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Abstract

Run-time properties of modern software system environments, such as In-

ternet of Things (IoT), are a challenge for existing software architecture eval-

uation methods. Such systems are largely data-driven, characterized by their

dynamism, unpredictability in operation, hyper-connectivity, and scale. Prop-

erties, such as performance, delayed delivery, and scalability, are acknowledged

to pose great risk and are difficult to evaluate at design-time. Run-time evalua-

tion could potentially be used to complement design-time evaluation, enabling

significant deviations from the expected performance values to be captured.

However, there are no systematic software architecture evaluation methods that

intertwine and interleave design-time and run-time evaluation. This paper ad-

dresses this gap by proposing a novel run-time architecture evaluation method

suited for systems that exhibit uncertainty and dynamism in their operation.

Our method uses machine learning and cost-benefit analysis at run-time to con-

tinuously profile the architecture decisions made, to assess their added value.

We demonstrate the applicability and effectiveness of this approach in the con-

text of an IoT system architecture, where some architecture design decisions

were diversified to meet Quality of Service (QoS) requirements. Our approach
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provides run-time assessment for these decisions which can inform deployment,

refinement, and/or phasing-out decisions.

Nomenclature

dka: Architecture decision for capability k implemented using component a

daoi: i diversified architecture option

DAO: a set of diversified architecture options

qdaoi(t): Quality of a dao varying over time5

q′daoi(t): Normalized Quality of a dao varying over time

wq: Weight of quality q

Bdaoi(t): Benefit of a dao varying over time

µdaoi(t): Exponential Benefit of a dao varying over time

cdaoi(t): Cost of a dao varying over time10

cνdaoi(t): Costs of each variety ν per dao (e.g. deployment cost, leasing cost,

etc)

σ2
daoi

(t): Exponential Variance of a dao varying over time

σdaoi(t): Exponential Standard Deviation of a dao varying over time

θ: Relative Importance of the past15

α: Confidence level

Lλ(daoi, t): Loss Function shows how (un)desirable a dao is

L′λ(daoi, t): Marginal loss of non-dominated dao varying over time

λ: A pre-defined parameter that controls the relative importance between cdaoi(t)

and µdaoi(t)20

daocurr: Current dao

1. Introduction

Architectures of complex, scalable real-time systems are dynamic in nature

and exhibit numerous uncertainties in their operation [1, 2]. This dynamism

limits the effectiveness of design-time architecture evaluation approaches. In25
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particular, Internet of Things (IoT) environments [3, 2] are fundamentally dif-

ferent from classical ones for which most architecture evaluation methods, such

as Cost-Benefit Analysis Trade-off Method (CBAM) [4], Architecture Anal-

ysis Trade-off Method (ATAM) [5], Architecture-level modifiability analysis

(ALMA) [6], were advanced. These systems are data-driven, characterized by30

their scale, hyper-connectivity, dynamism, and uncertainty in operation (with

a constant stream of new devices, new services, and fluctuations in QoS provi-

sions) [7]. Furthermore, IoT has constrained devices, which are mobile, variable

in processing and computational power, and in some cases with limited network

connectivity [1, 2]. In this context, the dynamic nature of IoT requires us to35

combine design-time evaluation with run-time when evaluating architecture de-

sign decisions. This is because design-time evaluation relies greatly on human

experts, who can partially predict the fitness and the extent to which an archi-

tecture can cope with operational uncertainties, unanticipated usage scenarios,

and emergent behaviors. Run-time evaluation of architectures can complement40

design-time evaluation methods to provide more informed assessment of design

options and capture deviations from the design-time evaluation for technical

and value potentials.

Intertwining and interleaving run-time evaluation with design-time has the

potential to change ad hoc and “trial and error” practices for architecting com-45

plex, scalable, and dynamic software systems. Consider, for example the case

where architects embed design diversity [8] into their solutions in an attempt to

meet quality requirements under uncertainty and to mitigate risks and Service

Level Agreement violations. Diversification [8] encompasses design decisions and

architecture tactics that can be used to adapt the system to unforeseen changes50

[9]. For a given concern, architecture diversity “spices” the architecture with

a variety of design decisions and strategies (e.g. the choice of data collection

and processing strategies and tools), which can better cope with uncertainties

at run-time. Diversified design decisions, whether planned or accidental [10],

can be expensive; their behavior and value can be best evaluated at run-time.55

However, there are no systematic software architecture evaluation methods that
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intertwine design-time and run-time evaluation.

This paper addresses this gap by proposing a novel run-time architecture

evaluation method suited for systems that exhibit uncertainty and dynamism

in their operation. Our method uses machine learning and cost-benefit anal-60

ysis at run-time to continuously profile architecture decisions for their added

value, identify significant deviations from previously expected benefits, and au-

tomatically determine which architecture options have the optimal cost-benefit

trade-off. As such, it can inform deployment, refinement and/or phasing out

architectural decisions.65

By run-time evaluation, we envision several potential scenarios of use to

capture the dynamic behavior of the selected design decisions in relation to the

quality attributes in question:

• Simulation can be a useful alternative to experimentation with real en-

vironments: IoT environments are often large scale: an architecture can70

embed large numbers of heterogeneous and diverse things, sensors and

devices supporting some design decisions. As it would be prohibitively

expensive to configure the architecture and to test these decisions exhaus-

tively before deployment, the use of simulation can be useful for assisting

the architect in what-if analysis prior to deployment, stress-testing the ar-75

chitecture with inputs that can go beyond the ones encountered in normal

operation, abstract the analysis, and demonstrate the potential for scaling

it.

• This approach can also work if run-time data of a given configuration is

available. The architect will need to instrument the system with mecha-80

nisms for monitoring, logging, and profiling quality attributes of interest

and design decisions supporting these attributes. This can be particularly

useful for cases where the system is already deployed and further refine-

ments are envisioned. Learning from the log of operation for example

can be useful for profiling and analyzing the likely technical and value85

potentials of these decisions at run-time, whether diversified or not.
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• A third scenario can be also possible, where the approach can be integrated

in continuous development paradigms, such as DevOps, where run-time

information from the operation side can provide feedback for development.

Each of the mentioned scenarios would require separate treatment and reporting90

to show how the approach can be applied. The scope of this paper is concerned

with the case of using simulation to support the run-time analysis. Nevertheless,

many of the observations can be applicable for the other cases. In particular, we

adopt the iFogSim [11] tool. iFogSim builds on Cloudsim [12]; it provides the

architect with the freedom of hierarchically composing fog devices, clouds, and95

data streams to simulate the technical and value potentials of selected decisions

using normal usage and stress tests in relation to quality attributes of interest.

Our method makes the following contributions to the research literature:

• a run-time method for tracking the benefits of architecture design decisions

using machine learning;100

• a method inspired by multi-objective optimization to evaluate the cost-

benefit trade-offs of architectural decisions at run-time.

Architecture diversification is a common practice, when architecting software for

systems at scale, dynamism, and uncertainty in their operations. Our method

investigates this phenomenon and formulates the problem of architecture diver-105

sity from run-time and economics-driven perspectives.

The remainder of this paper is structured as follows: Section 2 illustrates the

necessary background to understand the approach. Section 3 then discusses the

research questions which the approach aims to answer. Section 4 presents the

proposed approach. Section 5 explains our case study, a motivating example in110

the context of IoT; it uses iFogSim tool. Section 6 reports on evaluation of the

research questions , section 7 presents further analysis of proposed approach.

Section 8 . Section 9 provides discussion of the work and the threats to validity.

Section 10 presents the related work. Section 11 concludes the work.
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2. Background115

In this section, we will provide the background necessary to understand the

run-time evaluation approach.

2.1. Reinforcement Learning

Reinforcement learning is an agent-oriented approach that learns using ob-

served rewards, by mapping situations to actions as an attempt to maximize a120

scalar reward signal [13]. Generally, it is a sequential decision-making process,

where in every step, the agent chooses an action and the reward is computed. It

aims at optimizing the rewards to get the best possible outcome. Further, there

is no supervisor, hence the reward signal is the only metric for the determination

of the right action to take. Moreover, reinforcement learning is a trial and error125

learning process, where agents estimate the value of actions with acceptable re-

ward from the experiences of its environment. The major challenge of this type

of learning is the trade-off between exploration and exploitation [13]. The for-

mer indicates the examination of non-optimal action, which may provide better

reward in the future. The latter denotes implementing the optimal known deci-130

sion to maximize the reward. For further elaboration, the exploitation process

may result in missing an optimal decision, which may yield better cumulative

future reward rather than the present best one. Whereas the cost of exploration

may exceed its benefits in some cases. .

2.2. Time-Decayed Function135

In [14], exponential smoothing function was used as a time-decayed func-

tion to handle the challenges of online class imbalance learning. The proffered

function is similar to reinforcement learning, which tracks the rewards resulting

from actions via the occurrence probability (percentage) of examples belong-

ing to a particular class. It is different from the traditional way of considering140

all observed examples equally, instead they are updated incrementally by using

a time decay (forgetting) factor to emphasize the current status of data and

weaken the effect of old data. In particular, the adoption of time-decay function
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is advantageous, due to the following [15, 16]: (i) weakens the effect of old data;

(ii) very east to compute; and (iii) minimum data is necessary. In this context,145

our approach leverages a time-decayed function to provide the architect with

flexibility of tuning the relative importance of past versus recent observations,

when valuing the benefit of diversified architecture options (further information

on how time-decay function is used in our approach is illustrated in Section 4.3).

2.3. Change Detection Approaches150

Generally, in machine learning, the notion of concept drift denotes a change

in the underlying distribution of the data, which the approach is learning over

time [17]. Examples of application include making inferences based on financial

data, energy demand and climate data analysis, web usage or sensor network

monitoring, and so forth [18]. Non-stationary and uncertain environments are155

challenged by their rapid changes (i.e. drifts). Therefore, change detection

approaches are necessary to discover these concept drifts and hence perform

the corresponding actions [19, 18]. In [18], the change detection approaches

are classified into the following families: Hypothesis Tests (HT), Change-Point

Methods (CPM), Sequential Hypothesis Tests (SHT), and Change Detection160

Tests (CDT). The latter approaches determine variations in the underlying data

through statistical methods (e.g. sample mean, variance, etc), but they differ

on how data is processed [18].

HT and CPM operate on fixed-length observations, whereas SHT and CDT

sequentially investigate the incoming observations. Therefore, HT and CPM165

are not suitable for applications operating in an online manner, due to the high

complexity with respect to analyzing all observations at once. Though SHT is

partially suitable for online observations, it has the following drawback: SHT

examines the incoming observations until it has enough statistical confidence for

decision-making (i.e. a “drift” or “no drift” is detected), but after the decision170

is made it stops processing the observations. This is a common pitfall in this

type of sequential analysis, since the main objective is to continually collect

information to ensure true change detection. The CDT attempted to overcome
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the prior limitations, since they are continuously tracking the observations (i.e.

fully sequential manner), which in turn provide reduced computational com-175

plexity. To this end, our approach adopts the change detection test proposed

by [17], but for a different purpose than that of [17].

In [17], the authors were interested in a supervised learning approach able

to make accurate predictions in non-stationary environments. In this case, their

approach first attempts to make a prediction, and then gains access to the true180

outcome from a supervisor. The average classification error of the predictions

is then computed and monitored over time to detect changes in the probability

distribution of the data. Changes are detected based on confidence intervals

of the classification error average, as depicted in Figure 1. In particular, if

the classification error is within the boundaries of the confidence interval (i.e.185

the upper and lower limits of interval) then we are confident that there is no

change, otherwise a change is detected. The upper and lower limits of interval

are adjusted based on the level of confidence required (further explanation is

found in Section 4.4). Our approach, on the other hand, can be understood in

the framework of reinforcement learning, where there is no supervisor. We use190

the CDT to detect changes in the benefit of software architectures over time,

rather than changes in the classification error as done in [17].

2.4. Multi-Objective Optimization

When evaluating software architectures, some of the evaluation approaches

appeal to multi-objective optimization (MOP) [20]. MOP is not trivial as the195

process involves optimizing multiple conflicting objectives. For this purpose,

multi-objective evolutionary algorithms have been widely used, such as Non-

dominated Sorting Genetic Algorithm-II (NSGA-II) [21]. NSGA-II relies on

the concept of non-dominance to decide which solutions are better. A non-

dominated solution is a solution that is similar or better on all objectives, and200

strictly better in at least one objective [22]. Non-dominated solutions can thus

be seen as better solutions than dominated ones. NSGA-II thus searches for

the set of solutions that are non-dominated by any other solution, which can

8



Figure 1: A representation for the confidence interval statistical technique used by [17] as the

change detection test.

be referred to as Pareto front. Figure 2 shows an illustrative example of Pareto

front, where both the first and second objectives are to be maximized. NSGA-II205

then relies on humans to decide which of the solutions from the Pareto front to

adopt for a given problem. However, this choice may not be easy.

Some MOP scenarios use a knee point strategy on their Pareto fronts (Figure

2) to help choosing a solution. A knee point is “almost always the most preferred

solution, since it requires an unfavourably large sacrifice in one objective to210

gain a small amount in the other objective” [23]. In particular, as in Figure 2,

moving in any direction out of dotted box may generate a small improvement in

one objective, but with a large deterioration in other objective. Therefore, the

knee point strategy promises to find the most balanced decision. Our approach

adopted a knee point strategy inspired by NSGA-II for MOP. Further details215

on how this strategy is used in our approach are given in Section 4.5.

3. Research Questions

Architecture diversification [8, 9] is commonly adopted for architecting de-

pendable software through embedding more than one solution to realize a con-
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Figure 2: An illustrative example of Pareto front and application of the knee point strategy.

In the example, the knee points inside the dotted box have better chances to win (i.e. provide

a more balanced trade-off between the two objectives).

cern of interest. Our method investigates this phenomenon and formulates the220

problem of architecture diversity from run-time and economics-driven perspec-

tives. In this context, we name each diversified architecture option dao, which is

composed of several architecture decisions. Consider, for example a streaming

application, where the architect could design different diversified architecture

options to deal with uncertainties. In this application, a dao could comprise225

different fixed sensors (i.e. things) to collect streaming data and then process

data to the cloud. Another dao could gather data instead from mobile sen-

sors. We provide further description of dao in Section 4.1 and 5. Deciding

on which diversified architecture options to implement is not straightforward

due to the uncertainties related to the dynamicity and the unbounded scalabil-230

ity of the things in composition. Our approach thus leverages design-time and

run-time knowledge to embrace uncertainties. Based on design-time knowledge,

the architects can decide on the options to be implemented. We use CBAM

and options theory [24] to evaluate different architecture options potentials at

design-time [25], where the architecture options providing high option value are235

10



considered for diversification of the IoT Case study (Section 5). However, as

the environment is dynamic, value potentials can fluctuate at run-time.

This leads to the following questions, which our paper aims to answer:

RQ1 How to evaluate the benefit of each dao over time? A key re-

quirement for determining the added value of a dao is through tracking240

its benefit over time based on its quality attributes (Q). In non-dynamic

environments, tracking the benefit based on a simple average of its value

at each time t could be sufficient. However, in dynamic environments,

simple average may take a long time to reflect changes [14] in benefit. A

method to enable tracking the current benefit over time is necessary.245

RQ2 How can run-time evaluation determine changes in dao’s value

over time and inform subsequent decisions? To properly support

decision-making, a run-time architecture evaluation approach should be

able to identify when changes in the benefit of a dao are truly significant.

A decision to change the software architecture based on an insignificant250

change in benefit would lead to an unstable system. Moreover, when

a significant change is detected, run-time evaluation should be able to

identify which dao provides a better trade-off between benefit and cost.

Therefore, a method to detect both significant changes and balanced trade-

offs is desired.255

To answer these questions, we propose a run-time evaluation approach in-

spired by self-adaptive systems. The approach is able to profile situations where

options can be more effective and provide continuous updates on their value

potentials. Specifically, to answer RQ1, our approach adopts an exponential

time-decay function inspired by reinforcement learning [14]. This function en-260

ables us to track the current benefit of a dao by weakening the effect of old data

(i.e. emphasize on the recent versus past observations). To answer RQ2, our

proposed approach adopts change detection tests to check whether the benefit

of the dao currently being used is getting significantly worse [17]. If it is signif-

icantly worse, a method inspired by the multi-objective optimization literature265
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Figure 3: Steps of the approach, where the design-time evaluation [25] forms the initial design

decisions and run-time evaluation complements it.

[26, 21] is adopted to identify the dao with the optimal trade-off between cost

and benefit. Based on the profiling of options over time, it is also possible to

determine which ones are not fit for the purpose, and hence could be phased

out.

The steps of the approach are summarized in Figure 3. Here, the design-270

time evaluation is the one proposed in [25], which uses options theory (i.e. an

economics-driven approach) [27] to evaluate the diversified architectural options

. The run-time evaluation is our proposed approach, which is discussed in

Section 4.3, 4.4, and 4.5.

4. Proposed Approach275

This section explains our proposed approach. Sections 4.3 explains how

our approach addresses RQ1. Sections 4.4 and 4.5 explain how our approach

addresses RQ2.
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Figure 4: An overview of the operational procedures of run-time evaluation approach.

4.1. Diversified Architecture Options (DAO)

Design diversity [8, 28, 29, 9, 25] is used to design for dependability under280

uncertainty: the greater the uncertainty, the more diversity the architects may

need to apply to improve performance. We denote a software architecture which

embeds diversity as diversified architecture option dao and the set of dao as

DAO. A dao implements a set of diversified decisions to meet some quality goals

and trade-offs. Consider a set of architecture decisions D, where a decision dka ∈285

D; k denotes a particular capability, including connectivity, data collection,

data management, etc; and a indicates the software architecture component

and connection that implements this capability k. For example, in an IoT

system, architecture decisions for the capability of data collection d1 could be

performed either through fixed d11, mobile d12, or fixed+mobile sensors d13.290

Another example is data processing could be performed either in cloud d21, or

fog+cloud d22. Therefore, daoi could collect data from fixed and mobile sensors

(d13) and processes it in cloud-fog (d23). Other examples of DAO are depicted
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in Section 5 through Table 2. In the IoT system case, the diversity in each dao

can refer to using fixed and/or mobile fog devices for data collection capability;295

using different cloud providers and heterogeneous fog devices for data processing

capability.

4.2. The Proposed Approach In The Context Reinforcement Learning

However, from the context of software architecture evaluation, we need to

do the following: (1) perform reinforcement learning in an online way where300

bad actions chosen during, e.g., early stages of the learning process, can have

serious inappropriate consequences to the architecture evaluation; (2) consider

multiple goals, rather than a single one; Therefore, we cannot adopt existing

reinforcement learning approaches out of the box.

To deal with (1), we adopt simulators and/or monitor the diversified archi-305

tecture options in parallel. We also then employ a pre-defined rule to decide

which action to take (i.e. which dao to suggest) based on the modelled rewards.

This rule designed to minimize the chances of making poor architecture recom-

mendations. To handle (2), we get inspiration from the MOP literature [26].

In our case, the suggestion of which dao to adopt is performed in an innovative310

way, based on non-dominated solutions (a key concept adopted by many MOP

algorithms), knee point strategy, and the marginal loss (Section 4.5).

In a nut shell, our approach performs optimization guided by machine learn-

ing strategies (i.e. strategies derived from reinforcement learning), where a decay

function is adopted that continually learns and updates the aggregated bene-315

fit of monitored quality values forming the exponential benefit. It then selects

the balanced (knee) diversified architecture options when needed based on the

learned exponential benefits.

4.3. Evaluating The Diversified Architecture Options

The goal of the evaluation is to determine what are the diversified architecture320

options, the quality attributes of interest and how they will react over time. This

step is divided into further sub-steps as explained below and summarized in

Algorithm 1.
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1. Identifying the diversified architecture options and quality at-

tributes of interest: This step is inspired by the formulation of CBAM325

[4, 30], except for the fact that the benefit and cost of options vary over

time. It also explicitly considers that diversified architecture options are

composed of architecture decisions, which are defined by the architects

(Figure 4). In particular, the following must be specified:

• The set K of capabilities selected for diversification. Examples of ca-330

pabilities are data collection, connectivity, processing, routing topol-

ogy, and data management.

• The set D of architecture decisions. An architecture decision dka ∈ D

specifies an architecture component a to implement a given capability

k ∈ K.335

• Set of diversified architecture options DAO, where |DAO| represents

the number of DAO and each daoi ∈ DAO is composed of a set of

architecture decisions.

• The set Q of qualities of interest. Response time and energy con-

sumption are examples of quality attributes of interest.340

• Each dka has a cost and quality which may vary over time. The cost

of each architecture decision is cka(t) and quality is qka(t), where

ka identifies a decision dka ∈ D, c is a measure of cost, q ∈ Q

is a measure of quality and t is a time stamp. In particular, each

architecture decision dka will be associated to one measure of cost345

and |Q| measures of quality at each time stamp.

2. Assessing the weight of each quality of interest: A ranking weight

(wq) must be chosen by the stakeholders to reflect the relative importance

of each quality attribute to the run-time benefit of the system as depicted

in Figure 4, which should satisfy equation 1:∑
wq = 1;∀q : wq > 0 (1)

15



3. Quantifying the benefit of DAO over time: The benefit Bdaoi(t)

of daoi at timestamp t is a measure of the contribution of each quality

attribute to value creation, i.e., added value. In other words, each Bdaoi(t)

is a function of qdaoi(t), ∀q ∈ Q, whereas each qdaoi(t) is a composite of the350

quality qka(t) of each of its component architecture decisions dka ∈ daoi.

To compute qdaoi(t), the qualities of the architecture decisions need to be

aggregated based on how they are connected to each other (line 2). Table

1 depicts some aggregate functions for quality of service (QoS).

We monitor the benefits of dao as a whole. The modeling for dao quali-355

ties follows linear aggregation and is consistent with online QoS modeling

approaches that have been widely adopted in the service computing com-

munity (e.g., [31, 32]). Though the use of linear aggregation for qualities

is the widely adopted practice in service community, it is acknowledged

to be limited when capturing dependencies of decisions affecting quali-360

ties. Additional online aggregation functions, for capturing dependencies

of decisions affecting qualities, is a non-trivial problem; its solution will

constitute a significant contribution to both the software architecture and

services community, which is worth separate reporting due to the com-

plexity of its treatment.365

Each qdaoi(t) has one constraint, which follows one of the following possible

formats: qdaoi(t) 6 qmax, qdaoi(t) > qmin, qmin 6 qdaoi(t) 6 qmax.

To place all quality attributes in the same scale (line 3-8), equation 2 is

for scaling of negative quality values (i.e. the lower the better, e.g. re-

sponse time), whereas equation 3 could be used for scaling positive quality370

values (i.e. the higher the better, e.g. throughput). q′daoi(t) denotes the

normalized value of a given q of a particular daoi at time t.

q′daoi(t) =


qmax−qdaoi (t)
qmax−qmin ifqmax − qmin 6= 0

1 ifqmax − qmin = 0

(2)
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q′daoi(t) =


qdaoi (t)−q

min

qmax−qmin ifqmax − qmin 6= 0

1 ifqmax − qmin = 0

(3)

Therefore, the benefit of a diversified architecture option can be computed

using equation 4, if none of its quality attributes violates any constraint

(line 11). If a dao at time t, violates any constraint (line 9), its benefit is375

set to zero (line 10).

Bdaoi(t) =
∑
q∈Q

wq ∗ q′daoi(t) (4)

This step uses the run-time knowledge (i.e. observed QoS) to compute

the benefit of each dao, which is then used as input to step 5 (Figure 4).

4. Quantifying the cost of DAO: CBAM [30] extends ATAM (Architec-

ture Trade-off Analysis method) [5] with explicit focus on the costs and380

benefits of the architecture decisions in meeting scenarios related to qual-

ity attributes. Our consideration for the cost is situation dependent. As

an example, the cost can relate to one or more dimensions of interest.

This can include the cost of configuration, deployment, testing, leasing,

execution etc. These costs can be estimated using parametric models,385

back-of-the-envelope estimation, reliant on experts (i.e. architects and

other stakeholders) and their judgment, analogy, etc, as well as run-time

knowledge (i.e. monitoring tools). Unlike CBAM, our approach considers

the switching costs between options, which could include the configura-

tion, license cost, etc. This is in addition to the operating costs, such390

as costs of deploying and maintaining the dao. The cost associated with

an architecture option at time t is denoted by cdaoi(t) (line 12), which is

computed using equation 5 (Figure 4).

cdaoi(t) =
∑

cνdaoi(t) (5)

where ν: considers variety of costs (e.g. deployment cost, leasing cost, etc).

Further, the approach receives monetary values for cost, which could then395

be normalized in the same way as negative quality values in equation 2.
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5. Determine the exponential benefit of DAO over time: The benefit

of a given option is monitored using a time-decay function inspired by

reinforcement learning [14]. This function enables the architect to con-

tinuously learn the current benefit of a given dao over time. At a given400

timestep t, the exponential benefit µdaoi(t) of a dao is the time-decayed

average of its benefit, incrementally computed based on all timesteps up

to t (line 13), as seen in equation 6. This average allows us to tune the

importance given to the present and past observations of the benefit and

to learn more about the behavior of DAO over time.405

How much emphasis is given to the present/past is controlled by a pre-

defined parameter θ. In particular, the relative importance of the present

is denoted by 1 − θ, whereas of the past by θ, where 0 ≤ θ < 1. The

θ parameter affects the system’s stability. More specifically, a high θ

(e.g., larger than 0.95) corresponds to a greater emphasis on the historical

observations of benefit (i.e. present), leading to more robustness to noise,

making the quantification of benefit more stable, but slower at adapting

to changes. Conversely, smaller values give more emphasis to the more

recent observations of benefit and swifter adaptation to changes. However,

too low values can lead to unstable quantification of benefit (due to higher

sensitivity to noise). To this regard, the architect has the freedom to adjust

the θ parameter, with respect to the required system stability (Figure 4).

µdaoi(t) = θµdaoi(t− 1) + (1− θ)Bdaoi(t) (6)

6. Determine the variance and standard deviation of dao over time:

The time-decayed variance σ2
daoi

(t) of the benefit of this option is com-

puted using equation 7 (line 14). After that, the standard deviation

σdaoi(t) is computed as the square root of variance as depicted in equation

8 (line 15).410

σ2
daoi(t) = θσ2

daoi(t− 1) + (1− θ) ∗ (Bdaoi(t)− µdaoi(t))2 (7)
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σdaoi(t) =
√
σ2
daoi

(t) (8)

Table 1: Aggregate Functions. The Max, Min and
∑

operations are over all architecture

decisions that are connected to each other in the specified way (parallel or sequence).

QoS Attribute Parallel Sequence

Response Time Max(qka)
∑
qka

Energy Consumption
∑
qka

∑
qka

Cost
∑
cka

∑
cka

4.4. Detecting Significant Changes Over Time

At every timestep t, the detect module triggers an alert if there is a significant

change for the worse on the benefit Bdaoi(t). If such a detrimental change is

detected, then it may be necessary to switch from the current dao to another

better dao for the current circumstances of the software system. The steps415

for detecting significant detrimental changes are shown in Algorithm 2 and are

explained below.

To detect changes, we use the confidence interval of the maximum exponen-

tial benefit seen so far and its corresponding exponential standard deviation, as

shown in equation 9. In particular, two variables computed based on the evalu-

ate phase are used: µmaxdaoi
is the maximum exponential benefit seen so far, and

σmaxdaoi
is its corresponding standard deviation. Whenever a new reading arrives

at time t, those values are updated if µdaoi(t) > µmaxdaoi
(line 2-4). The parameter

α is a parameter that affects the confidence level [17]. In particular, confidence

levels 95% and 99% correspond to α = 1.96 and 2.58, respectively.

[µmaxdaoi − ασ
max
daoi , µ

max
daoi + ασmaxdaoi ] (9)

If the current exponential benefit µdaoi(t) is outside the left boundary of the

confidence interval (line 5), a significantly detrimental change is detected (line

6). This leads to the insight that the current dao′s benefit is getting worse and420

may need to be replaced.
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ALGORITHM 1: Evaluate()

Input: diversified architecture options DAO, number of DAO (|DAO|),

quality qdaoi(t), number of quality attributes |Q|, weight of each

quality attribute wq, relative importance of the past θ

Output: exponential benefit µdaoi(t), standard deviation σdaoi(t), cost

cdaoi(t)

{Initialization:} q = 1 : |Q|

1 for i = 1 to |DAO| do

2 Compute quality qdaoi(t) based on Table 1

{For negative quality attribute (i.e. the lower the better, e.g.

Response Time):}

3 if qdaoi(t) is a negative quality & qmax − qmin 6= 0 then

4 q′daoi(t) =
qmax−qdaoi (t)
qmax−qmin

{For positive quality attribute (i.e. the higher the better, e.g.

Throughput):}

5 else if qdaoi(t) is a positive quality & qmax − qmin 6= 0 then

6 q′daoi(t) =
qdaoi (t)−q

min

qmax−qmin

7 else

8 q′daoi(t) = 1

{Check constraints’ violation:}

9 if any q′daoi(t) violates constraints then

10 Bdaoi(t) = 0

else

11 Compute benefit Bdaoi(t) =
∑
q∈Q

wq ∗ q′daoi(t)

end

12 Quantify cost cdaoi(t) =
∑
cνdaoi(t)

13 Compute exponential benefit

µdaoi(t) = θµdaoi(t− 1) + (1− θ)Bdaoi(t)

14 Determine variance

σ2
daoi

(t) = θσ2
daoi

(t− 1) + (1− θ) ∗ (Bdaoi(t)− µdaoi(t))2

15 Determine standard deviation σdaoi(t) =
√
σ2
daoi

(t)

end
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Replacements may affect the system’s stability. The parameter α enables

us to tune the sensitivity of the approach to changes, and therefore how sta-

ble/unstable it will be over time. For instance, consider that the architect has

chosen the confidence level of 95%. Then, if the current exponential benefit is425

outside the left boundary of the 95% confidence interval (µdaoi(t) − σdaoi(t) ≤

µmaxdaoi
− 1.96 ∗ σmaxdaoi

), a significantly detrimental change is informed to the soft-

ware architects. However, if a 99% confidence interval been chosen, a signifi-

cantly detrimental change would only be informed when µdaoi(t) − σdaoi(t) ≤

µmaxdaoi
− 2.58 ∗ σmaxdaoi

. In this context, the detect step uses µdaoi(t) and σdaoi(t)430

along with α parameters (set by the architect) to detect changes, as shown in

Figure 4.

When a significantly detrimental change is detected, µmaxdaoi
and σmaxdaoi

are

reset and recomputed from scratch using the values of the exponential benefit

accumulated since a warning was triggered (line 7). A warning is triggered based435

on a more relaxed confidence interval (line 8-9). For example, if using 99% as

the confidence interval to detect significant detrimental changes, a confidence

level of 95% could be used to issue a warning. Otherwise, no change/warning

is detected (line 10).

To summarize, a change detection method is necessary to check whether440

the current dao is getting worse based on its accumulated exponential benefit

µdaoi(t). In this context, the change detection test used could be adjusted to

detect only significant changes and hence improves the stability of the system

(i.e. avoid alerting the software architects of insignificant triggers).

4.5. Selecting The Architecture Option With The Optimal Trade-offs445

If a significant detrimental change is detected in the dao currently being used

(daocurr), this means that it may be beneficial to replace this dao by another one

from DAO elicited in step 1 of Section 4.3. In such a situation, it is desirable to

know which dao among DAO has recently been providing the optimal trade-off

between cost and benefit (Figure 4). Such a dao is assumed to be the best one450

to use now and hence the best one to switch to.
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ALGORITHM 2: Detect()

Input: confidence intervals (α1, α2), exponential benefit µdaoi(t),

standard deviation σdaoi(t)

Output: change/warning/no change is detected

1 µmaxdaoi
= µdaoi(0), σmaxdaoi

= σdaoi(0)

{Update the maximum exponential benefit and its corresponding

exponential standard deviation}

2 if µdaoi(t) > µmaxdaoi
then

3 µmaxdaoi
= µdaoi(t)

4 σmaxdaoi
= σdaoi(t)

end

{Check if a change is detected}

5 if µdaoi(t)− σdaoi(t) ≤ µmaxdaoi
− α2 ∗ σmaxdaoi

then

6 a change is confirmed

7 reset µmaxdaoi
and σmaxdaoi

{Check if a warning is triggered}

8 else if µdaoi(t)− σdaoi(t) ≤ µmaxdaoi
− α1 ∗ σmaxdaoi

then

9 a warning is triggered

else

10 no change/warning is detected
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To determine the dao with the optimal trade-offs, we were inspired by the

literature on MOP, NSGA-II, and a knee selection method [26, 21]. Our problem

has two objectives: maximize benefit (Equation 6) and minimize cost (Equation

5). It is therefore a multi-objective problem with two objectives. As such, we455

calculate the expected marginal loss in order to identify the dao with the likely

most balanced trade-off between benefit and cost. The process of determining

the dao with the optimal trade-offs between cost and benefit at time t is divided

into three sub-processes as explained below and summarized in Algorithm 3.

1. Determine the Non-Dominated DAO: This includes determining460

which diversified architecture options are non-dominated by any other dao

[26, 21] (line 2-9). A given daoi dominates daoj iff:(cdaoi(t) ≤ cdaoj (t) and

µdaoi(t) ≥ µdaoj (t)) and (cdaoi(t) < cdaoj (t) or µdaoi(t) > µdaoj (t)). Ac-

cording to the definition above, non-dominated architecture options (i.e.

knee point solutions) can be considered as better than dominated ones.465

2. Calculate the marginal loss of the Non-Dominated DAO over

time: The marginal loss is used for the purpose of computing the expected

marginal loss (Step 3). In particular, we use a loss function that aggregates

cost and benefit into a single value as follows (line 12):

Lλ(daoi, t) = λcdaoi(t)− (1− λ)µdaoi(t) (10)

where λ ∈ [0, 1] is a pre-defined parameter that controls the relative im-

portance between cost and exponential benefit. The loss describes how

(un)desirable a certain dao is.
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ALGORITHM 3: Select()

Input: change detected in daocurr, a pre-defined parameter λ, number of λ (|λ|), number

of DAO (|DAO|), exponential benefit µdaoi(t), cost cdaoi(t)

Output: optimal daoi

{A change is detected in daocurr, then do:}

{Initialization:}

1 λ : {0.1, 0.2, · · · , 0.9}, |λ| = 9

{Determine the Non-Dominated DAO:}

2 for i = 1 to |DAO| do

3 dominant = 0

4 for j = 1 to |DAO| do

5 if (cdaoi(t) ≤ cdaoj (t)&µdaoi(t) ≥ µdaoj (t))&(cdaoi(t) < cdaoj (t)|µdaoi(t) > µdaoj (t))

then

6 daoi dominates daoj

7 dominant = 1

end

end

8 if dominant = 0 then

9 Add daoi to list of non-dominant DAO

end

end

{Calculate marginal loss for the non-dominant DAO:}

10 for i = 1 to Length (list of non-dominant |DAO|) do

11 foreach λ ∈ {0.1, 0.2, · · · , 0.9} do

12 Lλ(daoi, t) = λcdaoi(t)− (1− λ)µdaoi(t)

13 if i = argminiLλ(daoi′ , t) then

14 L′λ(daoi, t) = min(i 6=ii)Lλ(daoii, t)− Lλ(daoi, t)

else

15 L′λ(daoi, t) = 0

end

end

end

{Determine the expected marginal loss for the non-dominant DAO:}

16 for i=1 to Length (list of non-dominant |DAO|) do

17 approxM [L′λ(daoi, t)] =

∑
λ∈{0.1,0.2,··· ,0.9}

L′λ(daoi,t)

|λ|

end

18 Return optimal daoi = daoi with max(approxM [L′λ(daoi, t)])
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The marginal loss L′λ(daoi, t) represents how much worse the loss would

be if daoi was not available and we had to use the one with the second

optimal trade-off, given a certain λ (line 13-15). It can be calculated based

on the following equation [26]:

L′λ(daoi, t) =


min(i 6=ii)Lλ(daoii, t)− Lλ(daoi, t)

: if i = argminiLλ(daoi′ , t)

0 : otherwise

(11)

where argmin function is used to check if daoi has the minimum loss.470

If this is true, then we will iterate over all DAO to find the minimum

difference between losses of a particular daoii and daoi. This is set as

the marginal loss. If daoi is not the one with the minimum loss, we set

L′λ(daoi, t) to 0.

3. Determine the expected marginal loss of Diversified Architecture475

Options over time: The dao with the optimal trade-off between cost and

benefit at time t is the dao with the maximum expected marginal loss at

time t. This option can be suggested to the software architect as the

optimal dao to be adopted at time t. This dao may or may not be the

same as current option daocurr.480

As in [26], we use an approximation of the expected marginal loss rather

than the true marginal loss. The expected marginal loss has been pro-

posed and used in the MOP literature [26] to facilitate the choice of

which solution from the Pareto front to adopt in practice. In contrast,

a single-objective problem would use a single fixed value for λ. However,

we need to compute the marginal loss with a sample of different λ val-

ues. In our work, we used equally spaced values λ: {0.1, 0.2, · · · , 0.9},

where |λ| = 9 is the number of λ values used. The expected marginal

loss (approxM [L′λ(daoi, t)]) can be approximated by taking the average

of the marginal losses computed using different sampled values for λ [26]

(line 16-17), as shown in equation 12. The optimal daoi is the one with
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maximum expected marginal loss (line 18).

approxM [L′λ(daoi, t)] =

∑
λ∈{0.1,0.2,··· ,0.9}

L′λ(daoi, t)

|λ|
(12)

As explained above, to determine the dao with the optimal trade-off between

cost and benefit at time t, we need to know the exponential benefit and standard

deviation of theDAO at this timestep, including theDAO that are not currently

in-use by the software system. This information can be obtained in a number

of different ways:485

• If a given daoi uses the same D as the current daocurr, but connects them

in a different way, the exponential benefit and standard deviation can be

tracked over time even if daoi is not currently being used. This is because

the qualities of interest of the D are being monitored via daocurr and

just need to be aggregated using a different function to compute daoi’s490

exponential benefit and standard deviation.

• A given daoi 6= daocurr can be activated for use in parallel with daocurr

at pre-defined time intervals T ′ to track their qualities of interest. In

this case, daoj ’s exponential benefit and standard deviation are updated

at every T ′ > 1 units of time, saving the overhead of having to use more495

than one dao at every timestep. The accuracy of daoj ’s exponential benefit

and standard deviation will depend on how large T ′ is.

• A simulation based on what-if test scenarios can be used to estimate the

exponential benefit and standard deviation of daoi 6= daocurr. Simula-

tors are typically used during the architecture prototyping, analysis, and500

refinement stages to evaluate the response and sensitivity of the architec-

ture for these tests. In this case, daoi’s exponential benefit and standard

deviation could be updated frequently, possibly at every unit of time.

However, their accuracy depends on the simulator. Due to the exponen-

tial time-decay factor used for calculating exponential benefit, inaccuracies505

on exponential benefit of architecture options not in-use at time t can be
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quickly found if and when we switch from a dao to another. If the newly

adopted one is found to have significantly poorer benefit than previously

estimated, the change detection mechanism will detect this and trigger

the procedure to determine whether we should switch to another one.510

For instance, if some of the IoT devices forming the selected dao become

unavailable after selecting it due to the highly dynamic application en-

vironment, making it not possible to execute the selected dao, this will

lead to a decrease in exponential benefit and hence cause a change to an

alternative architecture.515

In summary, our proposed approach monitors the extent to which the con-

cerned architecture design decisions satisfy the quality attributes over time; it

provides feedback on their performance against the said qualities. The feed-

back is used to adapt the architecture as seen fit. In particular, the feedback

determines the benefit of diversified architecture options and hence can aid the520

architect in demonstrating the situations where the dao would work and the

others which is not suitable for that context. As an example, if a particular

dao does not perform well in any of the provided scenarios (e.g. when the en-

ergy consumption is a priority) over a prolonged period of time, this is a strong

indicator of a wrong choice of the design decisions and choices. The approach525

incorporates human expertise in the decision of whether or not to change or

keep this architecture as an option, as the modelling of diversified architecture

options is the fundamental domain knowledge from the engineers, as for every

software system.

5. IoT Case Study Design530

In this section, we introduce the IoT case, how diversity can be embedded

in the architecture, and how the data is collected through iFogSim.

5.1. Introducing the IoT case

The basic concept of IoT is the interaction between a group of devices—

“things”—such as sensors and actuators, over the Internet. Key challenges for535
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IoT ([3, 1, 7, 2]) include:

• heterogeneity, having different types of things, such as static sensing (e.g.

fixed sensors), mobile crowd-sensing (e.g. cellular-based, vehicle-based,

and bike-based sensors), virtual (e.g. web services), and social sensing

(e.g. share data across social networks like facebook);540

• high dynamism due to the presence of mobile things and uncertainty of

their resource demand and QoS provisions over time (i.e. service level

objectives), varying energy consumption per thing and their varied avail-

ability;

• scale, where their ubiquitous, light, and mobile nature has led to the545

presence of, in some cases, millions of things.

To address these challenges, prior approaches have provided some solutions

for IoT, such as [1], [33], [7], and [11]. We draw on an IoT application, doc-

umented in [11], to demonstrate the applicability and effectiveness of the ap-

proach. Nevertheless, our approach has the potential to be applied to other550

systems exhibiting high dynamism and uncertainty in their operations. Our

IoT application extends Gupta et al. [11]’s application – an urban traffic mon-

itoring system, named iTransport. Gupta et al. [11] used a video surveillance

application to demonstrate the usefulness of their proposed cloud/fog simulator

tool iFogSim. However, in their case study, the context of run-time architec-555

ture evaluation and adaptability under time-varying environment have not been

considered, even though iFogSim is capable of simulating the dynamics and un-

certainty of cloud/fog environments. This has motivated us to extend their case

study. In a nutshell, iFogSim is a cloud/fog simulation environment; it can aid

developers to simulate the impact of their application on qualities of interest. It560

forms the basis in our work to mimic the dynamics and uncertainty of cloud/fog

environments, and their impact on qualities of interest in our case study. Fur-

ther explanation related to our use of iFogSim, which differs from that of Gupta

et al., can be found in Section 5.3. In addition, Gupta et al. [11] assume the
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presence of one application architecture (i.e. configuration). We have designed565

the multiple configurations with respect to the common architecture decisions

of a video surveillance application.

The iT ransport application provides online (for emergencies) and offline

(for long-term prediction) analytics. It uses smart cameras, which are either

fixed (attached to street lights and buildings) or mobile (attached to vehicles570

and bikes) to capture the traffic for accident avoidance and traffic management.

The application has 6 modules as seen in Figure 5: camera, motion detector,

object detector, object tracker, accident storage, and emergency control. Smart

cameras transmit raw video streams to the motion detector module, which then

forwards the video in which motion was detected to the object detector mod-575

ule. The object detector module analyzes the objects and detects any abnormal

actions (i.e. car accidents). If it observes an accident, the emergency control

searches for a nearby ambulance for notification. The data is then sent to the

accident storage cloud to profile the accidents with respect to areas. The appli-

cation automatically provides either “online analytic” functionality or “offline580

analytic” functionality, every 10 minutes based on user requirements. For in-

stance, if “online analytic” functionality is invoked, then minimized response

time and network usage are necessary, whereas if “offline analytic” is called,

then the energy consumption is the main goal for optimization.

Figure 5: The flow diagram of iTransport application [34].
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5.2. Diversified Architecture Options In The Context Of IoT Case585

When architecting the iTransport application, the architects must address

uncertainties due to heterogeneity of the things; the dynamicity of the things’

behaviors and the dynamism of their composition. Design diversity can be

employed to handle these uncertainties: the greater the uncertainty, the more

diversity is applied [8] in an attempt to improve performance and availability590

[29, 9, 25]. We contend that diversification means embedding in flexibility. Since

there is a variety of ways to diversify, each diversified architecture can be treated

as an option, which we denote by dao [25]. A software architecture encompasses

a set of architecture decisions D, where a decision dka ∈ D. A dao implements a

set of diversified decisions to meet some quality goals and trade-offs. dk denotes595

a particular capability, including connectivity, data collection, data manage-

ment, etc. dka indicates the software architecture components/connections that

implement this capability. For example, the architects decided to diversify the

data collection capability (d1), where video could be captured using fixed cam-

eras (d11), mobile cameras (d12), or both (d13). Another diversification decision600

is concerned with the connectivity and processing capability (d2), where the

things can connect, track, and process the captured video on the cloud (d21) or

both cloud and fog (d22). So dao1 comprises d11 and d21, whereas dao2 consists

of d12 and d22 and so forth. Table 2 depicts selected options, with decisions

designed for cloud, fog, mobile, or fixed.605

In iTransport, there are several design trade-offs concerning the critical QoS

attributes (e.g., response time, energy consumption, network usage, etc) and

cost, subject to constraints such as the pre-defined coverage and availability

of the things. In the context of iTransport, we consider deployment cost (the

expenses related to the infrastructure deployment in cloud/fog environment),610

execution cost (the computational costs of running the processing tasks on

cloud/fog devices), and networking costs (related to the bandwidth require-

ments and associated expenses. For instance, data uploading cost from end

devices/sensors and inter-nodal data sharing cost) [35]. Further, the switching

costs in iTransport embrace the migration costs to/from the cloud/fog, thing’s615
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Table 2: Possible Diversified Architecture Options for iTransport application. The diversity

in each dao can refer to using fixed and/or mobile fog devices for data collection capability;

using different cloud providers and heterogeneous fog devices for data processing capability.

Option daoi

Decision dk
Data Collection Capability (d1) Data Processing Capability (d2)

1 Fixed (d11) Cloud (d21)

2 Mobile (d12) Cloud (d21)

3 Fixed and Mobile (d13) Cloud (d21)

4 Fixed (d11) Fog and Cloud (d22)

5 Mobile (d12) Fog and Cloud (d22)

6 Fixed and Mobile (d13) Fog and Cloud (d22)

connectivity and other costs (if any). Nevertheless, the approach is flexible

enough to include other costs. The design trade-offs can inform the diversifi-

cation design decisions and the deployment of dao. Addressing the following

scenarios require us to consider trade-offs when deciding on dao:

• dao1 uses fixed camera sensors to provide more stable and better response620

time to fulfill the pre-defined coverage. However, achieving the coverage

for the scale of city highways using fixed camera may incur much higher

cost and static coverage. In contrast, the use of mobile crowdsensing (using

smart vehicles) [7], as in dao2, could be an alternative solution due to its

low cost. But the mobile crowdsensing in dao2 may be unstable in terms625

of response time and it can consume much more power at this scale due

to the simultaneous transmission, processing, and remote execution of the

images on the cloud. Further, availability in dao2 is much more restricted

than that of dao1.

• When comparing with the case where cloud is used as the sole computa-630

tion paradigm (in dao1 to dao3), the partial use of fog (in dao4 to dao6)

could provide faster response time (e.g., for scenarios such as emergency

notification and online analytics) and lower network usage, due to the of-
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floading of computational load on the near by fog devices. But it may

incur more energy consumption, given the large number of required fog635

things and the additional overhead that may be required to synchronize

and store the processed information on the cloud (if any). In addition, the

fog option needs to fulfill the constraints on the proximity of the thing to

the fog and the availability of the fog.

There are some scenarios where design-time decisions may fail to select the640

“right” options due to the run-time uncertainties and dynamics caused by var-

ious environmental factors, which emergently affects the benefit of the options.

In particular, it is possible that, at run-time, their benefit deviates more than

the expected value at design-time, for example:

• The design-time evaluation suggests dao6 to be continuously deployed645

when response time and network usage are the stakeholders’ concerns,

due to its high expected benefit. Conversly, at run-time (i.e. output of

simulator), the hyper-connectivity of mobile things and the high network

latency affect its actual benefit in terms of response time and network

usage, which was significantly lower than expected.650

• The architect has decided to implement dao1 in cases where response time

and network usage is not a concern, aiming to improve the energy con-

sumption in fog devices. However, the actual overall benefit (e.g. response

time, network usage and energy consumption) was much worse than ex-

pected during run-time. This is because the sensors are still performing655

some processing to transmit the data to the cloud (i.e. there is high power

load on the fog devices).

• The architect has prioritized the response time concern over the network

usage and energy consumption. S/he selected dao2 for deployment due

to the use of mobile things, which may have lower impact on network660

congestion as compared with fixed ones. On the contrary, the architect

has discovered that the actual benefit of the selected dao performed much
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worse than expected, due to the presence of very large number of mobile

things (i.e equivalent to the deployment of lower fixed number of sen-

sors), which resulted in high network usage. Therefore, dao2 was almost665

violating the quality constraints in most of the cases.

The prior scenarios motivate the need for the run-time evaluation to capture

conditions that may not be discovered at design-time. The approach can accu-

mulate run-time information (i) discovering patterns related to the availability

of mobile nodes and their connection to benefit improvement/degradation and670

value; (ii) the added value of switching to a diversified option and when that

value will be realized, become optimal or cease to exist, considering various

costs and load. The dynamism of the above cases make it difficult for designers

to solely evaluate the architecture based on design-time knowledge. Run-time

knowledge can be particularly useful to suggest refinements for the diversified675

architecture options; informing when a dao should (not) be invoked; phasing

out a dao or suggesting a replacement, etc.

5.3. Experimental Data Collection

Our experiments focus on architecting the sensing-actuating functionality

of iTransport to show how run-time evaluation can complement design-time680

evaluation. At design-time, the architect has followed the procedure of Section

5.2 to preliminary decide on theDAO (and their composingD) for implementing

this functionality. The experiments were executed on Intel Core i7 processor

machine with 16GB of RAM . The data synthesis process is performed using

iFogSim [11], whereas Matlab is exploited for data analysis. To simulate the685

qualities of interest of each architecture decision over time, we adopt the iFogSim

[11] tool. This tool builds on Cloudsim [12]; it provides the architect with the

freedom of hierarchically composing the fog devices, clouds, and data streams.

In iFogSim, we have hierarchically composed the application as shown in Figure

5. The candidate DAO used in this study are shown in Table 2. In particular,690

each dao is composed of different types of data collection (type of sensors) and
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connectivity (computation locations) as architecture decisions, meaning that

the processing performed by each dao is executed differently. Connectivity was

simulated by either executing the object detector and tracker modules (shown

in Figure 5) in the cloud and/or fog. For data collection, two gateways were695

used, where each is connected to an average of 50 smart cameras (Figure 7):

fixed, mobile, as well as fixed and mobile, having a total of 100 fog devices. The

fog devices and cloud are configured based on [36, 37, 11].

The goal is to continually optimize the following two conflicting requirements:

• Benefit: It needs to be maximized and is based on three quality attributes700

of interest:

1. Response Time: iT ransport is time-critical application, so it should

respond as early as possible. In iT ransport, the response time (RT)

of an application is the application’s end to end delay (in milliseconds

ms) and measured using iFogSim.705

2. Network Usage: High network usage would cause network congestion,

so it should be as low as possible. The network usage (NU in mega

bytes MB) is also measured using iFogSim.

3. Energy Consumption: IoT will lead to unlimited energy consump-

tion if not controlled [38]. Therefore, energy consumption needs to710

be minimized. In this context, when designing IoT architectures, ar-

chitects have to consider energy consumption as a major concern [39].

In iT ransport, the energy consumption (EC in mega joules MJ) is

the total energy consumption by all the devices in the application,

which is also determined through iFogSim.715

• Cost: It needs to be minimized. It is a composite of operating cost, and

switching cost that is added once we switch. In the context of iTransport,

the average cost encompasses a thing’s connectivity (includes switching),

execution in the cloud and/or fog (i.e. leasing cost of processing services),

and other costs mentioned in Section 5.2. The mean overall costs have720

been collected from iFogSim.
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Figure 6: Sample of changing environmental conditions facing iT ransport (i.e. input for one

of the DAO). The red circles denote some examples of accidental spikes.

The iFogSim tool takes as input: the network latency, power load, smart

camera’s latency (i.e. fog devices), number of cameras, number of gateways,

tuple configurations, cloud and fog devices configurations. The sources of un-

certainty in iT ransport come from the varying network delays due to network725

congestion. There are other factors, which as well impact the environmental

conditions, such as uncertainty in QoS of cloud service providers (e.g. Amazon,

Google Cloud, etc) and software-defined capabilities of fog service providers in

terms of their processing power, as well as the hyperconnectivity of the nodes.

In this context, we have generated data corresponding to each dao including730

typical as well as worst case scenarios. For instance, we varied the power load

as 80-110 watt with a fluctuation of 5-10%, following the typical power load

values from [37]. The latency was varied in the range of low to high, i.e. 1-6ms

with a fluctuation of 20-30% on the smart camera. We also varied the network

latency with an average of 100ms and fluctuation of 20-25%, as exemplified735

in Figure 6. The choice of this fluctuation was based on [40], as it normally

provides acceptable throughput across various networking protocols, but also

causes accidental spikes that represent worst case scenarios.

We also simulated changes by using diverse smart cameras’ configuration [37,

11], as depicted in Table 3. Based on that, it outputs the energy consumption740

of devices, application’s response time, and network usage. This setting was

intentionally designed as a worst case that goes beyond a stable setting. Further,
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the iFogSim takes the pricing configurations for IoT devices (i.e. fog devices)

and cloud to generate the mean costs of each dao (i.e. application architecture).

All the pricing configurations are used with respect to AWS IoT services [41].745

We have run the simulations for each dao for 120 timesteps.

Figure 7: The Initial Experiment Configuration for iFogsim.

6. Experimental Evaluation

In the next series of experiments, we aim to show the usefulness of the

approach by evaluating how well it addresses the research questions introduced

in Section 3.750

As aforementioned, the system that uses the dao evaluated by our approach

as having the optimal trade-offs is called Informed-Selection System. We com-

pare our approach against the following baseline selection systems:

1. Static-Selection System: This is a typical type of system used in prac-

tice [42, 25], where the expert implements a single dao based on its as-755

sessed value at design-time. For our work, the value is determined using

the Binomial option pricing model [43, 44, 25], which estimates the future

benefits and costs of options based on a binomial decision tree.

2. Predefined-Selection System: This is inspired by [45, 46], where the

architect will choose the dao that is likely to perform the best for a given760

context. This selection is typically based on experience, backed up by
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Table 3: Simulation Parameters for iT ransport

Parameter Value

Device Configurations:

Cloud Datacenter 3GHz CPU, 40GB RAM, $0.1-0.3/day

Wifi and ISP Gateways 3GHz CPU, 4GB RAM, $0.0053-0.0056 /day

Smart Camera [1.6, 1.867, and 2.113] GHz CPU,

4GB RAM,$0.0053-0.0056 /day

Number of Smart Cameras/ 80-120 cameras/

Network Configurations (Average Latency):

From ISP Gateway to Cloud Datacenter 80-120 ms

From Wifi Gateway to ISP Gateway 1-6 ms

From Smart Camera to Wifi Gateway 1-6 ms

Tuple Configurations (Message size): CPU Length (MIPS), Network Length (Bytes)

Raw Video Stream: 1000, 20000

Motion Video Stream: 2000, 2000

Object Location: 500, 2000

Warning: 1000, 100

Tracking parameters 28,100

Average QoS:

Energy Consumption of devices 80-120MJ

Applications Response time 300-4000 ms

Network Usage 500 KBytes- 2 MBytes

Evaluation Settings:

θ {0.7, 0.9, 0.99}

α1, α2 {80, 92%}, {90, 95%}, {99, 99.9%}

{Normal;Strict} Quality Constraint {[400ms, 130MJ, 2MB];[350ms, 130MJ, 500KB]}

Normalized {Operating;Switching} Cost {0.3− 0.5;0.2− 0.4}

Weights for {normal; strict} Quality constraints {[0.4,0.3,0.3]; [0.4,0.2,0.4]}
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back-of-the-envelope calculations for the cost, benefits, and technical po-

tential. However, the selection may fail to predict potential fluctuations

in value, quality potentials, and costs. As an example, our case used

dao6 during week days (because of peak hours) and dao3 during weekends765

(because of less demand).

3. Random-Selection System: Our design for the baseline system follows

the argument of [2, 47] but for the context of services. When a significant

change is detected, it selects a dao randomly independent of its QoS over

time. This is because the DAO are deemed to be functionally equivalent770

but deployed in different environments and geographical location (i.e.,

distributed Fogs/clouds). All the results related to the Random-selection

approach are based on the average of 30 runs (the choice of 30 runs is

recommended by [48]).

6.1.775

RQ1: How to evaluate the benefit of each dao over time?

Motivation: This experiment aims to show the usefulness of run-time evalua-

tion over design-time evaluation. More specifically, it conveys that the run-time

evaluation visualizes scenarios and dynamics, which can hardly be captured at

design-time. It is also important to confirm the design-time choices. For that,780

we compare our approach against the design-time architecture evaluation ap-

proach proposed in [25]. The latter uses options theory [27] to evaluate and

justify the employment of architecturally diversified decisions and their aug-

mentation to long-term value creation under uncertainty. The architect has the

freedom to estimate the increases and decreases in the value potentials for the785

candidate architecture options over time, backed up by their experience.

Experimental setup: The design-time architecture evaluation approach uses

experts’ (e.g. architects and other stakeholders) assumptions on the likely util-

ities of a dao over a pre-defined period of time [25]. In our experiments, the

pre-defined period of time corresponded to 120 timesteps. The expert’s opinion790

is depicted by a utility tree that is provided at design-time, without making
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use of any run-time information. The utility tree created for the design-time

approach used in the experiments is shown in Figure A.18a and A.18b. The

design-time approach [25] then uses this utility tree to compute the likely ben-

efit of a dao over the pre-defined period time based on binomial real option795

analysis. This benefit is the one depicted in Figures 8a and 8c. Therefore,

even though this is a design-time evaluation approach, it provides information

on the expected run-time benefit of the DAO, being a meaningful design-time

approach to compare against.

We investigate how the design-time architecture evaluation approach and our800

proposed run-time approach evaluate two DAO: the dao with the best benefit

(dao6) over time and the dao with the worst benefit (dao1). Figure 8a depicts

the dao with best benefit (i.e. dao6) over time computed using the design-time

approach [25], whereas Figure 8b shows the exponential benefit quantified using

our run-time architecture evaluation approach. Further, the benefit of dao1805

(i.e. worst) is shown in Figure 8c, whereas its exponential benefit is plotted in

Figure 8d. Note that we have normalized the design-time benefit to ensure fair

comparison with the run-time benefit, as the design-time evaluation approach

provides a monetary value for the benefit of DAO. We assume that the cost of

both options is constant over time, whereas the benefit is varying over time.810

Analysis: As we can see, the design-time approach was conservative and es-

timated that dao6 had initially low benefit and then improved over time. Our

run-time approach, on the other hand, is able to show to the software architect

that dao6 has high benefit from the beginning. Figure 8c shows the benefit

value of dao1 over time computed using the design-time approach [25]. In this815

scenario, the design-time approach incorrectly estimated that the value of dao1

was going to increase over time. Our approach was able to discern at run-time

that this was not really the case, as shown in Figure 8d. Even though the ex-

ponential benefit ascended from 0.3 to 0.7 until timestep 25, this was followed

by a deterioration to an average of 0.4 (Figure 8d).820
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(a) Benefit for dao6 (design-time) (b) Exponential Benefit for dao6 (run-

time)

(c) Benefit for for dao1 (design-time) (d) Exponential Benefit for dao1

(run-time)

Figure 8: The results of assessing design-time and run-time evaluation.

RQ2: How can run-time evaluation determine changes in dao’s value

over time and inform subsequent decisions?

Motivation: This experiment aids the architect to evaluate the DAO and

suggest the ones with most balanced cost-benefit trade-offs using the informed-

selection approach as compared with other approaches introduced earlier in825

Section 6. For that, we consider that when our approach detects a significant

detrimental change, the software architect decides to implement the dao that

our approach recommends as the one with the optimal trade-off between cost

and benefit, based on strict quality constraints. This experiment will also aid

the architect in refining the selection of design-time DAO by checking their830
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(a) Average Benefit and Cost for the best case scenario

across 120 timesteps.

(b) Average Benefit and Cost for the worst case sce-

nario across 120 timesteps.

Figure 9: The evaluation of the four approaches’ decision-making process under strict quality

constraints.

cost-benefit at run-time. It can also indicate which DAO were not perform-

ing well, and hence require phasing-out. Back to IoT context, the use of fog

computing and cloud computing in mobile crowd sensing applications is highly

affected by the QoS requirements. Consider a scenario where the stakeholders

require the iTransport application to quickly track the accident in city center,835

especially in rush hours. In this context, low response time and network usage

is higher concern rather than energy consumption. Therefore, the ranking score

(i.e. weights) for response time and network usage qualities are higher than en-

ergy consumption. Also the use of fog-cloud computing is advisable over cloud

computing. So object detector and tracker modules will be executed in the fog.840

We are uncertain about the network latency (due to dynamic traffic and variable

load) and mobility of devices (nodes join/leave the network). This will cause

instability, which may require a switch to another architecture option.

Experimental setup: The environmental conditions that keep changing at

run-time are network latency, camera latency and power load. These poten-845

tially affect the aggregated benefit, which is composed of application response

time, energy consumption in devices and cloud, and network usage. Therefore,
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we might not get a linear effect from input to output – this is due to the use

of aggregated exponential benefit, where the change detection and selection is

based on it. Next, we will demonstrate strict quality constraint scenario to850

show whether the changes detected by the approach are aligned with the input

environmental conditions. Consider the case where the architect can adjust the

quality weights to reflect priorities from stakeholders. For example, when the

application response time and network usage become a priority, energy con-

sumption priorities can be downgraded. In our case study, we assume a wRT of855

0.4 for response time, wEC of 0.2 for energy consumption, and wNU for network

usage of 0.4. We also consider that the architect has constrained the application

to handle the request in less than 350 ms and network usage does not exceed

500KB ; whereas, the energy consumption should not exceed 130 MJ. Historical

performance and experts’ judgment can inform the adjustment of the prior con-860

straints [49, 11]. In this experiment, the focus is on the application’s response

time and network usage concerns. Nevertheless, the same experiment could be

applied on other stakeholders’ concerns, such as the ones discussed in Section

5.2. Figure 9 shows the average benefit and cost of the system as a whole across

120 timesteps, i.e., calculated based on the DAO currently being used for two865

scenarios: best case and worst case. We have also plotted the environmental

changing conditions (the power load, network latency, and camera latency) for

best case scenario, in Figure 10a and 10b, along with their impact on response

time, network usage, and energy consumption.

Analysis (best case scenario): The design-time evaluation approach sug-870

gests the systems to start operation using the dao that are believed to provide

the most balanced cost-benefit trade-off at run-time (dao6). Different changes

were observed after 5 timesteps (Figure 9a). The mobility of devices has caused

a decrease in the overall benefit, due to highly changing response time causing

a violation in response time constraint. The random-selection approach selects875

a random dao, which is not always the best. In addition, throughout the ex-

periment, this approach suffered from too many switches (9 switches), causing

instability and lowering the benefit to about 0.35. The pre-defined selection
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performs a bit worse than the random one; this is because the constraint was

too strict for options recommended by that approach, causing various viola-880

tions. The static-selection is the second best one; this is because the selection

is geared towards selecting dao with better potentials for the selected scenarios.

This strategy considers design-time knowledge, which can be challenged or con-

firmed by future runs of the system. The informed-selection approach provides

the most appealing results compared with other approaches: this is because885

the informed-selection approach can continually recommend the dao with the

most balanced cost-benefit trade-offs. For example, we observed that when the

first change was triggered, the informed-selection figured out that the initially

selected dao was still the optimal choice to keep. Yet, after 22 timesteps when

another change was detected, dao4 was recommended due to its large improve-890

ments for response time. However, this requires cost of leasing these services

and maintaining their devices (switching cost).

By mapping the environmental conditions to the evaluation of DAO based

on the informed-selection approach (Figure 10a and 10b), the approach has

detected significant deviations which are consistent with input environmental895

conditions. In particular, the change could be triggered either from high fluc-

tuation and/or a deterioration in one/all of QoS. For instance, from timestep 1

to 5, we see an increase in the values of application response time and network

usage, caused by a (smaller) increase in network and camera latency (Figure

10a). These result in a decrease in the exponential benefit, which is considered900

as significant when reaching timestep 5 (Figure 10c).

Since the approach is still building knowledge about the current dao and

having highly dynamic changing conditions during the initial observation pe-

riod, this caused a change detection at almost every consecutive 5 timesteps

until timestep 27 (Figure 10). However, these only led to switches when an-905

other better dao was available (at timestep 22). This led to improvements in

the exponential benefit of the proposed informed-selection approach over the

following timesteps (Figure 10c).

Further, at t = 46 (Figure 10a), an increase in network camera latency has
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caused a noticeable rise in application’s response time and network usage, which910

accordingly resulted in the detection of a significant change in environmental

conditions. However, the approach found that the current dao still provided the

most balanced cost-benefit trade-off and hence the approach kept using this dao

for the next 15 timesteps (though other change detections were triggered). After

that, at t = 61, the approach detected a significant change (i.e. a high power915

load, network and camera latency) and has then selected another dao which

provided the most balanced cost-benefit trade-off. After t = 61, the exponential

benefit was just oscillating resulting in no significant changes (i.e. no changes

were detected), as reflected by the exponential benefit (Figure 10c).

Analysis (worst case scenario): The design-time evaluation approach sug-920

gests the systems to start operation using the dao that turns out to provide the

worst balanced cost-benefit trade-off at run-time (i.e. dao2). In this respect, a

replacement is advocated by our approach. Figure 9b shows that the most bal-

anced trade-off between benefit and cost is achieved by the informed-selection

approach, followed by the random- and predefined-selection approaches. Here,925

informed-selection achieved much higher benefit than other approaches. Since

the response time constraint is violated from the beginning, the static-selection

approach experiences a zero benefit. In this context, high application response

time is not recommended, because this is a safety-critical application. From this

experiment, dao1 has never been recommended by the approach because of its930

low response time and high energy consumption, which may inform the archi-

tect to phase-out. For the best and worst case scenarios, the architect can use

the run-time evaluation approach to visualize the cost-benefit trade-offs of the

suggested DAO over time (Figure 9) for informed-selection approach against

other approaches. It can also show how the adoption of optimal DAO provided935

an improved benefit over time (i.e. added values).

6.2.

Motivation: This experiment will answer the following: How scalable is the

proposed approach to larger numbers of dao? . The scalability of the proposed
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(a) The impact of network and camera latency on application’s response time

and network usage.

(b) The impact of power load on application’s energy consumption.

(c) Exponential Benefit of informed-selection with change detection and switches.

Figure 10: An illustration of the input environmental conditions for the 120 timesteps includ-

ing network latency, smart camera’s latency, power load on the devices, change detection, and

switching occurrence, as well as the output exponential benefit of informed-selection approach

for strict quality constraints and prioritized ranking score for the best case scenario as an ex-

ample. The red squares represent change detections that did not lead to switching DAO, and

green circles represent change detections followed by dao switching.
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Figure 11: The execution time for large number of DAO for every timestep.

approach (informed-selection) is an important indicator to show to what extent940

our run-time evaluation can be applied in practice. There is a trade-off between

the candidate options and the execution time of the algorithm.

Experimental setup: In this experiment, the mean execution of the informed-

selection algorithm is computed over 120 timesteps for varying number of dao,

as illustrated in Figure 11.945

Analysis: The informed-selection approach performs very well until reaching

500 DAO, it takes less than 3 seconds. This is applicable for safety-critical IoT

applications, which in case a change is detected, the approach will be able to

search for the optimal solution in few seconds. However, after 500 architecture

options, the execution time starts to increase reaching 17 seconds for 1000 op-950

tions. Therefore, for an application, which requires more than 1000 options, our

approach will take further time for decision-making.

7. Further Analysis Of The Proposed Approach

This set of the experiments aims at evaluating the robustness and scalability

of the proposed approach. It also aims at providing a better understanding of955

the influence of the stability parameters (θ, α) on the proposed approach. This

better understanding can guide software architects in the decision of which

values to use for these parameters.
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7.1. Impact Of Frequency Of Monitoring

Motivation: The proposed approach depends on the possibility of either mon-960

itoring the DAO that are not currently in-use, or using a simulator to get an

idea of their likely behavior. If we opt for monitoring the DAO that are not

currently being used, this will lead to an overhead in terms of time taken for

the informed-selection approach to do the analysis. Therefore, one may opt for

not monitoring them very often. Practically, its hard to monitor the architec-965

tural options (e.g. virtual sensors, physical sensors) every timestep, due to their

availability. There is a trade-off between the execution time and % error, which

we aim to measure in this experiment. To this regard, this could guide the

architect on deciding the monitoring intervals. In this context, this experiment

aims to provide answers for the following question: What is the impact of the970

frequency of monitoring on the accuracy of the approach?.

Experimental setup: For that, we use an error metric % Relative Error to

measure the error in decision-making between monitoring every T’ intervals

and every timestep. In this context, we will measure the error for each dao

separately and mean exponential benefit for the whole process. For the for-975

mer, the %RelativeError =
∣∣∣Actualµdaoi (t)−Monitoredµdaoi (t)

Actualµdaoi (t)

∣∣∣ ∗ 100. The ac-

tual exponential benefit is the one monitored every timestep till T’, where

T ′ = {5, 10, 20, 30, 40, 50, 60, 70, 80}. The monitored exponential benefit is the

one monitored every T’ intervals. For example, if T’=5, then from t=1 to

4, the exponential benefit will be the same and then at t=5, it is updated.980

Figure 12 depicts the % relative error versus T’ intervals for each dao. As

for the mean exponential benefit for the whole process, the %RelativeError =∣∣∣ActualMeanµ−MonitoredMeanµ
ActualMeanµ

∣∣∣∗100. The actual mean exponential benefit is the

average benefit if monitoring occurs at every timestep, so it is constant for all.

The monitored mean exponential benefit is the average benefit if monitoring985

occurs at every T’ intervals. We consider the error in the whole process to eval-

uate how much worse the mean benefit (based on informed-selection approach)

would be if monitoring happened every T’ intervals rather than every timestep.

This includes the monitoring, change detection, and decision-making processes.
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We have developed two scenarios: best case (Case 1 and 3), where the optimal990

dao is initially chosen; worst case (Case 2 and 4), where the worst dao is ini-

tially selected. This is illustrated in Figure 13, where each point in the plot has

3 coordinates (X: execution time; Y: monitoring interval; Z: % Error)

Analysis (for each dao): In Figure 12, the relative error for dao2 and dao3

ranges from 0-30%. This is due to the low fluctuation in these options. This in995

turn lowers their impact on the accuracy. However, dao1 and dao5 violated the

constraint at t = 1, which resulted in an error of about 70%. This is because

dao1 and dao5 had good exponential benefit after the first timestep (i.e. not

violating constraint), but the monitoring was based on the first timestep only.

Analysis (for whole process): Case 3 presents the smallest error (Figure1000

13c), which was about 0.27%. The error was small because the initially selected

dao was optimal and fluctuating less than the other DAO. As a result, the

informed-selection approach managed to keep using it for different monitoring

intervals (i.e. no switching). In this context, the architect could use higher

monitoring intervals to save execution time. This is due to the decrease in1005

execution time from 0.45 seconds (T’ = 5) to 0.22 seconds (T’= 50).

Further, Case 1 experienced 10% increase in error (constant for all intervals),

as shown in Figure 13a. This rise is due to the fact that when monitoring hap-

pened at every timestep, three switches were recommended by our approach.

However, when the monitoring interval increased, the approach had quite out-1010

dated information about the current dao. Therefore, it did not advocate any

switches, which resulted in slight degradation in benefit. To this regard, if time

is the concern, the architect could choose higher monitoring intervals to benefit

from lower overhead in terms of time and cost.

On the contrary, the selection of the worst dao in cases 2 and 4 caused a1015

significant rise of 65% in relative error (Figure 13b, 13d), because the approach

had outdated knowledge about the initial dao. To exemplify in case 2 at T ′ = 50,

the approach updates the current benefit with respect to the first timestep.

Therefore, for the first 50 timesteps the benefit was very low and a switch was

recommended after T ′ = 50. On the other hand, if monitoring occurred at1020
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Figure 12: The % Relative Error of monitoring every T’ intervals for each dao.

every timestep, then the approach will advocate switching after 5 timesteps to

an optimal dao. This explains the rise in the relative error to 40%. For the latter

scenarios, it is recommended for the architect to use lower monitoring intervals

with higher overhead, rather than experiencing a reduction in benefit. To this

end, our approach could aid the architect in tuning the monitoring interval with1025

respect to execution time overhead and relative error.

7.2. Robustness To Noise

Motivation: An alternative to monitoring each dao at regular T ′ intervals

would be to use a simulator to monitor the likely benefit of the DAO that are

not currently in-use. However, simulators are likely to produce noisy quality1030

indicators, which differ from the actual qualities that these DAO would have

if they were currently being used. In order to evaluate the impact of the noise

potentially produced by simulators, we investigate how the proposed approach

reacts to different levels of noise i.e. To what extent the informed-selection

system can deal with noise data as compared with other systems? .1035

Experimental setup: In this experiment, we have generated Gaussian Noise

[50] on the QoS data. A given quality attribute q′daoi(t) is replaced by a

value drawn from a Gaussian distribution N (q′daoi(t), s), where q′daoi(t) is the

mean and s = {0.05(low), 0.1(mid), 0.5(high)} is the standard deviation. The

49



(a) Case 1 (Best) (b) Case 2 (Worst)

(c) Case 3 (Best) (d) Case 4 (Worst)

Figure 13: The % relative error and execution time of monitoring every T’ intervals for four

scenarios.

smaller/larger s represent the cases where there is less/more noise. This reflects1040

the cases in which simulators are more/less reliable. It enables us to check how

robust the approach is to wrong measurements provided by a simulator. In

particular, we expect the proposed approach to be affected by such erroneous

quality information, but to quickly react and recover from it if a poor switch

occurs. This is because, once the switch occurs, the true benefit of the dao can1045

be determined. If this benefit is worse than expected, a change will be detected,

leading to a switch to another potentially better dao. The results are based on

the average of 30 runs, due to the randomness of noise (the choice of 30 runs

is recommended by [48]). In this experiment, we have compared the proposed

approach against the state-of-the-art and baseline approaches introduced in Sec-1050
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tion 6. For this experiment, the design-time evaluation approach suggests the

systems to start operation using the dao that are believed to provide the worst

cost-benefit trade-off at run-time (dao2). This choice is advocated to show how

our approach can deal with different noise levels, in even worst case scenarios.

Figure 14a, 14b, and 14c show the exponential benefit of four approaches for the1055

selected DAO across 120 timesteps. Whereas, Figure 14d, 14e, and 14f depict

the mean exponential benefit and cost of four approaches for the selected DAO

across 120 timesteps.

Analysis: As clearly illustrated in Figure 14, the informed-selection approach

has managed to select optimal options, although by introducing higher noise1060

levels, the choice could have become much worse. Followed by the random-

selection, which benefited from the change detection test. However, it selected

DAO, which were not always the best. The static-selection and predefined-

selection approaches are based on design-time knowledge, thus they are not

affected by noise. However, the static-selection produced zero benefit across1065

120 timesteps, due constraints’ violation. The predefined-selection was highly

fluctuating because of constraints’ violation in some timesteps. Therefore, the

informed-selection approach produced the best results overall (Figure 14d, 14e,

and 14f). Further, the informed-selection has quickly recovered from wrong

choices due to noise. For instance in Figure 14c, dao2 was initially selected for1070

deployment (in one of the runs), which turned out to be the worst dao. After

5 timesteps, the approach detected deterioration in exponential benefit, and

hence recommended dao4 to switch to. Ten timesteps later, another change is

triggered and the informed-selection chose dao5 to replace the current dao. We

have found that dao5 was not the optimal one and dao6 seemed to be better (i.e.1075

this choice was affected by noise). Though, the informed-selection approach has

quickly recovered from the poor switch and suggested dao6 after 5 timesteps.

To this extent, our approach managed to self-repair from incorrect choices (due

to varying noise levels).
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(a) Exponential Benefit (low) (b) Exponential Benefit (mid) (c) Exponential Benefit (high)

(d) Overall Behavior (low) (e) Overall Behavior (mid) (f) Overall Behavior (high)

Figure 14: The behavior of all the approaches after the application of varying noise levels on

the data.

7.3. Impact Of The Parameter θ On The System’s Stability1080

Motivation: A low θ value corresponds to a greater emphasis on the most

recent observations of benefit and swifter adaptation to changes in the benefit.

However, very low values can lead to unstable quantification of benefit, causing

too much switching over time. A high value (e.g., larger than 0.95) places more

importance to the past observations of benefit, leading to more stability, but1085

potentially failing to track changes in benefit. This experiment will answer the

following: What is the impact of the parameter θ on the system’s stability?. In

this context, this experiment is performed to indicate the most applicable value

for the relative importance under typical environment settings.

Experimental setup: This experiment considers the values of θ ∈ {0.7, 0.9, 0.99}.1090
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Figure 15: Exponential Benefit of the informed-selection approach using different values for

the stability parameter θ.

In this experiment, we started with dao6, which is advocated by the architect to

be the optimal dao for the normal quality constraints as depicted in Table 3. If

a change is detected, the approach recommends another dao to be implemented.

In this context, the exponential benefit of the selected DAO by the approach

over 120 timesteps is computed and plotted in Figure 15.1095

Analysis: As seen in Figure 15, θ = 0.7 leads to highly fluctuating benefit

over time, which may cause the system to recommend a lot of switches through-

out time, as compared with θ = 0.9 (the moderate fluctuation) and θ = 0.99

(too stable, which may be not be realistic). For instance, θ = {0.7, 0.9, 0.99} has

recommended the following number of switches {13, 4, 1}, respectively. There-1100

fore, based on this experiment, we recommend for the architect to evaluate the

four approaches for the next experiments, with respect to θ = 0.9, as it indicates

the most realistic forgetting factor.

7.4. Impact Of The Parameter α On The System’s Stability

Motivation: The confidence interval is an interval with two boundaries (α1 and1105

α2), where the architect is not confident about the exponential benefit values

outside this interval. In other words, if the current exponential benefit µdaoi(t)

is outside the left boundary of the confidence interval, this is an indicator that
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the current option is getting worse and requires replacement. For instance, If

a system is highly sensitive to changes, then we can enlarge the α values used1110

(α ≥ 95%), whereas for the opposite case (α ≤ 92%) is more applicable and

so forth. Based on that, the architect can learn what α values to use and for

which scenarios. In order to adjust the α values, there is a trade-off between the

number of switches and overall benefit (i.e. stability versus improved benefit),

which will be measured in this experiment. To this end, the experiment aims at1115

answering the following: What is the impact of the parameter α on the system’s

stability?.

Experimental setup: We have developed two cases for analysis: case 1 where

the best dao changed over time, which caused several switches; case 2: the

best dao performed well over time, resulting in no switches. This experiment1120

considers the values of α1, α2 ∈ {80, 92%}; {90, 95%}; {99, 99.9%}. Figure 16

shows the impact of varying α values on the approach’s stability, whereas Table 4

summarizes the corresponding number of change detection and switches. Figure

16a, 16d show the exponential benefit of DAO recommended by the informed-

selection approach, whereas Figure 16b, 16e depict their corresponding cost.1125

The mean exponential benefit and cost of 120 timesteps for varying α values are

depicted in Figure 16c, 16f to show the overall behavior of four approaches.

Analysis (case 1): The use of low confidence interval {80,92%} caused higher

change detection than other confidence intervals. This is due to the detection

of unnecessary changes. So in a case where the DAO are highly changing, this1130

caused higher number of switches (7), as depicted in Table 4 and Figure 16a. A

high confidence interval {99,99.9%} can lead to neglecting significant changes,

because the system is confident enough about the data. There is a trade-off

between the number of switches and improvement in benefit. For case 1, the

informed-selection recommended 3 additional switches (when α = {80, 92%}1135

over α = {99, 99.9%}), with 5% increase in exponential benefit and 0.5% increase

in cost over {99,99.9%}. Although {95,99%} and {99,99.9%} advocated the

same number of switches, yet {95,99%} produced a 3.6% increase in exponential

benefit and 1% increase in cost over {99,99.9%}. This is because {99,99.9%}
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Table 4: The number of change detection and switching for informed-selection approach for

varying α values.

Parameter/Case 1 2

# of switches(α1 = 80%, α2 = 92%) 7 0

# of detection (α1 = 80%, α2 = 92%) 13 9

# of switches(α1 = 95%, α2 = 99%) 4 0

# of detection (α1 = 95%, α2 = 99%) 10 0

# of switches(α1 = 99%, α2 = 99.9% ) 4 0

# of detection (α1 = 99%, α2 = 99.9% ) 8 0

neglected significant changes, as stated before.1140

Analysis (case 2): Though for {80,92%} the informed-selection detected 9

changes (Table 4), yet it managed to continue with the optimal option without

any recommendation for switching. This is because it has found that there is

no other dao better than the current one. Therefore, the informed-selection

approach has a safety mechanism, which recommends a switch only if there is1145

another better dao, otherwise it will keep using the same dao. Further, no change

was detected for {95-99%} and {99-99.9%}, this explains why all the confidence

intervals produced the same overall behavior as seen in Figure 16f. Besides,

the low confidence interval also caused higher overhead in terms of searching for

another optimal option (informed-selection). In all cases, the informed-selection1150

approach managed to recommend the optimal dao in terms of balancing between

cost and benefit over time. To this regard, a confidence interval of {95-99%} is

more applicable in most of the cases, because it detects significant changes and

neglect unnecessary ones. We recommend the architect to use {95-99%} in the

evaluation of the four approaches for the next experiments.1155

8.

Motivation: Design diversification has the potential to mitigate risks and im-

prove the dependability in design in situation exhibiting uncertainty in opera-
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(a) Exponential Benefit (Case 1) (b) Average Cost (Case 1) (c) Overall Behavior (Case 1)

(d) Exponential Benefit (Case 2) (e) Average Cost (Case 2) (f) Overall Behavior (Case 2)

Figure 16: The impact of varying α values on the informed-selection approach.

tion and usage [29, 9]. Design diversity has raised the potential awareness to

apply diversification in the decision-making process, which in turn may cause1160

a noticeable improvement in the way we design dependable and evolvable soft-

ware. However, do diversification continuously deliver value over time? In

this experiment, we aim to evaluate the added value of diversification to the

decision-making process.

Experimental setup: In this experiment, we are trying to show whether the1165

inclusion of new DAO will benefit the decision-making. To demonstrate that, we

have tested our approach with respect to two cases: (1) Add new six DAO where

the approach benefits from them and a noticeable improvement in the overall

behavior occurred (Case 1); (2) Add new six DAO where the approach does not

benefit from them (Case 2). We used the original six DAO recommended by the1170

approach (Table 2) and created new six DAO adhering to the same topology of

original six DAO, but with different QoS fluctuations to generate Cases 1 and
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2.

For Case 1, we have randomly generated their QoS over time using the mean

of original DAO and fluctuation of 5%− 25% for response time, 0%− 15% for1175

energy consumption, and 20% − 29% for network usage. As for Case 2, the

QoS fluctuation is 30%− 40% for response time, 25− 40% energy consumption,

and 30% − 40% for network usage. These volatility values were chosen with

respect to [51, 52]. In Case 1, the low fluctuation has resulted in additional

DAO with improved aggregated benefit, whereas the newly created DAO in1180

Case 2 has generated DAO with highly fluctuating benefit (i.e. seems good at

the beginning but then turns out to be worse after being selected).

Analysis: In Case 1, we have added 6 DAO, which seemed to add value

to the decision-making process. The overall average benefit and cost for the

informed-selection approach was better than the other approaches (Figure 17g,1185

17h), with noticeable rise in exponential benefit over time (Figure 17a, 17b),

and slight decrease in cost (Figure 17d, 17e). This is because the informed-

selection approach has benefited from the inclusion of new DAO, by providing

more stable behavior in terms of benefit. For instance, after 10 timesteps the

approach has detected a significant change in current option (i.e. dao6). It1190

has then selected dao12 instead, which seemed to provide more stable benefit

(Figure 17b) with almost similar cost (Figure 17e) to the one chosen in default

case (i.e. 6 DAO instead of 12 DAO).

In Case 2, the additional 6 DAO were highly fluctuating over time, which ex-

plains the slight degradation in benefit (Figure 17c) as compared to the original1195

6 DAO only (Figure 17a). However, the addition of new options has introduced

further instability to the random-selection approach by selecting the worse DAO

(4 more switches than the original case), as depicted in Table 5. For example,

after 5 timesteps, the approach has detected a significant deviation in current

option (i.e. dao6). After that, it chose dao11, which provided the most balanced1200

trade-off between benefit and cost. The exponential benefit of dao11 was in-

creasing, which explains why the approach did not detect any change. However,

this has caused the application to not benefit that much from diversification.
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Table 5: The evaluation of embedding diversification to the architecture with respect to the

number of change detection and switches.

Parameter/Approach Static Predefined Random Informed

-selection -selection -selection -selection

# of switches (6 DAO) 0 8 8 4

# of detection (6 DAO) 0 0 8 10

# of switches (12 DAO) [Case 1] 0 8 10 3

# of detection (12 DAO)[Case 1] 0 0 10 4

# of switches (12 DAO) [Case 2] 0 8 12 4

# of detection (12 DAO)[Case 2] 0 0 12 5

At t = 71, the approach detected a change and till t = 120, it has chosen similar

DAO to the default case.1205

To this regard, the proposed approach successfully showed that diversifica-

tion was helpful in Case 1, and was not helpful in Case 2. This concludes that

diversification will not always add value and run-time evaluation could aid in

assessing the worthiness of this exercise.

9. Discussion And Threats To Validity1210

In this section, we will discuss the usefulness and applicability of proposed

approach with respect to experiments introduced in Section 6-7 and threats to

validity.

9.1. Discussion

Our approach allows reasoning about value added under uncertainty, facili-1215

tated by the use of reinforcement learning to profile the fitness values of options

rather than the traditional (static) predictions of design-time decisions. The

exponential decay factor provides architects with a visual demonstration of the

benefit of options over time and aids them in complementing design-time deci-

sions (Figure 8). Our approach also alerts architects of significant detrimental1220
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(a) Exponential Benefit (Default Case) (b) Exponential Benefit (Case 1) (c) Exponential Benefit (Case 2)

(d) Average Cost (Default Case) (e) Average Cost (Case 1) (f) Average Cost (Case 2)

(g) Overall Behavior (Default Case) (h) Overall Behavior (Case 1) (i) Overall Behavior (Case 2)

Figure 17: The evaluation of embedding diversification to the architecture on the decision-

making (positive impact (Case 1) and negative impact (Case 2)) as compared to the default

case (6 original DAO in Table 2).

changes in the benefit of the option being employed, and highlights which of

the candidate options provides the optimal cost-benefit trade-off when changes

occur for normal and strict constraints (Figure 9). This could assist architects

in the process of eliminating options with poor balance between benefits and

costs over time. For instance, in the best and worst case scenarios in the exper-1225
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iment addressing RQ2, we found that one out of six options could potentially

be eliminated because it was always worse than the others (i.e. the cloud-based

option).

There is a trade-off between monitoring the architecture options at every

timestep and every T’ intervals; our approach was able to show this trade-off1230

to the architect (Figure 12, 13). Our approach is also robust when dealing

with noise (Figure 14) and scalable to be applied in practical settings (Figure

11). Further, the exponential decay factor that we use weights recent values

more heavily, which yields more practical results (Figure 15). The approach

uses the confidence interval to automatically tune the sensitivity of the ap-1235

proach to changes, which improves the system’s stability (Figure 16). In sum,

our approach allows the architect to determine the added value of embedding

diversification in the architecture (Figure 17).

Architecture design decisions could be static or dynamic in nature. Several

structural design decisions are static in nature; this implies that these decisions1240

can be expensive to change and cannot be altered very frequently at run-time.

Henceforth, the architect should evaluate them cautiously at design-time. Ex-

ample of these decisions include network-related decisions such as the physical

connectivity between devices (e.g. how data bits are moving in/out of the IoT

device), logical connectivity (e.g. what protocols the software uses to transport1245

these bits, such as MQTT), and also the network topology. These decisions are

affected by the expected incoming data volumes, cost, memory requirements,

etc. Therefore, they are quite difficult to change.

However, there are other decisions, which are dynamic in nature and could be

customized at run-time (e.g., predefined decisions that could be tailored to fit the1250

run-time context; strategies and tactics to address behavioural requirements).

For instance, different deployment strategies, such as the use of cloud, fog-

cloud, etc, are an example of a decision that can be best evaluated dynamically.

When deemed to be necessary, diversification was also employed to provide

“malleability” to alter the structure through inclusion of limited number of1255

tactics that can better meet the behavioural requirements. In this context, our
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work is particularly interested in investigating and evaluating dynamic design

decisions.

We have found that the pricing in most of IoT service providers (e.g. ama-

zon) is based on the following [41]: (1) Fixed charge to reserve the required1260

resources for a particular time; (2) Pay-per-use, where the consumer pays for

CPU per hour or per GB/TB of data; and (3) Auction-based, where a consumer

could book resources if s/he pays the highest price for these resources. For these

types of pricing methodologies, a noticeable reduction in the price volatility of

resources has begun from December 2017 [53]. In this context, when the price1265

volatility is so low, the use of exponential decay factor for cost is not necessary.

Therefore, we focused on providing a continuous measure for the benefit of each

dao (i.e. exponential benefit). We plan to investigate cases where price volatility

might be higher (using exponential decay for the cost) as future work.

Further, architects of self-adaptive systems can use our method to systemat-1270

ically evaluate the adaptive design decisions, justify their inclusion, and model

their potential behavior at run-time and before the system is deployed in the

next release cycle. It can also value and profile the overall behavior and cost-

benefit of these decisions over time as the software evolves, which could aid in

determining which options could be best deployed at run-time. Cloud-based1275

architectures, which are essentially based on service-oriented architectures, can

use our approach to justify the choice of abstract architecture model and its

possible concrete instantiations over different releases. Inputs from the evalua-

tion can help architects in refining the abstract model; adjust, limit or rethink

modes for dynamic composition of concrete ones prior to future deployments.1280

This approach is also generic so it could be integrated with any of existing

tools for better informed evaluation. For instance, an application built using

AWS IoT and Greengrass suites [41] could benefit from our approach in the con-

text of evaluating the benefit of each option at run-time using the CloudWatch

monitoring tool. It could aid the architect on deciding and planning which dao1285

to currently use. The actual execution of the chosen dao is outside the scope

of our approach. Instead, our contribution is in providing a framework for
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systematic support, informing the design and evaluation of IoT architectures.

The current approach accumulates the run-time knowledge of the benefit

of the architecture decisions. It then assumes that the best dao to switch to1290

is the one which has recently been obtaining the most balanced cost-benefit.

This is effective in some contexts, e.g., when the deployed architecture option

is not violating the QoS constraints that much, or when its performance level

is not significantly changing over time. However, in other contexts, this type

of learning may suggest wrong decisions and recommend unnecessary switches1295

due to the lack of knowledge about the future benefit of candidate architecture

decisions. Taking into account the future potential of diversified architecture

option may provide a more informative evaluation. This calls for extending

the following run-time approach with additional machine learning algorithms

to anticipate the benefit of architecture decisions over time. The validity of1300

these algorithms and effectiveness of the decision-making process are subject

for future work.

9.2. Threats To Validity

Threats to Internal Validity are concerned with the impact of evaluation

parameters on the proposed approach. For that, we have analyzed our approach1305

with varying input parameters (e.g. the relative importance of present/past,

the confidence interval, etc) to ensure acceptable accuracy and stability. On the

contrary, the values of these parameters might vary depending on some char-

acteristics (e.g., the environmental conditions and more complex dependencies

between architecture decisions), which could be investigated for future research.1310

Further, one of threats to internal validity that the real environment may differ

from the simulated data due to uncertainties at run-time. Therefore, we have

tested the sensitivity of approach to noise, to check how well our proposed ap-

proach can handle this issue. We have also demonstrated the applicability of

our approach to monitor the environment at every T’ intervals if the real-time1315

evaluation was expensive and the architects did not wish to use simulation.

Threats to External Validity are linked to the run-time data synthesis
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and analysis used in the experiments. In particular, the notion of run-time

evaluation is meant to contextualize dynamic and behavioural evaluation; such

evaluation needs to be conducted by monitoring a running system; analyzing1320

historic data from a running system or using a simulated environment that

mimic the behaviour of the running system to perform stress and what-if anal-

ysis for the performance of the architecture design decisions under changing

environment and/or extreme scenarios. The results of such evaluation are time-

dependent in non-stationary environments as it is the norm for systems such as1325

IoT. Evaluation that is based on simulation can still be considered as design-time

if the evaluation is performed at design-time and before deployment. However,

we also see potentials for the same simulated approach to work in parallel with

the running system, with symbiotic feedback between the simulator and the

running system to perform anticipatory evaluation of key design decisions and1330

their possible variants based on the run-time context, which may be difficult

without the aid of simulation. Additionally, there will always be a trade-off

between using the simulators and physical IoT devices in experimentation and

data generation. This is due to the high cost of the actual deployment of IoT

devices as compared to simulators. However, some companies, such as Amazon,1335

IBM, and Intel, are motivating the need for having IoT simulation instrument-

ing what-if test scenarios, typically used during the architecture analysis and

refinement stages to evaluate the response and sensitivity of the architecture to

these tests. To generalize, our approach can steer the evaluation process using

simulated data; partially simulated data and/or using monitored run-time data.1340

The simulation can be used to simulate what-if an option would be deployed.

This is particularly useful if the architect would like to solicit an early assess-

ment on the option, where the cost of deployment would be expensive and the

outcome can not be verified with high confidence. Simulation can be also used

to simulate the performance of some design decisions under worst and stress1345

scenarios. Henceforth, simulation can be cost-effective strategy to first assess

the performance and then adapt, if the option deems to be sensible. Further,

transfer learning methodology [54] has been recently adopted in [55], where the
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QoS measurements are taken from a simulator and only a few samples are taken

from the real system leading to much lower cost and faster learning. In this con-1350

text, the approach could learn from both simulated and run-time data, which

is subject for future work.

A major challenge in mobile crowdsensing is the resource constraint of the

mobile devices. This can constrain the processing which can be done on the

devices forming the dao in our approach. On the other hand, mobile devices1355

that are not constrained in resources can have a high energy consumption to

be able to perform on-device computations. High energy consumption is there-

fore another challenge to our approach. However, the new mobile devices are

designed to handle processing tasks with the acceptable energy consumption.

The IoT environment is highly dynamic and characterized by hyper-connectivity,1360

due to high refresh rates and continuous upgrades. More specifically, it is ex-

pected that nodes can leave and join; nodes can be subject to upgrades and

replacements; some nodes could be replaced by inferior ones; some new nodes

can share common characteristics with its predecessors, offering enhancements

for some qualities. Though it would be difficult for the approach to predict all1365

possible types of IoT devices and versioning that can be encountered in real

settings, our approach assumes the evaluation of reference architectures for this

setting, where commonalities and variabilities are analyzed as part of the di-

versification procedure for incepting and evaluating the diversified architecture

options.1370

10. Related Work

One definition of software architecture is “the set of principal design deci-

sions made about the system” [42]. Architecture evaluation is a milestone in the

decision-making process. Evaluation is intended to assess the extent to which

the architecture design decisions meet the quality requirements and their trade-1375

offs. The evaluation can aid in early identification and mitigation of design

risks; the exercise is intended to save integration, testing and evolution costs
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[56]. A common issue in architecture evaluation is the presence of uncertainty.

In architecture evaluation and decision-making, uncertainty is the lack of com-

plete knowledge about the outcomes of deploying the architecture options [57].1380

For instance, the architects may be uncertain about the effect of a proposed ar-

chitecture on benefit (e.g. performance, availability, etc) and cost. Uncertainty

may also arise due to unpredictable situations in dynamic applications, such as

IoT. For instance, sensor aging effects, varying internet connectivity and mobil-

ity of sensors, fluctuations in QoS and so forth [3, 58, 59, 2]. To this extent,1385

we need an overview of current architecture evaluation approaches and how do

they manage uncertainty and other related aspects.

We first highlight on the methods which addressed architecture evaluation

from the design-time perspective. The CBAM [4] is a static method for the

economic modeling of architecture decisions, which builds on the ATAM [5]. It1390

determines the costs and benefits of different architecture candidates. There are

other design-time methods, which use probabilistic distributions (e.g. [60, 46]),

mathematical models (e.g. [61, 62]), and options theory (e.g. [44, 25]) to se-

lect the optimal architecture at early stages of architecting under uncertainty.

More specifically, they rely on expert judgment in the evaluation. Most of1395

the classical design-time approaches do not support adaptivity and automation,

whereas our approach takes inspiration from self-adaptive systems to support

that. We acknowledge that these approaches are fundamental for constructing

the “suitable” architecture. However, the increase in uncertainty and dynamic-

ity in environments such as IoT calls for a systematic method to complement1400

design-time evaluations.

The software engineering and architecture state-of-art and -practice have

witnessed increased reliance on solutions that embrace uncertainty in opera-

tions through engineering self-adaptivity [63] and autonomic management [64].

In particular, some approaches adopt utility functions while others leverage1405

machine learning approaches to improve the decision-making. We examine

some representative approaches in light of our approach. Utility functions

have been used at run-time for self-adaptive and self-managed systems (e.g.
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[65, 66, 67, 68, 69, 70, 71]). For example, Heaven et al. [66] reported on an

approach tailored for self-managed software systems. The approach provides1410

the following features: high-level task planning, architectural configuration and

reconfiguration, and component-based control. The approach uses weighted util-

ity functions to represent the quality attributes and determine the total utility

of configurations by taking into account reliability and performance concerns.

Esfani et al. [70] proposed an approach that elicits from stakeholders their1415

belief towards uncertainty with respect to quality attributes, such as network

bandwidth. In particular, the stakeholders provide an estimate for the range of

uncertainty with respect to the expected level of input variation. The approach

also quantifies the uncertainty through profiling by comparing the actual values

with estimates from stakeholders and hence provide probability distributions for1420

the variation in data collection. After that the overall uncertainty is computed

using fuzzy math. Ghezzi et al. [69]’s method is one of the few methods which

complement design-time with run-time analysis. At design-time, the approach

integrates goal-refinement methodologies with Discrete Time Markov Chain to

determine all possible execution paths to the goal. At run-time, it exploits utility1425

functions to measure the overall utility of paths, which are based on assump-

tions. For example, the utility for a 5ms response time is 1 and so forth. After

that the hill climbing algorithm is used to search for the optimal goal. Cooray

et al. [67] proposed a proactive model-driven approach, which continuously

updates the reliability predictions in response to environmental changes. The1430

approach has proved its efficiency in adapting the system before it experiences

a significant performance drop. However, the approach does not encounter cost

and suffers from scalability issues. Generally, the major problem of the prior

approaches is [72]: (i) the high reliance on stakeholders for utility estimations,

which is also subject to their experience; (ii) the utility functions are hard to be1435

defined; (iii) there is complexity and uncertainty in the quantification of utility

values.

Machine Learning approaches in the context of self-adaptive architectures

[63] have been explored in [73, 74, 75, 76, 77, 78, 68] which encounter the obser-
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vations of the system properties over time. In the context of using reinforcement1440

learning techniques, Tesauro et al. [74, 75] integrated queuing policies with rein-

forcement learning, forming a hybrid approach to enhance the dynamic resource-

allocation decision-making process in data centers. The approach suffers from

scalability and performance overheads. A reinforcement online learning plan-

ning technique was used by Kim et al. [76] to improve robot’s practices with1445

respect to changes in the environment, by dynamically discovering the appro-

priate adaptation plans. However, it does not continuously evaluate the cost-

effectiveness of architecture decisions over time. These approaches [74, 76] along

with [73, 77] tend to be domain-specific. FUSION [68] is another learning-driven

approach that adopts machine learning algorithm named Model Trees Learning1450

(MTL) to tune the adaptation logic towards unpredictable triggers, rather than

using static analytical models. It also uses utility functions to determine the

benefit of models in question. The major pro of FUSION is its ability to learn

over time and improve the adaptation actions due to the promising learning

accuracy. However, FUSION has the following limitations: (i) it is specifically1455

tailored to feature modelling; and (ii) it only detects goal violation, i.e. con-

straints, but does not have the ability to check if current architecture option is

getting worse. Recently, further improvement on MOP for self-adaptive systems

has been made in FEMOSAA [79], where the knee point strategy is adopted to

select the optimal architecture option rather than using a weighted aggregation1460

as most of the self-adaptive systems do. Though our work also leverages knee

point strategy as FEMOSAA, our work adopts exponential decay functions to

trigger adaptation only when there are significant changes, whereas FEMOSAA

always adapts at every timestep (i.e. it suffers from instability).

To this extent, there is no systematic architecture evaluation method for1465

intertwining the design-time with run-time. In this context, our proposed ap-

proach can complement some of the prior approaches and aid the architect in

assessing the architecture design decisions under uncertainty through the fol-

lowing: (i) evaluating, complementing, and refining design-time decisions with

run-time ones; (ii) tuning the relative importance of present/past of data for1470
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knowledge accumulation about an architecture which can aid in learning the

behavior of architecture decisions over time; (iii) efficiently assessing the value

of architecture decisions at different monitoring intervals; (iv) allowing the ar-

chitect to tune the sensitivity of the approach to changes, and therefore how

stable/unstable it will be over time.1475

11. Conclusion

In this paper, we proposed a novel run-time architecture evaluation method

suited for systems that exhibit uncertainty and dynamism in their operation,

such as IoT. This method provides continuous assessment of design-time de-

cisions. It can inform deployment, refinement and/or phasing out decisions.1480

Specifically, we used strategies derived from machine learning and cost-benefit

analysis at run-time to continuously profile and evaluate the architecture deci-

sions for their added value. We demonstrated the use and significance of our

approach by applying it to the case of designing diversification in an urban traf-

fic monitoring IoT application to cater for the uncertainty in meeting quality1485

requirements. Moreover, we evaluated our run-time approach with respect to

baseline design-time approaches. Based on our experimental evaluation, our

method could assist architects in evaluating design-time decisions at run-time,

which could improve their decision-making process.

This paper has studied a representative web-operated IoT; nevertheless, the1490

application of the method to other dynamic and variant-intensive systems can

benefit from the approach. In our future work, we plan to explore how various

learning techniques can be “orchestrated” at run-time to better support the

evaluation. In particular, we aim to forecast the future potentials of architec-

ture options and demonstrate its impact on the state of run-time architecture1495

evaluation. The change detection method, being used in this paper, has been

chosen because it is one of the most widely used methods in the concept drift de-

tection literature. Future work could further investigate other change detection

methods (i.e. the tests introduced in Section 2.3). Another potential direction
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is the further use of simulator along with the running system. This could show1500

the extra insights the approach can provide in a run-time context. More specifi-

cally, we aim to demonstrate the usefulness of transfer learning methodology on

the run-time architecture evaluation approach. In this paper, we focused on the

QoS fluctuation in terms of benefit (e.g. response time and energy consump-

tion). However, the exploration of the impact of high price volatility (i.e. using1505

exponential decay for the cost) on the decision-making would be investigated

as a future work. Finally, we also propose to extend the modeling of quality

aggregation functions to consider dependencies between architecture decisions

as future work.
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Appendix A. Utility Trees

In this appendix, we illustrate the generated utility trees used in experiment

related to RQ1.1515
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