
MT-EA4Cloud: A Methodology for testing and optimising
energy-aware cloud systems
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Abstract

Currently, using conventional techniques for checking and optimising the energy consumption
in cloud systems is unpractical, due to the massive computational resources required. An appro-
priate test suite focusing on the parts of the cloud to be tested must be efficiently synthesised
and executed, while the correctness of the test results must be checked. Additionally, alternative
cloud configurations that optimise the energetic consumption of the cloud must be generated and
analysed accordingly, which is challenging.

To solve these issues we present MT-EA4Cloud, a formal approach to check the correctness –
from an energy-aware point of view – of cloud systems and optimise their energy consumption.
To make the checking of energy consumption practical, MT-EA4Cloud combines metamorphic
testing, evolutionary algorithms and simulation. Metamorphic testing allows to formally model
the underlying cloud infrastructure in the form of metamorphic relations. We use metamorphic
testing to alleviate both the reliable test set problem, generating appropriate test suites focused
on the features reflected in the metamorphic relations, and the oracle problem, using the meta-
morphic relations to check the generated results automatically. MT-EA4Cloud uses evolutionary
algorithms to efficiently guide the search for optimising the energetic consumption of cloud sys-
tems, which can be calculated using different cloud simulators.

Keywords: Cloud modelling, Metamorphic testing, Simulation, Evolutionary algorithms,
Energy-aware systems

1. Introduction

Cloud computing platforms are currently increasing their role to perform large-scale com-
putational analysis [1, 2]. The ever-growing amount of online data requires the use of a large
number of computational resources – like CPUs and storage devices – for its efficient process-
ing. However, the speedup obtained by exploiting the parallelism offered by these resources
requires an extremely high energetic cost [3]. As an example, according to the most recent
survey (in November 2018) of the fastest 500 computers in the world, the top supercomputer
Summit reaches a performance of 200,794.9 Teraflop/s with 2,397,824 cores [4]. This system
requires 9,783 kW of power, a cost of 1,858e per hour if we assume a cost of 0.19e per kW.
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In the last decade, IT companies have invested much effort to reduce energy costs. This has
led to developing new approaches for improving the efficiency of energy consumption on cloud
computing systems [5, 6]. However, testing these systems requires a high level of expertise,
not only to design appropriate test suites but also to find a compromise between the overall
performance and the efficiency to detect faults. Unfortunately, testing these approaches is costly,
challenging and, in some cases, unfeasible.

Although testing is currently the most widely used technique to validate the correctness of
computing systems, it presents some drawbacks when it is applied to cloud systems. First, the
underlying architecture of the system under test is needed for checking its correctness. Moreover,
the access to the cloud settings is usually restricted (i.e. allocation policy of virtual machines,
network topology) which hampers the testing process. This is so as testing involves executing a
large test suite over the system under test, which requires dedicated access to the system during
a long period of time. Finally, providing an appropriate test suite (including the oracle) for
determining the correctness of a system is complex, and particularly challenging if we target
energy consumption. Hence, conventional testing techniques are not suitable to face the problem
of checking the correctness and optimising energy consumption in cloud systems.

In order to alleviate these issues, we propose a formal methodology, called MT-EA4Cloud,
to efficiently check the correctness of energy-aware cloud systems, and automatically propose
improvements to their designs. MT-EA4Cloud is founded on a novel combination of metamorphic
testing [7, 8], evolutionary algorithms [9] and simulation. MT-EA4Cloud requires the user to
provide the cloud model under study, and hence it focuses on the testing and optimisation phases.
This way, metamorphic testing is applied in the testing phase, EAs are applied to the optimisation
phase and the energy consumption of each cloud model is calculated using different simulators.

Metamorphic testing (MT) is a testing technique that alleviates the oracle problem [7, 8] and
the reliable test set problem [10]. Basically, MT models the properties of the system under test
as metamorphic relations (MRs). The essential idea is that instead of checking the output o1
produced when testing with one input x1, we test with a second (follow-up) input x2, observing
output o2, and check that o1 and o2 are related as specified by the MRs. MT-EA4Cloud uses
MRs – which formally model the underlying cloud infrastructure – to automatically generate test
cases focusing on the features reflected in these relations. Moreover, the MRs are applied to
automatically check the correctness of the results provided by the execution of the test cases.

Evolutionary Algorithms (EAs) are inspired by the principle of natural selection and genet-
ics [9]. The idea consists of simulating the evolution of different individuals, each one represent-
ing a potential solution to the target problem, which are evaluated using a fitness function. In
this work, each individual represents a cloud configuration and the fitness function is designed
by using a catalogue of MRs modelling the underlying behaviour of cloud systems regarding
energy consumption. The main motivation to apply EAs for optimising the energy consumption
of cloud systems is that EAs focus on an adaptive global search in the space of possible solu-
tions and provide near-optimal solutions to complex and hard optimisation problems, where the
execution time represents a significant constraint. Thus, MT-EA4Cloud applies EAs to efficiently
generate alternative cloud configurations (individuals) to optimise the energetic consumption.

During the last years, simulation has been widely adopted by the research community as a
cost-effective technique to model and analyse cloud computing systems [11, 12, 13]. Simula-
tion presents several advantages in this domain: the access to the underlying architecture of the
system under test is not required; experiments can be easily reproduced and parallelised, which
significantly reduces the total execution time; and a wide spectrum of cloud configurations can
be easily generated.
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Overall, our work makes the following four contributions:

• Providing a methodology for deciding the most appropriate simulator to model and simu-
late cloud infrastructures. In general, each simulator focuses on modelling and simulating
a specific part of the cloud like the storage system, virtual machine (VM) migration, re-
source provisioning and energy consumption, among others. The high number of existent
cloud simulators makes it difficult to select an appropriate one for a specific purpose. In
this work, we use MT to alleviate this issue. We accurately model the cloud in the form of
MRs, which represent the underlying behaviour of the cloud. Thus, our methodology al-
lows measuring the adequacy of each simulator for simulating cloud systems. This process
is semi-automatic, in the sense that the test cases are automatically generated, executed and
checked, but the MRs must be manually designed by the expert.

• Proposing a methodology for optimising the energy consumption of cloud infrastructures.
One of the main difficulties in optimising cloud systems lies in the high complexity of
constructing an accurate model of the system. In order to check and optimise the energy
consumption of cloud systems, we propose a novel approach that combines MT and EAs.
The idea is to use our EA to evolve cloud systems efficiently. This is achieved by using
MRs, which guide the search for finding an optimised cloud. This way, each new offspring
of individuals (clouds) are generated using the constraints defined in the MRs. Thus, the
proposed EA not only reduces the search space but improves the overall efficiency.

• Providing an automatic method to execute the testing process. Optimising the energy
consumption of cloud systems requires to generate an appropriate test suite for determining
the correctness of the system under test (known as the reliable test set problem [10]) and
to decide if the outputs of a test suite are correct (known as the oracle problem [14]).
We face these challenges by combining MT and simulation. Our methodology allows to
automatically generate quality test cases using the provided MRs and therefore the created
test suite focuses on testing the features reflected in the MRs. Additionally, the outputs
of the simulations are automatically checked using MRs. Thus, we provide an automatic
method for optimising cloud systems without the intervention of a (human) oracle.

• Evaluating our proposed methodology to study its applicability to optimise cloud systems
from an energy consumption point of view. We present a thorough study to optimise
three different cloud systems using seven well-known cloud simulators. First, we use
our methodology to check the adequacy of each simulator to analyse the cloud systems.
Second, we use our novel approach that combines MT and EAs for optimising the energy
consumption of the clouds. Finally, we show that our method outperforms an approach
that uses MT and random testing for generating test cases.

The rest of the paper is structured as follows. Section 2 presents an overview of energy-aware
cloud computing and introduces the main concepts of MT. Section 3 analyses related works. A
detailed description of our methodology is presented in Section 4. In Section 5 we present a
catalogue of MRs to analyse energy consumption in cloud systems. Section 6 shows our EA,
and Section 7 presents tool support. Section 8 describes a thorough experimental study using our
proposed methodology with different simulation tools, and the threats to its validity are discussed
in Section 9. Finally, Section 10 finishes with the conclusions and prospects for future work.
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2. Background

In this section we provide an introduction to some of the main concepts used in this work:
energy-aware cloud computing, and metamorphic testing.

2.1. Energy-awareness in cloud computing
Currently, the energy consumption in cloud systems is gaining attention as one of the main

important concerns in this field. In general, a high energy cost can be considered as a threat
since it decreases the Return of Investment (ROI) and increases the Total Cost of Ownership
(TCO) of the cloud infrastructures. The economic impact of running these systems cannot be
neglected by its users, but moreover, the whole world is affected. The exponential increase of
energy consumption has produced significant changes in the global environment, which has a
negative environmental impact and in the well-being of the inhabitants of the world. On the one
hand, the data centres – which in general are overprovisioned – constantly operate under their
maximum capacity [15]. On the other, the developers of the applications that are executed on
them generally do not take the energy consumption into consideration [16, 17]. In some cases, a
single data centre is able to produce 170 million metric tons of carbon per year [18]. The carbon
emissions of data centres worldwide are expected to reach 670 million metric tons by 2020 [19].
In particular, the average concentration of carbon dioxide in the atmosphere has increased from
280 ppm in the year 1750, to more than 400 ppm in 2018 [20].

Several factors motivate the interest in detecting and reducing the main causes of energy
consumption, such as carbon footprint reduction [21], savings in IT electricity bills [22], and
increase of the life time of some devices [23]. Green computing [24], or sustainable comput-
ing, has become the focus attention of initiatives such as Green Grid [25], a global consortium
dedicated to advancing energy efficiency in data centres and business computing ecosystems. As
demonstrated by the successful emergence of the Green500 list [26], which provides a ranking
of the most energy-efficient supercomputers in the world, energy consumption has become as
significant as performance.

2.2. Metamorphic testing
Conventional testing methods require checking whether the output(s) returned by the system

under test are the expected ones. Schematically, let S be a system, I the input domain, X a test
selection strategy and T = {t1, t2, . . . , tn} ⊆ I the set of tests generated using X. When these tests
are sequentially applied to the system S we obtain a sequence of outputs S (t1), S (t2), . . ., S (tn).
Therefore, if we have an oracle, called f , to predict the expected output of S when exercised
with any test in T , then we find an error if there exists ti ∈ T such that S (ti) , f (ti).

In general, testing faces two fundamental problems. First, the oracle problem [14], which
refers to the availability of a mechanism to distinguish between the correct behaviour and poten-
tially incorrect behaviours of the system under test. Unfortunately, in some situations – like test-
ing cloud systems – an oracle is not available or its application is computationally too expensive
and alternative approaches must be used. The second issue is the reliable test set problem [10],
which consists in providing an appropriate test suite for determining the correctness of a system.
Since it is normally not feasible to execute all possible test cases over the system under test, a
subset needs to be selected. However, selecting the most optimal subset is challenging.

Metamorphic testing, unlike the major part of the testing techniques, can be applied for both
test case generation and test result verification, making it suitable to face both fundamental prob-
lems of testing [27, 28, 29]. The main difference between traditional testing techniques and MT
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lies in the comparison of the obtained outputs. Hence, while traditional techniques compare the
output of each individual test case with the one obtained from the oracle, MT checks the relation
between multiple test inputs and their outputs.

MT uses expected properties of the target system, relating multiple test inputs with the cor-
responding outputs obtained from the system under test. These properties are formulated as
metamorphic relations (MRs). An MR is a property of the analysed system that involves mul-
tiple inputs and their outputs. We represent an MR as a formula i(MR) =⇒ o(MR), where
i(MR) refers to the relation between the source test case and the follow-up test case, and o(MR)
refers to the relation that must be fulfilled by the outputs obtained from the source test case and
the follow-up test case. Generally, follow-up test cases are automatically generated by applying
modifications over a source test case.

Let us illustrate this method with an example. Consider the problem of testing an imple-
mentation of the trigonometric sine function. Any implementation of this function will be an
approximation, where the process for checking the correctness of an expected output for a given
input can be complex and error-prone. However, we can define MRs encoding our knowledge of
the domain, like the fact that sine(x) = −sine(−x). Then, we provide a test input t, say 0.3, and
call the function with it. Next, we calculate a follow-up test f that permits exercising the MR
( f = −0.3). Finally, we check whether the two obtained outputs are related as expected by the
MR (sine(t) = −sine( f )). If the output relation does not hold, a failure has been detected.

3. State of the art

In this section, we review works related to each technique used in our methodology: energy-
aware cloud systems (Section 3.1), MT for cloud systems (Section 3.2), EAs in cloud design and
operation (Section 3.3), and simulation of cloud systems (Section 3.4).

3.1. Energy-aware cloud systems

Current studies have shown that an idle data centre consumes around 70% of the power
with respect to the same servers running at maximum CPU capacity [30]. Therefore, for energy
efficiency reasons, it is necessary to devise techniques to hibernate idle nodes for reducing the
overall consumption [31]. Next, we review some of them.

Faragardi and collaborators present an energy-aware resource provisioning mechanism to
optimise the energy consumption in the data-centres supporting the cloud [32]. In particular,
this approach serves real-time periodic tasks following the SaaS model. Based on an exper-
imental study, the authors show that their approach outperforms an energy-aware version of
RT-OpenStack.

Sayadnavard and collaborators propose an approach that takes into account the reliability of
each physical machine (PM) to reduce the number of active PMs at the same time [33]. Then,
a Markov chain model is designed to analyse the reliability of PMs, which are prioritised based
on the CPU usage and the reliability status. The effectiveness of this work has been evaluated by
performing an experimental study using the CloudSim toolkit.

Mohhamad and collaborators present a VM placement method based on the balance-based
cultural algorithm for virtual machine placement (BCAVMP) to decrease the energy consump-
tion in cloud data centres [34]. The proposed algorithm provides a novel fitness function to
estimate VM allocation solutions. Haghighi and collaborators propose a virtualisation technique
for resource management [35]. For this, the authors suggest a hybrid technique based on k-means
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for mapping task and dynamic consolidation and a micro-genetic algorithm. The proposed tech-
nique provides a good trade-off between reducing the energy consumption and the quality of
service of data centres. There exist several methodologies for energy-efficient computing and
networking, which are focused on reducing the energy consumption of security protocols and
frameworks [36]. Samy and collaborators propose secure energy-aware provisioning of cloud
computing resources on consolidated and virtualised platforms [37]. This work is based on a dy-
namic round-robin provisioning mechanism, which powers down the subsystems of a host that
are not required by the requested VMs. The experimental evaluation of these works has been
conducted using the CloudSim simulator.

Kharchenko and collaborators propose a method to examine the energy efficiency of compu-
tational tasks in hybrid clouds, taking into account data privacy and security aspects [38]. For this
purpose the authors examine a high computational demanding application by using mathematical
models based on Markovian chains and queuing theory.

Overall, these approaches focus on saving energy in cloud systems by applying run-time
techniques, like VM migration, server consolidation and VM placement. However, the goal of
MT-EA4Cloud is to optimise the design of the cloud infrastructure for energy efficiency.

3.2. Metamorphic Testing for cloud systems

During the last years, MT [8, 7] has been successfully applied as an effective approach to
alleviating the oracle problem to a wide variety of domains including web services [39] and
embedded systems [40], among others. Remarkably, MT was able to detect new faults [41,
42] in three out of seven programs in the Siemens suite [43], which has been studied in major
software testing research projects for 20 years. Similarly, Le and collaborators [44] discovered
over one hundred faults in two popular C compilers (GCC and LLVM) using MT. Chan and
collaborators [45] used MT to check both the functional behaviour and the energy consumption
of wireless sensor networks. The authors of this work present two MRs for detecting failures,
which are focused on data consolidation and equivalent consumption of sensor nodes that are
close in proximity. Although MRs focusing on sensor networks must constantly be dealing with
energy-saving issues, these cannot be applied to cloud computing systems. First, sensor networks
are provided with limited batteries that considerably restrict the operations for computation and
transferring information. On the contrary, the cloud uses computing and storage nodes that are
provided with a constant power supply. Second, the cloud focuses on virtualising the hardware
of computing nodes, allowing several users to share the resources of the same machine, which
cannot be applied to sensor networks due to computing power limitations. Finally, the cloud is
deployed using a predefined network topology, while the topology of the sensor networks may
be built at run-time, allowing variations when the nodes have low battery.

Although there is currently work in the literature that combines MT with simulation tech-
niques, to the best of our knowledge, MT has not been appropriately applied to check the cor-
rectness of energy consumption in cloud systems. Núñez and Hierons [46] combine the iCan-
Cloud simulator with MT to detect unexpected behaviours when simulating cloud provisioning
and usage. Although that contribution provides interesting ideas for checking the correctness of
cloud systems, it also presents some limitations. That approach only provides a single MR for
checking the correctness of the energy consumption. Moreover, a reduced number of test cases
were applied during the testing process. Murphy and collaborators [47] present an approach to
systematically test simulation software, specifically focusing on the domain of health care, with
the aim of discovering defects in the implementation. Ding and collaborators [48] investigate the
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effectiveness of MT to test a Monte Carlo modelling program for heterogeneous media. Addi-
tionally, they evaluate the adequacy of testing coverage criteria to measure the quality of the MT
process, to guide the creation of MRs, in order to generate test inputs and investigate the excep-
tions found. Chen and collaborators propose the application of MT to check the conformance
between network protocols and network simulators [49], and apply MT to discover faults in open
queuing network models [50].

3.3. Evolutionary Algorithms in cloud design and operation
EAs have been successfully applied to solve real-world problems in a wide spectrum of

fields, like swarm robotics, hardware design and fault tolerance and reconfigurability [51, 52].
In particular, several works applying EAs to cloud systems can be found in the literature as well.
Keshanchi and collaborators proposed an improved genetic algorithm for static task scheduling
for cloud environments [53], for assigning subtasks to processors. A profile-based approach was
developed by Vasudevan and collaborators for energy-efficient application assignment to VMs
with consideration of resource utilisation [54]. The approach is based on a Repairing Genetic
Algorithm (RGA) to solve the large-scale optimisation problem. Xiao and collaborators [55]
proposed a novel algorithm based on evolutionary game theory that successfully addresses the
challenges faced by the dynamic placement of VMs. In this work, the authors demonstrate
that the energetic consumption of a cloud is reduced by dynamically adjusting VM placement.
A dynamic task scheduling algorithm that uses an Integer Linear Programming (ILP) model
focusing on minimising the energy consumption in a cloud data centre was developed by Ibrahim
and collaborators [56]. They also propose an Adaptive Genetic Algorithm (AGA) to reflect the
dynamic nature of the cloud environment, which provides a near-optimal scheduling solution
that minimises energy consumption.

Gabaldon et al. presented a multi-objective Genetic Algorithm based on a weighted blacklist
for reducing the energy consumption and the makespan [57]. In this work, the proposal achieves
better resource utilisation in comparison with the first fit, best fit and worst fit strategies. A VM
allocation model based on collective intelligence was introduced by Zhang et al. [58]. This
proposal considers the problem of redundant power consumption resulting from idle resource
waste of physical machines. As a result, an optimal VMs placement scheme was designed based
on feature metrics, multi-objective optimisation, and an EA algorithm. Joda et al. proposed an
Energy-Efficient VM allocation technique using the Interior Search Algorithm (ISA) for reducing
the energy consumption and resource underutilisation of a data centre [59]. A Particle Swarm
Optimisation heuristic focused on finding the optimal VM placement to reduce power waste was
presented by Abdessamia et al. [60]. Soltanshahi et al. [61] presented a solution for the VMs
placement to reduce data centre energy using the Krill Herd algorithm, which is considered as
the fastest collective intelligence algorithm. The experimental phase to analyse the performance
of the proposal was conducted using the CloudSim simulator, achieving a reduction of 35% of
the energy consumption.

These works use EAs to optimise cloud systems but focus on VM allocation and scheduling
tasks. Our approach uses MRs – previously designed by an expert – to adapt the search of
an optimised cloud configuration using an EA. In particular, we provide the design of cloud
infrastructure, including its hardware architecture, to optimise the energetic consumption of the
cloud. To the best of our knowledge, there are only a few works in the literature combining
EAs and MT. Segura and collaborators presented a proof of concept to automate the detection of
performance bugs by combining MT and search-based techniques [62]. Rounds and Kanewala
identified 17 MRs for testing a GA and show, through MT, that these relations are more effective
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at finding defects than traditional unit tests based on known outputs [63]. Arora and Bassi [64]
show that using GAs increases the efficiency of MT to detect faults in software. However, these
works focus on applying MT to check and test EAs, while we focus on the evaluation of the
energy consumption of cloud systems.

The current literature reports different techniques based on EAs, such as Genetic Algorithms
(GAs), Genetic Programming (GP), Ant Colony Optimisation (ACO), Cat Swarm Optimisation
(CSO), Particle Swarm Optimisation (PSO) and Honey-Bees Mating Optimisation (HBMO),
among others. Despite the diversity, all the EA variants are based on a common working scheme,
where the performance and accuracy obtained strongly depend on the type and the complexity
of the problem [65, 66]. Thus, the task of selecting an EA technique to solve a computational
problem is vital to successfully design a valid solution.

In our proposal, we need to model complex systems that require a high number of inter-
related parameters and therefore, we need flexibility to generate a wide spectrum of cloud con-
figurations (individuals), and high performance to evaluate them efficiently. Techniques inspired
by ACO, CSO, PSO and HBMO are based on swarm intelligence, where the focus is on coop-
eration. In essence, swarm intelligence focuses on systems containing many individuals, which
coordinate using decentralised control and self-organisation. Since our individuals must compete
to obtain the best result (energy consumption), we discarded these approaches. On the contrary,
GAs promote competition, where the individuals more adapted to the environment propagate
their genetic information to the next generation. Thus, the best individuals of each generation
have a higher probability of being selected for reproduction. GAs have been used in the past to
solve problems related to the cloud [67, 68]. Moreover, we think that mutation and crossover
techniques are suitable to face the problem of optimising energy consumption in cloud systems.
For this, we propose a hybrid encoding – combining GAs and GPs – based on graphs and integer
representation that eases the processing of the large structures that conform the cloud.

3.4. Simulation of cloud systems

The research community has developed a vast collection of tools for modelling and simula-
tion of cloud systems. However, only a small subset of them focuses on analysing the energy
consumption of the cloud [69]. This set includes, among others, CloudSim [11], DCSim [70],
GreenCloud [71], SimGrid [13], iCanCloud [72, 12] and DISSECT-CF [73].

CloudSim is an extensible and open-source Java simulator, which enables modelling cloud
computing systems and application provisioning environments. CloudSim is considered the de
facto standard cloud simulation platform due to its capabilities for simulating cloud systems, such
as VM allocation and provisioning, energy consumption, federated clouds and the possibility to
model different types of clouds like public, private, hybrid and multi-cloud environments. One of
the key features of CloudSim is the possibility to include new functionalities using extensions like
cloudSimStorage, which supports modelling the energy consumption of the storage system [74].

DCSim, also known as The Data Centre Simulator, is a Java extensible simulation framework
for simulating a data centre hosting. In essence, DCSim focuses on the IaaS layer for providing
services to multiple tenants.

GreenCloud is an open-source tool for simulating data centres focusing on data communi-
cation and energy cost in cloud computing. GreenCloud provides a wide range of network and
communication configurations for simulating data centres.

SimGrid is a tool for simulating algorithms and distributed applications in distributed com-
puting platforms. The resources are modelled by their latency and service rate, and the topology
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is configurable by the users. Initially, SimGrid targeted grid environments. However, the cur-
rent version of SimGrid supports a variety of cloud computing use cases including multi-purpose
network representation, VM abstraction, live migration, VM support and storage.

iCanCloud is a simulation platform aimed to model and simulate cloud computing systems
by providing different functionalities like resource provisioning. Additionally, the framework
E-mc2 [12] can be used for analysing energy consumption. The main goal of iCanCloud is to
predict the trade-offs between cost and performance of a given set of applications executed in
specific hardware.

DISSECT-CF is a simulator targeted to evaluate the energy consumption of IaaSs. DISSECT-
CF offers two major benefits: a unified resource-sharing model, and a complete IaaS stack sim-
ulation, which includes VM image repositories, storage and in-data-centre networking.

In general, the current approaches for modelling and simulating cloud systems are suitable
to represent the behaviour of cloud architectures. However, each simulation tool focuses on a
specific part of the cloud (e.g. storage system, VMs allocation policies, energy consumption)
and, unfortunately, there is no common solution that satisfies the entire research community.
Moreover, these tools lack a formal approach to represent cloud systems, which complicates the
automation of the testing process. Our approach aims at alleviating these issues. First, using dif-
ferent simulation tools increases the features of the cloud infrastructure that can be modelled and
simulated. Second, combining MT and simulation allows to formally model the main features of
the cloud and, therefore, automating the testing process. Finally, our methodology can propose
cloud optimisations from the energy point of view, which is not supported by these tools.

In relation to energy consumption, the previous simulators are not focused on modelling and
simulating the cooling system, but are more focused on the global cloud infrastructure (e.g. net-
work, virtualisation, storage), where the cooling system is not taken into account. However, there
are several approaches [75, 76] to model the cooling system using some of these cloud simula-
tors. Unfortunately, their source code and binaries are not available. Consequently, the cooling
system must be computed separately using a specific simulator for this purpose. For instance,
CoolSim [77] provides models to manage and design the airflow in data centres. DCWorms [78]
models the cooling system of distributed systems, but it has not been designed to represent the
underlying behaviour of the cloud.

4. Methodology

This section describes our proposed methodology, called MT-EA4Cloud, which combines
MT, simulation and EAs to check the correctness of energy-aware cloud systems. The main
steps of MT-EA4Cloud are depicted in Figure 1.

Initially, the features having a relevant impact on the energy consumption must be carefully
analysed, like the computing system, the storage system, network features and the workload to be
processed, among others. Next, these features are used to design the MRs (label 1© in the Figure).
The idea is to provide a formal and accurate model – in the form of MRs – that represents the
underlying behaviour of the cloud. The set containing the provided MRs, which we refer to as
catalogue, is denoted by C and will be discussed in detail in Section 5.

Our methodology does not target a specific tool, moreover, it is desirable to use several
simulators in the testing process. To that end, the tester must choose the simulators that offer
capabilities to model and simulate the features formulated in C (label 2©). In this step, the sim-
ulators are not executed, but their specifications are analysed to determine whether they can be
used in the testing process. The chosen set of simulators in this step is denoted by S.
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Figure 1: Scheme of the MT-EA4Cloud methodology.

We define a test case as a tuple (m, ω), where m refers to a cloud model and ω is the workload
to be executed over m. The cloud model contains details about the underlying architecture of
the system, while the workload represents the operations performed by the cloud. Similarly,
a follow-up test case is denoted by (m′, ω′). Executing a workload ω over a cloud model m
is carried out by simulation. We denote by S (m, ω) the result of the simulation – using the
simulator S – for executing the workload ω over m. In Section 5 we formally define when a test
case t = (m, ω) and a follow-up test case f = (m′, ω′) satisfy an MR in a simulation performed
by simulator S , which is denoted by (t, f , S ) |= MR.

Next, in step 3©, the tester manually designs a reduced number of source test cases. This set
is called T . The main difference between a source test case and a follow-up test case lies in the
way the test case is generated. While a source test case is manually designed, a follow-up test
case is automatically generated by using a source test case and an MR. In step 4©, we apply a
procedure, described in Section 5.3, to generate a set F of follow-up test cases.

The goal of the next step (label 5©) is two-fold: first, to analyse the adequacy of each MR;
second, to investigate how appropriate is each simulator to represent the behaviour of cloud
systems, focusing on energy consumption. For this purpose, the source and the follow-up test
cases are executed on the simulators chosen in step 2©. We measure the adequacy of an MR ∈ C
by calculating the percentage of follow-up test cases f , generated from each source test case t ∈
T and executed using the simulator S , that fulfil (t, f , S ) |= MR. The adequacy of a metamorphic
relation MR using a simulator S and the test selection strategy T , written adqT (MR, S ), is a
number between 0 and 1 calculated as follows:

adqT (MR, S ) =

∑
t∈T |{(t, f , S ) | f ∈ f ollowU p(t) ∧ (t, f , S ) |= MR}|∑

t∈T |{(t, f , S ) | f ∈ f ollowU p(t)}|
(1)

where f ollowU p(t) is the set of generated follow-up test cases for t. Hence, MT-EA4Cloud can be
applied to compare different simulators for representing the behaviour of cloud systems focusing
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on energy consumption.
Once all the tests are executed over the simulators, a report containing the adequacy of the

MRs is generated. The tester uses this report to create a new list of simulators, discarding those
that do not appropriately represent the behaviour of cloud systems. As a result, a new list of
simulators, denoted by S′, is generated.

The quality of the cloud designs – focusing on energy consumption – that were created by the
tester in step 3©, is optimised in the last step (label 6©). In order to accomplish this task, we use
an EA, which is discussed in detail in Section 6. The EA evolves an initial population of cloud
models generated from the source model, which is provided by the user. Such evolution involves
applying different operations to create a new generation of clouds, until one of the individuals
fulfils the stop criteria (e.g. its energetic consumption has been reduced a 5%).

5. Metamorphic relations for modelling energy-aware cloud systems

In this section, we provide a catalogue of novel MRs that are specially designed to analyse
the proper use of energy in cloud architectures. For this purpose, we first introduce some nota-
tion (Section 5.1), then we present the catalogue (Section 5.2) and finish by describing how to
generate follow-up test cases using the MRs (Section 5.3).

5.1. Notation

Clouds. One of the main challenges in using MRs for accurately analysing complex systems [7],
like clouds, lies in appropriately representing – with enough fidelity – the high number of inter-
related parameters that determine the behaviour of the system under test, such as, in the case
of cloud systems, data centres containing a large number of physical machines, communication
networks, concurrent access of different users and virtualisation, among others. We use the
parameters provided by each simulator to model and estimate these systems, like the network
latency or the CPU speed. Hence, the level of accuracy obtained directly depends on how each
simulator processes these parameters to simulate the underlying behaviour of each subsystem. In
order to provide a flexible and accurate configuration of the cloud, we use the following notation:

• We represent a processor cpu as a pair (s, n) where s ∈ N is the speed of cpu measured in
MFlops and n ∈ N is the number of cores.

• A hard disk hd is a tuple (s, r,w) where s ∈ N denotes the total size in GBytes and r,w ∈ N
are the read and write bandwidth of the disk, measured in Mbps, respectively.

• The RAM memory mem is a tuple (s, r,w) where s ∈ N is the total size measured in
MBytes and r,w ∈ N are the read and write bandwidth in MBps, respectively.

• A node is a tuple (cpu, hd,mem) where cpu is its processor, hd is its hard disk, and mem is
its RAM memory.

• A board node is a tuple (Id, nodes =
{
n j

}
j∈J) where Id ∈ N is its identifier, and nodes is

the set of the actual nodes.

• A rack is a tuple (Id, boards =
{
bi
}
i∈I) where Id ∈ N is its identifier and boards is a set of

actual board nodes.
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• A network connection net is a tuple (src, dst, bw, lat) where src, dst ∈ N are the identifiers
of the source and destination racks of net, bw ∈ N is the bandwidth of net measured in
MBps and lat ∈ N is the latency measured in µs.

• We define a cloud model as a connected non-directed graph m = (RS,C) where RS is the
set of racks and C is the set of network connections.

Given a board node b, we use b.nodes for its set of nodes, and similarly for other tuples.

Cloud metrics. To measure energy consumption, we define the following metrics:

• ∆(mcpu) denotes the overall CPU performance of the cloud model m. Formally:

∆(mcpu) =
∑

r∈m.RS

∑
bi∈r.boards

∑
n j∈bi.nodes

n j.cpu.s · n j.cpu.n

• ∆(mIO) is the overall I/O performance of the cloud m. Formally ∆(mIO) = (r,w) where:

r =
∑

r∈m.RS

∑
bi∈r.boards

∑
n j∈bi.nodes

n j.hd.r

w =
∑

r∈m.RS

∑
bi∈r.boards

∑
n j∈bi.nodes

n j.hd.w

• ∆(mNET ) denotes the overall network performance of the cloud model m. Formally:

∆(mNET ) =
1
|C|
·
∑

c∈m.C

c.bw

• |m| denotes the number of physical machines contained in the cloud model m. Formally:

|m| =
∑

r∈m.RS

∑
bi∈r.boards

|bi.nodes|

• |vm| denotes the number of virtual machines contained in the cloud model m.

Workload. A workload ω is a trace of operations to be executed on the cloud system, that is,
requests of VMs to be deployed in physical machines, storage and computing operations. The
trace elements are taken from OP, the set of basic operations, and so ω ∈ OP∗. We say that
ω ⊆ ω′ if ω is a subtrace of ω′, and define similarly a strict subtrace ω ⊂ ω′.

Test case. As mentioned in Section 4, a test case is a tuple (m, ω) made of a cloud m and a
workload ω, while a follow-up test case is denoted by (m′, ω′). The execution of ω over m
is performed by simulation, and the result of the simulation is denoted by S (m, ω). We are
especially interested in energy consumption, and hence write Ω(S (m, ω)) to represent the overall
energy consumption required to execute the workload ω over m, which is calculated using the
simulator S . We can assume – without losing generality – that this is an integer number because
power measures like 12.345W can be seen as 12345mW in a smaller power unit.
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Metamorphic relation. Intuitively, an MR can be seen as a tuple (MRi, MRo), where MRi is a
relation over the source test case and a follow-up test case, and MRo is a relation over the results
obtained from the execution of these test cases. These test cases must fulfil the input relation
MRi. This way, a metamorphic relation MRS for m and ω using S, can be formally represented
as a set of 4-tuples:

MRS =
{
〈(m, ω), (m′, ω′), S (m, ω), S (m′, ω′)〉 |

MRi((m, ω), (m′, ω′))⇒ MRo(S (m, ω), S (m′, ω′))
} (2)

5.2. Catalogue of Metamorphic Relations

In order to accurately model the underlying cloud infrastructure, an expert with deep knowl-
edge in cloud systems must define a catalogue of MRs. The catalogue we propose in this work is
depicted in Figure 2. Next, we discuss its intuitive meaning, where the parameters not mentioned
in the explanation of the rules remains the same.

MR1 ∆(mcpu) > ∆(m′cpu) ∧ ω = ω′ =⇒ Ω(S (m, ω)) ≤ Ω(S (m′, ω′))
MR2 |m| ≥ |m′| ∧ ω = ω′ =⇒

|m|
|m′ | ≥

Ω(S (m,ω))
Ω(S (m′,ω′))

MR3
|m|
|m′ | ≥

∆(mcpu)
∆(m′cpu) ∧ ω = ω′ =⇒

|m|
|m′ | ≥

Ω(S (m,ω))
Ω(S (m′,ω′))

MR4 ∆(mIO) > ∆(m′IO) ∧ ω = ω′ =⇒ Ω(S (m, ω)) ≤ Ω(S (m′, ω′))
MR5 ∆(mNET ) > ∆(m′NET ) ∧ ω = ω′ =⇒ Ω(S (m, ω)) ≤ Ω(S (m′, ω′))
MR6 ∆(mRAM) > ∆(m′RAM) ∧ ω = ω′ =⇒ Ω(S (m, ω)) ≤ Ω(S (m′, ω′))
MR7 |m| = |m′| ∧ |vm| > |vm′| ∧ ω = ω′ =⇒ Ω(S (m, ω)) ≥ Ω(S (m′, ω′))
MR8 m = m′ ∧ ω ⊆ ω′ =⇒ Ω(S (m, ω)) ≤ Ω(S (m′, ω′))

Figure 2: Catalogue of MRs for checking the correctness of cloud simulators.

MR1: If the CPU of m has better performance than the CPU of m′, and ω and ω′ are equal,
then the amount of energy required to execute ω over m should be less than or equal to the one
required to execute ω′ over m′.
MR2: If the model m contains more machines than m′, and ω and ω′ are equal, then the ratio
between the number of machines of m and m′ should be greater than or equal to the ratio between
the energy consumption required to execute ω over m and the one required to execute ω over m′.
MR3: If the ratio between the number of machines of m and m′ is greater than or equal to the
ratio between the CPU performance of m and the CPU performance of m′, and ω and ω′ are
equal, then the ratio between the energy consumption required to execute ω over m and the one
required to execute ω′ over m′ should be less than or equal to the ratio between the number of
machines of m and m′.
MR4: If the I/O performance of m is better than the I/O performance of m′, and ω and ω′ are
equal, then the energy consumption required to execute ω over m should be less than or equal to
the one required to execute ω′ over m′.
MR5: If the network performance of m is better than the network performance of m′, and ω and
ω′ are equal, then the energy consumption required to execute ω over m should be less than or
equal to the one required to execute ω′ over m′.
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MR6: If the RAM memory performance of m is better than the RAM memory performance of
m′, and ω and ω′ are equal, then the energy consumption required to execute ω over m should be
less than or equal to the one required to execute ω′ over m′.
MR7: If the number of machines used in m and m′ is equal, the number of virtual machines
deployed in m is greater than the number of virtual machines deployed in m′, and ω and ω′ are
equal, then the energy consumption required to execute ω over m should be greater than or equal
to the one required to execute ω′ over m′.
MR8: If m and m′ are equal and the workload ω is a subtrace of ω′, then the energy required to
execute ω over m should be less than or equal to the one required to execute ω′ over m′.

Please note that we did not include any MR dealing with the cooling system. This is so as
the considered set of cloud simulators do not consider this system. However, as explained in
Section 4, both the catalogue and the set of simulators is open, and so other MRs affecting the
energy consumption can be added in future work.

5.3. Generation of follow-up test cases

MT can be used to alleviate the reliable test set problem [10]. First, the follow-up test cases
are generated using a source test case as basis. Source test cases are manually created by the tester
and, therefore, these test cases should be designed to test specific features of the system under
test. Second, since generated tests should fulfil previously defined constraints in the form of MRs,
these are focused on testing sensible parts of the system for providing relevant information.

Given a set of source test cases, we automatically generate the follow-up test cases, by copy-
ing the source test case and applying a slight modification in the replica. The key to automatically
generate appropriate follow-up test cases is to calculate the cloud parameters that are most likely
to be selected to perform the modifications. For this, we use the provided catalogue of MRs.

In our approach, a small number of source test cases must be provided by the tester. Addi-
tionally, the tester must select one or several MRs and the number of follow-up test cases to be
generated. Since each generated test case must fulfil the selected MRs, we focus on those param-
eters that are used in the MRs (i.e. CPU parameters when MR1 is involved). Next, we generate
a random value within a specific range, to be assigned to the selected parameter. This way, we
avoid generating follow-up test cases with unreal values like e.g. a communication network with
a bandwidth of 1Mbps, or a disk drive with a capacity of 5 MB.

6. An Evolutionary Algorithm to optimise energy-aware cloud systems

Cloud computing systems usually consist of thousands of components and therefore, making
random modifications on its underlying architecture, like CPU, memory and network, hampers
the search for optimal models. In order to alleviate this issue, we propose an EA to explore
complex search spaces efficiently. In particular, the EA will evolve the cloud systems using the
catalogue of MRs to conduct the search towards the optimisation of the energetic consumption.
For this purpose, it is necessary to provide a precisely defined cloud configuration with the main
features of the system, as we defined in Section 5.1. The main steps of our proposed EA are
depicted in Figure 3, and are explained next.

Initialisation. The algorithm requires as input a set of MRs modelling the underlying behaviour
of the cloud, a cloud model and the maximum size of the population. Each individual in the
population represents a cloud configuration. In this phase, the tester designs manually a cloud
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Figure 3: Main steps of the proposed evolutionary algorithm.

model, which is used as a seed to generate the initial population. Since the algorithm performs
a guided search, each individual is synthesised by mutating the initial cloud according to the
constraints reflected in the MRs (see the mutation step of the algorithm).

Evaluation. The individuals are evaluated using a fitness function, which provides a numeric
value representing the quality of the candidate solution. This value is provided by a cloud
simulator that calculates the energy consumption of each cloud model.

Encoding. In order to create the offspring, clouds are encoded in a way that facilitates its ma-
nipulation during the next stages of the algorithm. Clouds are complex systems made of a
high quantity of connected components. Thus, it is necessary to design an encoding that ap-
propriately represents all the required features and minimises dangling combinations requiring
repairing or substitutions.

For this purpose, we studied the encodings proposed by two well-known EAs: classic Genetic
Algorithm (GA) and Genetic Programming (GP). We discarded the use of the classic GA en-
coding because, even though it allows describing the cloud components, it has limitations to
represent their interconnections. However, in GP, the relations between the different features
of the models can be described using a tree encoding, which helps in representing the network
connections. Nonetheless, we have identified several drawbacks complicating some steps of
the algorithm. The first one is related to performance issues: the crossover and mutation steps
require creating new versions of the cloud model, which is a computationally expensive task.
Second, since we use MT to reduce the search space of the EA, it is necessary to use opti-
mised structures for representing the individuals. Hence, we avoid the generation of dangling
individuals to improve the overall performance of the algorithm.
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For these reasons, we have designed a hybrid encoding based on graphs and integer represen-
tations, which facilitates the management of the large structures conforming the cloud, and
reducing the generation of incorrect models. This way, we encode a cloud using two different
vectors. The first one represents the physical components of the cloud (the racks), and the
second one the network connections. For this purpose, we use the tuple-based representation
for clouds explained in Section 5.1.

R0 R1 R2 R3 

C0 C1 C2 C3 C4 

R0 = (0, {(0, {( (15000, 4) , (16000,970,850) , (8,6000,6000) )} ) }) 

CPU disk memory 

Board node 

Node 

R1 = (1, {(1,{( (15000, 4),(16000,970,850),(8,6000,5000) )}) }) 

R2 = (2, {(2,{( (78000, 24),(1000,564,409),(32,12000,10000) )})}) 

R3 = (3, {(3,{( (220000, 32),(512,720,654),(32,12000,10000) )})}) 

 C0 = (0,1,5000,5) C1 = (0,2,20000,10) C2 = (0,3,20000,10) 

C3 = (1,2,20000,10) C4 = (1,3,20000,10) 

Racks 

Connections 

Phenotype 

C0 

C1 

C2 

C3 

C4 

Genotype 

id 

id 

Rack 

(a) 

R0

R1 

R2 

R3 

(b) 

(c) 

Encoding of physical components 

Figure 4: Encoding a cloud system: genotype and phenotype.

Example. Figure 4(a) shows the encoding of a cloud made of 4 racks (R0..R3), each one
allocating a blade node, and 5 network connections (C0..C4). Rack R0 has a single board with
one node. This node has a CPU with a speed of 15000 MFlops and 4 cores, a disk with 16000
GBytes providing a write and read bandwidth of 970 and 850 MBps, respectively, and a RAM
memory of 8 GBytes providing a write and read bandwidth of 6000 MBps. C0 represents
a network connection between racks R0 and R1, providing a bandwidth of 5000 MBps and
latency of 5 µs. The genotype, i.e., the vectors containing the racks and the connections of the
cloud, is depicted in Figure 4(c). The phenotype, representing the topology of the cloud, is
shown in Figure 4(b).

Selection. In this phase, the best individuals – based on an energy-aware criterion – have a higher
probability to be selected for generating a new offspring. We use roulette wheel as a selection
method, which gives high probabilities to those clouds models with low energy consumption.
These probabilities are based on the width of the slice of a hypothetical roulette wheel, where
wider slices provide higher probabilities to be selected.

Crossover. In this phase, individuals are combined to generate a new offspring following the
principles of biological reproduction. Crossover mainly depends on the encoding and, there-
fore, using an appropriate crossover design improves the performance of the EA. Since the
inclusion of multiple crossover mechanisms prevents the premature convergence and improves
the performance of the algorithm [79], we propose three crossover techniques focused on spe-
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cific knowledge of cloud systems, where for each iteration, the technique to be applied is
randomly selected. The crossover operators we use are explained next:

• Mix crossover: This crossover merges the information of two physical machines to generate
a new offspring. Initially, the tester must provide the percentage of machines involved in the
crossover. Hence, one part of the cloud will remain unmodified, unless the tester indicates
a 100%. Next, for each pair of clouds (parents) from the actual population, two new indi-
viduals (offspring) are generated. For this purpose the components of the physical machine
are encoded in binary. Hence, the information of each component (CPU, disk, memory,
...) from both parents is combined using the standard one-point crossover. Figure 5 illus-
trates this crossover, where CPU1 (blue) and CPU2 (red) are combined to generate two new
CPUs, each one containing information from both parents.

00000000 00111010 10011000  00000100

00000001 00110000 10110000 00011000

CPU 1

CPU 2

SPEED CORES

15000 MFlops, 4 cores

78000 MFlops, 24 cores

Crossover point

00000000 00111010 15024 MFlops, 24 cores

77976 MFlops, 4 cores10011000  0000010000000001 00110000

10110000  00011000

Parents

Offspring

CPU 1’

CPU 2’

Figure 5: Example of mix crossover.

• Swap crossover: In this case the operator combines unmodified components from the parents
to generate the offspring. Hence, the binary information of each component is not modified
but placed in another individual. Similar to the mix crossover, the tester must specify the
percentage of physical machines involved in the crossover. Thus, the machines of the new
offspring are a combination of components from both parents.

• Full crossover: This crossover is inspired by a NASA contribution to evolve graph topolo-
gies [80]. The idea is to randomly divide two clouds, each one in two fragments, and com-
bine them to generate two new individuals. Figure 6 shows an example, where two different
graphs G1 and G2 are combined to generate two new individuals, G1′ and G2′. To allow
recombination, the graphs G1 and G2 are partitioned in such a way that G1a and G2a have
the same number of edges cut (2 in this case).

MR-driven mutation. In this step, random mutations are seeded into the individuals. The idea
is to explore those cloud models that provide better energy consumption without enhancing its
underlying components. In some cases, a mutation is applied towards degenerating a specific
part of the individual. Thus, the new individual represents a cloud model containing a-priori
“worse” components than the source individual (e.g. slower CPUs, smaller memories or a
data-centre containing less physical machines). The changes are performed with a certain
probability, where small modifications have greater chances to be performed than larger ones,
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Figure 6: Example of full crossover.

and are seeded in a way that the new generated individuals satisfy the MRs. This is one of the
salient features of this work, where the MRs conduct the search towards a reduced exploration
space. We have designed the following set of 8 mutation operators:

• Operator 1: This operator mutates all the components of a rack. Initially, a rack is randomly
selected from a given cloud (individual), where all the racks have the same probability to
be selected. Then, the operator seeds changes on all the components of the rack (nodes,
disk, CPUs, ...). The following example illustrates how this operator is applied to the cloud
represented in Figure 4. R2 is the rack before the operator is applied, and R2′ after its
application. The changes are remarked in boldface. In this case, the mutation is applied
towards degenerating the source individual.

– R2 = (2, {(2, {((78000, 24), (1000, 564, 409), (32, 12000, 10000))})})
– R2′ = (2, {(2, {((57200, 13), (1000, 364, 209), (32, 4212, 3210))})})

• Operator 2: This operator decreases the bandwidth of a network link of the cloud that is
randomly selected from the communication network.

• Operator 3: Similarly to the previous operator, this one increases the latency of a randomly
selected network link.

• Operator 4: This operator removes a link of the network, and is only applied if the resulting
graph is connected. Figure 7 (a) illustrates the result of applying this mutation operator to
the model of Figure 4, where link C3 is removed.

• Operator 5: This operator creates a new link connecting two (randomly selected) racks that
are not directly connected. The bandwidth and latency values of the new network link are set
to the average of the existing links in the network. Figure 7 (b) shows the result of applying
this mutation operator to the initial model, where the link C5 is added.
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Figure 7: Example of mutation operator applications: (a) Operator 4 deletes link C3. (b) Operator 5 creates link C5. (c)
Operator 6 replaces the source of C1 by R3. (d) Operator 7 deletes R0. (e) Operator 8 splits R2.

• Operator 6: This operator replaces the source/destination of a randomly selected link. An
example application of this operator is depicted in Figure 7 (c), where the source of the link
C1 (R0) is replaced by R3.

• Operator 7: This operator removes a randomly selected rack and all its connected links. If
the resulting graph is unconnected, new links are created until the graph becomes connected.
New connections are created based on the bandwidth and latency values of the removed
connections. Destination nodes are randomly selected following the guidance of Operator
6. For this, it modifies the connection links to avoid unconnected graphs. Figure 7 (d) shows
an example application, where R0 and all its connections are removed.

• Operator 8: This operator splits a rack in two, both having half of the capacities of the orig-
inal one, and where the links are duplicated. An example application is shown in Figure 7
(e), where rack R2 and its links have been duplicated.

Decoding. A decoding process is required to evaluate the fitness of new and modified individ-
uals. Although the crossover and mutation operators have been designed to avoid incorrect
models, it is possible that some of the individuals do not satisfy some of the MRs provided as
input, due to the multiple changes seeded in each model. In this case, the individual is replaced
by another one that satisfies the MRs.

Please note that, as Figure 3 shows, after decoding, the individuals are evaluated again and
the next population generated using those individuals with the lowest energy consumption.

Finally, let us analyse the computational cost of our approach. Our genetic algorithm per-
forms a fixed number of iterations, denoted by nIter. This way, in each iteration the algorithm:

• Generates a new population by applying first a crossover mutation and then a mutation
operator. The total population of clouds is multiplied by 3. We denote the size of the
population by nClouds.
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• Performs the simulations on all the elements of the population. We write Sim(S) to denote
the time needed to simulate one individual (cloud) in the simulator S .

All the mutation operators require just constant time except the full crossover algorithm
depicted in Figure 6. The authors do not give its complexity, so we assume that it requires
Ω(fCross(C)), where C is the size of the individual (cloud). Hence, putting all together, our
approach has a computational cost of Ω(nIter · (nClouds · (fCross(C) + Sim(S)))).

7. Tool support

We have developed tool support for MT-EA4Cloud, which implements the different modules
depicted in Figure 1 using Java. Its scheme is depicted in Figure 8, and shows how MT, EAs
and simulation tools are combined to optimise the energy consumption in cloud systems. For the
sake of clarity, only the most relevant parts are shown.

Cloud model

Test Case (TC)

Energy consumption

Cloud chromosome (CCM)

Cloud simulator

CCM

Extract TC

Parse TC 

data from 

objects

Population

Write 

configuration

files

Simulate cloud specific model

CCM1 CCM2 CCMN

Update 

CCM

Extract Energy 

consumption

Update 

population

A B C D

Workload

Evaluation module

SelectionCrossoverMutationM Se

Figure 8: Tool support for MT-EA4Cloud: integration of the simulation tools within the EA scheme.

The Evaluation Module (EM) consists of 4 main submodules: the test case extraction module
(labelled as A), the template transformation module (labelled as B), the cloud simulation module
(labelled as C) and the energy consumption module (labelled as D).

Initially, the cloud chromosome (in short, CCM) is extracted from the population. A CCM
consists of three main elements: a cloud model (in short, CM), a test case (in short, TC) and
energy consumption (in short, EC). Test cases are automatically generated using metamorphic
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testing techniques. Each TC contains a CM and a workload, where CM represents all the com-
ponents used to model a cloud system, such as computational resources, network topology, and
the workload refers to the operations to be processed by CM. Each object that represents a TC
contains a path indicating the location of the test input data and a path where the results of the
simulation are stored. The last element of the CMM, labelled as Energy consumption, refers to
the amount of energy required by CM to execute the workload.

The information allocated in TC is parsed from the CCM to create a generic data structure.
It is generic since it allocates the data required to configure a test case, but is not specific to a
single simulator. The idea is to manage a common structure that can be applied to the different
simulators deployed in the system, allowing an easy translation of this data into the different
formats of the cloud simulators that are currently deployed (module A).

Next, the configuration files required to execute TC using a cloud simulator are generated
(module B). The cloud simulator deployed in module C executes the simulation of the CM con-
tained in TC. Once the simulation has finished, a results file is generated (see module D). The
energy consumption is extracted from the results, and the CCM is updated and inserted into the
population accordingly. The optimisation of the clouds is performed using the EA explained in
Section 6, and depicted in Figure 3.

This framework has been developed using a modular and flexible design, which allows in-
cluding easily new simulators and other approaches inspired by EAs to optimise the energy
consumption in clouds. For this, the main submodules of the EM have been represented as Java
interfaces in such a way that the integration has been reduced to the following three points:

• Implementing the interface TestCaseTransformations (see module B), to transform a cloud
model to the specific format required by the new simulator.

• Implementing the interface SimExecution (see module C), to provide the specific format
to execute the simulations in the new integrated simulator.

• Implementing the interface EnergyExtraction (see module C), to parse the results file gen-
erated by the execution of the new simulator.

8. Empirical study

This section reports on an empirical study, where MT-EA4Cloud is applied to check the cor-
rectness of different cloud systems. First, in Section 8.1, we formulate several research questions
we aim at answering with the experiments. Second, we present a detailed description of the
experimental setting in Section 8.2. Next, in Section 8.3, we evaluate the adequacy of each MR
in our catalogue and the suitability of each simulator used in this study. Section 8.4 presents a
sensitivity analysis, and in Section 8.5, we perform a testing process to evaluate the correctness
of different clouds using our approach. Finally, we discuss the obtained results and answer the
research questions in Section 8.6.

8.1. Research questions
The experiments described in this section seek to answer the following questions:

RQ1 Is it feasible to analyse the correctness of energy-aware cloud systems using simulation?

In general, the main difficulty of choosing a tool that properly represents the underlying be-
haviour of the cloud lies in the uncertainty of the provided results, that is, how the researcher
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can be sure that the provided results properly represent the expected behaviour of the cloud?
Hence, we are interested in analysing and comparing the suitability of different simulation
tools to represent the features established by the user and, thus, to decide which simulation
tool is most adequate to model and simulate these features.

RQ2 How adequate are the MRs for analysing energy-aware clouds?

In MT, the MRs model de underlying behaviour of the system under test. In this work, we
provide a catalogue of MRs exclusively dealing with the energy consumption of cloud systems.
Hence, we are interested in investigating the adequacy – from an energy-aware point of view
– of the proposed MRs for studying cloud systems.

RQ3 Is it possible to automatically detect drawbacks in the energy consumption of cloud systems
and provide convenient solutions?

We are interested in evaluating whether our methodology is capable of optimising the energy
consumption of the clouds under test by locating drawbacks in their underlying architectures.
A drawback is discovered in a cloud model when MT-EA4Cloud locates an alternative cloud
model that provides better energy consumption without enhancing its underlying components,
like increasing the CPU speed, using more physical machines in the data-centre or using a
faster network. Additionally, we are interested in comparing the quality of the test cases gen-
erated using our proposed EA against the quality of randomly generated test cases.

8.2. Experimental setting

The main objective of our methodology is to check the correctness – from an energy con-
sumption point of view – of cloud systems. Hence, the first step consists in analysing the cloud
features having a direct impact on energy consumption, which are modelled in the form of MRs.
In this study, the catalogue of MRs presented in Section 5.2 has been used to model the underly-
ing behaviour of cloud systems formally.

In order to execute the experiments of this study, we have chosen different well-known sim-
ulators designed to model and simulate the energy consumption of cloud systems. First, we have
carefully investigated, in the research papers found in the current literature, the main features
and drawbacks of each simulator. Second, we have analysed the documentation provided by
each simulator to decide whether a simulator is appropriate, or not, for this study. As a result,
we provide the set S consisting of 7 simulators (step 2). Table 1 shows the MRs of the catalogue
that can be modelled and simulated using each simulator S ∈ S.

Id MR1 MR2 MR3 MR4 MR5 MR6 MR7 MR8

CloudSim X X X 7 X 7 X X
CloudSimStorage X X X X X 7 X X
DCSIM X X X X X 7 X X
GreenCloud X X X 7 X 7 X X
SimGrid X X X 7 X 7 X X
iCanCloud X X X X X X X X
DISSECT-CF X X X X X 7 X X

Table 1: Analysis of different cloud simulators to represent the provided MRs.
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Parameter / Cloud cloudA cloudB cloudC
#Hosts 512 512 512
RAM (MBytes) 1024 16384 8192
CPU speed (MIPS) 1k 90k 20k
CPU cores 2 8 4
HDD size (TBytes) 1 1 1
HDD speed (Mbps) 20 350 100
Net bw (Mbps) 500 10000 10000
Net lat (us) 10 10 10

Table 2: Source cloud configurations.

Next, we manually design three clouds – cloudA, cloudB and cloudC – providing different
configurations, each one representing a specific cloud profile. Thus, cloudA represents a low-
profile cloud, providing slow CPUs, small RAM memories and a slow network; cloudB models a
high-profile cloud, with large RAM memories, fast CPUs with 8 cores and a fast communication
network; and cloudC represents a mid-profile cloud, with a fast communication network and a
fair CPU and memory system. The configurations of these clouds are depicted in Table 2.

Additionally, we have created different workloads, which are inspired by operations per-
formed in big data analysis. In particular, we use traces that represent the infrastructure of
PlanetLab [81], to be executed by cloudSim, and a Map-Reduce based application [82], to be
executed by simGrid. It must be noted that each simulator requires a specific type of applica-
tion to be executed and, therefore, the same application cannot be executed in both simulators.
Hence, the idea is to apply different workloads over different cloud systems to analyse the en-
ergy consumption in these systems. In the following, a trace is denoted by ωsize

sim , where sim is
the simulator used to execute the trace and size represents the trace length. The size of a small
trace is denoted by the sub-index s, the size of a medium trace – larger than the small trace – is
denoted by m, and the size of the largest trace is denoted by l.

The set of source test cases, denoted by T , is generated by combining the clouds presented in
Table 2 and the three generated workloads. In step 4, we automatically generate a set of follow-
up test cases using C and T , as input. In this case, we generate the set F containing a total of
4000 follow-up test cases.

8.3. Assessing the effectiveness of the MRs and the suitability of the simulators

In this section, the catalogue of MRs C (see Section 5) is evaluated using Equation 1 to
calculate the adequacy. This requires an MR, a simulator S ∈ S and a set of source test cases
T . We have calculated the adequacy for each pair (MR, S ) ∈ C × S. The results are presented
in Table 3, where each column refers to an MR, and each row represents a simulator. In essence,
these results show the percentage of tests that fulfil the different MRs for each simulator.

In general, all simulators used in this study provide acceptable results to simulate cloud
systems. However, there are some simulators that cannot model the features formulated in the
MRs. For instance, GreenCloud does not provide capabilities to model MR4 and MR6. In other
cases, the obtained results show that some simulators do not properly represent the expected
behaviour of a cloud. For example, in the case of iCanCloud, it achieves low effectiveness in
MR2 and MR7, while the rest of the simulators provide better results for these MRs. It must
be noted that the catalogue of MRs is designed to represent a general view of the cloud and,
thus, there are some specific situations where the MRs cannot reflect the real behaviour of the
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Id MR1 MR2 MR3 MR4 MR5 MR6 MR7 MR8

CloudS imS torage 100 40 100 100 99 - 100 100
GreenCloud 0 20 100 - 45 - 100 100
S imGrid 100 63 100 - 100 - 100 100
iCanCloud 100 39 100 100 89 84 73 100
DIS S ECT −CF 99 51 100 99 95 - 100 100

Table 3: Adequacy (in %) of each MR using different simulators.

cloud. These situations are represented when some follow-up test cases do not satisfy a given
MR. For instance, when cloudSim-storage is used to simulate the follow-up test cases generated
to evaluate MR5, which obtains a 99% of adequacy score. In this case, only 1% of the cases
cannot be represented by this MR.

As the table shows, MR2 provides a low adequacy score, that is, a high number of test cases do
not fulfil this MR. This means that none of the simulators used in this study provides significant
results supporting the claim that MR2 accurately represents the behaviour of a cloud system.
Consequently, since this MR cannot be used in the testing process, it has been discarded.

Table 3 also shows that MR6 can only be modelled using iCanCloud. Usually, cloud sim-
ulators do not provide proper models for calculating the energy consumption in the memory
system. Although iCanCloud implements this feature, the obtained results are not as promising
as the ones obtained for evaluating other systems, like the computing or the storage systems.

Another feature that must be taken into account is the performance provided by the simulator.
Since our methodology requires executing a large number of simulations, this aspect must be
carefully taken into account. For example, iCanCloud requires almost 1 hour to simulate a small
scenario, while simGrid provides the results in a few minutes.

Once all the simulators have been checked (step 5), we analyse the results presented in Table 3
to select the most appropriate simulators for the testing process. If we discard MR2 and MR6, we
notice that cloudSimStorage and simGrid provide results achieving, at least, 99% of adequacy
in the rest of MRs. Hence, we chose cloudSimStorage and simGrid as the most appropriate
simulators, for two reasons. First, they provide high performance for executing the simulations.
Second, the obtained results show that these simulators are suitable to model and simulate the
required features of cloud models, represented in each MR ∈ C.

8.4. Sensitivity analysis

The efficiency and effectiveness of a GA strongly rely on the choice of its input parameter
values. Hence, in order to carry out the experimental study using an appropriate setup, first we
have conducted a sensitivity analysis to investigate how the parameters of the algorithm impact
on the overall performance [83]. Our algorithm depends on four main parameters: the number of
generations (iterations), the size of the population, and the application probability of the mutation
and crossover operators. For this analysis, we use the cloud configuration cloudA described in
Table 2 and the cloudSim simulator to perform the simulations. The basic idea is to run different
experiments for optimising the processing of the workloadωs in cloudA using different values for
setting-up the input parameters and, therefore, to analyse the trade-off between the final result
and the performance provided. The results of this study are depicted in Figure 9. The x-axis
of each chart shows the value of the analysed parameter, while the y-axis depicts the obtained
energy consumption of the cloud. The execution time is shown at the top of each bar.
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(a) Analysis of the number of iterations
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(b) Analysis of the population size
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(c) Analysis of the crossover probability
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(d) Analysis of the mutation probability

Figure 9: Results of the sensitivity analysis.

Firstly, we start the analysis with the iterations parameter. In general, the number of created
generations is expected to have considerable impact on the obtained results. Hence, increasing
the number of iterations may lead to a significant improvement of the obtained results. This way,
we started the analysis with a low number of iterations and increased this value in order to find
a good balance between the results obtained and the execution time. Figure 9 shows that using
100 iterations provides a good trade-off between performance and efficiency.

Next, we analyse the population size, that is, the number of generated individuals (clouds)
in each generation. In this case, we observe that increasing the number of individuals has only
a slight impact on the obtained results, and a larger impact on the execution time. For instance,
executing the algorithm using 10 individuals requires 90 minutes, while using 40 individuals
requires 340 minutes, providing slightly better results. For this purpose, we choose a population
size of 10 individuals for configuring the algorithm.

Similarly, the probability of using a crossover operator has a low impact on the provided re-
sults. However, the performance of the algorithm is proportional to the probability of applying a
crossover operator. Consequently, we use the medium value (50%) for configuring the algorithm.

Finally, we analyse the probability of using a mutation operator. This is clearly the param-
eter that has the greatest impact on the quality of the provided results. In order to analyse this

25



parameter, we use values in the range [10-100]. Let us remark that this value represents the
probability of applying a mutation operator over the current individual. Hence, using a value of
100, the algorithm mandatorily applies a mutation operation in each iteration of the algorithm
for every processed individual. Figure 9.d shows that using a 10% of probability for applying
a mutation operator only requires 16 minutes of execution time, providing poor results. On the
contrary, using a probability of 100% significantly increases the quality of the results, achieving
an effectiveness greater than 200%. Hence, we use a value of 100% for this parameter in the
experiments, which corresponds with the configuration labelled as high in Table 4.

8.5. Checking the correctness of energy-aware cloud systems

In this section, we perform a set of experiments to analyse the correctness of the clouds
designed in step 3. We test a cloud by measuring the required amount of energy to execute
a workload. The testing process is conducted by using two different techniques, our proposed
combination of MT and EAs, and a random approach. Both techniques focus on automatically
generating test cases, where a test case consists of a workload and a cloud configuration. Their
main difference lies in how the cloud configuration is generated. While our approach performs a
guided search that uses the “best” clouds of each generation to create a new offspring of individ-
uals, the second approach generates new clouds by apply mutations randomly over the original
cloud. It is important to remark that both approaches generate clouds that satisfy the input con-
straints of the MRs. Hence, since the former approach performs a guided search, we expect to
outperform the random approach both in performance and efficiency.

Our EA evolves different generations of individuals using three different crossovers and eight
mutation operators. The crossover to be applied to each individual is randomly selected, while
we have tried three different probability levels (three configurations) for applying the mutation
operators. Although the sensitivity analysis carried out in Section 8.4 shows that using a high
probability for applying a mutation operator provides the best results, we use three different
configurations to validate this assumption. As a remark, since each simulator requires a specific
configuration to model the cloud, there are some mutation operators that cannot be applied in
certain simulators. In order to alleviate this issue, we provide a specific configuration for each
simulator.

Table 4 shows the configurations – low, mid and high – used in the testing process when
cloudSim executes the simulations. Each column represents the probability of each mutation
operator to be applied, where the sum of the probabilities must be less or equal than 100. In the
cases where the sum is less than 100, we use the difference to represent the null operator, that
is, none of the mutation operators is applied. On the contrary, when the sum of the probabilities
is 100, one of the operators is mandatorily applied. For instance, using the mid configuration of
Table 4, there is a probability of 100-(15+10+5+1)=69% to apply the null operator.

Config mutOp1 mutOp2 mutOp3 mutOp4 mutOp5 mutOp6 mutOp7 mutOp8

low 1.5% 1.5% 1% – – – 0.5% –
mid 15% 10% 5% – – – 1% –
high 25% 25% 25% – – – 25% –

Table 4: Configuration to apply the mutation operators in cloudSim.

Figures 10, 11 and 12 show the results obtained in the testing process using cloudSim to
execute the simulations and the individuals cloudA, cloudB and cloudC as a seed to generate the
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initial population, respectively. Each figure contains 9 charts, corresponding to the combination
of executing three different workloads using three different configurations. Thus, the charts
of the same row represent the simulations that use the same workload, while the charts of the
same column represent the simulations that use the same configuration for applying the mutation
operators (in short, com). The x-axis of each chart represents the generations of individuals
(clouds) and the y-axis represents the energy consumption of each cloud, measured in kW. Each
chart shows the three best individuals from each generation. The idea is to investigate how the
best individuals of each generation evolve and, thus, to analyse how their genetic information
– transferred to further generations – affects the energy consumption. The solid line represents
the best individual of each generation (1st), the dotted line represents the second (2nd) and the
dashed line represents the third (3rd).
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Figure 10: Testing process using cloudSim and cloudA as a seed to generate the initial population.

Confirming the results of the sensitivity analysis, Figure 10 shows that the configuration used
for mutating the individuals has a significant impact on the quality of the further generations.
That is, using a configuration with a low mutation probability provides a slight improvement in
the offsprings, while using a configuration with a high mutation probability provides substantial
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Figure 11: Testing process using cloudSim and cloudB as a seed to generate the initial population.

improvement. This fact is appreciated in the charts of the same row, which use the same work-
load. We can also notice that the workload also has an impact on energy consumption. In this
case, the larger workload ωl

cloudS im requires more energy to be processed than the other work-
loads. These results also show that the tendency of each generation, in the sense of improving
the energy consumed by the cloud, is practically the same. This can be appreciated in how the
best three individuals of each generation are similarly improved along with the generations.

Figure 11 shows that the low configuration provides similar results for all the workloads.
The mid configuration enhances cloudB only for the smallest workload, that is, ωs

cloudS im (see
Figure 11.b). On the contrary, the high configuration provides notable improvements along the
generations. In this case, the EA is not able to find a proper optimisation of the cloud using
workload ωm

cloudS im (see Figure 11.f). This effect can be observed by looking at Figure 11.i, which
shows that the EA provides an enhanced cloud for executing ωl

cloudS im, which theoretically must
require more energy than the execution of ωm

cloudS im.
Similarly, Figure 12 depicts that the high configuration is more suitable to enhance the initial

cloud than the rest of the configurations (see Table 4). In this case, when using the mid con-
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figuration, the EA slightly enhances the initial cloud only for processing ωs
cloudS im and ωl

cloudS im.
On the contrary, when the high configuration is used, the obtained improvement is inverse in
proportion to the size of the processed workload (see Figure 12.c, 12.f and 12.i).
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Figure 12: Testing process using cloudSim and cloudC as a seed to generate the initial population.

Figures 13, 14 and 15 show the results of applying our EA to cloudA, cloudB and cloudC
using the simGrid simulator. Table 5 shows the configurations used in this experiment.

Config mutOp1 mutOp2 mutOp3 mutOp4 mutOp5 mutOp6 mutOp7 mutOp8

low 1% 1% 1% 0.25% 0.25% 0.25% 1% 0.25%
mid 10% 10% 5% 1% 1% 1% 5% 1%
high 20% 20% 20% 5% 5% 5% 20% 5%

Table 5: Configuration to apply the mutation operators in simGrid.

When the EA is applied to cloudA (see Figure 13), we observe that the energy consumption
of the cloud is proportional to the size of the executed workload. Although this fact can also
be appreciated when the simulations are executed using the cloudSim simulator, in this case,
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the difference between the energy consumptions is more significant. For instance, executing
ωm

simGrid requires 5 times more energy than the execution of ωs
simGrid (see Figures 13.a and 13.d).

Moreover, increasing the mutation probability provides a greater improvement in the offsprings
than using a low probability. Nevertheless, there is an exception in Figure 13.d, where using the
low configuration provides almost the same results – for the best individual – than using a higher
probability to perform the mutations (see Figure 13.f). This is caused by the stochastic nature of
the algorithm.
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Figure 13: Testing process using simGrid and cloudA as a seed to generate the initial population.

Figure 14 shows that the EA provides a similar tendency in the energetic consumption, using
all the configurations for applying mutation operators, when ωs

simGrid and ωm
simGrid are processed.

However, when the cloud processes ωl
simGrid using the high configuration, the obtained cloud

configuration significantly improves the energy consumption (see Figure 14.i).
The charts depicted in Figure 15 show similar results than the ones obtained in the previous

experiments. However, in this case, we identify a significant difference in the energy consump-
tion between the first three individuals of each generation (see Figure 15.i). On the contrary, the
rest of the cases show a relatively similar improvement for the best three individuals.
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Figure 14: Testing process using simGrid and cloudB as a seed to generate the initial population.

Overall, the results obtained in these experiments show that the high configuration provides
the best cloud optimisations. Also, this configuration is the fastest to find a proper optimisation
of the cloud, that is, the final result is reached by creating fewer generations of individuals than
the other configurations. In general, the reached solution outperforms, in the sense of energy
consumption, the initial cloud configuration.

In order to check the effectiveness of our EA, we present an experiment comparing the best
cloud optimisation obtained by the EA against the results obtained by an approach that randomly
applies mutation operators to generate new cloud configurations. From now on, we refer to the
second approach as random approach. In both approaches, the MRs are used to check the new
generated clouds, which must fulfil the constraints reflected in the input part of each MR.

Figure 16 shows the results obtained for simulating, using cloudSim, the executions of the
workloads ωs

simGrid, ωm
simGrid and ωl

simGrid over cloudA, cloudB and cloudC. In this experiment, for
each cloud, 150 different configurations are generated. Each new configuration is generated by
applying one mutation operator, which is randomly selected, over the initial cloud. The x-axis of
each chart represents the generated cloud configurations (individuals), and the y-axis represents
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Figure 15: Testing process using simGrid and cloudC as a seed to generate the initial population.

the energy consumption of each cloud. The solid line shows the energy consumption of the
new generated clouds, while the dashed line represents the best cloud configuration reached by
the EA. In this figure, each row of charts represents the same cloud configuration, while each
column of charts represents the same workload. The EA clearly provides the best result in all
cases. The random approach provides similar results for each cloud using all the workloads.
However, the charts show some noticeable peaks due to the stochastic nature of the generated
clouds. In general, the difference between the EA and the random approach is greater when the
small workload is processed. On the contrary, the difference between these approaches is smaller
when the large workload is executed in the clouds.

Figure 17 shows the results when the simGrid simulator is used to execute the workloads
over the clouds. In this case, both approaches provide similar results for processing the small
and medium workloads. Similarly to the previous experiment, the EA is better than the random
approach in all the cases.
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Figure 16: Testing process using cloudSim and randomly generated cloud configurations.

8.6. Discussion of the results and answers to the research questions

In this subsection, we discuss the obtained results and answer the research questions pre-
sented in Section 8.1.

8.6.1. RQ1: Is it feasible to analyse the correctness of energy-aware cloud systems using simu-
lation?

In order to answer this question, we have designed MT-EA4Cloud, a methodology to check
the correctness – from an energy consumption point of view – of different cloud systems. We
have carried out an empirical study, which has been supported by our proposed methodology, to
check the suitability of seven simulators for modelling and simulating the energy consumption
of three different cloud systems (see Section 8.2). The analysed features of the cloud have been
modelled in the form of MRs (see Section 5.2). We identify those features that can be modelled
for each simulator in Table 1 and, thus, we are able to decide if a given simulator appropriately
simulates these features, which represent the underlying behaviour of the cloud. In this case, we
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Figure 17: Testing process using simGrid and randomly generated cloud configurations.

have discarded two simulators from the initial list S and, therefore, the remaining simulators are
used to carry out the testing process in the following experiments.

We can conclude that the answer to RQ1 is yes, it is feasible to analyse the correctness
of energy-aware cloud systems using simulation. However, there are some steps that must be
manually performed by the expert, like designing an appropriate catalogue of MRs. Although
the major part of the work can be automated – generating a large number of follow-up test cases
and simulating a wide spectrum of cloud models – it is key that the expert takes the right decisions
in those steps requiring the user intervention.

8.6.2. RQ2: How adequate are the MRs for analysing energy-aware clouds?
In order to answer this question, we provide a complete catalogue of MRs that model the

underlying behaviour of cloud systems regarding energy consumption (see Section 5.2). The
adequacy of each MR is calculated using Equation 1 and shown in Table 3.

After a careful analysis of the results depicted in Table 3, we can conclude that the catalogue
of MRs is adequate to analyse energy-aware clouds. First, the adequacy of each MR is calculated
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to discard those that do not properly model the underlying behaviour of a cloud environment.
Second, the major part of the accepted MRs provides promising results reaching, at least, a
99% of adequacy score. Hence, designing accurate MRs is crucial for successfully applying
our proposed methodology and, consequently, the quality of the results heavily depends on the
accuracy of the MRs to model the underlying behaviour of the cloud.

8.6.3. RQ3: Is it possible to automatically detect drawbacks in the energy consumption of cloud
systems and provide convenient solutions?

To answer this question, we have conducted an empirical study (see Section 8.5) where
three different cloud systems have been analysed using two well-known simulators, simGrid
and cloudSim. In essence, we use two different approaches to test the clouds. The first approach
(labelled as EA) uses our EA to find a proper optimisation of the cloud under test, while the
second approach (labelled as Random) randomly applies a mutation operator to the cloud under
test for generating new cloud configurations. We analyse the quality of the results by calculating
a 95% confidence interval using the results obtained from executing 30 times each experiment.
When the EA approach is used, we focused on analysing the clouds using the high configuration
for applying the mutation operators (com=high). We summarise the results obtained from this
study in Table 6, 7, 8 and 9.

In the tables, the first column represents the cloud under test and the executed workload. The
subsequent columns show statistics of the obtained results. Each value represents the energy
required by the cloud to execute the workload. Thus, min refers to the “best” cloud configuration
generated, in the sense of energy consumption, using as a basis the cloud under test, max refers
to the “worst” generated cloud, avg refers to the energy consumption average of all the generated
cloud configurations – using the cloud under test as basis – to execute a specific workload, median
represent the result located at the midpoint of all the generated data from the experiments, and
interval represents the interval of all the obtained results with a 95% of confidence.

It is important to remind that each simulator executes a specific type of workload (see Sec-
tion 8.2) and, therefore, the results obtained from cloudSim cannot be compared with those
obtained from simGrid.

Configuration EA
Cloud Workload min max avg median interval

cloudA
ωs

cloudS im 441.78 1189.99 627.16 600.30 572.95-681.38
ωm

cloudS im 711.76 1225.62 873.82 818.27 815.09-932.54
ωl

cloudS im 1065.37 1255.38 1147.33 1109.72 1123.05-1171.61

cloudB
ωs

cloudS im 150.35 1184.74 376.00 270.76 312.27-439.74
ωm

cloudS im 248.15 1190.40 390.92 301.77 338.27-443.56
ωl

cloudS im 476.57 1201.55 569.09 549.86 514.06-624.12

cloudC
ωs

cloudS im 370.04 1316.57 549.69 531.47 516.42-582.95
ωm

cloudS im 592.49 1455.49 640.26 570.21 590.01-690.51
ωl

cloudS im 839.90 1466.18 1026.25 1087.43 1002.11-1050.39

Table 6: Summary of the results obtained with the EA approach using cloudSim.

The provided results show that our EA (Tables 6 and 8) clearly provides better results than
the random approach (Tables 7 and 9). Also, it is worth to mention that the intervals provided
using the EA are significantly smaller than the ones provided using the random approach.
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Configuration Random
Cloud Workload min max avg median interval

cloudA
ωs

cloudS im 705.67 1759.13 1221.7 1447.95 1092.42-1349.00
ωm

cloudS im 1163.35 2244.31 1435.51 1588.53 1313.59-1557.41
ωl

cloudS im 1305.64 3202.00 1597.73 1717.37 1495.20-1700.24

cloudB
ωs

cloudS im 250.46 1459.59 1084.47 1317.25 954.74-1214.20
ωm

cloudS im 851.47 1809.05 1172.55 1330.54 1049.54-1295.55
ωl

cloudS im 934.69 1978.51 1229.87 1329.90 1141.19-1318.55

cloudC
ωs

cloudS im 525.83 1827.10 1102.25 1322.55 977.11-1227.39
ωm

cloudS im 944.55 1927.97 1203.84 1333.60 1100.52-1307.15
ωl

cloudS im 1120.24 2165.27 1386.71 1354.38 1359.65-1413.76

Table 7: Summary of the results obtained with the random approach using cloudSim.

Configuration EA
Cloud Workload min max avg median interval

cloudA
ωs

simGrid 209.99 903.71 548.07 619.42 483.71-612.42
ωm

simGrid 1030.92 3500.75 1496.69 1390.14 1309.51-1683.87
ωl

simGrid 2951.03 23863.45 10927.01 8852.95 8898.12-12955.89

cloudB
ωs

simGrid 139.82 806.33 260.19 265.94 246.75-273.63
ωm

simGrid 270.63 1882.89 680.81 640.40 650.47-840.15
ωl

simGrid 2853.73 11926.45 4871.01 4317.24 4104.33-5637.69

cloudC
ωs

simGrid 194.70 922.13 371.54 332.83 307.10-435.99
ωm

simGrid 302.70 2724.51 974.61 888.25 815.38-1133.83
ωl

simGrid 3176.00 15257.92 5397.87 5181.84 5041.27-5754.47

Table 8: Summary of the results obtained with the EA approach using simGrid.

Configuration Random
Cloud Workload min max avg median interval

cloudA
ωs

simGrid 483.20 1065.15 606.74 629.11 575.10-638.38
ωm

simGrid 1192.39 3895.14 1883.06 1438.18 1622.71-2143.41
ωl

simGrid 8676.82 29083.71 13372.97 11987.82 12360.62-15098.83

cloudB
ωs

simGrid 208.14 1022.51 314.80 325.91 277.69-351.90
ωm

simGrid 656.42 1997.83 1356.16 1323.98 1302.68-1409.64
ωl

simGrid 4326.31 13180.23 6816.81 6428.38 6013.58-7620.03

cloudC
ωs

simGrid 195.95 1022.81 553.77 636.06 494.26-615.28
ωm

simGrid 702.22 2921.28 1938.03 2073.34 1724.71-2151.34
ωl

simGrid 5962.29 16121.01 9781.57 10531.91 9245.66-10317.49

Table 9: Summary of the results obtained with the random approach using simGrid.

These results also show that cloudSim provides similar results to execute the three workloads.
However, the results provided by the simulations executed using simGrid show otherwise, where
the energy consumption of the cloud is proportional to the size of the processed workload. This
is also observed in the size of the interval, which is greater when the cloudSim simulator is used
to simulate the cloud under study. We think that this is mainly caused by the accuracy of these
simulators. That is, while cloudSim provides similar results to execute workloads of different
sizes, simGrid clearly reflects a significant difference in the energy required to execute each
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workload.
The execution time – measured in minutes – for optimising the analysed clouds is sum-

marised in Table 10. The two first rows represent the configuration of the experiment, that is,
the execution of a workload over the analysed cloud. The next two columns represent the aver-
age execution time of our proposed algorithm using cloudSim and gridSim. Similarly, the next
two columns show the average execution time when the random approach is applied. These re-
sults show that our proposed algorithm requires more computational time to be executed than the
random approach. Moreover, the execution time is directly proportional to the workload to be
processed, being ωl the workload that requires more time to be executed.

Configuration EA Random
Cloud Workload cloudSim simGrid cloudSim simGrid

cloudA
ωs 92 27 6 2
ωm 172 36 10 3
ωl 236 72 14 5

cloudB
ωs 64 27 4 2
ωm 200 41 11 3
ωl 310 71 18 5

cloudC
ωs 92 28 5 2
ωm 172 39 12 4
ωl 236 77 21 6

Table 10: Average execution times for optimising cloudA, cloudB and cloudC (in minutes).

Our proposed EA scales well when the size of the executed workload grows, as the optimi-
sation reached is more substantial when the largest workload is processed. Since the EA is able
to dynamically adapt the size of the cloud – in number of physical machines – to execute a given
workload, the generated cloud should be more optimised – in the sense of energy consumption
– for executing this specific workload. On the contrary, the random approach only performs
one modification to the cloud under test, which in some cases is not enough to reach a proper
optimisation of the cloud.

After a careful analysis of the results, we can conclude that the answer to RQ3 is yes, our
methodology is able to provide different alternatives to improve the energy consumption and
automatically detect flaws in the cloud designs created by the user.

9. Threats to validity

In this section, we discuss the threats to validity of our empirical study.

9.1. Internal threats
Internal validity concerns whether our findings, which are based on the obtained results from

the empirical study, truly represent a cause-and-effect relationship. Thus, the internal validity of
our study relies in the implementation of our experiments.

The design of the provided catalogue of MRs is based on the experience of two experts. We
are aware that the ability of MT to detect errors in the system highly depends on the selection
of metamorphic properties and, therefore, the results may have varied if different MRs were
used instead. Moreover, the use of domain-specific properties, like the ones used to design our
proposed catalogue of MRs, should reveal a high failure percentage.
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We have implemented both the EA and the MRs in Java. Also, we use different simulators,
which have been widely adopted by the research community, to analyse a wide spectrum of
scenarios. We have conducted code inspection and run different tests by hand to ensure the
correctness of these implementations. The source code has been checked by different individuals.
The results obtained during these analyses are used to check if the MRs are fulfilled or not. Our
evaluation of the MRs is based on the tests manually created by the user, that is, the source test
cases. The follow-up test cases have been generated using random values and the corresponding
constraints to assure the MR is fulfilled.

Other issues might arise due to the simulators used. These might have errors that can affect
our findings. We have conducted experiments using different well-known simulators, which
represent the behaviour of different scenarios of cloud systems to execute the tests. We mitigated
this threat during the experimental phase described in Section 8, where 20000 test cases were
executed and checked over our proposed MRs.

9.2. External threats

External validity concerns the extent to which the results of a study can be generalised.
We have used three cloud configurations and three different workloads, inspired by big data

analysis. Although we believe that these models are representative, there is no guarantee that the
obtained results and the achieved improvements in the effectiveness of the MRs are the same for
other scenarios.

9.3. Constructs threats

Construct validity concerns whether the used measures are representative or not.
We measured the testing effectiveness of MRs based on the number of test cases that satisfy

each MR, which is also widely used in the community. Defects in the simulators or in our
proposed MRs could be a threat to construct validity, but we controlled this threat by executing
a wide spectrum of test cases, using five cloud simulators to conduct our empirical study. After
this experiment, we discarded three simulators because we detected some limitations, which do
not properly represent the properties reflected in some MRs. Hence, we checked that the MRs
were properly designed and that our implementation worked correctly.

10. Conclusions and future work

In this paper, we have proposed MT-EA4Cloud, a methodology that combines EAs and MT
to check the correctness of energy-aware cloud systems. In essence, this methodology is based
on checking the satisfiability of MRs while testing cloud systems. To that end, we have proposed
a catalogue of MRs that formally model the underlying infrastructure of cloud systems focusing
on energy consumption.

In order to show the applicability of MT-EA4Cloud, we have performed an extensive experi-
mental study, where three cloud models are analysed using seven well-known simulators and the
provided catalogue of MRs. The experimental results obtained from this study are promising,
demonstrating that it is feasible to combine EAs and MT to formally test cloud computing sys-
tems. Our proposed catalogue of MRs was used to check the correctness of different well-known
simulators. Since each simulator provides specific capabilities to model the different parts of the
cloud, our methodology can be applied to focus on those simulators that satisfy the user require-
ments. We also have observed that this approach can not only be used to analyse the correctness
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of simulation tools, but to discover flaws in cloud designs and to provide feasible solutions that
improve these designs.

We can conclude that, during the testing process, the role of the expert is of vital importance.
First, the expert is in charge of designing the MRs, providing source test cases and choosing
an initial set of cloud simulators. Although there are steps in our methodology that can be
automated, like the generation of a large number of follow-up test cases and the calculation of
the MR effectiveness, her decisions have a direct impact of the final obtained results.

As future work, we plan to include heterogeneous cloud infrastructures, which provide ma-
chines exclusively dedicated to executing VMs (computing nodes) and machines dealing with
the data accessed by the VMs (storage nodes). We are also interested in investigating the trade-
off between cost and energy consumption. For this, a new EA should be designed dealing with
the monetary cost of each component (e.g. CPUs, memories, networks) and to provide relevant
information to the user about how the investment in better hardware impacts on the energy effi-
ciency. Finally, we plan to study how dynamic workloads, which are generated in run-time, could
be integrated into our framework. The main difficulty of this task lies in how these workloads
are compared in the MRs.
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