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Abstract

Collecting data about the sequences of function calls executed by an ap-
plication while running in the field can be useful to a number of applications,
including failure reproduction, profiling, and debugging. Unfortunately, collect-
ing data from the field may introduce annoying slowdowns that negatively affect
the quality of the user experience.

So far, the impact of monitoring has been mainly studied in terms of the
overhead that it may introduce in the monitored applications, rather than con-
sidering if the introduced overhead can be really recognized by users. In this
paper we take a different perspective studying to what extent collecting data
about sequences of function calls may impact the quality of the user experience,
producing recognizable effects. Interestingly we found that, depending on the
nature of the executed operation and its execution context, users may tolerate
a non-trivial overhead. This information can be potentially exploited to collect
significant amount of data without annoying users.

Keywords: Monitoring, dynamic analysis, user experience.

1. Introduction

Behavioral information collected from the field can complement and com-
plete the inherently partial knowledge about applications gained with in-house
testing and analysis activities. For instance, observing applications that run
in the field can produce data otherwise difficult to obtain, such as information
about the behavior of the application when executed with actual production
data and within various real execution environments. Indeed, collecting field
data is common practice in the area of software experimentation [1, 2, 3], where
controlled experiments are performed to evaluate how a change may impact the
user experience.
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A diversity of data can be collected to study the behavior of software appli-
cations [4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. In this paper, we focus on sequences of
function calls, which is a specific but extremely common type of data recorded
and used by analysis techniques. Studying the behavior of an application in
terms of the function calls produced under different circumstances is in fact
both common and useful. For example, sequences of function calls extracted
from the field can be used to reproduce failures [12], detect malicious behav-
iors [14], debug applications [15], profile software [9], optimize applications [16],
and mine models [17, 18, 19].

Collecting information from the field is challenging since it slows down the
application, and this may imply a negative effect on the quality of the user
experience. If the slowdowns are frequent, the usability can be compromised
up to the point users may stop using the application. It is thus extremely
important to understand how the slowdowns introduced into an application can
affect users.

The impact of monitoring has been mainly studied in terms of its relative
overhead, that is, by measuring how much the execution time of a given op-
eration is increased due to the presence of the monitor. Although this is an
important information, it does not reflect how and if this overhead can be per-
ceived by the users of the application. For instance, increasing by 20% the time
that every menu item requires to open may introduce a small but annoying
slowdown to operations that should be instantaneous from a user perspective.
On the contrary, taking 20% more time on the execution of a query might be ac-
ceptable for users, as long as the total time does not exceed their expectation. It
is thus important to investigate the relation between the overhead introduced by
monitoring techniques and the user experience, to understand how to seamlessly
and feasibly collect data from the field.

In our initial study [20], we discovered that a non-trivial overhead can be
tolerated by users and that the overhead can be tolerated differently depending
on the nature of the operation that is executed. This paper extends this ini-
tial study considering a larger number of operations exposed to overhead, new
experiments to study how the availability of the computational resources may
affect overhead, a study based on human subjects, and additional analyses of
the empirical data. The results show that function calls can be frequently col-
lected without impacting on the user experience, regardless of the availability
of the computational resources, but specific operations may require ad-hoc sup-
port to be monitored without affecting users. These evidences can be exploited
to design better monitor and analysis procedures running in the field.

This paper is organized as follows. Section 2 describes our experimental
setup. Sections 3 and 4 report the results obtained when studying the impact
of the overhead on the users with good and poor availability of computational
resources, respectively. Section 5 describes the results obtained with our study
involving human subjects. Section 6 discusses threats to validity. Section 7
summarizes our findings. Section 8 discusses related work. Section 9 provides
final remarks.

3



2. Experiment Design

This section describes the research questions that we have addressed and the
design of the experiments to answer the research questions.

2.1. Research Questions

The general objective of our study is understanding how collecting field data
can affect the user experience. We investigated this question in a specific, al-
though common, scenario, that is, while recording the sequence of function calls
executed by applications.

We thus organized our study around three main research questions that
investigate the impact of monitoring in different conditions.

RQ1 - How is the user experience affected by monitoring function
calls? This research question analyzes the relation between the overhead pro-
duced by the monitoring activity and its impact on the user experience. RQ1
is further organized in three sub-research questions:

RQ1a - What is the overhead introduced by monitoring function
calls? RQ1a measures the overhead introduced in an application by the mon-
itoring activity.

RQ1b - What is the impact of monitoring function calls on the
user experience? RQ1b studies if the overhead introduced with monitoring
can be recognized by the user of the application.

RQ1c - What is the tolerance of the operations to the introduced
overhead? RQ1c studies how different user operations tolerate overhead before
producing slowdowns recognizable by users.

RQ1d - Do failures change the overhead introduced by function
calls monitoring? RQ1d studies if the overhead introduced by the monitor
is different in the context of failures.

RQ2 - What is the impact of monitoring function calls when the
availability of computational resources is limited? This research question
investigates if, and how much, the overhead produced by collecting function calls
changes with the availability of the computational resources. The study focuses
on the availability of the two most relevant resources, CPU and memory, as
captured by the following two sub-research questions:

RQ2a - What is the impact of CPU availability on the intrusive-
ness of monitoring? RQ2a studies how the overhead introduced by moni-
toring function calls is affected by different levels of CPU utilization.

RQ2b - What is the impact of memory availability on the intru-
siveness of monitoring? RQ2b studies how the overhead introduced by
monitoring function calls is affected by different levels of memory utilization.

Since we investigate RQ1 and RQ2 referring to the classification of the Sys-
tem Response Time as proposed by Seow [21], we consider the following research
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question to investigate the alignment between the user behavior and the adopted
classification.

RQ3 - How do expert computer users react to the overhead produced
by function calls monitoring, compared to the results obtained with
RQ1 and RQ2? This research question analyzes the alignment between the
behavior of expert computer users recruited from our CS department and the
results reported in RQ1 and RQ2 with a study involving human subjects.

2.2. Experiment Design

This section presents the design of the experiment that we performed to
answer to our research questions. To study the impact of monitoring we se-
lected four widely used interactive applications: Notepad++ 6.9.21, Paint.NET
4.0.122, VLC Media Player 2.2.43, and Adobe Reader DC 20194.

To collect sequences of function calls from these applications, we instru-
mented the applications using a probe that we implemented with the Intel Pin
Binary Instrumentation Tool5.

Pin supports the instrumentation of compiled binaries, including shared li-
braries that are loaded at runtime, and optimizes performance by automatically
in-lining routines that have no control-flow changes [22]. Our probe is a cus-
tom plug-in utility written in C++ that intercepts and logs every function call,
included nested calls.

The probe uses a buffer of 50MB to store data in memory before saving to
file. We used this value based on the results we obtained in our preliminary
experiment, where 50MB resulted to produce the best compromise between
CPU and memory consumption [20].

To run each application, we have implemented a Sikulix 6 test case that
can be automatically executed to run multiple functionalities of the monitored
applications. The test cases simulate rich usage scenarios. For instance, Adobe
Reader DC is executed by opening a PDF file, moving inside the document up
and down several times, changing the view to full-screen, inserting comments
in the text, searching for a specific word in the document, highlighting text,
and closing the document. Notepad++ is executed by writing a Java program,
opening different files, copying and pasting text in a document, counting the
occurrences of a given word, marking the occurrences of a given word, and
closing all the opened tabs. Paint.NET is executed by loading an image, resizing
it, drawing several shapes and shaded shapes, rotating the image, applying
different filters to the image (black and white, sepia), inverting the colors of the

1https://notepad-plus-plus.org
2http://www.getpaint.net
3http://www.videolan.org
4http://get.adobe.com/reader
5https://software.intel.com/en-us/articles/pin-a-dynamic-binary-

instrumentation-tool
6http://sikulix.com
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image, and closing it. VLC Media Player is executed by opening several video
files, reproducing them, pausing them, adding and editing the subtitles of the
video, playing videos from a given time, and creating and managing play-lists
of different videos.

In the experiments, we first executed the test cases when the applications are
not monitored and then with the monitor. To answer our RQs, we collected two
main measures: the system response time overhead and the estimated impact
on the user experience. We detail in the next section how we measured them.

To accurately report the impact of the monitoring activity, we collected data
about functions calls at the granularity of the individual operations performed
in the tests.

An operation is a complete interaction between a user and an application:
it starts with a user input (e.g., a user click) and ends with the application that
has processed the input and is ready to accept the next input. For instance,
an operation may start with a click on a menu and end with the menu being
displayed.

So, if a test case executes operations o1 . . . on, we collect functions calls and
measure the overhead and its impact on the user experience for every operation
oi.

Since our study targets interactive applications, we collect traces composed
of user operations.

It is possible to precisely distinguish the portion of the trace that corresponds
to each operation by exploiting the knowledge of the name of the functions
that implement the operations. This information is typically available if the
organization that defines the monitoring strategy and the one that implements
the application are the same. Otherwise, traces can still be split based on
interactions with the GUI, but it implies a more sophisticated analysis of the
collected traces.

To respond to RQ1, we only executed the test cases and the monitored
applications, that is, no processes were running in addition to the basic operat-
ing system processes. To answer RQ2, we selectively saturated computational
resources occupying 60%, 75%, and 90% of both CPU and RAM.

We performed linear sampling of the memory because we could not predict
when there would be observable consequences. We considered saturation up to
90% for both resources, since higher values would not allow us to satisfy the
minimum requirements of Pin.

To saturate resources in a controlled way we used CPUStress 1.0.0.17 and
HeavyLoad 3.48. To mitigate any effect due to non-determinism, we repeated
each test 5 times and reported mean values. The overall study implied collecting
and processing more than 10.000 samples about operations and their duration,
all available at http://github.com/ocornejo/fieldmonitoringfeasibility.

7https://blogs.msdn.microsoft.com/vijaysk/2012/10/26/

tools-to-simulate-cpu-memory-disk-load/
8https://www.jam-software.com/heavyload/
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2.3. Measuring Overhead and Its Estimated Impact on the User Experience

Measuring the overhead is straightforward, that is, we measure the differ-
ence in the duration of the same operations when executed with and without
monitoring. Here it is important to discuss how we estimated the effect of the
monitor on the user experience. In principle, assessing if a given overhead may
or may not annoy users requires direct user involvement. However, user studies
are expensive and can be hardly designed to cope with a volume of samples like
the ones that we collected, which would require involving users in the evaluation
of the duration of thousands of operations.

To estimate the impact of the overhead on users we thus exploited the re-
sults already available from the human-computer interaction domain, and we
strengthen the collected evidence with a human study focusing on a restricted
number of cases. In particular, we used the well-known and widely accepted
classification proposed by Seow [21] of the System Response Time (SRT, i.e.,
the time taken by an application to respond to a user request) that can be asso-
ciated with each operation based on its nature. In this classification, operations
are organized according to four categories, which have been derived from direct
user engagement:

• Instantaneous: these are the most simple operations that can be performed
on an application, such as entering inputs or navigating throughout menus.
Users expect to receive a response by 100 − 200ms at most.

• Immediate: these are operations that are expected to generate acknowledg-
ments or very simple outputs. Users expect to receive a response by 0.5 − 1s
at most.

• Continuous: these are operations that are requested to produce results within
a short time frame to not interrupt the dialog with the user. They are ex-
pected to produce a response in 2− 5s at most, depending on the complexity
of the operation that is executed. We assume Simple Continuous operation
to produce a response by 2 − 3.5s and more Complex Continuous operations
to produce a response by 3.5 − 5s.

• Captive: these are operations requiring some relevant processing for which
users will wait for results, but will also give up if a response is not produced
within a certain time. These operations are expected to produce a response
by 7 − 10s.

In our study, we estimate the impact of the overhead on users by measuring
the number of operations that change their category due to overhead. Intu-
itively, an operation that takes the time that is usually taken by an operation of
higher category to complete its execution is an operation that does not satisfy
the expectation of the user. We refer to these operations as the slow operations.
Measuring the number of operations that become slow due to overhead provides
an estimate of how often users are likely to be annoyed while using a monitored
application. We attribute categories to the operations performed by the tests
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based on their execution time when no overhead is introduced in the system
and considering the lower limit of the execution time of each category. For
instance, operations that take at most 100ms are classified as Instantaneous,
while operations that take more than 100ms but less than 0.5s are classified as
Immediate. If the execution time of an operation executed while the application
is monitored exceeds the lower limit of its category, the operation is considered
to be slow.

This strategy allows us to use the SRT classification as a continuous scale,
using the lowest limit for both the categorization of the operations and the
identification of the slow operations. We thus obtained a conservative measure
of the slow operations, that is, the real number of slow operations reported by
users are likely to be lower than the ones reported with this metric.

We use the overhead and the number of slow operations as the main variables
to answer our research questions.

3. RQ1 - How is the user experience affected by monitoring function
calls?

This section reports the results obtained for each sub-research question
RQ1a-RQ1d, and finally discusses the overall results obtained for RQ1.

Since the monitored applications are desktop applications, we executed all
the experiments in a machine running Windows 7 Pro with a 3.47 GHz Intel
Xeon X5690 processor and 4 GB of RAM.

3.1. RQ1a - What is the overhead introduced by monitoring function calls?

Figure 1 shows the overhead that we observed for operations in each category
and for each subject application. Note that not all types of operations occur
in every application, for instance Captive operations are present in Paint.NET
only.

The overhead profile per category is quite consistent. In the case of Instan-
taneous operations the overhead is always close to 0. This is probably due to the
nature of Instantaneous operations that perform simple operations that imply
the execution of a limited amount of logic and thus produce a limited number
of function calls. A similar result can be observed for Immediate operations,
where the overhead is small for Adobe Reader DC and Notepad++. Paint.NET
represents an exception because its overhead is higher. The overhead profile is
again quite consistent across operations in the Continuous Simple and Complex
categories, with the overhead ranging between 0% and 200%.

Although there are similarities for operations in the same category even if
present in different applications, we can also observe that there are exceptions.
In fact, there are several outliers represented in the boxplot, with some of them
showing very different overhead values compared to the rest of the samples. For
example, we had two Continuous Simple operations in Notepad++ (selecting
the Java highlighting and dismissing a save operation) with a high overhead
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Figure 1: Overhead per category and application.

(the two outliers) compared to the other operations, which experienced 100%
overhead at most.

Figure 2 shows the percentage of operations in each category affected by
overhead levels within specific ranges. Collecting function calls produces an
overhead in the interval 0-10% in the majority of the cases (65% of the executed
operations). In 8% of the cases, operations are exposed to an overhead between
10% and 30%. In 12% of the cases monitoring produced an overhead in the
interval 30-80%, and for less than 15% of the operations the overhead is higher.

Figure 2: Percentage of operations undergoing a specific overhead interval.
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We can conclude that the observed behavior within operations of a same
category is not significantly different, although specific operations may violate
this pattern (Figure 1). Moreover, collecting function calls exposes operations
to an overhead that is lower than 10% in the large majority of cases, and is
seldom higher than 80% (Figure 2). Estimating if and how much this overhead
can be intrusive with respect to user activity is studied with the next research
question.

Adobe Reader DC

Operation
category

Total Instantaneous Immediate
Continuous

Simple
Continuous
Complex

Captive > Captive
Slow

Operations [%]

Instantaneous 55 50 5 0 0 0 0 9%

Immediate 15 0 15 0 0 0 0 0%

Continuous Simple 90 0 0 69 16 5 0 23%

Continuous Complex 15 0 0 0 13 1 1 13%

Captive 0 0 0 0 0 0 0 0%

Notepad++

Operation
category

Total Instantaneous Immediate
Continuous

Simple
Continuous
Complex

Captive > Captive
Slow

Operations [%]

Instantaneous 45 40 0 5 0 0 0 11%

Immediate 20 0 19 1 0 0 0 5%

Continuous Simple 70 0 0 48 6 11 5 31%

Continuous Complex 5 0 0 0 5 0 0 0%

Captive 0 0 0 0 0 0 0 0%

Paint.NET

Operation
category

Total Instantaneous Immediate
Continuous

Simple
Continuous
Complex

Captive > Captive
Slow

Operations [%]

Instantaneous 35 35 0 0 0 0 0 0%

Immediate 25 0 0 24 0 1 0 100%

Continuous Simple 55 0 0 45 7 3 0 18%

Continuous Complex 40 0 0 0 29 11 0 28%

Captive 60 0 0 0 0 57 3 5%

VLC Media Player

Operation
category

Total Instantaneous Immediate
Continuous

Simple
Continuous
Complex

Captive > Captive
Slow

Operations [%]

Instantaneous 30 30 0 0 0 0 0 0%

Immediate 0 0 0 0 0 0 0 0%

Cont. Simple 125 0 0 99 26 0 0 21%

Cont. Complex 30 0 0 0 24 6 0 20%

Captive 0 0 0 0 0 0 0 0%

Table 1: Slow operations per application

3.2. RQ1b - What is the impact of monitoring function calls on the user expe-
rience?

Table 1 reports the analytical results obtained for the operations recorded as
slow in the four subject applications. For each application the table shows the
number of operations in each category that have been executed in the experi-
ment and how the operation has been classified once affected by the overhead
caused by function calls monitoring. The overhead is not recognizable by users
if the category does not change with monitoring overhead. A perfect result im-
plies having all 0s outside the values in the diagonal (highlighted with a grey
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Figure 3: Percentage of slow operations with respect to the SRT Categories.

background). When an operation changes its category, the table shows what
the new category of the operation is. The column > Captive shows the number
of operations whose duration is longer than the maximum allowed for a Captive
operation. The last column, Slow Operations [%], specifies the percentage of
slow operations across all the executions.

Figure 3 visually illustrates how slow operations distribute across operations
categories. The last column in each category shows the percentage of slow
operations for that category across all subject applications.

The empirical data suggests that Instantaneous operations seldom present a
slowdown that affects the user experience: in fact only 6% of the cases produced
a recognizable slowdown. We obtained a similar result for Immediate operations
with the exception of Paint.NET, where the slowdown has been significant for
every Immediate operation that has been executed. This result is coherent
with the exceptional overhead reported for Immediate operations in Paint.NET
for RQ1a. This is likely caused by the nature of the Immediate operations in
Paint.NET, which execute non trivial logic (e.g., the operation that closes an
image) and are more expensive to monitor.

When the portion of logic of the application that is executed increases, the
percentage of operations that become slow also increases, as observed for Contin-
uous operations that in some cases become even slower than Captive operations
(see Table 1): for instance, the execution time of five Continuous Simple op-
erations in Notepad++ exceeded the time expected for a Captive operation.
The higher cost of monitoring Continuous operations is visible also in Figure 3,
where more than 20% of the Continuous operations (both Simple and Complex)
have been significantly slowed down in average, compared to Instantaneous and
Immediate operations where about 5% of the operations have been slowed down,
if we do not consider those from Paint.NET (which is a special case).

Extremely long tasks, such as Captive operations, seem to tolerate well the
overhead caused by function calls monitoring. However, since they are present
in one application only, it is hard to distill a more general lesson learnt.
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Figure 4: Percentage of slow operations for different overhead intervals.

We can conclude that the operations that are likely to be perceived as slowed
down are quite limited in number (<20% overall) and mostly concentrated in
the Continuous operations. Moreover, applications that implement small pieces
of logic that must be executed quickly, as Paint.NET does, might be particularly
hard to monitor, in fact its Immediate operations have been all significantly
slowed down when collecting function calls.

3.3. RQ1c - What is the tolerance of the operations to the introduced overhead?

Since we exposed operations in different categories to various overhead lev-
els, this research question studies how often a certain overhead is the cause of
operations resulting in a too slow response time. Figure 4 shows the percentage
of operations, for all the categories, reported to be slow for overhead within a
given range and for operations in all categories.

In our previous study [20], we identified 30%, 80%, and 180% as interesting
overhead values that may produce different reactions by users, so we used these
ranges in this study to analyze the collected data.

We obtained a similar result with this experiment: an overhead level be-
tween 30% and 80% is hard to tolerate for operations in any category with the
exception of Instantaneous operations, while overhead values higher than 80%
can be prohibitive.

We can conclude that overhead levels up to 30% are not harmful, but higher
overhead levels must be introduced wisely with the exception of Instantaneous
operations that seem to tolerate overhead slightly better than operations in the
other categories.
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Figure 5: Percentage of operations undergoing a specific overhead interval.

3.4. RQ1d - Do failures change the overhead introduced by function calls mon-
itoring?

This research question investigates if monitoring functional calls may affect
failures differently than regular executions. To compare the impact of monitor-
ing when exactly the same operations terminate correctly or terminate with a
failure, we inject faults into our subject applications. To this end, we config-
ure PIN to modify the first instruction of a function if it is a MOV instruction
with the AX register as a destination. The change consists of multiplying the
destination address by a constant value.

With this process, we achieved two applications failing abruptly (VLC Media
Player and Paint.NET) and two applications presenting various misbehaviours
(Adobe Reader DC and Notepad++). In the former case, the execution simply
stopped prematurely, without producing any noticeable difference in terms of
overhead. In the latter case, we obtained misbehaviors such as Adobe Reader
DC failing to open files and Notepad++ failing to load graphical elements.
We collected and analyzed the overhead values for Adobe Reader DC and
Notepad++.

Figure 5 shows the percentage of operations in each category affected by
overhead levels within specific ranges. The result is very similar to the one
presented in Figure 2 when the execution terminates correctly. In particular,
collecting function calls during a failure produced an overhead in the interval
0-10% in the majority of the cases for operation in any category (65% of the
operations that have been executed). We also observe that 2.91% of operations
produced an overhead in the range 10-30%; 9.27% of the operations produced
an overhead in the interval 30-80%; and for less than 20% of operations the
overhead was higher.

In summary, failures do not change the cost of function calls monitoring,
according to our observations.
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3.5. Discussion

Collecting function calls exposed the operations performed in the subject
applications to various overhead levels: often below 10% (65.73% of the cases),
and sometime to higher levels (8.48%, 12.02%, 13.77% of the cases in the ranges
10%-30%, 30%-80%, >80%, respectively).

We investigated if these overhead levels can be recognized by the users and
we found that an overhead up to 30% is well tolerated, while higher overhead
levels can be tolerated for operations that usually execute fast.

We do not consider the cost of aggregating and elaborating data on the client
side, since techniques such as obfuscation [23, 24, 25] and distributive monitor-
ing [26, 27] usually consider this step as an offline process to be executed after
the actual events have been collected, without impacting on the user experience.

These results suggest that monitoring activity, in particular collecting data
about sequences of function calls, can be safely executed in many cases, but it
must be controlled for those operations that execute an excessive amount of logic
compared to their expected execution time. Monitoring techniques should be
aware of these differences between operations and optimize their intrusiveness
accordingly.

Predicting and identifying operations expensive to monitor is an interesting
challenge, which might be addressed with both static analysis and profiling
techniques. Elaborating solutions in these directions is part of future work in
this area.

4. RQ2 - What is the impact of monitoring function calls when the
availability of computational resources is limited?

In this section we study the impact of the monitoring activity when the
computational resources cannot be completely allocated to the monitored ap-
plications but they are also allocated to other tasks. We first discuss the impact
of CPU availability and then we discuss the impact of memory availability.

Similarly to RQ1, we study the impact of collecting function calls by ana-
lyzing the overhead and studying the number of operations changing category
when CPU and RAM are under stress.

4.1. RQ2a - What is the impact of CPU availability on the intrusiveness of
monitoring?

Figure 6 shows the system response time (presented in log scale) of the
executed operations per operation category. We report timing information con-
sidering four CPU load levels: 0%, 60%, 75%, and 90%. The figure includes
two types of boxplots: the orange boxplot corresponds to the execution time
observed when monitoring is in place, while the brown boxplot corresponds to
the execution time when no monitoring is in place.

The trend is quite similar for all classes of operations with the exception of
Immediate operations, which show decreasing values of the overhead for higher
CPU load values. We conducted a Kruskal-Wallis test to check if the overhead
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Figure 6: Execution time for various CPU load levels per operation category.

Treatment Chi-square p-value df

Instantaneous 2.2107 0.5298 3
Immediate 1.1327 0.7692 3
Continuous Simple 3.3914 0.3351 3
Continuous Complex 4.4726 0.2147 3
Captive 1.54 0.6731 3

Table 2: Kruskal-Wallis test results per operation category.

introduced for a given CPU load and a given class of operations differs from
the overhead for the same class of operations exposed to a different CPU load
(significance expected for p-value < 0.05). The test revealed no significant
differences (see Table 2), suggesting that the impact of monitoring is not affected
by a significant degree by the CPU load level, that is, an application is slowed
down similarly by function calls monitoring regardless of the CPU availability.

Figure 7: Percentage of slow operations for various CPU load levels per application.

We also considered how monitoring affects the number of slow operations per
application, shown in Figure 7, and the number of slow operations per operation
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Figure 8: Percentage of slow operations for various CPU load levels per operation category.

category, shown in Figure 8. The usage of a loaded CPU already generates a
number of slow operations for each application. Adding function calls moni-
toring further increases the number of operations that have been slowed down.
We can however notice that the only addition of monitoring makes the user
experience worse by a similar degree across CPU load levels, confirming that
the CPU load level is not a significant factor when considering the impact of
monitoring. To confirm this intuition we computed the linear regression of the
number of slow operations for the instrumented and non-instrumented version of
each application, and considered the difference between the angular coefficients
of the computed lines. We further considered the percentage of operations with
a different classification when the CPU saturates to 100% (highest saturation
possible) based on the computed trends. Table 3 reports the results. For each
application we indicate the difference between the angular coefficients (on the
left) and the percentage of operations with a different categorization (on the
right).

We can notice that the difference in the increase of the number of slow op-
erations is between 2.66% and 14.33% of the operations, indicating a similar
trend (i.e., slope) for the two cases (with and without monitoring). The small
positive values of the difference between the coefficients indicates that, when a
difference is observed (e.g., 14.33% of the operations in Paint.NET), the satu-
ration of the CPU increases the number of slow operations by a lower degree
when monitoring is active.

The plot of the data per operation category, Figure 8, reveals that Instanta-
neous operations behave better than the other operations in terms of their ability
to tolerate monitoring, in fact the number of slow operations does not change

Adobe Reader DC Notepad++ Paint.NET VLC Media Player

CPU 0.047 – 2.66% 0.123 – 8.78% 0.308 – 14.33% 0.256 – 13.85%

Table 3: Trend analysis for CPU.
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significantly when monitoring is introduced in the system. Even if Captive op-
erations behave similarly to Instantaneous operations, it is hard to generalize
the result since they are present in one application only. On the other hand,
Instantaneous operations are more sensitive to the load of the CPU, in fact,
more than 80% of the Instantaneous operations are slow when the CPU load
reaches 90%.

We can conclude that the CPU load level does not significantly affect the
intrusiveness of function calls monitoring. In fact, the impact of the addition
of monitoring tends to be the same regardless of CPU availability, and when
a difference is observed, monitoring results to be slightly less intrusive with a
higher saturation of the CPU.

4.2. RQ2b - What is the impact of memory availability on the intrusiveness of
monitoring?

To better discuss the results for RQ2b, we report the memory usage of each
application as summarized in Table 4: the maximum memory consumption
observed during the execution of our tests for Adobe Reader DC is 353 MB of
RAM, for Notepad++ is 278 MB of RAM, for Paint.NET is 520 MB of RAM,
and for VLC Media Player is 303 MB of RAM.

Figure 9 shows the overhead introduced in the system response time (pre-
sented in log scale) per operation category when varying the amount of occupied
memory up to 90%. The orange boxplot corresponds to the execution time
observed when function calls are collected, while the brown boxplot corresponds
to the execution time when no monitoring is in place.

Figure 9: Execution time for different RAM availability per operation category.

Adobe Reader DC Notepad++ Paint.NET VLC Media Player

Max RAM 356 MB 278 MB 520 MB 303 MB

Table 4: Maximum memory used during experimentation.
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Treatment Chi-square p-value df

Instantaneous 3.5831 0.3101 3
Immediate 3.5298 0.3169 3
Continuous Simple 2.1604 0.5398 3
Continuous Complex 1.1438 0.7665 3
Captive 0.1913 0.979 3

Table 5: Kruskal-Wallis test results per operation category.

Similar to Section 4.1 we check for statistical differences between groups
using a Kruskal-Wallis test (see Table 5), obtaining no significant difference
between different levels of RAM load. Particularly, the results show a clearly
negligible effect of the memory on the overhead, indeed the overhead is similar
for different values of memory occupation.

We also investigated how memory occupation impacts on the operations that
become slow. Figure 10 shows the number of slow operations per application,
while Figure 11 shows the number of slow operations per operation category.
The behavior of the applications does not reveal any trend. To confirm this
intuition we computed the linear regression of the number of slow operations
for the instrumented and non-instrumented version of each app and considered
the difference between the angular coefficients of the computed lines. We fur-
ther considered the percentage of operations with a different classification when
the memory saturates to 100% (highest saturation possible) based on the com-
puted trends. Table 6 reports the results. For each application we indicate the
difference between the angular coefficients (on the left) and the percentage of
operations with a different categorization (on the right). We can notice negli-
gible difference in the coefficients and the number of slow operations, suggesting
similar trend for the two cases.

The results per operation category confirm the same behavior we observed
for CPU utilization: Instantaneous operations better tolerate low availability
of the computational resources compared to operations in the other categories.
Anyway, memory occupation does not produce relevant effects when analyzing
the results per operation category, either.

Adobe Reader DC Notepad++ Paint.NET VLC Media Player

RAM 0.084 – 4.77% 0.059 – 4.25% 0.023 – 1.08% 0.054 – 2.91%

Table 6: Memory trend analysis.

We can conclude that the memory load level does not affect the intrusiveness
of function calls monitoring by a significant degree. In fact, the monitoring
overhead tends to be the same regardless of memory availability.

4.3. Discussion

The analysis of the impact of function calls monitoring on the user expe-
rience when the availability of the computational resources is limited revealed
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Figure 10: Percentage of slow operations for various RAM load levels per application.

Figure 11: Percentage of slow operations for various RAM load levels per operation category.

little influence of the computational resources. As a consequence, the logic
of the monitoring can be activated and deactivated with limited attention to
computational resources. Only in the case of CPU saturation higher than 90%,
monitoring should be avoided since this could turn the application unresponsive.

Finally, results revealed that Instantaneous operations are less sensitive to
memory availability compared to other kinds of operations.

5. RQ3 - How do expert computer users react to the overhead pro-
duced by function calls monitoring, compared to the results ob-
tained with RQ1 and RQ2?

This research question investigates the coherence between the classification
of the operations as resulting by the application of the criteria proposed by
Seow and the feedback provided by actual users from our CS department, on
the applications and operations considered in our study. To this end, we asked
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Overhead range

Operation category

Instantaneous Immediate
Continuous
Simple

Continuous
Complex

Captive

0-30% 4 2 10 5 3

30-80% 4 2 2

80-180% 1 1 3

180+% 1 1 1

Table 7: Number of operations for the different combinations of overhead ranges and cate-
gories.

a number of users to assess operations of different categories while exposed to
a range of overhead values, and we compared the results to the ones obtained
with the classification criteria by Seow. In the following, we present the design
of the empirical study, the results, and their critical discussion.
5.1. Design

We study how actual users perceive the system response time by considering
operations exposed to overhead values in the ranges 0 − 30%, 30 − 80%, 80 −
180%, 180+% and operations belonging to the five operation categories used in
our study (Instantaneous, Immediate, Continuous Simple, Continuous Complex,
and Captive). To expose every participant to the same interactions and to
exactly the same overhead, we recorded videos showing the execution of the
same operations executed for RQ1 and RQ2, while monitoring function calls.
Each participant classifies each operation as either running slow or running in
the expected amount of time.

The study involves 22 subjects who are members of our CS department, and
include students, researchers, and professors. They all regularly use interactive
applications. All the participants experienced all the operation categories and
all the overhead values.

For the evaluation, we selected eight meaningful tasks that cover the five
possible operation categories and the four possible overhead ranges. Selecting
fewer tasks would not allow us to cover enough cases, while using more cases
would be too demanding for the participants. The distribution of the operations
included in the tasks are shown in Table 7.

The laboratory session started with the participants receiving an instruction
sheet with general information about the structure of the experiment and a de-
scription of the tasks to be assessed, including text and screen-shots to avoid
misunderstandings. Subjects were not told about the specific aim of the ex-
periment, nor about the presence of function calls monitoring. After the video
corresponding to a task has been reproduced and before moving to the next
task, the participant evaluated the response time of each operation according
to two possible levels: running slow or running as expected.

5.2. Results

To evaluate the consistency between the assessment based on the classifica-
tion by Seow and the responses provided by the human subjects, we reclassified
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Figure 12: Consistency in the evaluation of SRT between our approach and user perception.

each operation assessed by users according to the classification by Seow and
measure their coherence.

Figure 12 shows the results. Each bar is an operation category, the label at
the top of the bar shows its classification as running slow or running as expected
according to our definition of slow operation, and the percentage shows the
number of participants who responded coherently with the label at the top.
Based on these results, we conclude that:

• Our classification strategy and the participants agree on the operations
that should not be considered slow. In fact, all the operations labeled as
expected are classified in the same way by a percentage of the participants
ranging from 75% to 100%.

• Our classification and the participants tend to agree on the continuous
operations that should be considered slow. In fact, there is agreement
in considering Continuous Simple operations exposed to more than 80%
overhead and the Continuous Complex operations exposed to more than
30% overhead as slow operations.

• The participants tolerate overhead better than revealed by our classification
for quick operations. In fact, there is disagreement on the Instantaneous
and Immediate operations exposed to overhead higher than 80%

5.3. Discussion

We can conclude that identifying slow operations based on the Seow clas-
sification is conservative: the operations that we identify running as expected
are fine also for the actual users; on the other hand, there might be operations
that we consider too slow but are instead running as expected for the users.
In practice, developers following the recommendations resulting from our work
encounter into a negligible risk of introducing noticeable overheads in their ap-
plications.
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6. Threats to Validity

The main threat to Internal Validity of our empirical investigation is the
usage of the system response time categories defined by Seow [21] to identify the
operations that have been slowed down up to a level that can be recognized by
the users. Involving a significant number of human subjects in the evaluation
and asking them to evaluate every individual operation that is executed, in
different applications and contexts, is however nearly infeasible. This is why we
decided to rely on a well-known categorization of user operations that let us work
with a significant number of samples. To mitigate this issue, we investigated
the coherence between our evaluation and the assessment performed by actual
users for a subset of the operations and discovered that our findings provide a
slightly conservative picture of how users perceive overhead.

Another potential threat is the representativeness of the participants we used
in the empirical experiment to respond to RQ3. However, the use of popular
applications also known to non-computer experts mitigates the potential bias
introduced by the selected subjects.

Another potential threat is the choice of the individual operations that have
been used in the study. Although we can potentially design the test cases in
many different ways, we mitigated the issue of choosing the operations by focus-
ing on the most relevant functionalities of each application, possibly including
a large number of operations from most of the categories.

The main threat to External Validity of our empirical evaluation is the gen-
eralizability of the results. The study focuses on function calls monitoring for
regular desktop applications and, although some results might have a broader
applicability, they should be interpreted mainly in that context. Considering
other contexts require the replication of this study.

Another potential threat is related to the sample size of actual subjects we
used in the empirical experiment to respond to RQ3. To further validate the
results achieved, it is necessary to extend the experiment in such a way as to
include many more subjects and potentially with different backgrounds.

7. Findings

In this section we summarize the main findings that result from the empirical
experience reported in this paper:

• Overhead up to 30% is likely to be well tolerated by users. Our
results show that an overhead up to 30% is seldom the cause of operations
recognized as slow. This suggests that enriching applications running in
the field with processes that collect data and analyze executions is feasible.

• Collecting sequences of function calls from the field is feasible in
most of the cases. Our results show that the actual overhead produced
by function calls monitored is below 30% in the vast majority of the cases.
Furthermore, less than the 20% of the executed operations are likely to
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be perceived as slowed down. Although the cases where the impact of
monitoring is heavier must be carefully handled, results suggest that ex-
tensively collecting data about sequences of function calls from the field
is possible.

• Specific operations require special handling of monitoring fea-
tures. In our experiment we reported operations that presented an excep-
tionally high overhead. This happened both across categories and specif-
ically in one application, that is, the Immediate operations present in
Paint.NET. This result suggests that applications must be carefully ana-
lyzed before being instrumented so that the overhead introduced by the
probes can be properly controlled, detecting these special cases.

• Computational resources have little influence on the impact of
monitoring. Results show that CPU and RAM availability have not a
significant impact on the relative cost of collecting function calls. It is
however true that the cumulative effect of CPU load and monitoring may
introduce a prohibitive overhead reaching a peak of more than 50% of the
operations perceived as slowed down, in contrast with the normal impact
of monitoring that affected less than 20% of the operations in the worst
case.

• Instantaneous operations are more resilient to overhead. Instan-
taneous operations demonstrated to tolerate well overhead, also when the
CPU is extremely busy. This is probably due to the intrinsic nature of
these operations that can be executed fast almost without interruption,
even if the CPU is busy. Moreover, human subjects demonstrated to toler-
ate particularly well the overhead introduced in Instantaneous operations.

These findings can be exploited by organizations that use experimentation
techniques to improve their products and processes. Indeed, they can refine
data collection strategies to be less intrusive while collecting significant amount
of data about the behavior of the software.

In particular, our findings may impact:

• Requirements engineers, who may exploit field monitoring solutions to
profile users and evolve requirements following the usage scenarios discov-
ered in the field. However, in order to be used without impacting on the
user experience, the overhead introduced by profiling techniques should
not exceed 30%.

• Software developers, who may exploit highly-optimized monitoring pro-
cedures to collect software behavioral data, discovering how software is
actually used in the field and improve their products, accordingly. Since
computational resources have little influence on the impact of monitor-
ing, environmental conditions for monitoring should not be a problem for
developers.
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• Testers, who may exploit fine-grained monitoring to collect accurate in-
formation about the behavior of a deployed product, with a specific focus
on failures, to reveal and fix faults earlier. We demonstrated that func-
tion calls monitoring is feasible in most of the cases. If applied carefully
it could be of great impact to the software testing community, consider-
ing that function calls monitoring has been widely used for several tasks,
including debugging and fault failures reproduction [15, 12].

• DevOps architects, who engineer continuous monitoring solutions that can
cost-effectively support continuous deployment, and the development pro-
cess more in general, as long as they monitor between the boundaries we
identified in this study, such as keeping overhead under 30% and priori-
tizing Instantaneous operations because of their resilience to monitoring
overhead.

8. Related Work

In this section we relate our work to software experimentation, to studies
about the impact of SRT delays on the quality of the user experience, and to
studies on field monitoring and analysis.

Regarding software experimentation, there are several approaches and stud-
ies that exploited software systems to collect actual evidence, especially using
field data. A systematic way to collect field data is to perform randomised
controlled experiments (e.g., A/B tests), for instance to study how a new fea-
ture or a change may impact the user experience. Continuous deployment is
a well-known practice that benefits directly from controlled experiments [28],
for instance companies such as Microsoft reported to run more than 200 ex-
periments concurrently every day within their products [1]. Relevantly, Kevic
et al. [2] presented an empirical characterisation of an experimentation process
when applied to the Bing web search engine, and Fagerholm et al. [3] provided a
model that enables continuous customer experiments aimed to software quality
improvement. Our work relates to these studies because it provides evidence
that can help engineers designing better data collection solutions that do not
affect the user experience.

Regarding the perception of the SRT, there are several studies in the context
of the research in Human Computer Interaction (HCI ) and controlled experi-
ments.

The importance of controlled experiments has been extensively discussed and
demonstrated. For instance, Fabijan et al. [28] reported the benefits of online
controlled experiments for software development processes, studying how using
customer and product data could support decisions throughout the product
lifecyle.

Killeen et al. [29] demonstrated that users are unlikely to recognize time
variations inferior to 20% of the original value. Our results are aligned with this
study, since delays up to 30% do not generate slowdowns recognizable by future
users.
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Ceaparu et al. [30] studied how interactions with a personal computer may
cause frustrations. In their experiment, users were asked to describe in a written
form sources of frustration in human-computer interactions. The participants
declared that applications not responding in an appropriate amount of time and
Web pages taking long time to process are the main sources of frustration in
human-computer interactions, thus confirming the relevance of our investigation.

Other studies stressed user tolerance in specific settings. For instance, Nah
et al. [31] analyzed how long users are willing to wait for a Web page to be
downloaded. The results of the experiment showed that users start noticing the
slowdowns after two seconds delays and that do not tolerate slowdowns longer
that 15 s. A threshold of 15 s has been reported as the maximum that can be
tolerated before perceiving an interruption in a conversation with an application
also in other studies [32, 33]. An experiment conducted by Hoxmeier and Di
Cesare [34] studied how fixed slowdowns (3, 6, 9, and 12 s) to interactions may
affect the user appreciation and perception. Results show that a limit for the
user tolerance is 12 s and that a linear relationship exists between SRT and user
satisfaction.

Kohavi et al. [35] show that slowdowns in Web applications may affect the
user experience, causing loss of money for companies. For example, Amazon
reported a loss of 1% in sales because of a 100 ms slowdown, and Microsoft
similarly, reported a loss of 1% in user queries when adding a slowdown of one
second to their search site. Differently from these studies, our investigation does
not aim to identify the maximum overhead that can be tolerated nor the cost
to companies, but rather to identify delays and overhead levels that cannot be
even recognized by users.

In the scope of monitoring techniques, there are techniques that implemented
mechanisms to limit the overhead introduced in the monitored system [36]. For
instance, distributive monitoring can be used to divide the monitoring workload
between several instances of a same application in order to lower the overhead
introduced by monitoring activities [27, 26]. Briola et al. [37, 38] and Ancona
et al. [39] exploited a similar intuition to cost-efficiently monitor multi-agent
systems.

Alternatively, information can be collected at run-time only with a given
probability or according to a strategy [40]. This strategy has been exploited
in the context of debugging [7, 8], program verification [41], and profiling [42].
Finally, monitoring can be optimized carefully balancing in-memory and sav-
ing operations [43]. The results reported in this paper can be exploited by
these techniques and by practitioners [44], to further optimize their monitoring
strategy, collecting more data without affecting users.

Depending on the kind of collected data, monitoring solutions may introduce
overhead levels up to 10000% [12] as it is in the case of function calls monitoring.
Also, slow software is one of the main reasons why users stop using applications,
as reported in [30, 34, 33]. Delaying too much some functionalities may cause
loss of users and consequently the failure of the project. The results obtained
with our study may help practitioners to design context-aware techniques that
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achieve a better compromise between collecting data and impacting on the user
experience, such as proposed in [41]. Our findings provide initial insights in this
direction.

9. Conclusions

Collecting data from the field is extremely useful to discover how applica-
tions are actually used and support software engineering tasks. For instance,
several monitoring techniques collect sequences of function calls to reproduce
failures [12], detect malicious behaviors [14], debug applications [15], profile
software [9], optimize applications [16], and mine models [17, 18]. If retrieving
this data is indeed useful, knowing the impact of the monitoring activity on the
user experience is also extremely important. In fact, monitoring techniques can
be feasibly applied only if they work seamlessly.

This paper presented a study about the impact of function calls monitor-
ing considering both the monitoring overhead and the operations that may be
perceived as slowed down by the users. Results show that an overhead up to
30% can be likely introduced in the operations without annoying users and that
function calls monitoring often produce an overhead below this limit. We found
however operations that are slowed significantly and that require special care
when monitored. These findings suggest that monitoring capabilities cannot be
introduced blindly, but they must be customized to the characteristics of the
monitored program. Results also suggest that computational resources (RAM
and CPU) have little influence on the impact of monitoring.

Future work consists of exploiting the results obtained with this study to
design monitoring techniques that can collect function calls from the field with-
out being recognized by users. We will further consider the categorization of
the monitoring metrics we introduced in this work into useful usability groups,
that can be reused at large scale experiments as recommended in the study by
Rodden et al. [45]. Also, we will consider applications with longer response
time, such as scientific experiments and job processing applications, studying
the feasibility of monitoring in these fields.
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