
CLAUDIO JOSÉ ANTUNES SALGUEIRO MAGALHÃES

HSP: A Hybrid Selection and Prioritisation of Regression Test Cases based on
Information Retrieval and Code Coverage applied on an Industrial Case Study

Universidade Federal de Pernambuco
posgraduacao@cin.ufpe.br

http://cin.ufpe.br/~posgraduacao

Recife
2019

mailto:posgraduacao@cin.ufpe.br
http://cin.ufpe.br/~posgraduacao

CLAUDIO JOSÉ ANTUNES SALGUEIRO MAGALHÃES

HSP: A Hybrid Selection and Prioritisation of Regression Test Cases based on
Information Retrieval and Code Coverage applied on an Industrial Case Study

Dissertação apresentada ao Programa de
Pós-Graduação em Ciências da Computação
da Universidade Federal de Pernambuco,
como requisito parcial para a obtenção do tí-
tulo de Mestre em Ciências da Computação.

Área de Concentração: Seleção e prior-
ização de casos de teste.

Orientador: Prof. Alexandre Cabral Mota
Coorientadora: Prof. Flávia Almeida Barros

Recife
2019

 Catalogação na fonte

Bibliotecária Monick Raquel Silvestre da S. Portes, CRB4-1217

M188h Magalhães, Claudio José Antunes Salgueiro

HSP: a hybrid selection and prioritisation of regression test cases based on
information retrieval and code coverage applied on an industrial case study /
Claudio José Antunes Salgueiro Magalhães. – 2019.

 70 f.: il., fig., tab.

 Orientador: Alexandre Cabral Mota.
 Dissertação (Mestrado) – Universidade Federal de Pernambuco. CIn,

Ciência da Computação, Recife, 2019.
 Inclui referências.

 1. Ciência da computação. 2. Teste de regressão. 3. Análise estática. I.
Mota, Alexandre Cabral (orientador). II. Título.

 004 CDD (23. ed.) UFPE- MEI 2019-054

CLAUDIO JOSÉ ANTUNES SALGUEIRO MAGALHÃES

HSP: A Hybrid Selection and Prioritisation of Regression
Test Cases based on Information Retrieval and Code

Coverage applied on an Industrial Case Study

Dissertação apresentada ao Programa de
Pós-Graduação em Ciências da Com-
putação da Universidade Federal de Per-
nambuco, como requisito parcial para a
obtenção do título de Mestre em Ciências
da Computação.

Aprovado em: 15/02/2019.

BANCA EXAMINADORA

Prof. Dr. Juliano Manabu Iyoda
Centro de Informática/UFPE

Prof Dr. Lucas Albertins de Lima
Departamento de Computação/UFRPE

Prof. Dr. Alexandre Cabral Mota
Centro de Informática/UFPE

(Orientador)

I dedicate this work to everyone that believed me.

ACKNOWLEDGEMENTS

Firstly, I would like to thank my parents for all support, teachings, trust in me and
for always investing in my education.

I would also like to thank all my friends from my neighbourhood and college that
listened to me, advised me, laughed with me and chit-chatted with me during my journey.
I also thank every friend that passed through my life.

A special thanks to my professor Alexandre Mota who guided me to get here. Without
his support, and novel ideas, the path would have been harder. I am grateful to the
professor Flávia Barros who counselled me to find the ideal solution. Furthermore, I am
thankful to all professors that I have met in my life.

In addition, I would like to thank my research partners: João Luiz, Filipe Arruda, Lucas
Perrusi, Thais Pina, Cloves Lima and Chaina Oliveira. They were essential to mature the
strategy and discuss about innovation in tests. I also thank Vírginia, Marlom, Daniel, João
Veras and Rodolfo that worked in the tool deployment on the Motorola environment from
CIn/Motorola project. I am grateful for the constant cooperation, support, feedback and
incentive by Alice Arashiro, Viviana Toledo, Eliot Maia, Lucas Heredia, Luis Momente
and André Bazante from Motorola.

Finally, I am thankful to the CNPQ and CIn/Motorola project, that invested in edu-
cation and research. I am also lucky and grateful for the CIn-UFPE to provide excellent
support and infrastructure for all students and professors.

ABSTRACT

The usual way to guarantee quality of software products is via testing. This dis-
sertation presents a novel strategy for selection and prioritisation of Test Cases (TC) for
Regression testing. In the lack of code artifacts from where to derive Test Plans, this work
uses information conveyed by textual documents maintained by Industry, such as Change
Requests. The proposed process is based on Information Retrieval techniques combined
with indirect code coverage measures to select and prioritise TCs. The aim is to provide
a high coverage Test Plan which would maximise the number of bugs found. This process
was implemented as a prototype tool which was used in a case study with our industrial
partner (Motorola Mobility). Experiment results revealed that the combined strategy pro-
vides better results than the use of information retrieval and code coverage separately.
Yet, it is worth to mention that any of these automated options performed better than
the original manual process deployed by our industrial partner to create test plans.

Keywords: Test cases selection and prioritisation. Regression testing. Static analysis.
Information retrieval. Code coverage.

RESUMO

A maneira usual de garantir a qualidade dos produtos de software é através de testes.
Este trabalho apresenta uma nova estratégia para seleção e priorização de Casos de Teste
(TC) para testes de regressão. Na falta de artefatos de código de onde Planos de Teste
são derivados, este trabalho usa informações transmitidas por documentos textuais man-
tidos pela Indústria, como Solicitações de Mudança (CR). O processo proposto é baseado
em técnicas de recuperação de informações combinadas com medidas de cobertura de
código para selecionar e priorizar os TCs. O objetivo é fornecer um Plano de Teste de alta
cobertura que maximize o número de falhas encontradas. Esse processo foi implementado
como uma ferramenta protótipo que foi usada em um estudo de caso com nosso parceiro
industrial (Motorola Mobility). Os resultados dos experimentos revelaram que a estraté-
gia combinada fornece melhores resultados do que o uso de recuperação de informações e
cobertura de código de forma independente. No entanto, vale a pena mencionar que qual-
quer uma dessas opções automatizadas teve um desempenho melhor do que o processo
manual originalmente realizado por nosso parceiro industrial para criar planos de teste.

Palavras-chaves: Seleção e priorização de casos de teste. Teste de regressão. Análise
estática. Recuperação de informação. Cobertura de código.

LIST OF FIGURES

Figure 1 – Generic Release Notes template . 18
Figure 2 – Generic CR template . 19
Figure 3 – Generic CFG example . 23
Figure 4 – Overview of the Proposed Process . 29
Figure 5 – Hybrid process (selection and priorisation) 31
Figure 6 – TP creation based on Information Retrieval 32
Figure 7 – The prototype’s interface screen. 33
Figure 8 – Initial TC merged list . 35
Figure 9 – TCs duplication elimination and reordering 35
Figure 10 – Monitoring Test Plans execution . 36
Figure 11 – TP creation based on Code Coverage 40
Figure 12 – Hybrid prioritisation . 43
Figure 13 – AutoTestPlan (ATP) architecture . 45
Figure 14 – Model-View-Controller (MVC) architecture 45
Figure 15 – Test Case Searching Screen . 46
Figure 16 – Test Cases Screen . 46
Figure 17 – Test Plan Screen . 47
Figure 18 – Components Screen . 48
Figure 19 – Release Notes (RNs) updating screen 49
Figure 20 – AutoTestCoverage (ATC) main screen 49
Figure 21 – Setup run - Coverage - Shrunk . 53
Figure 22 – Setup run - Failures Found - Shrunk 54
Figure 23 – Setup run - Correlation - Normal . 55
Figure 24 – Setup run - Correlation - Shrunk . 55
Figure 25 – Setup run - CR Coverage - Normal . 56
Figure 26 – Setup run - CR Coverage - Shrunk . 56
Figure 27 – Hybrid run - Coverage - Shrunk . 57
Figure 28 – Hybrid run - Failures Found - Shrunk 58
Figure 29 – Hybrid run - Correlation - Normal . 59
Figure 30 – Hybrid run - Correlation - Shrunk . 59
Figure 31 – Hybrid run - CR Coverage - Normal 60
Figure 32 – Hybrid run - CR Coverage - Shrunk . 60

LIST OF TABLES

Table 1 – Setup run - Coverage . 53
Table 2 – Setup run - Failures found . 54
Table 3 – Hybrid run . 57

LIST OF ACRONYMS

ADB Android Debug Bridge

APFD Average Percentage of Faults Detected

ATP AutoTestPlan

ATC AutoTestCoverage

CFG Control Flow Graph

CR Change Request

FDL Fault Detection Loss

HSP Hybrid Selection and Prioritisation

IR Information Retrieval

MVC Model-View-Controller

NLP Natural Language Processing

TC Test Case

TF-IDF Term Frequency-Inverse Document Frequency

TP Test Plan

VSM Vector Space Model

SUT System Under Test

SW Software

RN Release Note

RTS Regression Test Selection

CONTENTS

1 INTRODUCTION . 14
1.1 MOTIVATION . 14
1.2 PROPOSAL . 15
1.3 CONTRIBUTIONS . 16
1.4 ORGANIZATION OF THE DISSERTATION 16

2 BACKGROUND . 17
2.1 SOFTWARE PROCESS . 17
2.2 SOFTWARE MAINTENANCE . 17
2.2.1 Release Notes . 18
2.2.2 Change Request . 19
2.3 SOFTWARE TESTING . 19
2.3.1 Test levels . 20
2.3.2 Objectives of Testing . 20
2.3.2.1 Regression Testing . 21
2.3.3 Testing techniques . 22
2.3.3.1 Black-Box Testing . 22
2.3.3.2 White-Box Testing . 23
2.3.3.2.1 Code Coverage Analysis . 24
2.4 INFORMATION RETRIEVAL . 24
2.4.1 Creation of the documents Index base 25
2.4.2 Querying the Index base for data retrieval: 25
2.4.3 IR underlying models . 26

3 STRATEGY . 28
3.1 HSP: OVERVIEW . 28
3.1.1 TCs Index Base Creation and Update 29
3.1.2 TCs Trace Base Creation and Update 30
3.2 HSP: A HYBRID STRATEGY FOR TCS SELECTION AND PRIORITISA-

TION . 31
3.2.1 Test Plan creation using Information Retrieval 32
3.2.1.1 Change Requests (CRs) preprocessing. 32
3.2.1.2 Test Cases Retrieval. 33
3.2.1.3 Test Plan Creation. 34
3.2.2 Test plan Execution and Monitoring 35
3.2.2.1 Identifying the modified code regions . 36

3.2.2.2 Monitoring test executions . 38
3.2.2.3 Generating the Code Coverage Report . 39
3.2.3 Test Plan creation based on Code Coverage 40
3.2.3.1 Selection using total coverage (CCS𝑡) . 40
3.2.3.2 Selection using additional greedy (CCS𝑔) 41
3.2.4 Test Plans Merge and Hybrid Prioritisation 42
3.2.4.1 Merge and Priotitisation using Code Coverage Ranking (MPCCR) 43
3.2.4.2 Merge and Priotitisation using Information Retrieval Ranking (MPIRR) . . . 43

4 IMPLEMENTATION . 44
4.1 DEVELOPMENT . 44
4.1.1 Architecture . 44
4.2 TOOL . 45
4.2.1 Test Case Searching . 45
4.2.2 Test Plan Creation . 46
4.2.3 Mapping Components . 47
4.2.4 Release Notes Updating . 47
4.2.5 ATC: Monitoring Test Case . 48

5 CASE STUDY . 50
5.1 EMPIRICAL EVALUATION . 50
5.1.1 Hybrid Selection and Prioritisation (HSP) without Code Coverage

(Setup run) . 51
5.1.1.1 (RQ1) Comparison of selection strategies with respect to coverage 52
5.1.1.2 (RQ2) Comparison of selection strategies with respect to failures found . . 52
5.1.1.3 (RQ3) Analysis of correlation between prioritisation of test cases and coverage 53
5.1.1.4 (RQ4) CR Coverage Analysis . 54
5.1.2 Full HSP (IR and CC merge and prioritisation) 55
5.1.2.1 (RQ5) Comparison of selection strategies with respect to coverage 56
5.1.2.2 (RQ6) Comparison of selection strategies with respect to failures found . . 58
5.1.2.3 (RQ7) Correlation analysis between prioritisation of test cases and coverage 58
5.1.2.4 (RQ8) Correlation analysis between the estimate coverage and the real cov-

erage . 59
5.1.2.5 (RQ9) CRs Coverage Analysis . 60

6 CONCLUSION . 61
6.1 RELATED WORK . 61
6.2 THREATS TO VALIDITY . 63
6.3 FUTURE WORK . 63

REFERENCES . 65

14

1 INTRODUCTION

The usual way to guarantee quality of software products is via testing. However, this
is known to be a very expensive task [Myers, 2004]. Although automated testing is an
essential factor of success in projects development, unfortunately it is not always possible
or economic viable to adopt this practice in industrial environments. This way, several
companies rely on manual or semi-automated testing — as frequently seen in the smart
phones industry, for instance. In this context, it is not always feasible to test the entire
code of every new SW release, due to time and costs constraints. Thus, an appropriate
test plan is crucial for the success of any Regression testing campaign, aiming to maximise
the number of bugs found.

Yet, automation is a key solution for this bottleneck. However, several industrial envi-
ronments still rely on manual testing processes based on textual test cases. Clearly, this
context does not favour the development and use of automated solutions for test plans
creation. Nevertheless, when it is not possible to apply traditional solutions for test case
selection and prioritisation solely in terms of programming code, text based solutions may
be adopted [Birkeland, 2010].

This is precisely the context of the research work presented here, which is developed
within a long-term collaboration with an industrial partner. Due to intellectual property
restrictions, the research team has restricted access to source code. Note that this context
is frequently observed in collaborative partnerships between Academic institutions and
Industry, thus motivating the investigation of alternative solutions for testing. Yet, besides
access restrictions, the current test cases are, in their majority, freely written natural
language texts (in English).

1.1 MOTIVATION

Test Architects need to select test cases since it is unfeasible to retest all of them, mainly
because they are manual ones. Therefore, they have to select test cases that improve the
test campaign. Besides the test selection, these test cases must be prioritised in an order
that increases the agility to find failures. Furthermore, it is important to define a reliable
process that ever obtains the same result for the same inputs.

For example, Test Architects have to select a subset from a set of test cases where the
testers have to execute them. This set of test cases is unfeasible to execute completely,
thus it is necessary to select a subset of test cases. However, sometimes there are no efforts
to execute all this subset, then the prioritisation put the most important test cases first.

Creating a process to select and prioritise test cases automatically does not just stan-
dardise the test campaign but makes it faster and better than the selection made by the

15

test architect.

1.2 PROPOSAL

In this light, we developed a novel strategy for Regression Test plans creation which
combines Information Retrieval (IR) techniques [Baeza-Yates and Ribeiro-Neto, 1999]
and indirectly obtained code coverage information. The proposed Hybrid Selection and
Prioritisation (HSP) process receives as input CRs related to a particular SW application
under test, and creates two intermediate test plans (IR and code coverage) which are
finally merged and prioritised based on IR and code coverage measures. Note that, in our
context, test plans are ordered lists of textual test cases.

The IR based strategy relies on a database of previously indexed textual Test Cases
(TCs) (named as TCs Index base), which is independent from the Software (SW) applica-
tion under test — i.e., this base indexes all TCs available from the general TCs repository
(see Section 3.1.1). Test Cases are retrieved from the Index base using as queries rele-
vant keywords extracted from the input CRs. The retrieved TCs are merged and ranked,
originating the IR based Test plan (see Section 3.2.1) [Magalhães et al., 2016a].

Since the above strategy relies on a general TCs Index base, the resulting Test plans
are usually long, and may contain TCs which are irrelevant to the current SW applica-
tion under test. This fact motivated the search for a more precise strategy to Test cases
selection. In order to improve relevance and precision, we developed a strategy to Test
plans creation based on code coverage.

The strategy based on code coverage relies on the TCs Trace base (Section 3.1.2),
with information about the log of previously executed TCs (TC + trace). We create code
coverage information from a test case execution indirect measurement, that means, it is
gathered simultaneously during the test execution. The coverage based Test plan contains
all TCs in the Trace base whose execution trace match any code fragment present in the
current CRs (Section 3.2.3).

Note that, unlike the general TCs Index base, the Trace base can only contain TCs
related to the current SW application under test. This way, the Test plans created using
this strategy are expected to be more precise and relevant to the ongoing Regression
testing campaign than the IR based Test plan. However, these Test plans tend to be very
short, since they are limited to the already executed TCs. The characteristics of the Test
plans obtained using a single selection strategy justify the need to combine both strategies
in the HSP process.

As mentioned above, the Trace base can only contain TCs related to the current SW
application under test. This way, this base must be recreated for every new SW application
(see Section 3.1.2). This base is updated by the execution monitoring tool whenever a Test
plan is executed (Section 3.2.2) within the same testing campaign.

16

The Test plans obtained by the two different strategies are merged and prioritised
based on the code coverage information. A detailed presentation of the HSP is given in
Section 3.2. The output Test plan is submitted to the test architect. As mentioned above,
all execution runs update the Trace base, including new code coverage information.

The implemented prototype was used to conduct a case study with our industrial
partner (Motorola Mobility). Experiments results revealed that the combined strategy
provides better results than the use of Information Retrieval and code coverage indepen-
dently. Yet, it is worth to mention that any of these automated options perform better
than the previous manual process deployed by our industrial partner to create test plans.

1.3 CONTRIBUTIONS

The main contributions of this work are:

• a hybrid strategy to select and prioritise test cases based on information retrieval
and code coverage;

• a web tool where the hybrid strategy was implemented

• an empirical comparison between selection based on information retrieval, code cov-
erage and both.

1.4 ORGANIZATION OF THE DISSERTATION

This document is organized into another 5 further chapters, as follows.

• Background: this chapter presents the definitions and concepts related to the
software testing, information retrieval and code coverage;

• Development: this chapter details the HSP process and implementation, which
performs several different selection and prioritisation strategies; also it shows some
setup details;

• Tool: this chapter explains the tool architecture, shows its usability and also presents
its screens.

• Case Study: this chapter explains the performed experiments, shows the obtained
results and compares the proposed strategies against the architect and random se-
lections;

• Conclusion: this chapter aims to conclude this document with an overall appreci-
ation of the developed work and the achieved results, also pointing at future work
to be developed. In addition, it aims to show some of the related work found in the
available literature.

17

2 BACKGROUND

This chapter aims to introduce some important concepts and definitions related to Soft-
ware Engineering and Information Retrieval. These will serve to better understand the
rest of this work.

2.1 SOFTWARE PROCESS

The software process is a set of actions that are executed for creating a software product.
The objective is to deliver the software with the expected quality for the sponsor and the
user at the right time [Pressman, 2009]. This process is adaptable for each environment
or project. Thus, it establishes just a set of framework activities that can be used from
small to large projects. According to Pressman [2009], they are:

• Communication: It is to gather the requirements that define the software features;

• Planning: It is the resource, risk, schedule and activities management.

• Modelling: It is the creation of templates and documents to design the software

• Construction: It develops the software code, either for maintainability, and tests
it to find out possible faults;

• Deployment: the software is delivered to the stakeholders and evaluated by them.

The framework activities are widely used in iterative progress. This means that, all
the activities are applied for each project iteration. In its turn, each project iteration
produces a deliverable software version [Pressman, 2009]. Therefore, the software evolves
constantly and is under testing and maintenance (detailed in Section 2.2 and Section 2.3)
in each iteration.

2.2 SOFTWARE MAINTENANCE

Software maintenance is one of the software construction activities because there is no
distinction between development and maintenance. Software maintenance activities are
those that change a system [Sommerville, 2010]. There are three kinds of changes:

• Fault repairs: this is done when failures are found in the software;

• Environmental adaptation: this is done when the system environment (such as
hardware or operational system) changes;

18

• Functionality addition: this is done when requirements change to meet new cus-
tomer demands.

These activities can be performed before (pre-delivery) or after (post-delivery) the deploy-
ment phase of the software. Due to the evolution of the source code and the correction of
faults, the software is always changing. Therefore, it requires a good software maintenance
process to ensure its integrity [Society, 2014].

This work uses two very important SW artifacts for software maintenance: Release
Notes and Change Requests. These are briefly described in what follows.

2.2.1 Release Notes

Each new software product release usually brings an associated RN. RNs are textual doc-
uments that provide high-level descriptions of enhancements and new features integrated
into the delivered version of the system. Depending on the level of detail, RNs may con-
tain information about CRs incorporated in the current release. RNs can be manually or
automatically generated [Moreno et al., 2014]. Figure 1 brings a sample template of a
RN.

An analysis performed in Moreno et al. [2014] revealed that the most frequent items
included in Release Notes are related to fixed bugs (present in 90% of Release Notes),
followed by information about new (with 46%) and modified (with 40%) features and
components. However, it is worth to point out that RNs only list the most important
issues about a software release, being aimed to provide quick and general information, as
reported in [Abebe et al., 2016].

Figure 1 – Generic Release Notes template

19

2.2.2 Change Request

Change Requests (CRs) are also textual documents whose aim is to describe a defect to
be fixed or an enhancement to the software system. Some tracking tools, such as Mantis
[Mantis, 2019], Bugzilla [Bugzilla, 2019] and Redmine [Redmine, 2019] are used to support
the CR management. They enable stakeholders to deal with several activities related to
CRs, such as registering, assigning and tracking.

CRs may be created (opened) by developers, testers, or even by special groups of users.
In general, testers and developers use change requests as a way of exchanging information.
While testers use CRs to report failures found in a System Under Test (SUT), developers
use them primarily as input to determine what and where to modify the source-code, and
as output to report to testers what has been modified in the new source-code release.
Figure 2 brings a sample template of a CR.

A Release Note is thus composed of several Change Requests as well as new features
integrated into the delivered version of the system.

Figure 2 – Generic CR template

2.3 SOFTWARE TESTING

Software testing is an activity that ensures the software functionality and quality are
in an acceptable level and is also a fault revealer [Society, 2014]. Therefore, there are
two main purposes of testing: verifying if the implemented software corresponds to its
requirement and if the software behaviour is incorrect [Sommerville, 2010]. Furthermore,
following Dijkstra [1972], tests can only indicate the presence of bugs in a SUT and not
their absence.

20

Software Testing aims to ensure that the software corresponds to the specification and
user need. Verification is the activity to check if the software satisfies the requirements,
while Validation is the activity to assure that the requirements are correct and corresponds
to the customers’ expectations [Sommerville, 2010].

The test process is usually done by a tester team that works together with the devel-
opment team. However, sometimes the tester team works separately [Society, 2014].

2.3.1 Test levels

Testing is an activity that can be performed during all the development process. For each
stage of development they target a specific goal. According to Sommerville [2010] and
Society [2014], the test levels are:

• Unit Testing: It aims to verify each source code unity, such as methods or objects,
to ensure its expected behavior. Usually, it helps to find faults in the beginning of
the software life cycle.

• Component or Integration Testing: It aims to check interactions among soft-
ware components (modules). It focuses on testing the interface among the modules.

• System Testing: It aims to ensure the expected behavior of the entire software.
Therefore it is focused on testing the interactions between the users and the system.
It is also appropriate to check non-functional requirements.

2.3.2 Objectives of Testing

In general, testing activities can aim various objectives. Asserting objectives help to eval-
uate and control the test process. Moreover, testing can be proposed to verify either
functional or non-functional properties. It is important to note that the objectives can
vary in different test levels or test techniques [Society, 2014].

According to Society [2014] some of testing objectives are:

• Acceptance Testing: It assures that the software satisfies its acceptance criteria,
usually the criteria are the customer requirements;

• Performance Testing: It is focused on checking whether performance is satisfiable
and corresponds to its specification - for instance, if the data is received in less than
10 seconds;

• Regression Testing: It verifies whether the most recent modification to a system
has introduced faults or it still conforms to the requirements;

• Security Testing: It aims to guarantee the confidentiality, integrity, and availabil-
ity of the systems and its data;

21

• Stress Testing: It exercises the software in its maximum capacity.

Regression testing is going to be detailed in what follows because it is the focus of this
work.

2.3.2.1 Regression Testing

During a software development process, the original code is modified several times —
modules are added, removed or modified. Whenever a new SW version is released, it is
of main importance to execute Regression tests to verify whether the previously exist-
ing features are still properly performed. Due to its nature of detecting bugs caused by
changes, regression testing should consider all test levels and cover both functional and
nonfunctional tests [Spillner et al., 2014]. Yet, as they are frequently repeated, test cases
used in regression campaigns need to be carefully selected to minimize the effort of testing
while maximizing the coverage of the modifications reported in the release note [Spillner
et al., 2014].

To attend the above demands, regression test plans may contain a large set of test
cases. However, it is not always feasible to execute large test plans, due to time constraints.
Thus, it is very important to define criteria which lead to the selection of the most relevant
TCs to reveal failures on the new SW version. For instance, we may choose to select TCs
related to the modified areas in the code, since in general these areas are more unstable
than the unmodified (and already tested) areas. As such, this criterion should increase
the probability of selecting TCs able to find bugs. However, the work of Rothermel and
Harrold [1996] shows that this is not a rule (see Section 2.3.3.2.1 for further discussion).

Regression tests can be classified in terms of the following aspects:

• Test Case Selection: this technique seeks to select a set of test cases relevant
to the modified area of the SUT, that is, it is modification-aware. If the test case
exercises an area modified in the SUT then it should be selected to compose the
test suite [Yoo and Harman, 2012]. The formal definition follows [Rothermel and
Harrold, 1996]:

Definition 1. Let P and P’ be a program and its modified version, respectively, and
T a test suite for P.

Problem: Find a subset of T, named T’, such that T’ becomes the test suite for P’.

• Test Suite Minimization: its goal is to reduce the number of test cases in a test
suite by removing redundant tests. This means that when different tests exercise
the same part of the SUT, just one of them should remain in the test suite. Also,
this technique is called Test Suite Reduction [Yoo and Harman, 2012]. The formal
definition follows [Rothermel et al., 2002]:

22

Definition 2. Let T be a test suite, {r1,...,r𝑛} a set of test requirements, which must
be satisfied to provide the desired “adequate” testing of the program, and subsets of
T, T1,...,T𝑛, associated with each of the r𝑖s such that any one of the test cases t𝑗

belonging to T𝑖 can be used to achieve requirement r𝑖. Problem: Find a representative
set T’ of test cases from T that satisfies all r𝑖s.

• Test Suite Prioritisation: its goal is sorting a test suite to maximize a criterion,
such as the rate of fault detection or the rate of code coverage, as fast as possible
[Yoo and Harman, 2012]. The formal definition follows [Rothermel and Harrold,
1996]:

Definition 3. Let T be a test suite, PT a set of permutations of T, and f: PT →
R a function from PT to real numbers.

Problem: Find T’ ∈ PT such that ∀T": PT | T"̸=T’ ∙ f(T’) ≥ f(T")

Although we have presented the definition of test suite minimization, this work will
not consider it.

2.3.3 Testing techniques

Testing techniques define which aspects and requirements of the software will be evaluated,
and the depth of the analysis to be performed. We now present the two most common
test techniques in the software industry: black-box testing (focus on requirements) and
white-box testing (focus on code).

2.3.3.1 Black-Box Testing

According to Myers [2004], black-box testing is the act of checking whether a software
product satisfies its requirements. However, the test must also perform unforeseen situa-
tions. Different from white-box, the black-box testing does not use the source code.

This technique allows inferring input conditions to exercise the requirements. There-
fore, it is a technique related to selecting a test set that exercises the most significant
software paths and finds the largest number of possible failures [Myers, 2004].

Black-box testing is accomplished during the system and integration testing stages
and it aims the acceptance, beta, regression and functional testing objectives [Nidhra,
2012]. It is also complementary to the white-box testing technique, finding different kinds
of failures. Thus, according to Pressman [2009], its main errors found are:

• incorrect or missing function;

• interface errors;

• errors in data structures or external database access;

23

• behavior or performance errors;

• initialization and termination errors

2.3.3.2 White-Box Testing

The source code is essential for defining white-box testing, because it is based on the
internal code structure [Myers, 2004]. Thus, it can test aspects of the system that cannot
be stated in the specification.

White-box testing is accomplished during the unit and integration testing stages and
it aims the structural and regression testing objectives [Nidhra, 2012]. According to Press-
man [2009], this technique helps the test architect to:

• Guarantee that all independent paths within a module have been exercised at least
once

• Exercise all logical decisions on their true and false sides;

• Execute all loops at their boundaries and within their operational bounds;

• Exercise internal data structures to ensure their validity

In general, this technique uses a program representation known as a Control Flow
Graph (CFG). Summarising, the CFG is a graph notation that represents any code frag-
ment, as shown in Figure 3, whether it represents a simple function or a complex system.

Figure 3 – Generic CFG example

24

2.3.3.2.1 Code Coverage Analysis

When white-box testing is applied, a metric known as code coverage is usually em-
ployed to characterize the degree to which some region of the source code of an applica-
tion has been executed after a test campaign [Horváth et al., 2015]. It is a percentage,
calculated by the division 𝐶𝑜𝑑𝑒𝑒𝑥𝑒𝑐

𝐶𝑜𝑑𝑒𝑟𝑒𝑔𝑖𝑜𝑛
, exhibiting the amount of the source code that was ex-

ecuted (𝐶𝑜𝑑𝑒𝑒𝑥𝑒𝑐) with respect to the total amount of source code that should be exercised
(𝐶𝑜𝑑𝑒𝑟𝑒𝑔𝑖𝑜𝑛).

The higher the code coverage, the larger is the amount of source code exercised during
a testing execution with respect to the source code region of interest. Although literature
[Schwartz and Hetzel, 2016] has already pointed out that high code coverage does not
necessarily means high bug detection, this measure suggests a lower chance of escaping
undetected bugs compared to an application with lower code coverage. As such, code
coverage used as a relative measure serves as a good indicator of a good test campaign.

Several different metrics can be used to calculate code coverage. For object-oriented
applications, one can measure classes, methods, statements, conditionals, etc. This list is
in the fine-grained direction; i.e., class coverage is less accurate than conditionals coverage.
In this paper, we focus on coverage of methods, which has shown to be satisfactory to guide
the selection of test cases based on code information provided by CRs, to complement
selection based solely on IR from textual documents.

In general, code coverage is performed by instrumenting the source code of the appli-
cation and then obtaining coverage data from the instrumentation part. There are several
tools that provide such information, for instance, JaCoCo1. However, in some contexts,
researchers are not allowed to perform instrumentation, since testing is not being con-
ducted at development level. In such cases, it is only possible to perform a monitoring
process which does not need to modify already compiled applications [Kell et al., 2012a].
For Android, we use ddmlib2 tracers to listen to methods calls while performing a test
case execution.

2.4 INFORMATION RETRIEVAL

Information Retrieval (IR) applications are being increasingly used in software engineering
systems [Manning et al., 2008]. IR focuses on indexing and search: given a massive
collection of information items (e.g., documents, images, videos), IR attempts to select
the most relevant items based on a user query [Baeza-Yates and Ribeiro-Neto, 1999].

As the present work deals only with textual documents, we will concentrate on text
indexing and retrieval. Note that building IR systems to deal with image, video and other
1 http://www.eclemma.org/jacoco
2 https://mvnrepository.com/artifact/com.android.tools.ddms/ddmlib

25

media involve different processing techniques which are out of the scope of the present
work.

Usually, IR search engines count on two separate processes: (1) Indexing — Creation
of the documents Index base; and (2) Querying and Retrieval — querying the Index base
for data retrieval.

2.4.1 Creation of the documents Index base

When dealing with huge quantities of documents, it is clear that sequential search would
not be appropriate. Thus, the first step to build an IR search engine is to index the corpus
of documents in order to facilitate retrieval. Ordinary IR systems are based on an index
structure in which words are used as keys to index the documents where they occur. Due
to its nature, this structure is named as Inverted index or Inverted file.

The words used to index the documents constitute the Index base Vocabulary, which
is obtained from the input corpus based on three main processes: tokenization, stopwords
removal, and stemming (detailed below). Note that there are other preprocessing proce-
dures which can be adopted (such as, use of n-grams and thesaurus) [Baeza-Yates and
Ribeiro-Neto, 1999], however they have been less frequently used.

The Tokenization phase aims to identify the words/terms appearing in the input text.
Usually, it considers blank and punctuation as separators. Following, duplications and
irrelevant words to index the documents are eliminated. Usually, we consider as irrelevant
words which are too frequent/infrequent in the corpus, or carry no semantic meaning
(e.g., prepositions and conjunctions — usually named as stopwords). The vocabulary may
still undergo a stemming process, which reduces each word to its base form. This process
improves term matching among query and documents, since two inflected or derived
words may be mapped onto the same stem/base form (e.g., frequently and infrequent will
be reduced to frequent). Yet, this process usually reduces the vocabulary size.

The resulting set of words (Vocabulary) will then be used to index the documents
in the corpus, originating the Index base. The aim is to allow for faster retrieval (see
Section 3.1.1 for details).

2.4.2 Querying the Index base for data retrieval:

In this phase, the search engine receives as input keyword queries and returns a list of
documents considered relevant to answer the current query. Ideally, this list should the
ranked (particularly for large bases, which return a long list of documents).

However, not all search engines are able to rank the retrieved list of documents. This
feature will dependent upon the underlying IR model used to build the search engine.
Boolean models, for instance, are not able to rank the retrieved results, since they only
classify documents between relevant or irrelevant. Thus, the response list will maintain the
order in which the documents appear in the Index base. More sophisticated models, such

26

as Vector Space and Latent Semantics, count on ranking functions to order the retrieved
documents according to each query [Baeza-Yates and Ribeiro-Neto, 1999].

Finally, the search engine can be evaluated by measuring the quality of its output list
with respect to each input query. The ordinary measures are precision and recall.

2.4.3 IR underlying models

Given a set of textual documents and a user information need represented as a set of
words, or more generally as a free text, the IR problem is to retrieve all documents which
are relevant to the user.

The IR representation model may be given by a tuple [D, Q, F, R(𝑞𝑖, 𝑑𝑗)] [Baeza-Yates
and Ribeiro-Neto, 1999], where:

• D is a set that represents a collection of documents;

• Q is a set that represents the user’s information needs, usually represented by key-
word queries 𝑞𝑖;

• F is the framework for modeling the IR process, such as Boolean model, Vector
space, Probabilistic model;

• R(𝑞𝑖, 𝑑𝑗) is the ranking function that orders the retrieved documents 𝑑𝑗 according
to queries 𝑞𝑖.

In this work we focus on the Vector Space Model (VSM), which is a classic and widely
used model. It is more adequate than the Boolean model since it can return ranked list of
documents including also documents that partially coincide with the query [Baeza-Yates
and Ribeiro-Neto, 1999].

In this model, documents and queries are represented as vectors in a multi-dimensional
space in which each axis corresponds to a word in the base Vocabulary. Similarity between
the query vector and the vectors representing each document in the space aims to retrieve
the most relevant documents to the query. Here, relevance is measured by the cosine of the
angle between the vector representing the query and the vector representing a document.
The smaller the angle between the two vectors, the higher the cosine value.

In ordinary VSM, the degree of similarity of the document 𝑑𝑗 in relation to the query
𝑞 is given by the correlation between the vectors 𝑑𝑗 and 𝑞⃗. The 𝑑𝑗 and 𝑞⃗ are weighted
vectors (𝑤𝑖,𝑗 and 𝑤𝑖,𝑞) associated with the term-query pair (𝑘𝑖,𝑞), with 𝑤𝑖,𝑞 ≥ 0. This
correlation can be quantified, for instance, by the cosine of the angle between the two
vectors as follows: [Baeza-Yates and Ribeiro-Neto, 1999]

𝑠𝑖𝑚(𝑑𝑗, 𝑞) = 𝑑𝑗 ·𝑞
|𝑑𝑗|×|𝑞|

=
∑︀𝑡

𝑖=1 𝑤𝑖,𝑗×𝑤𝑖,𝑞√︁∑︀𝑡

𝑖=1 𝑤2
𝑖,𝑗×

√︁∑︀𝑖=1
𝑡

𝑤2
𝑖,𝑞

27

We have been using Solr3 that is an information retrieval web system open-source
provided by Apache. The Solr is a high-performance web-server built using Lucene. The
Lucene is an open-source text-processing framework that implements these information
retrieval techniques McCandless et al. [2010].

However, Solr uses by default the Lucene’s model which have refined the VSM, where
query-boost(q) is a boost that users can specify at search time to each query, doc-len-
norm(d) is a different document length normalization factor which normalizes to a vector
equal to or larger than the unit vector and doc-boost(d) is a boost that users can specify
that certain documents are more important than others. Therefore, the score follows
[Foundation, 2018]:

𝑠𝑐𝑜𝑟𝑒(𝑑𝑗, 𝑞) = 𝑞𝑢𝑒𝑟𝑦-𝑏𝑜𝑜𝑠𝑡(𝑞) · 𝑑𝑗 ·𝑞
|𝑑𝑗|×|𝑞|

· 𝑑𝑜𝑐-𝑙𝑒𝑛-𝑛𝑜𝑟𝑚(𝑑𝑗) · 𝑑𝑜𝑐-𝑏𝑜𝑜𝑠𝑡(𝑑𝑗)

3 http://lucene.apache.org/solr/

28

3 STRATEGY

This chapter aims to detail how the information retrieval and the code coverage was
combined to create the hybrid process, called HSP. In Section 3.1 some necessary infor-
mation to understand the HSP is presented. In Section 3.2, the HSP process is completely
explained.

3.1 HSP: OVERVIEW

This section brings an overview of the HSP process for automatic TC selection and pri-
oritisation for Regression Test Plans. As it can be seen in Figure 4, the HSP creates
Test plans based on input CRs related to a SW application under test and accesses two
databases: the Index base and the Trace base.

The strategy is going to be explained by two main processes: the Initial Setup run,
which is executed once per each SUT; and the general Hybrid process, executed for all
subsequent releases of the same SUT. It is important to notice that the setup run does
not exist in the implementation code because it is just a phase when the trace base is
empty for the SUT. Since the trace base is empty it is impossible to select test cases by
code coverage.

In the setup run, the TCs are retrieved from a large indexed database of textual
TCs (see Section 3.1.1). The queries to the TC repository are created based on keywords
extracted from the input CRs. Each CR originates one query, which retrieves a list of TCs
ordered by relevance.

The output lists are merged and ordered according to a combination of relevance crite-
ria (Section 3.2.1). Following, redundancies are eliminated. This process was implemented
as an information retrieval system, the ATP (Figure 6). The final TCs list is delivered
to the test architect, who will create a Test Plan using the top n TCs, according to the
available time to execute the current testing campaign.

The Test Plan execution is monitored by an implemented Android monitoring tool,
which records the log of each executed TC (trace) (see Section 3.2.2). This information is
persisted in a database which associates each TC to its trace. The Trace database is used
by the general hybrid process, described below.

The hybrid process receives as input the CRs related to a new release of the SUT,
delivering a Test Plan created on the basis of selection and prioritisation of TCs (Sec-
tion 3.2.4). Initially, the ATP tool is used to retrieve new TCs based on the current input
CRs. Following, it selects the TCs in the Trace base which matches code fragment asso-
ciated with the input CRs. The available code coverage information is used to select and
prioritise the TCs in the output list. The output TCs list is delivered to the test architect,

29

Figure 4 – Overview of the Proposed Process

who will guide the execution of the Test Plan in the same way as described for the initial
setup run. All execution runs update the Trace database, including new code coverage
information.

Details of each module will be presented in the subsequent sections: Section 3.2.1
presents the strategy for TCs retrieval and merging based on Information Retrieval; Sec-
tion 3.2.2 shows the code coverage monitoring process; and Section 3.2.4 details the general
hybrid process for Test Plan creation.

3.1.1 TCs Index Base Creation and Update

This section details the creation and update of the TC Index base, which is used by the
HSP process to select and prioritise Test Cases based on IR techniques, as detailed in
Section 3.2.1.

Index bases are data structures created to facilitate the retrieval of text documents
based on keyword queries (Section 2.4). As already mentioned, in this structure each
document is indexed by the words/terms occurring in its text. Whenever a query is

30

submitted to the search engine, all documents containing the words in the query are
retrieved.

In our context, the corpus of documents to be indexed consists of a Master Plan
with textual TCs descriptions. Each TC in the Master plan represents a document to be
indexed. The Master plan is directly obtained from our partner’s central TC database
management system, and contains all available TCs related to the SW application under
test.

The creation and update of the TC Index base is supported by a local indexing/search
engine implemented using an Apache Lucene open-source IR software library1. We use the
Solr Apache2, which implements a modified VSM (see Section 2.4) where each dimension
corresponds to one word/term in the vocabulary of the Index base.

The Index base Vocabulary is automatically obtained by the indexing/search engine,
which selects the relevant words/terms present in the TCs descriptions. It is worth to
mention that the user is able to edit the stopwords list, in order to add or remove any
word or term of interest. Regarding the stemming process, the Solr already provides a
stemmer (based on the Porter algorithm)3, which can be activated when desired through
the Solr settings.

This base is automatically updated on a daily basis, by consulting the central TC
database using as input the current SW version under test. Note that the update of the
Index base is an independent process, which is previous to its use by the Selection and
Prioritisation process.

3.1.2 TCs Trace Base Creation and Update

After the Test Plan (TP) creation, the testers will execute each test case script in order
to find failures and get the trace.

The TP execution is monitored by an implemented Android monitoring tool (Sec-
tion 3.2.2.2), which records the log of each executed TC. This information is persisted
in the TCs Trace base, which associates each TC to its trace (i.e., the methods exer-
cised by the TC). As mentioned above, this information will guide the TC selection and
prioritisation process based on code coverage.

Different from the Index base, the Trace base is not a general information base for
any SW under test. Instead, it is closely related to the SW application being tested.
This way, this base must be recreated for each new SW application which will undergo a
Regression testing campaign. Yet, this base is only updated when a new TP is executed.
The execution monitoring tool will provide new associations (TC - trace) to be included
in the TCs Traces (see details in Section 3.2.2).
1 https://lucene.apache.org/
2 http://lucene.apache.org/solr/
3 Porter algorithm: http://snowball.tartarus.org/algorithms/porter/stemmer.html

31

3.2 HSP: A HYBRID STRATEGY FOR TCS SELECTION AND PRIORITISATION

According to the related literature, regression Test Cases selection is more precisely per-
formed using code related artifacts (modified source code and implemented test cases)
[Di Nardo et al., 2015, Gligoric et al., 2015, Öqvist et al., 2016]. However, we also iden-
tified works which use Information Retrieval techniques for TC selection [Kwon et al.,
2014, Saha et al., 2015].

In this light, we envisioned a way to benefit from both directions, creating a hybrid
process based on IR and traceability information. The HSP process receives as input CRs
related to a new SW release, and delivers a final Test plan based on hybrid selection and
prioritisation. This process counts on three main phases (Figure 5):

• Test Plan creation based on Information retrieval (Section 3.2.1);

• Test Plan creation based on code coverage information (Section 3.2.3);

• Merge and prioritisation of the Test plans created by these two previous phases
(Section 3.2.4).

Figure 5 – Hybrid process (selection and priorisation)

The final Test Plan will be executed and monitored (see Section 3.2.2). All execution
runs update the TCs Trace database, including new code coverage information to be used
by future runs.

The following sections provide details about the above listed phases. Although the
Test plan execution and monitoring only occurs after the HSP process resumes, it will be

32

Figure 6 – TP creation based on Information Retrieval

necessary to detail the monitoring process before presenting the Test plan creation based
on code coverage, which depends upon the information provided by the monitoring phase.

3.2.1 Test Plan creation using Information Retrieval

This phase receives the input CRs and returns a Test Plan. This process counts on three
main phases, detailed in Figure 6. Initially, the input CRs are preprocessed, originating
a keyword based representations for each CR. The obtained representations will be used
in the second phase to build keyword queries to retrieve TCs from the TC index base
(see Section 3.1.1). Finally, the third phase merges and prioritises the TC lists returned
by the second phase.

Aiming to respect Software Engineering principles of modularity (providing exten-
sibility and easy maintenance), the implemented prototype counts on three main pro-
cessing modules, which correspond to the three phases mentioned above. The prototype
was implemented using Django Bootstrap4, a high-level Python Web framework, bearing
an Model-View-Controller (MVC) architecture. Figure 7 shows the prototype’s interface
screen.

The three processing phases (modules) will be detailed in what follows.

3.2.1.1 CRs preprocessing.

This phase is responsible for the creation of the CRs keyword based representations. The
corresponding implemented module receives the input CRs and delivers their keyword
based representations, counting on three steps:

• Step 1 (Keywords extraction): The relevant keywords that represent the input
CR are automatically extracted from previously defined fields in the CR template -

4 http://www.djangoproject.com/

33

Figure 7 – The prototype’s interface screen.

the ones with meaningful information for the task (e.g., title, product component,
problem description). These fields were chosen with the help of a test architect.
This step identifies each of the targeted fields and extracts its content, including the
extracted words to the keywords list being created.

• Step 2 (Stopwords elimination): Each CR representation is then filtered through
the elimination of stopwords. These are words which are too frequent in the TC
repository (and thus will not help to identify a particular test), or which are not
relevant in the current application. Note that we must use the same list of stopwords
used to create and update the Index base (Section 3.1.1).

• Step 3 (Stemming): The resulting list of keywords may also undergo a stemming
process, to reduce inflected or derived words to their word stem/base form (for
instance, messages → message). This process favors a higher number of matches
between the query and the indexed documents. As a consequence a larger number of
TCs may be retrieved from the index base, originating longer Test Plans. Therefore,
it should be optional and only used when necessary. Remind that this process should
only be executed when it has also been executed in the generation of the TCs Index
base (Section 3.1.1).

3.2.1.2 Test Cases Retrieval.

This phase receives as input the CRs keyword representations and delivers one query per
CR. Following, each query is used to retrieve TCs from the Index base. The corresponding

34

implemented module counts on two steps:

• Step 1 (Queries creation): This step creates one query per each input CR rep-
resentation (a bag of words which may contain redundancies). Before duplications
are eliminated, Keywords with more than one occurrence are positioned at the be-
ginning of the query. This way, they will be more relevant to the retrieval process
(mainly to the automatic ranking process performed by the search engine).

• Step 2 (Queries processing): each query is individually submitted to the search
engine, retrieving a list of TCs related to the corresponding CR. These lists are
automatically ordered by the search engine according to the relevance of each TC
to the current query (see Section 3.1.1). The obtained lists of TCs are given as input
to Phase 3, described below.

3.2.1.3 Test Plan Creation.

This phase receives as input the ordered lists of TCs retrieved by the search engine (one
list per query), and merges these lists, delivering the final Test Plan. Note that different
queries (representing different CRs) may retrieve the same TC from the Index base. The
existing duplications is eliminated. However, we understand that TCs retrieved by more
than one query tend to be more relevant for the testing campaign as a whole. So, the
duplicated TCs will be positioned at the top of the final ordered Test Plan.

The merging strategy developed in this work takes into account the position of the
TC in the ordered list plus the number of times the same TC was retrieved by different
queries. Section 3.2.1.3 and Figure 9 illustrate the merging strategy currently under use,
considering as example a Regression test campaign based on 3 CRs. This strategy counts
on 2 steps (regardless the number of input CRs):

• Step 1 (Input lists merging): The input lists are initially merged alternating,
one by one, the TCs from each input list (Section 3.2.1.3). The idea is to prioritise
TCs well ranked by the search engine for each query. This way, the higher ranked
TCs will be placed on the top of the Test Plan list, regardless the CR from which
they were retrieved..

• Step 2 (Duplications elimination): This step aims to eliminate eventual TCs
duplication in the Test Plan. As mentioned before, the number of occurrences of
each TC will influence on its final rank. Considering the current example (a test
campaign based on 3 CRs), each TC can appear in the merged list 1, 2 or 3 times.
TCs appearing tree times are positioned on the top of the list, followed by the TCs
with two and then with one occurrence (see Figure 9).

35

Figure 8 – Initial TC merged list

Figure 9 – TCs duplication elimination and reordering

The final merged list will constitute the Test Plan to be executed in the Regression
test. The following section presents the monitoring strategy developed to obtain the TCs
traces.

3.2.2 Test plan Execution and Monitoring

This section details the automatic monitoring of the TCs manual execution, which aims
to provide a code coverage analysis of the Test Plan regarding the SW release under test.
According to de Andrade Neto [2018], Perrusi [2018], this process is divided into three
main phases, detailed in what follows (Figure 10):

• Identify the modified code regions among two different SW versions, which are

36

precisely the code segments that need to be exercised (tested) by the Regression
campaign;

• Monitor the execution of the current TCs using the SW release under test, in order
to create the Traces base.

• Generate the code coverage report.

Figure 10 – Monitoring Test Plans execution

The Test Plan execution is monitored by an implemented Android monitoring tool
which records the log (trace) of each executed TC [de Andrade Neto, 2018, Perrusi,
2018]. This information is persisted in a database which associates each TC to its trace.
The Trace database is used by Hybrid Selection and Prioritisation (HSP) described in
Section 3.2.4.

As our industrial partner does not allow us to perform code instrumentation [Kell
et al., 2012b], we could not use traditional code coverage tools (such as JaCoCo [Yang
et al., 2006]). In this context, it was necessary to adopt an alternative way to obtain code
coverage: dynamically monitoring code execution using profiling techniques [Kell et al.,
2012a].

Since the implemented prototype is based on profiling techniques, it cannot be ap-
propriately applied to time-sensitive tests, because the application may suffer from time
performance degradation due to the monitoring process. However, this aspect did not
impact the conducted experiments presented in this work (since they consist of regression
testing) de Andrade Neto [2018], Perrusi [2018].

The implemented processing modules are detailed below.

3.2.2.1 Identifying the modified code regions

All modifications in the source code must be reported in the corresponding CR, which
also brings a link to the corresponding modified code (stored at Gerrit repository5). From
5 https://www.gerritcodereview.com/

37

these source code fragments, it is possible to identify which methods must be exercised
by a Test Plan.

Although we are not allowed to instrument code, it is possible to access the applica-
tion source code in the Gerrit repository. Thus, we can collect all the modified methods
mentioned in the input CRs. This is indeed the hardest part of our analysis, since it is
not allowed to identifying file differences (as provided by Git diffs). We use static analysis
[Neamtiu et al., 2005] to detect new and modified methods, without taking into account
source code line locations, spacing, etc. (see Algorithm 1). We keep these methods in a
set named ToBeCovered.

Algorithm 1, named ToBeCovered − CollectingMethodsModifications, was implemented
as the main procedure of this processing module.

Algorithm 1 ToBeCovered - Collecting Methods Modifications
Input: 𝑇𝑎𝑟𝑔𝑒𝑡𝐴𝑝𝑝 and 𝑎𝑙𝑓𝑎 version and 𝑏𝑒𝑡𝑎 version of App
Output: Set of modified Methods 𝑇𝑜𝐵𝑒𝐶𝑜𝑣𝑒𝑟𝑒𝑑

1: function GetToBeCovered
2: 𝑇𝑜𝐵𝑒𝐶𝑜𝑣𝑒𝑟𝑒𝑑 ← ∅
3: 𝑅𝑒𝑝𝑜 ← UpdateRepoToVersion(𝑇𝑎𝑟𝑔𝑒𝑡𝐴𝑝𝑝, 𝑏𝑒𝑡𝑎)
4: 𝐴𝑙𝑙𝑀𝑜𝑑𝑖𝑓𝑠 ← GetRepoDiff(𝑅𝑒𝑝𝑜, 𝑎𝑙𝑓𝑎, 𝑏𝑒𝑡𝑎)
5: 𝐽𝑎𝑣𝑎𝑀𝑜𝑑𝑖𝑓 ← FilterJavaDiffs(𝐴𝑙𝑙𝑀𝑜𝑑𝑖𝑓𝑠)
6: 𝐽𝑎𝑣𝑎𝐹 𝑖𝑙𝑒𝐿𝑖𝑠𝑡 ← GetChangedJavaFilesDirectories(𝐽𝑎𝑣𝑎𝑀𝑜𝑑𝑖𝑓)
7: 𝑀𝑒𝑡ℎ𝑜𝑑𝑠𝐼𝑛𝑓𝑜 ← GetMethodsInfo(𝐽𝑎𝑣𝑎𝐹 𝑖𝑙𝑒𝐿𝑖𝑠𝑡)
8: For each 𝐽𝑀 : 𝐽𝑎𝑣𝑎𝑀𝑜𝑑𝑖𝑓 do
9: 𝐶ℎ𝑎𝑛𝑔𝑒𝑑𝑀𝑒𝑡ℎ𝑜𝑑 ← GetModifMethods(𝑀𝑒𝑡ℎ𝑜𝑑𝑠𝐼𝑛𝑓𝑜[𝐽𝑀.𝐷𝑖𝑟], 𝐽𝑀)

10: if 𝐶ℎ𝑎𝑛𝑔𝑒𝑑𝑀𝑒𝑡ℎ𝑜𝑑 ̸= ∅ then
11: 𝑇𝑜𝐵𝑒𝐶𝑜𝑣𝑒𝑟𝑒𝑑 ← 𝑇𝑜𝐵𝑒𝐶𝑜𝑣𝑒𝑟𝑒𝑑 ∪ 𝐶ℎ𝑎𝑛𝑔𝑒𝑑𝑀𝑒𝑡ℎ𝑜𝑑
12: end if
13: end for
14: return 𝑇𝑜𝐵𝑒𝐶𝑜𝑣𝑒𝑟𝑒𝑑
15: end function

Algorithm 1 implements a function named GetToBeCovered, which receives as
input the application name, TargetApp, and two different software versions, alfa and beta,
where beta is more recent than alfa. The result is a set of modified methods from alfa to
beta versions, called ToBeCovered. These are the methods which should be covered in a
Regression test.

Initially, the function goes through a setup phase. The ToBeCovered is initialized as
an empty set, and Repo receives the reference to the repository in version beta, which is
provided by function UpdateRepoToVersion. The variable AllModifs receives a list
of all modified files from alfa to beta versions, provided by function GetRepoDiff using
Repo and both versions. However, as we need only Java files modifications, filterJavaD-
iffs is used to instantiate JavaModif with all Java modifications from the source code in
Gerrit.

38

Following, JavaFileList receives the paths of all modified Java files using GetChanged-
JavaFilesdirectories, such that it is now possible to navigate through those paths
and collect information about Methods. Navigation through file paths is conducted by
the GetMethodsInfo function, which keeps in the MethodsInfo a list of each method
declaration, its first and last line, its return type and which parameters the method re-
ceives.

Finally, it is necessary to cross information between the JavaModif and MethodsInfo
list to check which method in the application the java code modifications belongs. For each
Java Modifications JM from JavaModif and the MethodsInfo, the GetModifMethods
function selects only the modified methods, which are then added to the ToBeCovered
initial set. This way, the algorithm obtains a more specific list of methods that were
modified between the two SW versions.

3.2.2.2 Monitoring test executions

As seen above, the GetToBeCovered function is able to identify a collection of source
code methods that needs to be exercised in the Regression test, and thus should guide the
Test Plan creation. However, it is important to remind that we only count on textual Test
Cases, which do not carry information about source code. Thus, the obtained methods
cannot be directly used to identify which TCs in the database are more closely related to
those methods.

To fill in this gap, it is necessary to monitor the execution of each TC in the Test
Plan created using only Information Retrieval (Section 3.2.1), in order to obtain the
sequences of method calls. To track all methods called during a test execution, we use the
Android Library ddmlib6, which provides Android background information about runtime
execution.

The monitoring process counts on four main steps:

1. The device is connected to a computer;

2. The Android Debug Bridge (ADB) is started, and receives as a parameter the ap-
plication package to be monitored. Note that it is necessary to indicate all packages
related to the application, and these packages must be visible to the ADB, so that
the right trace to these packages can be tracked.

3. To start log trace files, the method 𝑆𝑡𝑎𝑟𝑡𝑀𝑒𝑡ℎ𝑜𝑑𝑇𝑟𝑎𝑐𝑒𝑟 is called. This method
enables the profiling on the specific packages.

4. The log files (sequences of method calls—𝐹𝑢𝑙𝑙𝑠𝑒𝑞—involving methods inside or out-
side the modified region; that is, methods in or out the 𝑇𝑜𝐵𝑒𝐶𝑜𝑣𝑒𝑟𝑒𝑑 set) from the

6 https://android.googlesource.com/platform/tools/base/+/
tools_r22/ddmlib/src/main/java/com/android/ddmlib

39

above step are persisted. There will be one log file associated to each executed TC
registering the tuple (TC, OS, device, package) where the TC is the Test Case (TC),
the OS is the operational system, the device is the smartphone under test and the
package is the application under test. Since we need to know which areas of the
application were exercised by each TC. This information will guide a more precise
selection of TCs to create Test Plans (see Section 3.2.4).

Based on the monitoring results, it is possible to create an association between each
TC (𝑇𝐶𝑘, where 𝑘 ∈ 𝑇𝑒𝑠𝑡𝑃 𝑙𝑎𝑛𝐼𝑛𝑑𝑒𝑥) and the exercised methods, such as:

𝑇𝐶𝑘 ↦→ 𝑚1(·); 𝑚2(·); . . . ; 𝑚𝑇 (·)

These associations are persisted in the Trace base, which will be used by the Hy-
brid process to select and prioritise Test Cases based on code coverage information (Sec-
tion 3.2.4).

3.2.2.3 Generating the Code Coverage Report

Code coverage may be reported at the Test Plan level, or at the CRs level, which is a
more fine grained measure.

• Test Plan Coverage. The log files provided by the previous module are filtered
based on the identified modified regions (that is, we compute the new set 𝑀𝑜𝑑𝑖𝑓𝑠𝑒𝑞).
Assume that 𝑆𝑒𝑞 ↓ 𝑆𝑒𝑡 yields a new sequence resulting from the sequence 𝑆𝑒𝑞 by
preserving only the elements in the set 𝑆𝑒𝑡.

𝑀𝑜𝑑𝑖𝑓𝑠𝑒𝑞 = 𝐹𝑢𝑙𝑙𝑠𝑒𝑞 ↓ 𝑇𝑜𝐵𝑒𝐶𝑜𝑣𝑒𝑟𝑒𝑑 (3.1)

The Test Plan code coverage is given by the ratio between the number of elements
in 𝑀𝑜𝑑𝑖𝑓𝑠𝑒𝑞 and the set 𝑇𝑜𝐵𝑒𝐶𝑜𝑣𝑒𝑟𝑒𝑑, for each test case, as follows:

𝑇𝑃_𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = #𝑀𝑜𝑑𝑖𝑓𝑠𝑒𝑞

#𝑇𝑜𝐵𝑒𝐶𝑜𝑣𝑒𝑟𝑒𝑑
(3.2)

The overall coverage must take into account the full methods names (package.class.method)
appearing in more than one test trace sequence. Avoiding counting the same cover-
age method numerous times.

• CR Coverage. The CR coverage is obtained in a similar way as in the previous
case. However, instead of using all methods in 𝑇𝑜𝐵𝑒𝐶𝑜𝑣𝑒𝑟𝑒𝑑 set, we consider only
the methods modified by the present CR.

𝐶𝑅_𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒 = #𝑀𝑜𝑑𝑖𝑓𝑠𝑒𝑞

#𝐶𝑅_𝑇𝑜𝐵𝑒𝐶𝑜𝑣𝑒𝑟𝑒𝑑
(3.3)

The CR coverage shows in more detail which areas have been exercised and what
remains uncovered after the execution of a Test Plan.

40

3.2.3 Test Plan creation based on Code Coverage

This phase receives as input CRs related to a new version of the same SW product whose
initial version has been submitted to the Setup Process (Section 3.1), and uses the Trace
base to perform the selection of the related test cases. Note that the Trace base can only
use information related to several versions of a single product. It would be misleading to
use code coverage information about a SW product to select TCs related to a different
one since each product is singular (otherwise, it would just be a version of a previous
SW).

Figure 11 depicts the overall process of Test Plans creation based on code coverage,
which counts on four steps:

• Extract Git code links from the input CRs;

• Identify modified code regions (Section 3.2.2.1);

• Retrieve TCs from Trace base;

• Select and prioritise TC based on code coverage.

Figure 11 – TP creation based on Code Coverage

Two different selection strategies have been implemented: Selection using total cov-
erage (CCS𝑡), and Selection using additional greedy (ATC𝑔). Note that the three initial
steps are independent from the selection strategy adopted, being performed in the same
way in both cases. The following sections will provide details on these steps.

3.2.3.1 Selection using total coverage (CCS𝑡)

Based on the coverage information obtained by the execution monitoring procedure (Sec-
tion 3.2.2), it is possible to create a relationship between each input CR (which contains
a subset of modified methods—i.e., a subset of 𝑇𝑜𝐵𝑒𝐶𝑜𝑣𝑒𝑟𝑒𝑑), and the corresponding
subset of test cases (i.e., those TCs that, when executed, exercise exactly these methods).
These relationships are stored at the Trace base, as already mentioned.

41

Initially, it is necessary to create the 𝑇𝑜𝐵𝑒𝐶𝑜𝑣𝑒𝑟𝑒𝑑 set. This is accomplished by
traversing all CRs and collecting the methods that were modified in the current SW ver-
sion to the previous version. Following, the TCs are selected based on the 𝑇𝑜𝐵𝑒𝐶𝑜𝑣𝑒𝑟𝑒𝑑

set and the information available from the Trace base.

Algorithm 2 Selection of test cases using coverage data
Input: Two lists: modified methods (𝑇𝑜𝐵𝑒𝐶𝑜𝑣𝑒𝑟𝑒𝑑) and test cases (𝑡𝑒𝑠𝑡𝑠)
Output: A list of test cases to compose a test plan (𝑝𝑙𝑎𝑛)

1: function SelectPlanFromCode
2: 𝑝𝑙𝑎𝑛 ← []
3: For each 𝑡𝑐 ∈ 𝑡𝑒𝑠𝑡𝑠 do
4: if 𝑡𝑐.𝑚𝑒𝑡ℎ𝑜𝑑𝑠 ∩ 𝑇𝑜𝐵𝑒𝐶𝑜𝑣𝑒𝑟𝑒𝑑 ̸= ∅ then
5: 𝑝𝑙𝑎𝑛.𝑎𝑝𝑝𝑒𝑛𝑑(𝑡𝑐)
6: end if
7: end for
8: return 𝑠𝑜𝑟𝑡𝑒𝑑𝐵𝑦𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑝𝑙𝑎𝑛)
9: end function

The selection strategy described in Algorithm 2 is implemented by traversing TCs that
could run in the SUT (𝑡𝑐 ∈ 𝑡𝑒𝑠𝑡𝑠) and then checking whether a test case 𝑡𝑐 has associated
covered methods belonging to the 𝑇𝑜𝐵𝑒𝐶𝑜𝑣𝑒𝑟𝑒𝑑 set (when the intersection becomes not
empty). If this happens, the TC will be included in the Test Plan (𝑝𝑙𝑎𝑛.𝑎𝑝𝑝𝑒𝑛𝑑(𝑡𝑒𝑠𝑡)).

Finally, the TCs in the Test Plan are prioritised (𝑠𝑜𝑟𝑡𝑒𝑑𝐵𝑦𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑝𝑙𝑎𝑛)) based on
the individual coverage rate of each TC with respect to the most recent coverage data
available from the Trace base.

Remind that the obtained CC-based Test plan will still be merged to the IR-based
Test plan already created by Phase 1 of the hybrid process (Figure 5).

3.2.3.2 Selection using additional greedy (CCS𝑔)

The strategy described here (Algorithm 3) selects test cases based on a global coverage
measure, instead of considering the TC individual coverage used by the previous strategy.
The algorithm selects the TCs which increase the overall coverage of the Test Plan (i.e.,
those TCs that exercise the methods in the set 𝑇𝑜𝐵𝑒𝐶𝑜𝑣𝑒𝑟𝑒𝑑, not yet covered by another
TC already in the Test Plan).

This algorithm receives as input the 𝑇𝑜𝐵𝑒𝐶𝑜𝑣𝑒𝑟𝑒𝑑 and 𝑡𝑒𝑠𝑡𝑠 sets, and returns a list
named 𝑔𝑟𝑒𝑒𝑑𝑦_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛. This list is initially empty. The variable 𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟 is initialised
with the set 𝑡𝑒𝑠𝑡𝑠. The 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑚𝑒𝑡ℎ𝑜𝑑𝑠 set, initially empty, will hold all methods
exercised by the tests in 𝑔𝑟𝑒𝑒𝑑𝑦_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛.

After the variables initialisation, the algorithm performs a loop which stops when there
is no additional test to consider. Within the loop, the relative coverage is calculated. The
variables 𝑚𝑎𝑥𝑖𝑚𝑢𝑚_𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 and 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑡𝑐 are updated when there is coverage
to consider and a higher coverage rate can be achieved, respectively. If this holds, the

42

Algorithm 3 Selection of test cases using additional greedy
Input: Two lists: modified methods (𝑇𝐵𝐶) and all test cases (𝑡𝑒𝑠𝑡𝑠)
Output: A list of test cases to compose a test plan (𝑝𝑙𝑎𝑛)

function 𝐺𝑟𝑒𝑒𝑑𝑦𝐴𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒
𝑔𝑟𝑒𝑒𝑑𝑦_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 ← []
𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟 ← 𝑡𝑒𝑠𝑡𝑠
𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑚𝑒𝑡ℎ𝑜𝑑𝑠 ← ∅
repeat

𝑚𝑎𝑥𝑖𝑚𝑢𝑚_𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 ← 0
𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑡𝑐 ← 𝑁𝑜𝑛𝑒
For each 𝑡𝑐 ∈ 𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟 do

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 ← #((𝑡𝑐.𝑚𝑒𝑡ℎ𝑜𝑑𝑠 ∪ 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑚𝑒𝑡ℎ𝑜𝑑𝑠) ∩ 𝑇𝐵𝐶)/#𝑇𝐵𝐶
if 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒 > 𝑚𝑎𝑥𝑖𝑚𝑢𝑚_𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 then

𝑚𝑎𝑥𝑖𝑚𝑢𝑚_𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 ← 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒
𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑡𝑐 ← 𝑡𝑐

end if
end for
if 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑡𝑐 ̸= 𝑁𝑜𝑛𝑒 then

𝑔𝑟𝑒𝑒𝑑𝑦_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛.𝑎𝑝𝑝𝑒𝑛𝑑(𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑡𝑐)
𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑚𝑒𝑡ℎ𝑜𝑑𝑠 ← 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑚𝑒𝑡ℎ𝑜𝑑𝑠 ∪ 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑡𝑐.𝑚𝑒𝑡ℎ𝑜𝑑𝑠
𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟.𝑟𝑒𝑚𝑜𝑣𝑒(𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑡𝑐)

end if
until 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑡𝑐 = 𝑁𝑜𝑛𝑒
return 𝑔𝑟𝑒𝑒𝑑𝑦_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛

end function

TC under analysis is added to the 𝑔𝑟𝑒𝑒𝑑𝑦_𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛, the TC corresponding methods are
added to the 𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙_𝑚𝑒𝑡ℎ𝑜𝑑𝑠 and the 𝑓𝑟𝑜𝑛𝑡𝑖𝑒𝑟 is update by removing this TC from
it.

3.2.4 Test Plans Merge and Hybrid Prioritisation

This is the last phase of the HSP process. It comprehends the merge and prioritisation of
the test plans created in sections 3.2.1 and 3.2.3.

Although selection by code coverage is more precise than selection by information
retrieval, there are two main threats if we consider only the selection by code coverage:

1. Tests that cannot be monitored, due to restrictions of the Android monitor (such
as restart, unplug the USB cable, recharge), will never be selected, since there will
be no coverage data provided by Algorithm 2 or Algorithm 3.

2. Tests never selected before (or new) cannot be related to source code methods in
the CRs because they had not been traced.

To prevent these problems, we propose two hybrid strategies: Merge and Priotitisation
using Code Coverage Ranking (MPCCR) and Merge and Priotitisation using Information

43

Retrieval Ranking (MPIRR). Figure 12 illustrates both hybrid strategies. Note that the
selection by code coverage can be a result of the selection using additional greedy (CCS𝑔)
or the selection using total coverage (CCS𝑡). In this case we add the subscript to indicate
which case is being considered in what follows.

3.2.4.1 Merge and Priotitisation using Code Coverage Ranking (MPCCR)

This prioritization assign importance to the code coverage ranking. Therefore, the code
coverage selection order is maintained and it will be complemented by the information
retrieval selection.

In this merge and prioritisation we perform what follows. Consider that a selection
based on code coverage produces the following list of test cases ⟨𝑇𝐶1, 𝑇𝐶4, 𝑇𝐶8, 𝑇𝐶9⟩, and
the list ⟨𝑇𝐶7, 𝑇𝐶9, 𝑇𝐶4, 𝑇𝐶2⟩ by information retrieval. The final list will be ⟨𝑇𝐶1, 𝑇𝐶4, 𝑇𝐶8,

𝑇𝐶9, 𝑇𝐶7, 𝑇𝐶2⟩, where 𝑇𝐶4 and 𝑇𝐶9 maintain the same position as in the initial code cov-
erage selection. As said previously, we can have MPCCR𝑡 (total coverage) and MPCCR𝑔

(additional greedy).

3.2.4.2 Merge and Priotitisation using Information Retrieval Ranking (MPIRR)

This prioritization assign importance to the information retrieval ranking. Therefore, the
code coverage selection order is altered by similar information retrieval selection test cases
and it will be complemented by the remaining information retrieval test cases. However,
the code coverage selection is at the top of the plan because it is directly related to the
modified source code while the information retrieval selection is related to the test case
keywords.

In this merge and prioritisation we perform what follows. Consider the same lists as be-
fore. Using code coverage we have ⟨𝑇𝐶1, 𝑇𝐶4, 𝑇𝐶8, 𝑇𝐶9⟩, and using information retrieval
we have ⟨𝑇𝐶7, 𝑇𝐶9, 𝑇𝐶4, 𝑇𝐶2⟩. The final list then becomes ⟨𝑇𝐶1, 𝑇𝐶9, 𝑇𝐶8, 𝑇𝐶4, 𝑇𝐶7, 𝑇𝐶2⟩
where 𝑇𝐶4 and 𝑇𝐶9 follows the information retrieval ordering. As said previously, we can
have MPIRR𝑡 (total coverage) and MPIRR𝑔 (additional greedy).

Figure 12 – Hybrid prioritisation

44

4 IMPLEMENTATION

This chapter aims to explain how the tool was implemented and how it works. It is worth
recalling that the implementation presented in this chapter was focused in the smartphone
industry, because of our industrial partner, but it can be generalised to any other context
as well.

4.1 DEVELOPMENT

The HSP process was implemented in a tool called ATP. The ATP was implemented in
a web environment so that architects in different sites could create their test plans in an
easy way. In addition, web tools are easier to maintain and update.

This tool was developed using Django1, a high-level Python Web framework, bearing
an MVC architecture that are widely used in web development. It was also used the Solr2

system for indexing and retrieving the test cases and a MySQL3 database to store the
data.

4.1.1 Architecture

The ATP tool was developed seeking to use current best practices. Therefore, it works on a
Docker platform, which assists the portability of the tool. Docker enables the packaging of
an application or entire environment within a container, hence it becomes easily portable
for any other Docker Host [Docker, 2019].

This tool has 4 containers in the docker, where each container contains an application.
They are:

• MySQL: It is the container that contains the database responsible for storing the
tool data;

• Django: It is the container that contains the Django code responsible for selecting
and prioritizing test cases;

• Solr: It is the container that contains the Solr responsible for indexing and retrieving
test cases;

• Nginx: It is the container that contains the Nginx4 responsible for web serving the
tool.

The ATP architecture is shown in Figure 13.
1 http://www.djangoproject.com
2 http://lucene.apache.org/solr/
3 https://www.mysql.com/
4 https://www.nginx.com/

45

Figure 13 – ATP architecture

The MVC architecture is widely used for separating the user interface, application
data and its functionalities [Jacyntho et al., 2002]. The model contains the application
data and processing logic. The view is the user interface that presents the content to
the end user. The controller manages the requests flows to views and models [Pressman,
2009]. A representation of the MVC architecture is shown in Figure 14.

Figure 14 – MVC architecture

4.2 TOOL

This section presents the ATP tool screens, and its usage. It also brings the ATC main
screen.

4.2.1 Test Case Searching

For searching test cases it is necessary to select which release notes will include in the
test plan, the project which this test plan will be part of and the chosen device for this
test plan (shown in Figure 15).

When the user asks the tool to search for TCs, the tool traverses the release notes
reading each CR content to get its keywords and code changes. It also maps its compo-
nent to the test management tool component (detailed in Section 4.2.3). Then, the CRs

46

contents are used as queries for retrieving the test cases following the process explained
in Section 3.2.

Figure 15 – Test Case Searching Screen

4.2.2 Test Plan Creation

Figure 16 – Test Cases Screen

47

When the most appropriate test cases for the CRs in the RN are selected, they are
presented in a prioritised way, as shown Figure 16. At this point, the architect chooses
the amount of test in the tool suggestion list that is possible to exercise, due to the
limited human resources for executing manual test cases. It is important to note that it
is impossible to select test cases that are not in the suggested test plan.

After that, the user has to fulfill the test plan form with information such as title,
purpose, software, regression level, initial and final date (as shows Figure 17). After ful-
filling these elements, the test plan is created in the ATP and it is also exported to the
test management tool.

Figure 17 – Test Plan Screen

4.2.3 Mapping Components

The system creates a mapping from the component of the CR management tool to the
component of the test management tool. This mapping turns the information retrieval
part of ATP more precise by firstly focusing on the specific components in question.

This mapping is a relationship between a CR component and a test component. For
creating such a mapping, the user has to select which CR component corresponds to one
or many test components and for which project it belongs to (as shown Figure 18). The
mapping varies for each project.

4.2.4 Release Notes Updating

Aiming to help the user to avoid manually upload release notes documents, the ATP tool
has a web crawler that finds release notes for a specific product registered in the system.

48

Figure 18 – Components Screen

A web crawler is a software that sends requests to other servers for downloading the pages
automatically. This means that it navigates through URLs, searching and collecting usefull
information in those pages Baeza-Yates and Ribeiro-Neto [1999]. This functionality is not
mandatory for the operation of the tool because the user can upload the corresponding
information manually. However, this feature saves time.

When the the user registers the link corresponding to the product repository, the tool
access the repository every day, searching for the newest release notes. Then, it saves the
link, reads its content and shows it as detailed in Section 4.2.1.

4.2.5 ATC: Monitoring Test Case

The AutoTestCoverage (ATC) [de Andrade Neto, 2018, Perrusi, 2018] is the tool that
monitors test cases execution, aiming to get the test case trace (sequence of methods
calls) as explained in more detail in Section 3.2.2. As shown in Figure 20, the tool lists
all the test cases of a test plan given by the user. The tester, for each test case, press
"play" to start recording the trace and press "stop" at the end of the test case. The tool
stores a local copy of each trace file which will be sent to the trace base (see Section 3.1.2)
by pressing the "send data" button. To record a trace, it is necessary that the device is
connected to the computer (by USB or Wi-Fi).

49

Figure 19 – RNs updating screen

Figure 20 – ATC main screen

50

5 CASE STUDY

This chapter presents an empirical evaluation of the selection and prioritisation strategies
presented in this work.

5.1 EMPIRICAL EVALUATION

For the evaluation we consider the test plan creation using only Information Retrieval (IR),
described in Section 3.2.1, and the test plan creation using only code coverage (CCS),
described in Section 3.2.3. In this case we also consider the selection by total coverage
(CCS𝑡) and the selection by additional greedy (CCS𝑔). Finally, we consider our main
proposal, the test plan merge and hybrid prioritisation by preserving the code coverage
ranking (MPCCR) and by preserving the information retrieval ranking (MPIRR).

As baselines, we use a random selection as well as selection by human architects. Due to
operational difficulties to perform an experiment in a real industrial context, we could only
access a specific application and its source code as a reader. This application is associated
with triggering actions in the smart phone from gestures of its users. We considered two
consecutive test executions, without and with code coverage data (respectively, Setup run
and Hybrid run).

In what follows, we present some Research Questions (RQ) that we intend to answer
in this work.

1. RQs related to the Setup run:

• RQ1: Considering random, architects and IR based selections, which one does
exhibit the highest coverage of modified regions when

a) All tests are executed?
b) The available operational capacity is executed?

• RQ2: Among IR based, random and architects selections, which one does
detect the highest number of failures when

a) All tests are executed?
b) The available operational capacity is executed?

• RQ3: What is the correlation between each TC code coverage and its position
in the ranked list provided by the IR based selection when

a) All tests are executed?
b) The available operational capacity is executed?

• RQ4: Regarding each CR, what is the coverage reached by architects and IR
based selections when

51

a) All tests are executed?
b) The available operational capacity is executed?

2. RQs related to the Hybrid run:

• RQ5: Considering IR based, code coverage based, hybrid, random and archi-
tects selections, which one does exhibit the highest coverage of modified regions
when

a) All tests are executed?
b) The available operational capacity is executed?

• RQ6: Regarding IR based, code coverage based, hybrid, random and architects
selections, which one does detect the highest number of failures when

a) All tests are executed?
b) The available operational capacity is executed?

• RQ7: What is the correlation between each TC code coverage and its position
in the different ranked lists provided by IR based, code coverage based and
Hybrid selection when

a) All tests are executed?
b) The available operational capacity is executed?

• RQ8: What is the relation between the coverage estimated for the Test plan
(using previous data) and the real monitored coverage?

• RQ9: Regarding each CR, what is the coverage reached by IR based, code
coverage based, hybrid and architects selections when

a) All tests are executed?
b) The available operational capacity is executed?

The experiment results will be detailed below. We adopted the following terminology:

• #TCs - number of test cases selected to compound the test plan;

• Coverage - Percentage of code coverage obtained by the execution of the test plan;

• Failures - number of failures found;

5.1.1 HSP without Code Coverage (Setup run)

This section presents the experiments results regarding TC selection based solely on IR.
As mentioned in Section 3.1, the setup run is simply a hybrid run state where the trace
database is empty. Thus the selection and prioritisation is governed by information re-
trieval.

52

Although this experiment concerns IR based selection, note that all experiments results
are given in terms of coverage metrics. It is possible to obtain these values because we
know the set of methods that should be covered by the selected test cases. This way, we
can calculate the code coverage obtained by execution runs using the different strategies
considered up to this point (i.e., IR based, random and architect’s selection).

5.1.1.1 (RQ1) Comparison of selection strategies with respect to coverage

In the Setup run, 184 test cases were selected and prioritised using the Information re-
trieval strategy (Section 3.2.1) from a base with 5000 TC. The manual execution of this
Test plan was monitored, having obtained a code coverage of 49.38%, as seen in Table 1.
In turn, the architect selected 88 test cases, which 85% also appeared in the automatically
created Test Plan. The architect’s selection obtained a coverage of 44.44%. Considering
just code coverage it was a hard effort increasing 96 TCs to increase 5% of code coverage.
Nevertheless, the number of failures founds should be taken into account.

It is worth to mention that the architect is allowed to selected a higher number of
TCs, since there is no fixed upper bound for Test Plans size. However, the architect tends
to select a number of TCs which is feasible to be manually executed within the available
time.

We also considered 100 random re-orderings of the 184 test cases, where we assume
that the tests are independent (i.e., the execution order does not influence the coverage
obtained) and we used the same IR based coverage data due to the time to execute all
those. Thus, it exhibited the same coverage result of the original 184 selection.

As long as the test architect was not able to select a larger number of TCs due to
available human workforce to execute the selected tests, we considered the plan shrunk to
the same amount of the TCs selected by the architect (88 test cases) in a way to better
compare the different selection strategies. Table 1 shows that the IR shrunk, which is the
top 88 TCs in the IR based list (with 184 TCs), obtained a coverage of 35.80%. Finally,
the Randoms shrunk, which is the top 88 TCs in the random selection (with 184 TCs)
for each random, varies from 35.80% to 49.38% coverage. These runs originated the box
plot in Figure 21.

The IR selection coverage decreased in the shrunk case, this can be an indication that
the prioritisation is not good when related to the code coverage because the first tests cases
did not have the biggest coverage. However, it does not mean that the IR prioritisation
is bad because it is prioritised through keywords that are not directly related to the code
coverage.

5.1.1.2 (RQ2) Comparison of selection strategies with respect to failures found

Concerning the number of failures found, the initial list of 184 TCs selected and ranked
by the IR module (and the 100 random rearrangements) obtained the same result: 20

53

Strategy #TCs Coverage
IR/Random 184 49.38%
Architect 88 44.44%
IR Shrunk 88 35.80%
Random Shrunk 88 35.80% to 49.38%

Table 1 – Setup run - Coverage

Figure 21 – Setup run - Coverage - Shrunk

failures identified. On the other hand, the architect’s selection found only 6 failures where
are included in the 20 failures found by IR based selection (see Table 2).

Considering the limit of 88 TCs per Test plan, the IR based selection found 12 failures
whereas the architect’s selection found only 6 failures where 5 is similar to the IR based
one. The failures identified by the random selections varied from 5 to 14. See Figure 22
for the the box plot related to these results.

Although the slight increase of only 5% of code coverage in the normal one (see Sec-
tion 5.1.1.1), the number of failures found increased significantly by 70%. This indicates
that the additional TCs from IR based selection is important for the test campaign. Be-
sides, in the IR selection shrunk the number of failures found increased 50% even with
a lower coverage than the architect selection. This can indicate that failures were found
in areas considered stable, that means, the SW has not been entirely tested and failures
found corresponds to older software version.

5.1.1.3 (RQ3) Analysis of correlation between prioritisation of test cases and coverage

The correlation was calculated using the Spearman method. the objective is to correlate
the position in the test cases ranking with their code coverage value. According to the
Spearman method, there is correlation when the values are close to 1 or -1, on the other
hand, when the value is close to 0 there are no correlation.

54

Strategy #TCs Failures
found

IR/Random 184 20
Architect 88 6
IR Shrunk 88 12
Random Shrunk 88 5 to 14

Table 2 – Setup run - Failures found

Figure 22 – Setup run - Failures Found - Shrunk

We did not identify a correlation between coverage and the ranking provided by the
different selection strategies (IR based, random and architect’s selection) (see Figure 23)
even when we consider the selection of 88 test cases (the operationally viable execution)
(see Figure 24). Thus, in principle, we may be executing non-related test cases. However,
as the IR based selection matches keywords its ranking is not directly related to code
coverage.

This is the reason that the code coverage showed in section 5.1.1.1 was worst in the
shrunk plan. As there is no correlation between the code coverage and the test case ranking
in the IR based selection the prioritisation is not ordered by code coverage, thus when the
test plan is shrunk important TCs which cover the modified source code is not chosen.

5.1.1.4 (RQ4) CR Coverage Analysis

Figure 25 presents CR coverage for full test plans created by IR selection strategy and
by the architect. This figure reveals that the IR selection slightly improved coverage by
upgrading one CR from 0% of coverage to the class of < 50% of coverage.

On the other hand, when we consider only the 88 top test cases from the IR selection,
Figure 26 shows that this strategy achieved the same coverage in terms of CRs than the
architect’s selection.

55

Figure 23 – Setup run - Correlation - Normal

Figure 24 – Setup run - Correlation - Shrunk

It is important to note that 3 CRs was not covered and almost 50% of the CRs was
not entirely covered. This indicates that part of the source code was not tested and these
area are considered stable. Besides, failures may be escaping because of the lack of TCs
for testing these areas.

5.1.2 Full HSP (IR and CC merge and prioritisation)

The Hybrid run executes selection and prioritisation based on IR and code coverage
information, as already detailed. The code coverage of each TC executed in the Setup
run (in terms of which methods each TC exercises) is used in this run to allow a selection
based on code coverage.

This investigation aimed to determine which of the three selection strategies (infor-
mation retrieval solely, code coverage solely or some combination of both) is the most
appropriate to our context. As the coverage information used in this run was obtained
from the Setup run, a question of interest is whether the coverage estimate for the Test

56

Figure 25 – Setup run - CR Coverage - Normal

Figure 26 – Setup run - CR Coverage - Shrunk

plan (using previous data) is close to the real monitored coverage (RQ8).
While in the Setup run only 81 methods were modified (𝑇𝑜𝐵𝑒𝐶𝑜𝑣𝑒𝑟𝑒𝑑) between the

versions under test, in the Hybrid run 1,119 modified methods were identified. This have
occurred because the setup run was run using 4 RNs while the hybrid was run using 10
RNs, thus the hybrid run have considered more SW modification.

5.1.2.1 (RQ5) Comparison of selection strategies with respect to coverage

Table 3 presents the number of TCs selected by the IR based strategy (302 tests),
CCS𝑡 strategy using just the coverage information from Setup Run (184 tests), MPCCR𝑡

and MPIRR𝑡 as a combination of the previous two selections (296 tests), MPCCR𝑔 and
MPIRR𝑔 as a combination of the CCS𝑔 and IR based selections (296 tests), the CCS𝑔

strategy solely (24 Tests), the architect’s selection was the same 88 TCs of Setup Run,
and Random selection (the same 296 TCs from the Hybrid selection using different ranking
orderings). Those selections selected 95 TCs more than the architect selection at minimum,
except the CCS𝑔, for improving in 6% of code coverage. It is a hard execution effort,
however it can be important to find failures.

57

Strategy #TCs Coverage Failures
found

IR 302 47.08% 13
CCS𝑡 183 47.08% 11
MPCCR𝑡 296 47.08% 13
MPIRR𝑡 296 47.08% 13
MPCCR𝑔 296 47.08% 13
MPIRR𝑔 296 47.08% 13
Random 296 47.08% 13
Architect 88 41.69% 2
CCS𝑔 24 36.48% 0

Table 3 – Hybrid run

Table 3 presents the code coverage values obtained by executing each of these Test
plans. The architect’s selection reached 41.69%, while the CCS𝑔 obtained 36.48% coverage
rate. All other selection strategies obtained a higher rate of 47.08% code coverage.

When considering only the top 88 TCs in each Test plan, Figure 27 shows that
MPIRR𝑡 exhibited the best coverage rate, followed by the median of the random selec-
tion, next are CCS𝑡 and MPCCR𝑡 that are tied, after that are the architect’s selection,
MPCCR𝑔, MPIRR𝑔 and finally the IR selections. Thus, it is the first evidence that the
MPIRR𝑡 has a good prioritisation, although it needs to be confirmed by the correlation
and failures found.

Figure 27 – Hybrid run - Coverage - Shrunk

58

5.1.2.2 (RQ6) Comparison of selection strategies with respect to failures found

Table 3 shows that the architect’s selection identified 2 failures, CCS𝑔 did not find failure
and the CCS𝑡 found 11 failures while the other Test plans found 13 failures when all TCs
selected were executed.

When considering only the top 88 test cases of each Test plan, Figure 28 shows that
the MPIRR𝑡 found 9 failures, the IR found 4 failures, the architect’s selection found 2
failures and the CCS𝑔 did not find failures while the others found 3 failures. The random
selection varied from 1 to 11, but it found 6 failures on average. Therefore, the MPIRR𝑡

has the highest number of failures found, on average. Confirming the evidence which was
presented before.

Figure 28 – Hybrid run - Failures Found - Shrunk

5.1.2.3 (RQ7) Correlation analysis between prioritisation of test cases and coverage

Analyzing again the relation between Test plans rankings and coverage, it is possible to
observe in Figure 29 that the correlation values are almost equivalent for architect’s plan,
random and IR selections, MPCCR𝑔, MPIRR𝑔 and CCS𝑔 (which is slightly better) and
all those are close to 0 that means there is no correlation. For the CCS𝑡, MPCCR𝑡 and
MPIRR𝑡 orderings, a negative correlation was obtained, which means that the test cases
in the lowest ranking values (on the top of the list) exhibited the highest coverage rates.
Thus, they are indeed correctly prioritised.

When only the top 88 test cases are considered, the correlation values of the CCS𝑡 and
MPCCR𝑡 are the best ones, followed by the MPCCR𝑔 and MPIRR𝑔 (see Figure 30). The
MPIRR𝑡, CCS𝑔, random, architect and IR selection have no correlation. The MPIRR𝑡

might have turned point because the test case order is mixed in the prioritisation since
the test cases are not ordered only by code coverage.

59

Figure 29 – Hybrid run - Correlation - Normal

Figure 30 – Hybrid run - Correlation - Shrunk

5.1.2.4 (RQ8) Correlation analysis between the estimate coverage and the real coverage

The estimated coverage using data from the previous regression campaign (Setup Run)
for the subsequent test campaign was 36.84%. The execution of these test cases was
monitored. This Test plan reached 47.08% code coverage, and 13 failures were found.

Analysing the obtained methods, we can conclude that the estimated coverage was
conservative at 92.45% of the methods that were expected to be covered. This means
that almost 100% of the methods that were predicted to be covered were indeed covered.
Another important result is that the difference from coverage expected and actual coverage
was small. The predicted methods correspond to 72.33% of the total methods that were
covered.

Thus, it indicates that the use of code coverage data to select test cases can be used
to predict the covered methods.

60

5.1.2.5 (RQ9) CRs Coverage Analysis

Figure 31 shows that the IR, CC𝑡 and Hybrid (all those hybrid) selections improved CR
code coverage when compared to the architect’s selection, by promoting 3 CRs with 0%
to others classes. However, the CC𝑔 selection performed worst than the architect’s one.

When considering the 88 initial test cases, Figure 32 shows that the IR, MPCCR𝑔

and MPIRR𝑔 selection decreased the CR code coverage number of a 100% group while
the CCS𝑡 and MPCCR𝑡 have been more conservative despite their loss. Summarising, the
MPIRR𝑡 was the best in CR coverage criteria because it was still performing better than
the architect and the other selections.

It is important to note that 10 CRs was not covered and almost 75% of the CRs was
not entirely covered. This indicates again that part of the source code was not tested and
these area are considered stable. Besides, failures may be escaping because of the lack of
TCs for testing these areas.

Figure 31 – Hybrid run - CR Coverage - Normal

Figure 32 – Hybrid run - CR Coverage - Shrunk

61

6 CONCLUSION

This work presented an approach to the selection and prioritisation of test cases based on
Information Retrieval and code coverage techniques. We conducted an empirical evalua-
tion on a real case study provided by our industrial partner (Motorola Mobility) aiming
to evaluate which combination of information retrieval and code coverage data better fits
this industrial context.

From Section 5.1, we can indicate that the HSP process performs better than the
architect’s selection. This is an important finding, since Industry immediately detects the
cost reduction obtained with automation, but does not envision the quality improvement
in the overall testing process.

As seen in the results of the experiments, the IR selection performs nicely when all TCs
in the Test plan can be executed. When only the top-list TCs can be executed it still shows
good performance concerning failures found, however, it reaches less code coverage than
the architect’s selection. This was our main reason to consider code coverage, aiming
to improve our results. As seen, the hybrid process (namely, MPIRR𝑡) obtained very
promising results, showing that the combination of information retrieval and code coverage
represents the best balance between code coverage and bugs found among all combinations
evaluated.

Apart from the previous important conclusion, we also observed that the coverage
measures of all proposed combinations are around 50% of the areas that must be exercised.
This is softened by our industrial partner by using exploratory testing in an attempt to
improve such a coverage. Although this is out of scope of the present work, we also
measured the coverage of exploratory testing campaigns, and the improvement was just
marginal. Thus, it is worth investing in selection processes and test case creation

6.1 RELATED WORK

Selection and prioritisation of test cases are research areas of great interest, specially
concerning Regression Testing [Rothermel and Harrold, 1996]. We can identify in the
related literature several works focusing on these areas. However, those works treat these
areas separately, whereas our work proposes a hybrid solution which integrates both areas.
This research topic associated with Information Retrieval can be found in the works Kwon
et al. [2014], Ledru et al. [2012], Nguyen et al. [2011], Saha et al. [2015] and code coverage
in Di Nardo et al. [2015], Gligoric et al. [2015], Öqvist et al. [2016].

The work of Kwon et al. [2014] proposed a prioritisation method based on code infor-
mation. The method combines traditional code coverage scores with the scores reported
by IR using a linear regression model to fit the best weights for the two scores. Similar to

62

the work Kwon et al. [2014], our work also uses the Change Request (CR) description to
retrieve test cases and we also use code coverage. However, the test cases in our work are
only textual documents while they index the test case trace. Another difference is that
we propose TCs selection followed by prioritisation. The work Kwon et al. [2014] uses
the rank provided by Lucene’s model as the mainly prioritisation criterion, while we use
the same rank to prioritise the test cases per CR on IR selections, and two approaches to
prioritise by code coverage (Total and Additional Coverage). Yet, the work Kwon et al.
[2014] does not consider an industrial context.

Similarly to our approach, the work Nguyen et al. [2011] proposed a test case pri-
oritisation method to Web services compositions based on CR descriptions. However,
Information Retrieval is used in Nguyen et al. [2011] to match the terms found in the
CRs with test cases’ traces, while we use textual test cases. In Nguyen et al. [2011] the
TF-IDF measure is used to prioritise the test campaign, whereas in our work TF-IDF
is used as one of the prioritisation strategies, however preceded by test cases selection.
Similar to Nguyen et al. [2011], we also use code coverage, however we combine code
coverage with information retrieval in the Hybrid approach.

Concerning the use of textual TCs without code coverage, we highlight the work Ledru
et al. [2012]. Several algorithms (e.g. Cartesian, Levenshtein, Hamming and Manhattan)
were used to calculate the string distances between each test case on a testing campaign, in
order to prioritise them. The closest test cases must be executed first, and the most distant
TCs should be executed afterwards. According to the work Ledru et al. [2012], both
documents CR and TC are textual artifacts, however they prioritise test cases through
similarity, that means, similar test cases stay on the top while we prioritise the test cases
based on IR and Code Coverage. Different from the above cited work, our work proposes
an approach to select and prioritise test cases.

An approach for Regression test prioritisation, named REPiR, was proposed in the
work Saha et al. [2015]. Given two versions of a software, REPiR uses the source code
difference as a query. The test case code information, as well as classes or method names
are used to match the query and rank the test case. In our work, we match textual CRs
with textual test cases, and CRs code difference with test case traces. The work by Saha
et al. [2015] uses a modified version of BM25 model that fits better their environment,
whereas we use the Solr score (detailed in Section 2.4) combined with test case frequency
and code coverage to fit our own rank. Yet, we propose an approach to select and prioritise
test cases which is different from the work reported in Saha et al. [2015].

The work reported in Di Nardo et al. [2015] compared coverage-based Regression
testing techniques. Both fine-grained and coarse-grained coverage criteria were considered,
as well as different techniques for selection, prioritisation and minimization of automated
test cases. Coverage and fault detection measures were used to evaluate the test campaign.
Differently, our work only counts on manual test cases. Yet, we could not instrumentate

63

the code, thus being restricted to compute coverage in terms of class and methods calls
(see Section 3.2.2.3).

A Regression testing selection tool, named Ekstazi, was proposed in the work Gligoric
et al. [2015] to adopt the Regression Test Selection (RTS) in industry. Ekstazi uses files
dependencies to select the test cases that affect the modified files, while we select test cases
based on their traces combined with information retrieval. The Ekstazi tool extracts a set
of files that were accessed on the test execution by dynamic analysis from the instrumented
code, obtaining coverage of class and methods calls. In a similar way, we obtained dynamic
traces and the same grained measures. Automated test cases were used for execution,
whereas we work with manual test cases. However, similarly to their work, our work use
both coverage and fault detection measures to evaluate a testing campaign.

A Regression testing selection technique based on static analysis was presented in
the work Öqvist et al. [2016]. This technique, named Extraction-Based RTS, extracts
file dependencies from the test using the control flow graph, and creates a dependency
graph that relates files and test cases. Then, it is possible to select tests that exercise
modified files. On our work, we created the Hybrid selection process that uses the test
cases traceability to select test cases that exercise modified areas, and also complement
the Test plan with test cases selected through IR. The work Öqvist et al. [2016] used
automated test cases, while we used manual test cases. The work reported in Öqvist
et al. [2016] does not evaluate coverage, only performance.

6.2 THREATS TO VALIDITY

According to Wohlin et al. [2012], it is almost impossible to avoid all threats. Thus, we
have identified some threats to validity and tried to mitigate possible problems that they
may cause in the experiments.

One problem is that the test should have executed automatically to guarantee the
independence of the test execution. However, the set test used could not be automated.
Therefore, the test must be executed in an identical way to get the same code coverage.

Concerning the code coverage, as smartphones are multiple threads the methods se-
quence may vary in the execution log. Nevertheless, it does not matter, because the
algorithms use the set of methods. Thus, the order is not relevant.

Another limitation is that tests for measuring performance cannot be monitored, but
for the company performance tests are done in another test phase different from regression.

6.3 FUTURE WORK

As first future work, we intend to monitor the use of the proposed combinations in our
industrial partner to identify which combination is indeed the best one in the long run.
That is, we intend to conduct continuous experiments during the software cycle life to

64

check if the results obtained in these experiments will be kept. As well as, we intend to
do controlled experiments in order to prove the HSP efficacy.

Another future work concerns applying test suite reduction regarding similarity, using
both natural language as well as source code, evaluating them through Fault Detection
Loss (FDL) [Singh and Shree, 2018]. The motivation comes from the fact that, in general,
the testing teams are not able to execute all TCs selected by the combinations presented
here. Furthermore, as the selections are greater than those of test architect, the similarity
can be an efficient way to reduce the number of test cases in a test campaign taking into
account the code coverage and the test meaning (text).

Yet, we also consider investigating prioritisation strategies reported in Magalhães
et al. [2016b], regarding coverage and bugs found. We have presented in this work ways to
prioritise test cases through information retrieval or code coverage. However, using Z3, we
can define a mathematical model to prioritise the test plan using the historical test data as
input and evaluate its performance using Average Percentage of Faults Detected (APFD)
[Elbaum et al., 2000].

Upon the coverage rate obtained in this work, we conclude that is also relevant to
propose strategies/approaches to create and suggest new test cases or scenarios to increase
the coverage and possibly failures found in test campaigns.

About creating new test cases, one future work is to identify areas that need further
testing [Rolfsnes et al., 2017] and to create new tests through test step switching. This
will not create completely new tests, nevertheless, it could lead to finding new failures
through exercising new paths. Another possibility is to be able to convert a CR to a
requirement or a use case using standardized CR writing through a controlled language
that can be reused by TaRGeT [Ferreira et al., 2010] to generate new test cases. Since that
it is possible to create test cases derived from the description of use cases or requirements
[Sarmiento et al., 2014, Verma and Beg, 2013].

Last but not least, it would be possible to identify the area of code that was not
exercised during the test campaign. Using this information together with Reis and Mota
[2018] it would be possible to have the navigation that would reach the non-exercised
area. In order to complement the test and ensure consistency the work Sampaio and
Arruda [2016] helps to solve the dependencies of the test and ensure that it could run.
The advantage of this approach is that it can serve both for automated testing cases and
manual testing cases.

65

REFERENCES

Surafel Lemma Abebe, Nasir Ali, and Ahmed E. Hassan. An empirical study of software
release notes. Empirical Software Engineering, 21(3):1107–1142, 2016. ISSN 1573-7616.
doi: 10.1007/s10664-015-9377-5.

Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1999. ISBN
020139829X.

Jørn Ola Birkeland. From a timebox tangle to a more flexible flow. In Lecture
Notes in Business Information Processing, pages 325–334. Springer Berlin Heidel-
berg, 2010. doi: 10.1007/978-3-642-13054-0_35. URL https://doi.org/10.1007/

978-3-642-13054-0_35.

Bugzilla. http://www.bugzilla.org/, 2019. (accessed Jan 11, 2019).

João Luiz de Andrade Neto. Autotestcoveragec: Uma ferramenta para obtenção de
cobertura de código para componentes android sem uso de instrumentação, dec 2018.
http://www.cin.ufpe.br/~tg/2018-2/TG_CC/tg_jlan.pdf.

Daniel Di Nardo, Nadia Alshahwan, Lionel Briand, and Yvan Labiche. Coverage-based
regression test case selection, minimization and prioritization: a case study on an indus-
trial system. Software Testing, Verification and Reliability, 25(4):371–396, 2015. ISSN
1099-1689. doi: 10.1002/stvr.1572. URL http://dx.doi.org/10.1002/stvr.1572.
stvr.1572.

Edsger W. Dijkstra. Structured programming. chapter Chapter I: Notes on Structured
Programming, pages 1–82. Academic Press Ltd., London, UK, UK, 1972. ISBN 0-12-
200550-3. URL http://dl.acm.org/citation.cfm?id=1243380.1243381.

Docker. Docker engine. https://www.docker.com/, 2019. (accessed Jan 20, 2019).

Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. Prioritizing test cases
for regression testing. SIGSOFT Softw. Eng. Notes, 25(5):102–112, August 2000. ISSN
0163-5948. doi: 10.1145/347636.348910. URL http://doi.acm.org/10.1145/347636.

348910.

Felype Ferreira, Laıs Neves, Michelle Silva, and Paulo Borba. Target: a model based
product line testing tool. Tools Session of CBSoft, 2010.

Apache Software Foundation. TFIDFSimilarity. http://lucene.apache.org/core/7_

3_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html, 2018.
[Online; accessed 06-Dec-2018].

https://doi.org/10.1007/978-3-642-13054-0_35
https://doi.org/10.1007/978-3-642-13054-0_35
http://www.bugzilla.org/
http://www.cin.ufpe.br/~tg/2018-2/TG_CC/tg_jlan.pdf
http://dx.doi.org/10.1002/stvr.1572
http://dl.acm.org/citation.cfm?id=1243380.1243381
https://www.docker.com/
http://doi.acm.org/10.1145/347636.348910
http://doi.acm.org/10.1145/347636.348910
http://lucene.apache.org/core/7_3_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
http://lucene.apache.org/core/7_3_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html

66

Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. Practical regression test selection
with dynamic file dependencies. In Proceedings of the 2015 International Symposium
on Software Testing and Analysis, ISSTA 2015, pages 211–222, New York, NY, USA,
2015. ACM. ISBN 978-1-4503-3620-8. doi: 10.1145/2771783.2771784. URL http:

//doi.acm.org/10.1145/2771783.2771784.

Ferenc Horváth, Béla Vancsics, László Vidács, Árpád Beszédes, Dávid Tengeri, Tamás
Gergely, and Tibor Gyimóthy. Test suite evaluation using code coverage based met-
rics. In 14th Symposium on Programming Languages and Software Tools, SPLST 2015.
CEUR-WS, 2015.

Mark Douglas Jacyntho, Daniel Schwabe, and Gustavo Rossi. A software architecture for
structuring complex web applications. J. Web Eng., 1(1):37–60, October 2002. ISSN
1540-9589. URL http://dl.acm.org/citation.cfm?id=2011098.2011104.

Stephen Kell, Danilo Ansaloni, Walter Binder, and Lukáš Marek. The jvm is not observ-
able enough (and what to do about it). In Proceedings of the Sixth ACM Workshop
on Virtual Machines and Intermediate Languages, VMIL ’12, pages 33–38, New York,
NY, USA, 2012a. ACM. ISBN 978-1-4503-1633-0. doi: 10.1145/2414740.2414747. URL
http://doi.acm.org/10.1145/2414740.2414747.

Stephen Kell, Danilo Ansaloni, Walter Binder, and Lukáš Marek. The jvm is not observ-
able enough (and what to do about it). In Proceedings of the Sixth ACM Workshop
on Virtual Machines and Intermediate Languages, VMIL ’12, pages 33–38, New York,
NY, USA, 2012b. ACM. ISBN 978-1-4503-1633-0. doi: 10.1145/2414740.2414747. URL
http://doi.acm.org/10.1145/2414740.2414747.

J. H. Kwon, I. Y. Ko, G. Rothermel, and M. Staats. Test case prioritization based on infor-
mation retrieval concepts. In 2014 21st Asia-Pacific Software Engineering Conference,
volume 1, pages 19–26, Dec 2014. doi: 10.1109/APSEC.2014.12.

Yves Ledru, Alexandre Petrenko, Sergiy Boroday, and Nadine Mandran. Prioritizing test
cases with string distances. Automated Software Engineering, 19(1):65–95, Mar 2012.
ISSN 1573-7535. doi: 10.1007/s10515-011-0093-0. URL https://doi.org/10.1007/

s10515-011-0093-0.

Cláudio Magalhães, Alexandre Mota, Flávia Barros, and Eliot Maia. Automatic selection
of test cases for regression testing. In Proceedings of the 1st Brazilian Symposium on
Systematic and Automated Software Testing (SAST), Maringá, Brasil, pages 1–8. ACM,
2016a. doi: 10.1145/2993288.2993299.

Cláudio Magalhães, Alexandre Mota, and Eliot Maia. Automatically finding hidden in-
dustrial criteria used in test selection. In 28th International Conference on Software

http://doi.acm.org/10.1145/2771783.2771784
http://doi.acm.org/10.1145/2771783.2771784
http://dl.acm.org/citation.cfm?id=2011098.2011104
http://doi.acm.org/10.1145/2414740.2414747
http://doi.acm.org/10.1145/2414740.2414747
https://doi.org/10.1007/s10515-011-0093-0
https://doi.org/10.1007/s10515-011-0093-0

67

Engineering and Knowledge Engineering, SEKE’16, San Francisco, USA, pages 1–4,
2016b. doi: 10.18293/SEKE2016-198.

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to
Information Retrieval. Cambridge University Press, New York, NY, USA, 2008. ISBN
0521865719, 9780521865715.

Mantis. Mantis bug tracker. http://www.mantisbt.org/, 2019. (accessed Jan 11, 2019).

Michael McCandless, Erik Hatcher, and Otis Gospodnetic. Lucene in Action: Covers
Apache Lucene 3.0. Manning Publications Co., 2010.

Laura Moreno, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrian Marcus,
and Gerardo Canfora. Automatic generation of release notes. In Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of Software Engineering,
FSE 2014, pages 484–495, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-3056-5.
doi: 10.1145/2635868.2635870.

Glenford J. Myers. The Art of Software Testing, Second Edition. Wiley, 2004. ISBN
9780471469124. URL https://www.amazon.com/Art-Software-Testing-Second/

dp/0471469122?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&

linkCode=xm2&camp=2025&creative=165953&creativeASIN=0471469122.

Iulian Neamtiu, Jeffrey S. Foster, and Michael Hicks. Understanding source code evolution
using abstract syntax tree matching. SIGSOFT Softw. Eng. Notes, 30(4):1–5, May 2005.
ISSN 0163-5948. doi: 10.1145/1082983.1083143. URL http://doi.acm.org/10.1145/

1082983.1083143.

C. D. Nguyen, A. Marchetto, and P. Tonella. Test case prioritization for audit testing
of evolving web services using information retrieval techniques. In 2011 IEEE Inter-
national Conference on Web Services, pages 636–643, July 2011. doi: 10.1109/ICWS.
2011.75.

Srinivas Nidhra. Black box and white box testing techniques - a literature review. In-
ternational Journal of Embedded Systems and Applications, 2(2):29–50, jun 2012. doi:
10.5121/ijesa.2012.2204. URL https://doi.org/10.5121/ijesa.2012.2204.

Jesper Öqvist, Görel Hedin, and Boris Magnusson. Extraction-based regression test selec-
tion. In Proceedings of the 13th International Conference on Principles and Practices
of Programming on the Java Platform: Virtual Machines, Languages, and Tools, PPPJ
’16, pages 5:1–5:10, New York, NY, USA, 2016. ACM. ISBN 978-1-4503-4135-6. doi:
10.1145/2972206.2972224. URL http://doi.acm.org/10.1145/2972206.2972224.

http://www.mantisbt.org/
https://www.amazon.com/Art-Software-Testing-Second/dp/0471469122?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0471469122
https://www.amazon.com/Art-Software-Testing-Second/dp/0471469122?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0471469122
https://www.amazon.com/Art-Software-Testing-Second/dp/0471469122?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0471469122
http://doi.acm.org/10.1145/1082983.1083143
http://doi.acm.org/10.1145/1082983.1083143
https://doi.org/10.5121/ijesa.2012.2204
http://doi.acm.org/10.1145/2972206.2972224

68

Lucas Bezerra Perrusi. Autotestcoveragep: Uma ferramenta para cobertura de testes de
integração no contexto android sem uso de código-fonte, dec 2018. http://www.cin.

ufpe.br/~tg/2018-2/TG_CC/tg_lbp.pdf.

Roger Pressman. Software Engineering: A Practitioner’s Approach. McGraw-
Hill Education, 2009. ISBN 0073375977. URL https://www.amazon.

com/Software-Engineering-Practitioners-Roger-Pressman/dp/0073375977?

SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=

2025&creative=165953&creativeASIN=0073375977.

Redmine. Flexible project management web application. http://www.redmine.org/,
2019. (accessed Jan 11, 2019).

Jacinto Reis and Alexandre Mota. Aiding exploratory testing with pruned gui mod-
els. Information Processing Letters, 133:49 – 55, 2018. ISSN 0020-0190. doi: https:
//doi.org/10.1016/j.ipl.2018.01.008. URL http://www.sciencedirect.com/science/

article/pii/S0020019018300176.

Thomas Rolfsnes, Leon Moonen, and David Binkley. Predicting relevance of change
recommendations. In Proceedings of the 32Nd IEEE/ACM International Conference
on Automated Software Engineering, ASE 2017, pages 694–705, Piscataway, NJ, USA,
2017. IEEE Press. ISBN 978-1-5386-2684-9. URL http://dl.acm.org/citation.cfm?

id=3155562.3155649.

Gregg Rothermel and Mary Jean Harrold. Analyzing regression test selection techniques.
IEEE Trans. Softw. Eng., 22(8):529–551, August 1996. ISSN 0098-5589. doi: 10.1109/
32.536955. URL http://dx.doi.org/10.1109/32.536955.

Gregg Rothermel, Harrold Mary Jean, von Ronne Jeffery, and Hong Christie. Empirical
studies of test-suite reduction. Software Testing, Verification and Reliability, 12(4):
219–249, 2002. doi: 10.1002/stvr.256. URL https://onlinelibrary.wiley.com/doi/

abs/10.1002/stvr.256.

R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry. An information retrieval approach
for regression test prioritization based on program changes. In 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, volume 1, pages 268–279, May
2015. doi: 10.1109/ICSE.2015.47.

Augusto Sampaio and Filipe Arruda. Formal testing from natural language in an industrial
context. In Leila Ribeiro and Thierry Lecomte, editors, Formal Methods: Foundations
and Applications, pages 21–38, Cham, 2016. Springer International Publishing. ISBN
978-3-319-49815-7.

http://www.cin.ufpe.br/~tg/2018-2/TG_CC/tg_lbp.pdf
http://www.cin.ufpe.br/~tg/2018-2/TG_CC/tg_lbp.pdf
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0073375977?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0073375977
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0073375977?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0073375977
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0073375977?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0073375977
https://www.amazon.com/Software-Engineering-Practitioners-Roger-Pressman/dp/0073375977?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0073375977
http://www.redmine.org/
http://www.sciencedirect.com/science/article/pii/S0020019018300176
http://www.sciencedirect.com/science/article/pii/S0020019018300176
http://dl.acm.org/citation.cfm?id=3155562.3155649
http://dl.acm.org/citation.cfm?id=3155562.3155649
http://dx.doi.org/10.1109/32.536955
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.256
https://onlinelibrary.wiley.com/doi/abs/10.1002/stvr.256

69

E. Sarmiento, J. C. S. d. P. Leite, and E. Almentero. C amp;l: Generating model based test
cases from natural language requirements descriptions. In 2014 IEEE 1st International
Workshop on Requirements Engineering and Testing (RET), pages 32–38, Aug 2014.
doi: 10.1109/RET.2014.6908677.

Amanda Schwartz and Michael Hetzel. The impact of fault type on the relationship
between code coverage and fault detection. In Proceedings of the 11th International
Workshop on Automation of Software Test, AST ’16, pages 29–35, New York, NY,
USA, 2016. ACM. ISBN 978-1-4503-4151-6. doi: 10.1145/2896921.2896926. URL http:

//doi.acm.org/10.1145/2896921.2896926.

Shilpi Singh and Raj Shree. A new similarity-based greedy approach for generating ef-
fective test suite. International Journal of Intelligent Engineering and Systems, 11(6):
1–10, dec 2018. doi: 10.22266/ijies2018.1231.01. URL https://doi.org/10.22266/

ijies2018.1231.01.

IEEE Computer Society. Guide to the Software Engineering Body of Knowledge (SWE-
BOK(R)): Version 3.0. IEEE Computer Society Press, 2014. ISBN 9780769551661.
URL https://www.amazon.com/Guide-Software-Engineering-Knowledge-SWEBOK/

dp/0769551661?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&

linkCode=xm2&camp=2025&creative=165953&creativeASIN=0769551661.

Ian Sommerville. Software Engineering (9th Edition). Pearson, 2010. ISBN 0137035152.
URL https://www.amazon.com/Software-Engineering-9th-Ian-Sommerville/

dp/0137035152?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&

linkCode=xm2&camp=2025&creative=165953&creativeASIN=0137035152.

Andreas Spillner, Tilo Linz, and Hans Schaefer. Software Testing Foundations: A Study
Guide for the Certified Tester Exam. Rocky Nook Computing. Rocky Nook, fourth
edition edition, 2014. ISBN 1937538427,9781937538422.

R. P. Verma and M. R. Beg. Generation of test cases from software requirements using
natural language processing. In 2013 6th International Conference on Emerging Trends
in Engineering and Technology, pages 140–147, Dec 2013. doi: 10.1109/ICETET.2013.
45.

Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Regnell, and
Anders Wesslén. Experimentation in Software Engineering. Springer Berlin Hei-
delberg, 2012. doi: 10.1007/978-3-642-29044-2. URL https://doi.org/10.1007/

978-3-642-29044-2.

Qian Yang, Jingjing Li, and David M. Weiss. A survey of coverage based testing tools.
Comput. J., 52:589–597, 2006.

http://doi.acm.org/10.1145/2896921.2896926
http://doi.acm.org/10.1145/2896921.2896926
https://doi.org/10.22266/ijies2018.1231.01
https://doi.org/10.22266/ijies2018.1231.01
https://www.amazon.com/Guide-Software-Engineering-Knowledge-SWEBOK/dp/0769551661?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0769551661
https://www.amazon.com/Guide-Software-Engineering-Knowledge-SWEBOK/dp/0769551661?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0769551661
https://www.amazon.com/Guide-Software-Engineering-Knowledge-SWEBOK/dp/0769551661?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0769551661
https://www.amazon.com/Software-Engineering-9th-Ian-Sommerville/dp/0137035152?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0137035152
https://www.amazon.com/Software-Engineering-9th-Ian-Sommerville/dp/0137035152?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0137035152
https://www.amazon.com/Software-Engineering-9th-Ian-Sommerville/dp/0137035152?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0137035152
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

70

S. Yoo and M. Harman. Regression testing minimization, selection and prioritization: A
survey. Softw. Test. Verif. Reliab., 22(2):67–120, March 2012. ISSN 0960-0833. doi:
10.1002/stv.430. URL http://dx.doi.org/10.1002/stv.430.

http://dx.doi.org/10.1002/stv.430

	Title page
	Approval
	
	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	Contents
	Introduction
	Motivation
	Proposal
	Contributions
	Organization of the Dissertation

	Background
	Software Process
	Software Maintenance
	Release Notes
	Change Request

	Software Testing
	Test levels
	Objectives of Testing
	Regression Testing

	Testing techniques
	Black-Box Testing
	White-Box Testing
	Code Coverage Analysis

	Information Retrieval
	Creation of the documents Index base
	Querying the Index base for data retrieval:
	IR underlying models

	Strategy
	HSP: Overview
	TCs Index Base Creation and Update
	TCs Trace Base Creation and Update

	HSP: A Hybrid Strategy for TCs Selection and Prioritisation
	Test Plan creation using Information Retrieval
	CRs preprocessing.
	Test Cases Retrieval.
	Test Plan Creation.

	Test plan Execution and Monitoring
	Identifying the modified code regions
	Monitoring test executions
	Generating the Code Coverage Report

	Test Plan creation based on Code Coverage
	Selection using total coverage (CCSt)
	Selection using additional greedy (CCSg)

	Test Plans Merge and Hybrid Prioritisation
	Merge and Priotitisation using Code Coverage Ranking (MPCCR)
	Merge and Priotitisation using Information Retrieval Ranking (MPIRR)

	Implementation
	Development
	Architecture

	Tool
	Test Case Searching
	Test Plan Creation
	Mapping Components
	Release Notes Updating
	ATC: Monitoring Test Case

	Case Study
	Empirical Evaluation
	HSP without Code Coverage (Setup run)
	(RQ1) Comparison of selection strategies with respect to coverage
	(RQ2) Comparison of selection strategies with respect to failures found
	(RQ3) Analysis of correlation between prioritisation of test cases and coverage
	(RQ4) CR Coverage Analysis

	Full HSP (IR and CC merge and prioritisation)
	(RQ5) Comparison of selection strategies with respect to coverage
	(RQ6) Comparison of selection strategies with respect to failures found
	(RQ7) Correlation analysis between prioritisation of test cases and coverage
	(RQ8) Correlation analysis between the estimate coverage and the real coverage
	(RQ9) CRs Coverage Analysis

	Conclusion
	Related Work
	Threats to validity
	Future Work

	REFERENCES

