the 7 methods involved was executed performing the Experiment Execution

Process 10 times with the same data set. As a result, the methods included in experiment A

(see the first two columns in Table 8) performed the Experiment Execution Process 80 times (10

executions for each of the 8 sets of requirements, with a PEL=random and NPD=4). Thus,

experiment A generated a total number of 480 executions of the Experiment Execution Process
for the 6 prioritization methods considered.

6.3.1 Synthetic Data

We utilized two different kinds of synthetic data. The first one corresponds to synthetic data that

do not vary through the different experiments and have a general specification. This is the case

for the sets of requirements (25, 50, 75, 100, 125, 150, 175 and 200), which do not include any

abstraction or domain information in its specification. They were used in all the experiments.

This is also the case for the Number of Prioritization Dimension (NPD) for each requirement in

experiments where there was a maximum Prioritization Effort Level (PEL).

On the other hand, we also utilized synthetic data generated in a random manner, according to

a previously defined set of possibilities (specified in Table 7). For example, the Prioritization

Effort for each single Requirement (PER) was randomly defined according to the Number of

Prioritization Dimension (NPD) for each experiment. Another example is the Type of Evaluation
of the Prioritization Dimension, which was randomly assigned to each selected requirement. It is

worth noting that the synthetic data generated in a random way can imply certain variability in

the behavior / performance of the methods. However, these data were also necessary to

produce scenarios with different conditions to evaluate the prioritization methods.

In this way, different actions were implemented in order to address the sensitivity to input data.

In the first place, all the instances susceptible of being generated in a random way were

identified, so that the results could not be determined in advance in any case. Secondly,

random results were recorded in order to be replicated for all methods. For example, the

Prioritization Effort randomly identified for each single requirement was the same for all the

methods involved. Finally, the results obtained correspond to an average of 10 executions for

each set of requirements. All this helps reduce the variability in the results.

6.4 Results and Discussion

Table 9 reports the total prioritization effort, computed with the formula shown in (16), generated

in each experiment for sets of 25, 50, 75, 100, 125, 150, 175 and 200 requirements. The total

prioritization effort represents the number of evaluations carried out for each set of input

requirements in order to determine their relevance level.

Table 9
Prioritization Effort.

Experi-
ments

Number of Prioritized Requirements
25 50 75 100 125 150 175 200

A 65 129 191 246 311 374 435 501
B 38 74 112 149 191 223 264 300
C 112 220 336 458 551 672 781 898
D 25 50 75 100 125 150 175 200
E 25 50 75 100 125 150 175 200
F 25 50 75 100 125 150 175 200
G 100 200 300 400 500 600 700 800
H 50 100 150 200 250 300 350 400
I 200 400 600 800 1000 1200 1400 1600

As a result of the aforementioned executions, collided requirements can be represented and

analyzed.

On the one hand, Fig. 5, 6 and 7 represent the results obtained from experiments A, B and C,

respectively. Each graph shows the number of collided requirements (y-axis), computed via

(14), for 25, 50, 75, 100, 125, 150, 175 and 200 prioritized requirements (x-axis). The collided

requirements were calculated as an average over 10 executions considering a random PEL and

prioritization dimensions configured with different sizes (4, 2 and 8 prioritization dimensions in

experiments A, B and C, respectively). In addition, and for the case of our approach (QMPSR),

we included SD error bars for each execution in order to observe the obtained dispersion.

Besides, Mann-Whitney-Wilcoxon test was used to evaluate the difference of the means among
the number of collided requirements obtained by QMPSR and the other methods in experiments

A, B and C. In all calculations, the p-value was < 0.05, indicating that the differences obtained

were statistically significant.

On the other hand, Fig. 8, 9 and 10 present the results obtained from experiments D, E and F,

respectively. Each graph shows the number of collided requirements (y-axis), computed via

(14), for 25, 50, 75, 100, 125, 150, 175 and 200 prioritized requirements (x-axis). The number of

collided requirements was calculated as an average over 10 executions considering a minimum

PEL and prioritization dimensions configured with different sizes (4, 2 and 8 prioritization

dimensions in experiments D, E and F, respectively). In these experiments, Mann-Whitney-
Wilcoxon test was not calculated because they produced a similar number of collided

requirements for each set of requirements. Furthermore, and for the case of our approach, we

incorporated SD error bars for each execution with the purpose of examining the dispersion.

Finally, Fig. 11, 12 and 13 illustrate the results obtained from experiments G, H and I,
respectively. Each graph presents the number of collided requirements (y-axis), calculated via

(14), for 25, 50, 75, 100, 125, 150, 175 and 200 prioritized requirements (x-axis). The number of

collided requirements was computed as an average over 10 executions considering a maximum

PEL and prioritization dimensions configured with different sizes (4, 2 and 8 prioritization

dimensions in experiments G, H and I, respectively). Moreover, and for the case of QMPSR, we

incorporated SD error bars for each execution with the aim of examining the dispersion. In

addition, Mann-Whitney-Wilcoxon test was used to evaluate the difference of the means among
the number of collided requirements obtained by QMPSR and the other methods in experiments

G, H and I. In all calculations, the p-value was < 0.05, indicating that the differences obtained

were statistically significant.

6.5 Discussion

In this section, the results of the 9 experiments are analyzed and discussed in order to find

answers to research questions RQ1, RQ2 and RQ3.

Experiments A, B and C provide evidence of the collisions generated by each prioritization

method with a random PEL and an NPD of 4, 2 and 8, respectively. In all cases, QMPSR
outperforms all compared methods.

Fig. 5. Experiment A. Number of collided requirements (y axis) for all methods evaluated:
QMPSR, Value-Oriented, Moscow, Wiegers, Product Definition and AHP. Values obtained as

an average over 10 executions for 25, 50, 75, 100, 125, 150, 175 and 200 prioritized

requirements (x axis), considering PEL=random and NPD=4. Error bars (SD) are included for
our approach (QMPSR) to show the dispersion.

On the one hand, results obtained from experiment A (see Fig. 5) show that QMPSR generates

less collided requirements for all sets of input requirements. Even when the Value-Oriented

method obtains the second-best performance (- i.e., QMPSR and Value-Oriented methods

obtain an average of 19.9% (SD=3.82) and 51.41% (SD=19.31) collided requirements,

respectively), the difference with respect to the QMPSR increases when the number of input

requirements grows.

On the other hand, experiment B (see Fig. 6) also provides evidence of less collided

requirements for all sets of requirements. Only for sets of 25 and 50 requirements the Value-

Oriented method gets similar results to QMPSR. Here the difference of collided requirements

between Value-Oriented and QMPSR methods is less than 12%, while for all other sets of
requirements the number of collided requirements is greater than 35%.

Fig. 6. Experiment B. Number of collided requirements (y axis) for all methods evaluated:
QMPSR, Value-Oriented, Moscow, Wiegers and Product Definition. Values obtained as an

average over 10 executions for 25, 50, 75, 100, 125, 150, 175 and 200 prioritized requirements
(x axis), considering PEL=random and NPD=2. Error bars (SD) are included for our approach

(QMPSR) to show the dispersion.
It is also worth mentioning that in experiment B, Value-Oriented and QMPSR methods generate
a higher number of collided requirements than in experiment A. In experiment B, Value-Oriented

and QMPSR methods produce an average of 64.00% (SD=41.88) and 182.83% (SD=33.83)

higher collided requirements than in experiment A. However, the experiment B involves a lower

number of evaluations for each set of input requirements than in experiment A – i.e., the

experiment B presents an average of 40.41% (SD=1.34) less prioritization effort than the

experiment A (see the first two rows in Table 9). Thus, these methods are affected by a reduced

NPD and prioritization effort (number of evaluations for each set of input requirements),

especially QMPSR. However, QMPSR generates less collided requirements in all sets of
requirements in comparison with all other methods.

With respect to experiment C (see Fig. 7), QMPSR generates less collided requirements than in

experiments A and B. For instance, in experiment C, QMPSR generates an average of 5.81%

(SD=1.07) collided requirements, while in experiments A and B it obtains 19.9% (SD=3.82) and
55.22% (SD=7.97), respectively. It is also worth noting that in experiment C the average of

prioritization effort is 77.57% (SD=4.85) and 198.05% (SD=5.49) higher than in experiments A

and B, respectively (see the first three rows in Table 9). Therefore, it can be stated that when

QMPSR is evaluated with a random PEL, it generates less collided requirements as the NPD

and prioritization effort increase. Similarly, we can also see that differences among QMPSR and

the rest of methods increase when considering larger sets of requirements.

Fig. 7. Experiment C. Number of collided requirements (y axis) for all methods evaluated:
QMPSR, Moscow, Value-Oriented and AHP. Values obtained as an average over 10 executions

for 25, 50, 75, 100, 125, 150, 175 and 200 prioritized requirements (x axis), considering
PEL=random and NPD=8. Error bars (SD) are included for our approach (QMPSR) to show the

dispersion.
As for experiments D, E and F (see Fig. 8, 9 and 10, respectively), they allow to analyze the

collisions generated in prioritization methods when there is a minimum PEL and an NPD of 4, 2

and 8, respectively. Results obtained from these experiments provide empirical evidence that all
compared methods generate a similar number of collided requirements for each set of

requirements.

Fig. 8. Experiment D. Number of collided requirements (y axis) for all methods evaluated:
QMPSR, Moscow, Value-Oriented, Wiegers and Product Definition. Values obtained as an

average over 10 executions for 25, 50, 75, 100, 125, 150, 175 and 200 prioritized requirements
(x axis), considering PEL=minimum and NPD=4. Error bars (SD) are included for our approach

(QMPSR) to show the dispersion.
In experiment D (see Fig. 8), QMPSR obtains an average of 87.94% (SD=17.8) collided

requirements, while the other methods obtain values reaching 91%. Similarly, in experiment E

(see Fig. 9), QMPSR produces an average of 84.59% (SD=5.91) collided requirements,

whereas values obtained from the other methods reach 96%. However, as we can see in Fig. 9,

QMPSR generates less collided requirements in all sets of requirements. Finally, in experiment

F (see Fig. 10), our method generates an average of 86.92% (SD=16.97) collided requirements,

while the other methods get values reaching 96%. In this experiment, QMPSR stands out above

the others for the set of 25 requirements, producing 48% collided requirements, while other

methods get values reaching 92%.

Fig. 9. Experiment E. Number of collided requirements (y axis) for all methods evaluated:
QMPSR, Value-Oriented, Moscow, Wiegers and Product Definition. Values obtained as an

average over 10 executions for 25, 50, 75, 100, 125, 150, 175 and 200 prioritized requirements
(x axis), considering PEL=minimum and NPD=2. Error bars (SD) are included for our approach

(QMPSR) to show the dispersion.
One of the factors that may explain the above-described results is the considerable decrease of

prioritization effort in experiments D, E and F. Although experiments A, B and C include the

same NPD as experiments D, E and F, respectively, experiments D, E and F include only one of

the prioritization dimensions defined (randomly identified) to determine the value for each

requirement – i.e., they generate less prioritization effort. For example, in experiment D,

methods generate an average of 151.98% (SD=4.99) less prioritization effort than in experiment

A. Similarly, in experiments E and F, methods generate an average of 50.08% (SD=1.67) and
347.26% (SD=5.54) less prioritization effort than in experiments B and D, respectively. In

addition, the configuration in these experiments (using only one of the dimensions to prioritize

the requirements) is not representative of a real setting, as methods are not provided with

enough information to distinguish the relevance of each requirement, and thus hinder the

identification of collided requirements.

Fig. 10. Experiment F. Number of collided requirements (y axis) for all methods evaluated:
QMPSR, Value-Oriented and Moscow. Values obtained as an average over 10 executions for

25, 50, 75, 100, 125, 150, 175 and 200 prioritized requirements (x axis), considering
PEL=minimum and NPD=8. Error bars (SD) are included for our approach (QMPSR) to show

the dispersion.
Regarding experiments G, H and I (see Fig. 11, 12 and 13, respectively), they provide the

collisions produced by each prioritization method with a maximum PEL and an NPD of 4, 2 and

8, respectively. Results obtained from these experiments strongly demonstrate that QMPSR

outperforms the other compared methods.

Fig. 11. Experiment G. Number of collided requirements (y axis) for all methods evaluated:
QMPSR, Value-Oriented, Moscow, Wiegers, Product Definition and AHP. Values obtained as

an average over 10 executions for 25, 50, 75, 100, 125, 150, 175 and 200 prioritized
requirements (x axis), considering PEL=maximum and NPD=4. Error bars (SD) are included for

our approach (QMPSR) to show the dispersion.
Results from experiment G (see Fig. 11) show that QMPSR generates less collided

requirements for all sets of requirements. Moreover, the QMPSR provides less collided
requirements in comparison with other experiments including the same NPD (4) but different

PEL (random and minimum in experiments A and D, respectively). For example, in experiment

G, QMPSR generates an average of 4.33% and 36.63% less collided requirements than in

experiments A and D, respectively. However, the experiment G involves a higher number of

selected prioritization dimensions to determine the value for each requirement than in

experiments A and D – i.e., the experiment G generates an average of 58.79% (SD=3.11) and

300% (SD=0) higher prioritization effort than in experiments A and D, respectively (see the first,

fourth and seventh row in Table 9). Therefore, it can be confirmed that when QMPSR is

evaluated with 4 prioritization dimensions considering different PEL values, there are less

collided requirements as the prioritization effort increases.

Likewise, results from experiment H (see Fig. 12) illustrate that QMPSR, Value-Oriented and

AHP methods obtain a similar number of collided requirements for the set of 25 prioritized

requirements. Nevertheless, the difference in the number of collided requirements between

QMPSR and the other methods becomes more explicit as the number of input requirements

increases. In this experiment, QMPSR produces less collided requirements for all sets of

requirements, particularly for the sets of 25 and 50, where the average of collided requirements

is only 37% (SD=1.41).

Fig. 12. Experiment H. Number of collided requirements (y axis) for all methods evaluated:
QMPSR, Value-Oriented, Moscow, Wiegers, Product Definition, Kano and AHP. Values
obtained as an average over 10 executions for 25, 50, 75, 100, 125, 150, 175 and 200

prioritized requirements (x axis), considering PEL=maximum and NPD=2. Error bars (SD) are
included for our approach (QMPSR) to show the dispersion.

Results obtained from the last experiment (see experiment I in Fig. 13) demonstrate that

QMPSR also generates less collided requirements for all sets of requirements. In this
experiment, our method only produces an average of 5.59% (SD=1.34) collided requirements,

while the other methods obtain values reaching 63%. The Value-Oriented method appears as

the second best, but for sets of 25, 50 and 75 requirements it shows an average of 20.44%

(SD=8.67) collided requirements, whereas QMPSR provides an average of 6% (SD=2) collided

requirements for the same set of input requirements.

Fig. 13. Experiment I. Number of collided requirements (y axis) for all methods evaluated:
QMPSR, Value-Oriented, Moscow and AHP. Values obtained as an average over 10 executions

for 25, 50, 75, 100, 125, 150, 175 and 200 prioritized requirements (x axis), considering
PEL=maximum and NPD=8. Error bars (SD) are included for our approach (QMPSR) to show

the dispersion.
It can be noted that in experiments G, H and I (PEL=maximum), the evaluated methods utilize

all prioritization dimensions defined to determine the value for each requirement. Thus, the

experiment I produces an average of 200% (SD=0) and 400% (SD=5.49) higher prioritization

effort than in experiments G and H, respectively (see the last three rows in Table 9). In general,

QMPSR generates less collided requirements in experiment I than in experiments G and H. For

example, in experiment I our method produces an average of 191.78% (SD=67.12) and
902.17% (SD=330.05) less collided requirements than in experiments G and H, respectively.

Therefore, it can be stated that when QMPSR is arranged with a maximum PEL, there are less

collided requirements as the NPD increases.

We can observe that QMPSR obtains the best results in all experiments involving a random or
maximum PEL and 8 prioritization dimensions. In fact, the average of collided requirements is

less than 6% in these cases. Similarly, in experiments with 4 prioritization dimensions and a

random or maximum PEL, the average of collided requirements is less than 20%. By contrast,

QMPSR generates a greater number of collided requirements in all experiments with a minimum

PEL, obtaining an average of around 86% collided requirements, whereas the other methods

obtain values reaching 91%.

Table 10

Percentages of Requirements Collisions. Collided requirements generated by the methods
through all the experiments.

Methods

QMPSR Value-
Oriented MoSCoW Wiegers Product

Definition AHP Kano

Mean 46.03% 68.68% 97.03% 93.93% 99.08% 87.42% 98.95%
SD 35.19 24.6 3.68 4.15 0.49 3.45 0
Max 87.94% 96.8% 100% 98.98% 100% 91.24% 98.95%
Min 5.59% 32.24% 88.52% 89.05% 98.64% 82.35% 98.95%

Finally, the results obtained provide enough evidence to answer the previously stated research

questions:

• RQ1: Results obtained from all experiments demonstrate that QMPSR reduces the

number of collided requirements in comparison with all other methods. Our qualitative

approach, based on an established relationships among the requirements’ aspects and
elements, allows to better discriminate between requirements associated with the same

priority elements thanks to the Association Factor previously defined, which produces

accurate results in the final ranking of requirements.

• RQ2: To demonstrate how our approach outperforms the rest of the methods in terms

of requirements collisions, Table 10 summarizes the collided requirements produced by

the compared methods through all the experiments. In general, maintaining the same
prioritization effort for all methods in each experiment, our approach produces less

collided requirements. The results obtained show that QMPSR outperforms all

compared methods, obtaining an average of 46.03% (SD=35.19) collided requirements.

This best result is followed by Value-Oriented, AHP, Wiegers, MoSCoW, Kano and

Product Definition methods, which produce the following averages of collided

requirements: 68.68% (SD=24.6), 87.42% (SD=3.45), 93.93% (SD=4.15), 97.03%

(SD=3.68), 98.95% (SD=0) and 99.08% (SD=0.49), respectively. It is worth mentioning
that the minimum value was obtained by our approach (5.59% of collided requirements)

in experiment I where, as previously analyzed, QMPSR achieved the best results under

adverse conditions.

• RQ3: To demonstrate how our approach overcomes scalability problems as the number

of input requirements increases, we analyzed the graphics obtained through all the

experiments (Fig. 5-13). We carried out a linear regression for all the methods studied,
obtaining satisfactory R squared values in all cases as an indicator of an accurate

straight-line fitting (M=0.99, SD=0.01). In this way, the scalability was studied in terms

of the slope of the resulting lines for all methods in each experiment, which indicates

how each method behaves when the number of input requirement increases. A slope

value closer to 1 indicates a linear growth of collisions as the number of input

requirement increases. On the other hand, a slop value closer to 0 corresponds to the

ideal case to prevent scalability problems, since the slope of the line (first derivative) is

almost constant. By contrast, a slope value over 1 indicates a quick growth of collided
requirements as the number of input requirements increases (the worst situation). Table

11 reports the slopes of the straight-line fitting for each method through the

experiments. As we can see, QMPSR outperforms all compared methods, obtaining an

average slope of 0.49 (SD=0.38), which is a slope under 1 and not far away from 0.

This best result is followed by Value-Oriented, Wiegers, AHP, Product Definition,

MoSCoW and Kano methods, which produce the following averages slopes: 0.78

(SD=0.2), 0.96 (SD=0.02), 0.96 (SD=0.02), 0.99 (SD=0.01), 0.99 (SD=0.01) and 0.99
(SD=0), respectively. It is also worth mentioning the minimum slope value obtained by

our approach in experiment I (0.05). In this experiment, the slope of the line becomes

almost constant, which is a good indicator of how our method behaves under adverse

conditions.

Table 11

Fitting-line Slopes for all Methods. Slopes of the fitting lines for the compared methods in all
experiments.

 Methods
 QMPSR Value-

Oriented MoSCoW Wiegers Product
Definition AHP Kano

Mean 0.49 0.78 0.99 0.96 0.99 0.96 0.99
SD 0.38 0.2 0.01 0.02 0.01 0.02 0
Max 0.96 0.99 1 0.99 1 0.99 0.99
Min 0.05 0.43 0.97 0.93 0.99 0.93 0.99

7. Threats to Validity

We have presented a set of controlled experiments, where the same data were systematically
applied to evaluate all featured algorithms. It is worth mentioning that, according to our

experimental framework, we have applied multiple experiments that have been somehow

replicated using different conditions before representing and analyzing the results. On the other

hand, results were calculated as an average over 10 executions with the same data set. The

prioritization effort calculated helps ensure reliable results per experiment.

As for internal validity, the relationship existing among the independent variables and the

dependent one can be considered as straightforward according to the numerical interpretation

of the results obtained from each experiment. On the one hand, we do not foresee

unanticipated events that affected the dependent variable. In general, changes in the dependent

variable were due to normal developmental processes operating through the different conditions

stated. The only issue to comment is the selection of methods for each experiment, which has

been explicitly carried out according to the characteristics of each of them. However, we do not
think that this would be a threat for the group design in this case and for the interpretation of the

results either. On the other hand, and due to the fact that we are applying the experiments to

single groups (prioritization methods), single group threats have to be considered. In this sense,

and due to the nature of the data, we do not foresee threats related to history, instrumentation,

statistical regression (the subjects were classified into experimental groups based on previous

experiments), selection, mortality or ambiguity about direction of causal influence. It is worth

mentioning, however, threats related to maturation and testing. As for maturation (the subjects
react differently as time passes), we observe different behavior when the number of

requirements increases. This is not specifically related to time but to the number of

requirements provided as input in different steps of the experiment. Causes and results are

explained in Section 6.5, where a discussion about the results obtained is presented. With

respect to the testing threat, admittedly the experiments are repeated and the prioritization

methods respond differently at different times. However, and due to the nature of the data and

the fact that we have not involved humans, this threat is reduced as there is no familiarization

with the test nor unintended learning is perceived.

As for external validity, in our approach the number of requirements in sets, used as one of the

independent variables, has been increased from a minimal value (25) to a maximal one (200);

25 at a time. However, we think that this does not affect the reliability of the results, as this

sample-size range is sufficiently representative to be considered in real settings depending on
the project size. In addition, the trend lines included in the experimental charts clearly predict

the behavior for broader sample-size sets. Another issue that might affect the external validity is

the nature of the data. We have certainly used synthetic data to carry out the experiments.

However, this ensures the right processing of the information for all the methods to be

compared, due to the inherent heterogeneity of all of them. In general, our approach can be

applied to any kind of context regardless of the requirements’ domain; the utilization of synthetic

data to carry out the evaluations provides evidence of this. Although the generation of synthetic

data in a random way can imply certain variability in the behavior / performance of the methods,

different actions were implemented in order to address the sensitivity to input data. In the first

place, all the instances susceptible of being generated in a random way were identified, so that

the results could not be determined in advance in any case. Secondly, random results were

recorded in order to be replicated in all methods. For example, the Prioritization Effort randomly

identified for each single requirement was the same for all the methods involved. Finally, the
results obtained correspond to an average of 10 executions for each set of requirements. All

this helps reduce the variability in the results. Although real requirements in an industrial context

might provide more realistic conclusions, this does not represent a definitive limit to

generalizability, as the presented method drives the requirements prioritization through the most

relevant aspects and elements in a software project, allowing to discern the relevance level of

the requirements involved. This is regardless of the context and the domain of the requirements

used. In this way, although no real requirements have been used, synthetic data helped obtain

comparative findings to observe collided requirements, which is the main objective of the study.
This means that most common external validity threats, such as the interaction and treatment of

selection, setting and history, do not imply a representative threat in our approach. This is due

to the fact that such threats can be reduced by stating and reporting the characteristics of the

environment to show the applicability, as we have detailed in previous sections of the paper.

With respect to construct validity, we have based our study on a single dependent variable to

measure the collided requirements through different experiments involving different algorithms.

The main objective was to demonstrate that QMPSR outperforms other prioritization methods in

terms of requirements collisions and scalability when the number of input requirements

increases. In this sense, to demonstrate the construct validity we have compared QMPSR with

other prioritization methods under the same conditions in each experiment, obtaining results

with statistical significance. As for the scalability testing, a linear regression obtaining
satisfactory R squared values was used as an indicator to study the scalability in terms of the

slope for all methods, indicating how each method behaves when the number of input

requirements increases. This guarantees that the experiments and the statistical methods used

help corroborate main research questions and obtain the measure pursued to compare our

algorithm against the selected methods, which was the objective of the study. In this sense,

there is not inadequate preoperational explication of constructs (due to the fact that the

construct is no sufficiently defined before it is translated into measures), mono-operation bias

(we consider more than one independent variable), confounding constructs and levels of
constructs, interaction of different treatments, interaction of testing and treatment or restricted

generalizability across constructs. Social threats are not applicable in this case. As for the

mono-method bias threat, we use a single type of measure (number of collided requirements).

The comparisons among the collided requirements on the different prioritization methods are

based on objective and measurable values, reducing the possibility that the experiments may

bias the measures. Measurement bias results from poorly measuring the outcome, which is not

the case in our proposal.

Finally, conclusion validity can be assumed by considering the statistical evidence presented

throughout the paper. As indicated in our reflection on construct validity, the utilization of a

single dependent variable drastically reduces specific threats related to the complexity of the

construct. In fact, main research questions can be answered considering the results obtained

for requirements collisions. Due to the data utilized in our experiments (random synthetic data),

results do not fall into threats such as fishing and error rate, nor it is necessary to prove specific
issues in this case related to heterogeneity or restriction of range. As for statistical power, we

utilized Mann-Whitney-Wilcoxon test to evaluate the difference of the means among the number

of collided requirements obtained by QMPSR and the other methods. The power in this test is

high enough and the representation through graphical comparisons among the different

prioritization methods provides evidence of the differences found. Due to this, we did not use

assumptions on the normality of the distribution (threat on violated assumptions of statistical

test). The random nature of the data prevents the fishing threat, whereas obtaining objective

measures that can be repeated with the same outcome prevents the threat on reliability of
measures.

8. Limitations

Our method has 5 main limitations that are described below:

1. The definition and prioritization of an appropriate set of aspects and elements is highly

dependent on the expertise of the corresponding decision-makers. This challenges

requirements engineering researchers to create theories that explain and predict the

acceptance of qualitative elements relevant to drive the requirements prioritization process.
Similarly, it is necessary to formalize knowledge about how decision-makers have to think in

terms of aspects, elements and requirements. In this way, a method is required to analyze in

depth the quality of the prioritization depending on the context, in order to obtain an

understanding of the decision-making process. This includes identifying problems that may

affect the final classification according to small changes in the input data.

2. The mechanism used to define the priorities of aspects and elements (ordering the aspects

according to their priority and assigning a scale of priorities to each element) can be somewhat

subjective and arbitrary. In fact, more elaborated and advanced mechanisms could be used to

assign these priorities. However, the initial decision was to simplify this process, focusing the

discussion on the identification of relationships among the elements of the project's relevant

aspects. We aim at promoting formal argumentations regarding the different decisions made at

each stage of the process.

3. Another limitation to consider is related to how the priority of aspects and elements affects

the final ranking. Notably, changes in the aspects’ priorities produce important alterations in the

calculation of the final ranking of requirements. This implies that the use of our approach
requires a clear definition of priorities from the initial stages of the prioritization process.

However, evaluation scales (normalized priority) have been used to minimize this impact in the

calculation of the final ranking.

4. It is worth mentioning that our proposal requires the formal establishment of a minimum set of

priorities (i.e., business value, preferences of users and customers, organizational strategy,

etc.) to conduct the requirements prioritization process. In this way, our method is not

appropriate for informal environments that do not require a strict management of prioritization

settings. On the other hand, the most appropriate environments to use our proposal correspond

to those that require a formal arrangement, or at least a formal agreement in the decisions
made by stakeholders, resulting in a better traceability and validation of requirements with

respect to their importance in the project.

5. Even though our method does not present limitations regarding the number of aspects and

qualitative elements to be managed, the definition of larger sets of aspects and elements could
reduce the speed and effectiveness of the prioritization process. To minimize this limitation, it is

necessary to consider the cognitive limits related to the number of aspects and elements to be

managed during the prioritization process (Riegel & Doerr, 2015).

9. Conclusions and Future Work

This paper presents a qualitative method for prioritizing software requirements, considering

aspects and elements that define the relevance of the project’s software requirements. It also

deals with project priorities in order to verify the ranking accuracy. Our prioritization method,
named QMPSR (Qualitative Method for Prioritizing Software Requirements), aims at driving the

requirements prioritization process through the use of qualitative elements.

A complete formulation of the method has been presented along the paper, including the most

important definitions and properties. Likewise, we have presented a real application scenario
using QMPSR, which allows to describe in detail the application of the method and the solving

of requirements collisions. In addition, we contribute with an experimental framework to

compare our approach with existing prioritization methods, allowing to determine similarities and

common patterns among them. The proposed comparative framework achieves a high degree

of standardization, homogeneity and reuse for different concepts and components that enable

to perform comparisons and evaluations of a same feature in different prioritization methods.

Using our experimental framework, we have defined prioritization effort and collision metrics to

accomplish 9 experiments involving different requirements sets, comparing our approach with 6

well-known existing prioritization methods (MoSCoW, Value-Oriented, Wiegers, Product

Definition, AHP and Kano). The experiments allowed to carry out an in-depth analysis of

collisions generated by the selected prioritization methods.

Results from the experiments provided an answer to the research questions. In this way, it is

possible to affirm that, maintaining the same prioritization effort for all methods in each

experiment, QMPSR provides better results, proving that QMPSR uniformly outperforms all

prioritization methods with a random or maximum PEL (Prioritization Effort Level), regardless of
the NDP (Number of Prioritization Dimensions). Likewise, it produces less collided requirements

as the NPD and input requirements increase. This highlights the capability of QMPSR to adapt

to complex and dynamic environments without presenting scalability problems.

Our paper has some implications to theory. Using Gregor's classification (Gregor, 2006), our

proposed method can be considered as a Type V theory. That is to say, this paper describes in

detail how to carry out the requirements prioritization process in the development of information

systems, presenting explicit prescriptions (a novel method) to construct an artifact. Likewise, it is

possible to mention that our proposal addresses the conditions that are suggested by (March &

Smith, 1995; Hevner, et al., 2004) to produce a contribution of this type of knowledge. More
specifically, the utility for a given community of users is described. The mapping of requirements

on a scale of importance for the stakeholders is carried out in a novel way, and the results of the

various experiments are provided to demonstrate the efficiency.

Our proposal and its results also have implications for professionals and practitioners. Our
approach suggests that an organization should strive to formalize the qualitative aspects and

elements that drive the prioritization process in each project. This qualitative approach opens

the opportunity for organizations to lead and map software projects with their strategic

objectives. Qualitative aspects can represent different groups of interest in the organization,

which can formalize knowledge and expert judgment to optimize the decision-making process

(Macías 2012; Veral & Macías, 2019).

Even in scenarios where our method generates collided requirements, qualitative elements can

be used to efficiently support the task of establishing valuation differences among requirements.

Likewise, qualitative elements used to prioritize requirements open up the possibility to describe

and consider the stakeholders’ perspective in agile software development methodologies (Rojas

& Macías, 2015). In a similar vein, qualitative elements can also be related to the sprint's
objectives in order to help distinguish what requirements will be developed first, or even

recalculate the priority of the requirements backlog when new ones are added or their priority

changes over time.

As for future work, we expect to extend our approach by proposing a formal language to
represent, validate and semantically analyze the description of relevant aspects and elements

of a software project. We also expect to integrate more prioritization methods in our framework,

evaluating other metrics through new comparative experiments. We want to explore situations

in which the priority values of two requirements are very close to each other, in order to extend

the analysis to situations in which decision-makers need to understand the real priority

(relevance level) of two requirements. Similarly, we will address the issue of collisions in cases

when there is dependency between requirements, in order to improve decision-making during

the requirements prioritization process. We also expect to carry out real case studies that
analyze in depth and qualitatively how difficult it is for decision-makers to think in terms of the

main characteristics of our proposal (that is, definition and prioritization of aspects and

elements, requirements prioritization driven by the identification of relationships with elements,

etc.). Finally, we expect to build an easy-to-use CASE tool (Macías 2008; Macías & Castells

2001; Macías & Castells 2002), which will be used to implement QMPSR in order to

automatically provide a semantic support, recommendations and a database of knowledge to

carry out comparative experiments in the long-term.

Acknowledgments

This work was partially supported by the Spanish Government [grant number RTI2018-095255-
B-I00] and the Madrid Research Council [grant number P2018/TCS-4314]. Likewise, the

authors would like to thank Milda Galkute, from the Pontifical Catholic University of Chile, for

reviewing the early version of the paper and suggesting useful improvements. Last but not least,

authors would like to thank the reviewers for their work, which was essential to improve this

paper.

References

Aasem, M., Ramzan, M. & Jaffar, A., 2010. Analysis and optimization of software requirements

prioritization techniques. In 2010 International Conference on Information and Emerging

Technologies. Karachi, IEEE, pp. 1-6.

Achimugu, P., Selamat, A. & Ibrahim, R., 2014. A Preference Weights Model for Prioritizing

Software Requirements. In Computational Collective Intelligence. Technologies and

Applications. Springer International Publishing, pp. 30-39.

Achimugu, P., Selamat, A., Ibrahim, R. & Mahrin, M., 2014. A systematic literature review of

software requirements prioritization research. Information and Software Technology,

56(6), pp. 568-585.

Ahl, V., 2005. An experimental comparison of five prioritization methods: Investigating ease of

use, accuracy and scalability.

Alshazly, A. A., Elfatatry, A. M. & Abougabal, M. S., 2014. Detecting defects in software

requirements specification. Alexandria Engineering Journal, 53(3), pp. 513-527.

Alshehri, S. & Benedicenti, L., 2013. Ranking Approach for the User Story Prioritization

Methods. Journal of Communication and Computer, Volumen 10, pp. 1465-1474.

Anand, R. & Dinakaran, M., 2017. Multi-voting and binary search tree-based requirements

prioritisation for e-service software project development. Electronic Government, an

International Journal, 13(2), pp. 111-128.

Avesani, P., Bazzanella, C., Perini, A. & Susi, A., 2005. Facing scalability issues in

requirements prioritization with machine learning techniques. In 13th IEEE International

Conference on Requirements Engineering (RE'05), pp. 297-305.

Avesani, P., Ferrari, S. & Susi, A., 2003. Case-based ranking for decision support systems. In

International Conference on Case-Based Reasoning. Springer Berlin Heidelberg, pp. 35-

49.

Azar, J., Smith, R. K. & Cordes, D., 2007. Value-oriented requirements prioritization in a small
development organization. IEEE Software, Jan.-Feb., 24(1), pp. 32-37.

Babar, M., Ramzan, M. & Ghayyur, S., 2011. Challenges and future trends in software

requirements prioritization. In International conference on computer networks and

information technology, IEEE, pp. 319-324.

Beg, M., Verma, R. & Joshi, A., 2009. Reduction in number of comparisons for requirement

prioritization using B-Tree. In 2009 IEEE International Advance Computing Conference,

pp. 340-344.

Berander, P. & Andrews, A., 2005. Requirements prioritization. In Engineering and managing

software requirements. Springer Berlin Heidelberg, pp. 69-94.

Berander, P., Khan, K. & Lehtola, L., 2006. Towards a research framework on requirements
prioritization. SERPS, Issue 6, pp. 18-19.

Botta, R. a. B. A., 2007. A prioritization process. Engineering Management Journal, 19(4), pp.

20-27.

Cantu, M., Kim, J. & Zhang, X., 2017. Finding hash collisions using MPI on HPC

clusters. In 2017 IEEE Long Island Systems, Applications and Technology Conference,

IEEE, pp. 1-6.

Carod, N. & Cechich, A., 2010. Cognitive-driven requirements prioritization: A case study. In 9th

IEEE International Conference on Cognitive Informatics (ICCI'10), IEEE, pp. 75-82.

Cayola, L. & Macías, J.A., 2018. Systematic Guidance on Usability Methods in User-Centered

Software Development. Information and Software Technology, 97, pp. 163-175.

Crow, K., 1994. Customer-focused development with QFD. In annual quality congress

proceedings-american society for quality control, pp. 839-839.

Curcio, K., Navarro, T., Malucelli, A. & Reinehr, S., 2018. Requirements engineering: A

systematic mapping study in agile software development. Journal of Systems and

Software, 139, pp. 32-50.

Daneva, M., Damian, D., Marchetto, A. & Pastor, O., 2014. Empirical research methodologies

and studies in Requirements Engineering: How far did we come?. Journal of Systems

and Software, 95, pp. 1-9.

Duan, C., Laurent, P., Cleland-Huang, J. & Kwiatkowski, C., 2009. Towards automated

requirements prioritization and triage. Requirements engineering, 14(2), pp. 73-89.

Fehlmann, T. M., 2008. New lanchester theory for requirements prioritization. In 2008 Second

International Workshop on Software Product Management. Barcelona, Catalunya, IEEE,

pp. 35-40.

Fernandes, J. & Machado, R., 2016. Requirements Negotiation and Prioritisation. In

Requirements in Engineering Projects. Springer, pp. 119-136.

Firesmith, D., 2004. Prioritizing Requirements. Journal of Object Technology, 3(8), pp. 35-48.

Franceschini, F., 2016. Advanced quality function deployment. CRC Press.

Fraser, J., 2002. Setting Priorities. AdaptivePath Essays.

Gaur, V. & Soni, A., 2010. An integrated approach to prioritize requirements using fuzzy

decision making. International Journal of Engineering and Technology, 2(4), p. 320.

Greer, D. & Ruhe, G., 2004. Software release planning: an evolutionary and iterative approach.

Information and Software Technology, 46(4), pp. 243-253.

Gregor, S., 2006. The nature of theory in information systems. MIS quarterly, pp. 611-642.

Harker, P., 1987. Incomplete pairwise comparisons in the analytic hierarchy process.

Mathematical Modelling, 9(11), pp. 837-848.

Hatton, S., 2008. Choosing the right prioritisation method. In 19th Australian Conference on

Software Engineering (aswec 2008). Perth, WA, IEEE, pp. 517-526.

Herrmann, A., & Daneva, M., 2008. Requirements prioritization based on benefit and cost

prediction: an agenda for future research. In 2008 16th IEEE International Requirements

Engineering Conference, pp. 125-134. IEEE.

Hevner, A. R., March, S. T., Park, J. & Ram, S., 2004. Design science in information systems

research. Management Information Systems Quarterly, 28(1), pp. 75-105.

Hopcroft, J. E., 1983. Data structures and algorithms. Boston(MA): Addison-Wesley.

Hudaib, A., Masadeh, R., Qasem, M. & Alzaqebah, A., 2018. Requirements Prioritization

Techniques Comparison. Modern Applied Science, 12(2), p. 62.

Ibrahim, O. & Nosseir, A., 2016. A Combined AHP and Source of Power Schemes for

Prioritising Requirements Applied on a Human Resources. In MATEC Web of

Conferences, Volumen 76, p. 04016.

Ishizaka, A. & Labib, A., 2009. Analytic hierarchy process and expert choice: Benefits and

limitations. OR Insight, 22(4), pp. 201-220.

Kaiya, H., Horai, H. & Saeki, M., 2002. AGORA: Attributed goal-oriented requirements analysis
method. In Proceedings IEEE joint international conference on requirements engineering,

IEEE, pp. 13-22.

Kano, N., Nobuhiku, S., Fumio, T. & Shinichi, T., 1984. Attractive quality and must-be quality.

Journal of the Japanese Society for Quality Control (in Japanese), April, 14(2), p. 39–48.

Karlsson, J., 1996. Software requirements prioritizing. Proceedings of the Second International

Conference, April.pp. 110-116.

Karlsson, J. & Ryan, K., 1997. A cost-value approach for prioritizing requirements. in IEEE

Software, Sep/Oct, 14(5), pp. 67-74.

Karlsson, J., Wohlin, C. & Regnell, B., 1998. An evaluation of methods for prioritizing software

requirements. Information and Software Technology, 39(14), pp. 939-947.

Kim, J., Geum, Y. & Park, Y., 2017. Integrating customers' disparate technology readiness into

technological requirement analysis: an extended Kano approach. Total Quality

Management & Business Excellence, 28(5-6), pp. 678-694.

Kwon, J. J., Hong, J. E. & Chung, L., 2016. Collision detection and resolution of hazard

prevention actions in safety critical systems. Journal of Systems and Software, Volumen
118, pp. 1-18.

Lauesen, S., 2002. Software Requirements: Styles & Techniques. Addison-Wesley

Professional, Harlow.

Lima, D., Freitas, F., Campos, G. & Souza, J., 2011. A fuzzy approach to requirements

prioritization. In International Symposium on Search Based Software Engineering.

Szeged, Hungary, Springer Berlin Heidelberg, pp. 64-69.

Liu, X., Sun, Y., Veera, C. S., Kyoya, Y., & Noguchi, K., 2006. Priority assessment of software
process requirements from multiple perspectives. Journal of Systems and Software,

79(11), pp. 1649-1660.

Logue, K. & McDaid, K., 2008. Agile release planning: Dealing with uncertainty in development

time and business value. In 15th Annual IEEE International Conference and Workshop on

the Engineering of Computer Based Systems (ecbs 2008). Belfast, IEEE, pp. 437-442.

Ma, Q., 2009. The effectiveness of requirements prioritization techniques for a medium to large

number of requirements: a systematic literature review (Doctoral dissertation, Auckland

University of Technology).

Macías, J.A., 2008. Intelligent Assistance in Authoring Dynamically-Generated Web Interfaces.

World Wide Web – Internet and Web Information Systems, 11(2), pp. 253-286.

Macías, J.A., 2012. Enhancing Interaction Design on the Semantic Web: A Case Study. IEEE

Transactions on Systems Man and Cybernetics Part C – Applications and Reviews,

42(6), pp. 1365-1373.

Macías, J.A. & Castells, P., 2002 Tailoring Dynamic Ontology-Driven Web Documents by

Demonstration. In Proceedings of Sixth International Conference on Information

Visualisation (IV’2002), IEEE, pp. 535-540.

Macías, J.A. & Castells, P., 2001. A Generic Presentation Modeling System for Adaptive Web-

based Instructional Applications. In Proceedings of ACM Conference on Human Factors

in Computing Systems (CHI’2001), ACM, pp. 349-350.

March, S. T. & Smith, G. F., 1995. Design and natural science research on information

technology. Decision support systems, 15(4), pp. 251-266.Moran, A., 2015. Strategy,

Implementation, Organisation and People. Managing Agile. Springer International

Publishing, p. 266.

Pergher, M., & Rossi, B., 2013. Requirements prioritization in software engineering: A

systematic mapping study. In 2013 3rd International Workshop on Empirical

Requirements Engineering (EmpiRE), pp. 40-44. IEEE.

Perini, A., Susi, A. & Avesani, P., 2013. A machine learning approach to software requirements
prioritization. In IEEE Transactions on Software Engineering, April, 39(4), pp. 445-461.

Pitangueira, A. M., Maciel, R. S. P., de Oliveira Barros, M., & Andrade, A. S., 2013. A

systematic review of software requirements selection and prioritization using SBSE
approaches. In International Symposium on Search Based Software Engineering, pp.

188-208. Springer, Berlin, Heidelberg.

Pitangueira, A., Maciel, R. & Barros, M., 2015. Software requirements selection and

prioritization using SBSE approaches: A systematic review and mapping of the literature.

Journal of Systems and Software, Volumen 103, pp. 267-280.

Pohl, K., 2010. Requirements engineering: fundamentals, principles, and techniques. Springer

Publishing Company, Incorporated.

Pohl, K. & Rupp, C., 2011. Requirements engineering fundamentals: A study guide for the

certified professional for requirements engineering exam – Foundation level – IREB

compliant. 1st ed. Rocky Nook.

Racheva, Z., Daneva, M. & Buglione, L., 2008. Supporting the dynamic reprioritization of

requirements in agile development of software products. In 2008 Second International

Workshop on Software Product Management. Barcelona, Catalunya, IEEE, pp. 49-58.

Racheva, Z., Daneva, M., Herrmann, A. & Wieringa, R., 2010. A conceptual model and process

for client-driven agile requirements prioritization. In 2010 Fourth International Conference

on Research Challenges in Information Science (RCIS). Nice, France, IEEE, pp. 287-
298.

Riegel, N. & Doerr, J., 2015. A systematic literature review of requirements prioritization criteria.

In Requirements Engineering: Foundation for Software Quality. Springer International
Publishing, pp. 300-317.

Rojas, L. A. & Macías, J. A., 2015. An Agile Information-Architecture-Driven Approach for the

Development of User-Centered Interactive Software. In Proceedings of the XVI

International Conference on Human Computer Interaction. New York, NY, USA, ACM, p.
8.

Saaty, T., 1980. The Analytic Hierarchy Process. New York: McGraw-Hili.

Saaty, T. L., 2008. Relative measurement and its generalization in decision making why

pairwise comparisons are central in mathematics for the measurement of intangible

factors the analytic hierarchy/network process. Revista de la Real Academia de Ciencias

Exactas, Fisicas y Naturales, 102(2), pp. 251-318.

Sánchez, E. & Macías, J.A., 2019. A Set of Prescribed Activities for Enhancing Requirements

Engineering in the Development of Usable e-Government Applications. Requirements

Engineering, 24(2), pp. 181-203.

Schön, E., Thomaschewski, J. & Escalona, M., 2017. Agile requirements engineering: a

systematic literature review. Computer Standards & Interfaces, Volumen 49, pp. 79-91.

Shao, F., Peng, R., Lai, H. & Wang, B., 2017. DRank: A semi-automated requirements
prioritization method based on preferences and dependencies. Journal of Systems and

Software, Volumen 126, pp. 141-156.

Stapleton, J., 1997. DSDM, dynamic systems development method: the method in practice.

Cambridge University Press.

Tonella, P., Susi, A. & Palma, F., 2013. Interactive requirements prioritization using a genetic

algorithm. Information and software technology, 55(1), pp. 173-187.

Veral, R. & Macías, J.A., 2019. Supporting User-Perceived Usability Benchmarking Through a

Developed Quantitative Metric. International Journal of Human-Computer Studies, 122,

pp. 184-195.

Vilela, J., Castro, J., Martins, L. & Gorschek, T., 2017. Integration between requirements
engineering and safety analysis: A systematic literature review. Journal of Systems and

Software, 125, pp. 68-92.

Wiegers, K., 1999. First things first: prioritizing requirements. Software Development, 7(9), pp.

48-53.

Wiegers, K. & Beatty, J., 2013. Software requirements. Pearson Education.

Wieringa, R., 2009. Design science as nested problem solving. In Proceedings of the 4th

international conference on design science research in information systems and

technology (p. 8). ACM.

Wieringa, R. J., 2014. Design science methodology for information systems and software

engineering. Springer.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A., 2012.
Experimentation in software engineering. Springer Science & Business Media.

Zalazar, A. S., Ballejos, L. & Rodriguez, S., 2017. Analyzing Requirements Engineering for

Cloud Computing. In Requirements Engineering for Service and Cloud Computing.

Springer International Publishing, pp. 45-64.

Zhang, H., Li, J., Zhu, L., Jeffery, R., Liu, Y., Wang, Q., & Li, M., 2014. Investigating

dependencies in software requirements for change propagation analysis. Information and

Software Technology, 56(1), pp. 40-53.

Zhou, Q. & Liao, X., 2012. Collision-based flexible image encryption algorithm. Journal of

Systems and Software, 85(2), pp. 400-407.

	plantilla_toward
	toward_rojas_jss_2019_ps

