
Does Migrating a Monolithic System to Microservices
Decrease the Technical Debt?

Valentina Lenarduzzia, Francesco Lomiob, Nyyti Saarimäkib, Davide Taibib

aLUT University, Finland
bTampere University, Finland

Abstract

Background. The migration from a monolithic system to microservices

requires a deep refactoring of the system. Therefore, such a migration

usually has a big economic impact and companies tend to postpone several

activities during this process, mainly to speed up the migration itself, but

also because of the demand for releasing new features.

Objective. We monitored the technical debt of an SME while it migrated

from a legacy monolithic system to an ecosystem of microservices. Our

goal was to analyze changes in the code technical debt before and after the

migration to microservices.

Method. We conducted a case study analyzing more than four years of

the history of a twelve-year-old project (280K Lines of Code) where two

teams extracted five business processes from the monolithic system as

microservices. For the study, we first analyzed the technical debt with

SonarQube and then performed a qualitative study with company members

to understand the perceived quality of the system and the motivation for

possibly postponed activities.

Email addresses: valentina.lenarduzzi@lut.fi (Valentina Lenarduzzi),
francesco.lomio@tuni.fi (Francesco Lomio), nyyti.sarimaki@tuni.fi (Nyyti
Saarimäki), davide.taibi@tuni.fi (Davide Taibi)

Does Migrating a Monolithic System to Microservices
Decrease the Technical Debt?

Valentina Lenarduzzia, Francesco Lomiob, Nyyti Saarimäkib, Davide Taibib

aLUT University, Finland
bTampere University, Finland

Abstract

Background. The migration from a monolithic system to microservices

requires a deep refactoring of the system. Therefore, such a migration

usually has a big economic impact and companies tend to postpone several

activities during this process, mainly to speed up the migration itself, but

also because of the demand for releasing new features.

Objective. We monitored the technical debt of an SME while it migrated

from a legacy monolithic system to an ecosystem of microservices. Our

goal was to analyze changes in the code technical debt before and after the

migration to microservices.

Method. We conducted a case study analyzing more than four years of

the history of a twelve-year-old project (280K Lines of Code) where two

teams extracted five business processes from the monolithic system as

microservices. For the study, we first analyzed the technical debt with

SonarQube and then performed a qualitative study with company members

to understand the perceived quality of the system and the motivation for

possibly postponed activities.

Email addresses: valentina.lenarduzzi@lut.fi (Valentina Lenarduzzi),
francesco.lomio@tuni.fi (Francesco Lomio), nyyti.sarimaki@tuni.fi (Nyyti
Saarimäki), davide.taibi@tuni.fi (Davide Taibi)

Please cite this article as: V. Lenarduzzi, F. Lomio, N. Saarimäki et al., Does migrating a monolithic system to microservices decrease the technical debt?. The Journal of
Systems & Software (2020) 110710, https://doi.org/10.1016/j.jss.2020.110710.

ar
X

iv
:1

90
2.

06
28

2v
3

 [
cs

.S
E

]
 4

 J
ul

 2
02

0

Results. The migration to microservices helped to reduce the technical

debt in the long run. Despite an initial spike in the technical debt due to

the development of the new microservice, after a relatively short period of

time the technical debt tended to grow slower than in the monolithic system.

Keywords: Technical Debt, Architectural Debt, Code Quality,

Microservices, Refactoring

1. Introduction

Migration to microservices has become very popular over the last years.

Companies migrate for different reasons, for example because they expect to

improve the quality of their system or to facilitate software maintenance [1].

Companies commonly adopt an initial migration strategy to extract com-

ponents from their monolithic system as microservices, making use of simpli-

fied microservices patterns [1][2]. As an example, it is common for companies

to initially connect the microservices directly to the legacy monolithic system

and not to adopt message buses. However, when the system starts to grow

in complexity, they usually start re-architecting their system, considering

different architectural patterns [1][2][3]. The migration from a monolithic

system to microservices is commonly performed on systems that are being

actively developed. Therefore, in several cases, the development of new fea-

tures is prioritized over refactoring of the code, which generates technical

debt (TD) every time an activity is postponed [4][5] and increases the cost

of software maintenance.

Companies migrate to microservices to facilitate maintenance [1]. How-

ever, recent surveys have confirmed that maintenance costs increase after

migration [1][6]. Therefore, the goal of this paper is to understand whether

2

the overall code TD of a system increases or decreases after migration to

microservices, and whether the type of TD varies after the migration.

In this work, we report a case study where we monitored the code TD

of an SME (small and medium-sized enterprise) that migrated their legacy

monolithic system to an ecosystem of microservices. The company was in-

terested in evaluating their TD with SonarQube1, which is one of the most

commonly used tools for analyzing code TD. They asked us to monitor the

evolution of TD in a project they are developing, during the migration to

microservices. The analysis focused on the three types of TD proposed by

SonarQube: reliability remediation cost (time to remove all the issues that

can generate faults), maintainability remediation cost (time to remove all

the issues that increase the maintenance effort), and security vulnerabil-

ity remediation cost (time to remove all the security issues). Moreover, we

implemented a qualitative study by conducting a focus group with two de-

velopment teams, the software architect, and the product manager. The

goal was to deeply understand the causes of the changes in the distribution

of the types of TD issues and the motivations for any postponed activities.

To the best of our knowledge, only a limited number of studies have

investigated the impact of postponed activities on TD, especially in the

context of microservices [7]. This work will help companies to understand

how TD grows and changes over time while at the same time opening up

new avenues for future research on the analysis of TD interest.

This paper is structured as follows: Section 2 briefly introduces the back-

ground and related work on microservices and TD, while Section 3 reports

the existing work in this topic. In Section 4, we present the case study de-

1SonarQube: www.sonarqube.org

3

sign, defining the research questions and describing the study context with

the data collection and the data analysis protocol. In Section 5, we show the

results we obtained, followed by a discussion of them in Section 6. In Sec-

tion 7, we identify the threats to the validity of our study, and in Section 8,

we draw conclusions and provide an outlook on possible future work.

2. Background

In this Section, we will first describe the background on microservices

and technical debt (TD). Moreover, we will describe SonarQube and the

method adopted to calculate TD.

2.1. Microservices

Microservice architecture has become more and more popular over the

last years. Microservices are small, autonomous, and independently de-

ployed services, with a single and clearly defined purpose [8].

The independent deployment provides a lot of advantages. They can be

developed in different programming languages, they can scale independent

of other services, and they can be deployed on the hardware that best suits

their needs. Moreover, because of their size, they are easier to maintain

and more fault-tolerant since the failure of one service will not break the

whole system, which is possible in a monolithic system. In addition, as

microservices are cloud-native applications, they support the IDEAL prop-

erties: Isolation of state, Distribution, Elasticity, Automated management,

and Loose Coupling [8]. Moreover, microservices propose vertical decompo-

sition of applications into a subset of business-driven services. Each service

can be developed, deployed, and tested independently by a different devel-

opment team using different technology stacks. The development responsi-

4

bility of a microservice belongs to a single team, which is in charge of the

whole development process, including deploying, operating, and upgrading

the service when needed.

2.2. Technical Debt

The concept of TD was introduced for the first time in 1992 by Cun-

ningham as ”The debt incurred through the speeding up of software project

development which results in a number of deficiencies ending up in high

maintenance overheads” [4]. McConnell [9] improved the definition of TD

to ”A design or construction approach that’s expedient in the short term but

that creates a technical context in which the same work will cost more to do

later than it would cost to do now (including increased cost over time)”. In

2016, Avgeriou et al. [10] defined TD as ”A collection of design or implemen-

tation constructs that are expedient in the short term, but set up a technical

context that can make future changes more costly or impossible. TD presents

an actual or contingent liability whose impact is limited to internal system

qualities, primarily maintainability and evolvability”.

Different approaches and strategies have been suggested for evaluating

TD. Nugroho et al. [11] proposed an approach for quantifying debt based on

the effort required to fix TD issues, using data collected from 44 systems as

their basis. Seaman et al. [12] proposed a TD management framework that

formalizes the relationship between cost and benefit in order to improve soft-

ware quality and support the decision-making process during maintenance

activities. Zazworka et al. [13] investigated automated identification of TD.

They asked developers to identify TD items during the development process

and compared the manual identification with the results from an automatic

detection. Zazworka et al. [14] examined source code analysis techniques

5

and tools to identify code debt in software systems, focusing on TD interest

and TD impact on increasing defect- and change-proneness. They applied

four TD identification techniques (code smells, automatic static analysis is-

sues, grime buildup, and modularity violations) on 13 versions of the Apache

Hadoop open-source software project. They collected different metrics, such

as code smells and code violations. The results showed a positive correlation

between some metrics and defect- and change-proneness, such as Dispersed

Coupling and modularity violations. Guo et al. [15] investigated the TD

cost of applying a new approach to an ongoing software project. They

found higher start-up costs, which decreased over time.

2.2.1. Technical Debt Measurement

Different commercial and open-source tools can be used to measure TD,

including CAST2, Coverity Scan3, SQUORE4, and Designite5.

In this work, as required by our case company, we adopted SonarQube,

as it is one of the most commonly used TD measurement tools, adopted by

more than 120K users6. Moreover, SonarQube is also open-source, while the

other well-known competitors have a commercial license.

SonarQube calculates several metrics such as number of lines of code

and code complexity, and verifies the code’s compliance against a specific

set of ”coding rules”. If the analyzed source code violates a coding rule

or if a metric is outside a predefined threshold (also called ”quality gate”),

2CAST Software https://www.castsoftware.com/ Last Access: August 2019
3Coverity Scan. https://scan.coverity.com. Last Access: August 2019
4SQUORE. https://www.squoring.com/en/produits/squore-software-analytics/

Last Access: August 2019
5Designite. http://designite-tools.com Last Access: August 2019
6SonarQube. http://www.sonarqube.org Last Access: August 2019

6

SonarQube generates an ”issue”. Issues are problems that generate TD and

therefore should be solved.

SonarQube has separate rule sets for the most common development lan-

guages such as Java, Python, C++, and JavaScript. For example, Sonar-

Qube version 7.5 includes more than 500 rules for Java.

Rules are classified as being related to reliability, maintainability, or

security of the code. Reliability rules, also named ”bugs”, create TD is-

sues that ”represent something wrong in the code” and that will soon be

reflected in a bug. Security rules, also called ”vulnerabilities” or ”secu-

rity hotspots”, represent issues that can be exploited by a hacker or that

are otherwise security-sensitive. Maintainability rules or ”code smells” are

considered ”maintainability-related issues” in the code that decrease code

readability and modifiability. It is important to note that the term ”code

smells” adopted in SonarQube does not refer to the commonly known code

smells defined by Fowler et al. [16], but to a different set of rules. SonarQube

claims that zero false-positive issues are expected from the reliability and

maintainability rules, while security issues may contain some false-positives7.

The complete list of rules is available online8.

SonarQube calculates TD using the SQALE method [17]. It is an ISO

9126 compliant method developed by DNV ITGS France [18]. The method

is based on five categories [19]:

• Robustness: Application stability and ability to recover from failures.

• Performance efficiency: Application responsiveness and usage of re-

7SonarQube Rules: https://docs.sonarqube.org/display/SONAR/Rules

Last Access: June 2019
8https://rules.sonarsource.com/java Last Access: August 2019

7

sources.

• Security: Systems ability to protect confidential information and pre-

vent unauthorized intrusions.

• Transferability: Software understandability and especially the ”ease

with which a new team can understand the software and become pro-

ductive”.

• Changeability: Measures software adaptability and modifiability.

SonarQube calculates TD as:

TD(person−days) =cost to fix issues + cost to fix duplications + cost to comment

public API + cost to fix uncovered complexity + cost to bring

complexity below threshold

(1)

SonarQube also identifies TD density as:

TDDensity =
TD(person−days)

KLOC
(2)

The previous formula is then instantiated three times to calculate:

• Technical Debt, considering maintainability-related rules (tagged as

”code smells”) that are supposed to increase the change-proneness of

the infected code.

Technical Debt was also called ”SQUALE index” until SonarQube

version 7.7. Starting from SonarQube version 7.8, it has been called

”Mantainability remediation effort”. In this work, we refer to this type

of TD as TD M.

8

• Reliability Remediation Effort, considering reliability-related rules

(rules tagged as ”bug”) that are supposed to increase the bug-

proneness of the infected code. In this work, we refer to this type

of TD as TD R.

• Security Remediation Effort, considering rules related to security vul-

nerabilities (tagged as ”vulnerability”). In this work, we refer to this

type of TD as TD S.

3. Related Work

In this Section, we report on the most relevant related work on migration

to microservices and TD.

Companies migrate to microservices in order to ease their software de-

velopment by improving maintainability and decreasing delivery time [1][6].

However, migration to microservices is not an easy task. Companies com-

monly start this migration without having any experience with microser-

vices, and only in few cases do they hire a consultant to support them

during the migration [1][6].

3.1. Migration from Monolithic to Microservice

Several approaches have been proposed for migrating from a monolithic

system to microservices.

Fritzsch et al. [20] analyzed works from the literature and classified the

reported refactoring approaches used to migrate from monolithic systems

to microservices. They highlight that not all of the existing refactoring

approaches are practically applicable, nor do they provide adequate tool

support and metrics to verify the results of the migration.

9

In our previous work [1], we classified the different migration processes

adopted by companies, highlighting the complex migration steps and the

need of support from an experienced software architect, at least for identi-

fying the architectural guidelines and helping to initiate the migration.

Lu et al. [21] identified other migration strategies, distinguishing between

the big bang migration, where companies replace their legacy system in one

swoop, and incremental migration, where companies do the replacement step

by step.

Abbott and Fischer [22] proposed a decomposition approach based on

the ”scalability cube”, which splits an application into smaller components

to achieve higher scalability. Richardson [23] also mentioned this approach

in his four decomposition strategies:

• ”Decompose by business capability and define services corresponding

to business capabilities”;

• ”Decompose by domain-driven design sub-domain”;

• ”Decompose by verb or use cases and define services that are respon-

sible for particular actions”;

• ”Decompose by nouns or resources by defining a service that is respon-

sible for all operations on entities/resources of a given type”.

Kecskemeti et al. [24] proposed a decomposition approach based on con-

tainer optimization. The goal is to increase the elasticity of large-scale

applications and the possibility to obtain more flexible compositions with

other services.

Vresk et al. [25] recommend combining verb-based and noun-based de-

composition approaches. The proposed approach hides the complexity stem-

10

ming from the variation of end-device properties thanks to the application

of a uniform approach for modeling both physical and logical IoT devices

and services. Moreover, it can foster interoperability and extensibility using

diverse communication protocols into proxy microservice components.

Gysel et al. [26] proposed a clustering algorithm approach based on 16

coupling criteria derived from literature analysis and industry experience.

This approach is an extensible tool framework for service decomposition as a

combination of a criteria-driven methods. It integrates graph clustering al-

gorithms and features priority scoring and nine types of analysis and design

specifications. Moreover, this approach introduces the concept of coupling

criteria cards using 16 different instances grouped into four categories: co-

hesiveness, compatibility, constraints, and communications. The approach

was evaluated by integrating two existing graph clustering algorithms, com-

bining actions research and case study investigations, and load tests. The

results showed potential benefits to the practitioners, also confirmed by user

feedback.

Chen et al. [27] proposed a data-driven microservice-oriented decompo-

sition approach based on data flow diagrams from business logic. Their ap-

proach could deliver more rational, objective, and easy-to-understand results

thanks to objective operations and data extracted from real-world business

logic. Similarly, we adopt process mining to analyze the business processes

of a monolithic system.

Alwis et al. [28] proposed a heuristic to slice a monolithic system into mi-

croservices based on object sub-types (i.e., the lowest granularity of software

based on structural properties) and functional splitting based on common

execution fragments across software (i.e., the lowest granularity of software

based on behavioral properties).

11

Stojanovic et al. [29], recently proposed an approach to identify microser-

vices in monolithic systems using structural system analysis.

Other studies [30, 31, 32, 33] proposed different approaches to validate

the migration from monolithic to microservices.

3.2. Microservices and Technical Debt

Several works have investigated TD in microservices.

Chhonker and de Lemos [34] proposed a work plan to investigate the

impact of TD on microservices, adopting self-adaption as a solution to reduce

the TD of microservice-based software systems.

As for possible issues that can generate TD in microservice-based sys-

tems, in our previous works [35][36], we identified a set of microservice-

specific anti-patterns and ”bad smells” that can cause TD in microservice-

based systems. Recently, Bogner et al. [37] extended our work, creating a

public catalog of anti-patterns.

Bogner et al. [38] ran an industrial survey investigating the approaches

adopted by industry to prevent the accumulation of TD, reporting that

companies do have problems to prevent TD due to architectural erosion,

mainly because of the lack of automated quality control at the architectural

level. Moreover, in a subsequent study, Bogner et al. [39] performed another

industrial survey, interviewing 17 practitioners to explore the evolvability

assurance processes applied and the usage of tools, metrics, and patterns

in microservices-based systems. They reported that architectural issues,

and especially postponed architectural decisions, are the most harmful type

of TD. Moreover, they also reported that their participants did not apply

any architectural or service-oriented tools or metrics. As a result, they

12

recommend applying static analysis tools and architectural analysis tools to

keep track of the software quality and especially of the architectural issues

in the systems.

In their study, de Toledo et al. [7] performed an exploratory case study on

a large industry/company while it was refactoring an existing microservice-

based system, removing issues in the communication layer. They focused

their investigation on the TD related to the communication layer of the

system, indicating the large number of point-to-point connections between

services as the major issue and noting the presence of business logic in

the communication layer, which increased the dependency between services.

Similarly to this study, we performed a case study on a single company, but

we focused on the migration process itself, analyzing the system in all its

aspects before and after the migration.

Márquez and Astudillo [40] proposed an approach for identifying archi-

tectural TD in monolithic systems before the migration in order to satisfy

the requirements of the new microservices-based system. Their proposal in-

cludes a set of tactics and patterns for better contextualizing the different

types of architectural TD.

Rademacher et al. [41], introduce an approach to make technology deci-

sions in microservice architectures explicit and enable reasoning about them,

also enabling to be aware of the TD accrued by the different decisions.

Brogi et al. [42] propose a methodology to reduce TD in microservices

by systematically identifying the architectural smells that violate the main

design principles of microservices, and to select suitable architectural refac-

torings to resolve them.

Differently than in the previous works, in this work we are comparing

TD and its trend in a project before and after migration to microservices,

13

considering both the code TD detected by SonarQube and the TD perceived

by the developers.

4. Case Study Design

We designed our empirical study as a case study based on the guidelines

defined by Runeson and Höst [43]. In this Section, we will describe the

case study design, including the goal and the research questions, the study

context together with the case and subject selection, the data collection,

and the data analysis procedure.

4.1. Goal and Research Questions

In this case study, we compared technical debt (TD) and its trend

in a project before and after migration to microservices. The study was

performed based on the following research questions (RQs):

RQ1: Is the TD of a monolithic system growing with the same trend as a

microservices-based system?

RQ1.1: Is the TD of a monolithic system, measured with the SonarQube

”sonar way” model, growing with the same trend as a

microservices-based system?

RQ1.2: Is the TD perceived by the developers growing with the same

trend in the monolithic and in the microservice-based systems?

RQ2: How the different types of TD change after the migration to microser-

vices?

14

RQ2.1: How the different types of TD issues, measured by SonarQube

(bugs, code smells, and security vulnerabilities), change after the

migration to microservices?

RQ2.2: How the different types of perceived TD change after the migra-

tion to microservices?

With RQ1 we aim at understanding if the overall TD is growing with the

same trend in a monolithic and in a microservice-based system. Since our

case company is interested in evaluating TD with SonarQube, we investigate

the TD calculated at code level by SonarQube (RQ1.1). However, in order

to get more insights on the results obtained for the execution of SonarQube,

we investigate if the TD perceived by the developers (RQ1.2) also changes

after the migration to microservices. We hypothesize that the TD decreases

after the migration to microservices, mainly because of the newly developed

architectural design and the re-developed code that should be written in a

more understandable way.

In RQ2 we investigate if different types of TD, or different related qual-

ities, are also affected by the migration. As an example, we expect the

code to be less buggy after the migration to microservices, but also to be

more stable and less change-prone. As well as for RQ1, we first investigate

changes in the different types of TD items detected by SonarQube (RQ2.1)

and then we investigate if the developers perceive changes on the same qual-

ities proposed by SonarQube (RQ2.2). Therefore, we hypothesize that the

microservice-based system should be less faulty (less SonarQube issues of

type ”Bugs”), less change-prone (SonarQube issues of type ”Code Smells”)

and more secure (SonarQube issues of type ”Security Vulnerabilitiyes”).

15

4.2. Case and Subject Selection

In this Section, we describe the case company of this study, the system

that has been considered for investigating our RQs, and the process for

migrating to microservices adopted by the case company

The Case Company. The company is an Italian Small and Medium-

Sized Enterprise (SME) with 50 developers, developing different business

suites for tax accountants, lawyers, and other related businesses. The de-

veloped systems are used by more than 10K practitioners in Italy.

The System Under Migration. The company is migrating the book-

keeping document management system for Italian tax accountants. The

system allows a tax accountant to manage the whole bookkeeping process,

including management of the digital invoices, send the invoices to the Min-

istry of Economic Development, manage tax declarations, and fulfill all legal

requirements. The system is currently being used by more than 2,000 tax

accountants, who need to store more than 20M invoices per year.

The company needs to frequently update the system, as the annual tax

rules usually change every year. The Italian government normally updates

the bookkeeping process between December and January, which involves

not only changing the tax rate but also modifying the process of storing the

invoices. However, tax declarations can be made starting in March/April of

each year. Therefore, in the best case, the company has two to four months

to adapt their software to the new rules in order to enable tax accountants

to work with the updated regulations from March/April. Up to now, the

company needed to hire a consultancy company to help them during these

three months of fast-paced work.

The system is being developed as a Java J2EE application. The system

is based on a server-side monolith, developed with a Model-View-Controller

16

pattern, a web application developed with a set of Java Servlets and jsp

pages, and a desktop application based on Java Swing to support document

uploading and synchronization. The server-side component is deployed as

a single war file into a Tomcat 6 server, running on a virtual machine in

Microsoft Azure Cloud. Data is stored on a Microsoft SQL server database.

The project is being developed by three teams: two teams composed of

four developers each, and one team of five consultants usually hired from

December to May to help with adapting the system to the new tax rules.

The system has been growing every year and as a result, after twelve

years and more than 280K of lines of code, the code has gotten harder

to understand and especially to modify. The CEO reported that before

the migration, changes took a significant amount of time to implement, as

they had to modify the code in several places. Moreover, every time new

developers joined in the company, they took a long time to understand the

system and to be able to implement changes.

As a result of the aforementioned issues, the company decided to migrate

to microservices to facilitate maintenance of the system and to distribute the

work to independent groups by separating each business process, eliminating

the need for synchronization between teams, and increasing velocity.

The company migrated five business processes to independent microser-

vices, which had been extracted from the monolithic system.

The microservices were also developed in Java, and automatically de-

ployed as Docker containers on a Kubernetes cluster in the Microsoft Azure

Cloud.

Two microservices were responsible of the upload and the permanent

storage of the invoices, one was responsible for managing the tax declarations

17

from the private database, and two were implemented to store and manage

the tax declarations in the portal of the Ministry of Economic Development.

The reason of implementing both the private and public management of the

invoices, is that tax accountants need to store their private copy of the

tax declarations, independently from the data stored on the portal of the

Ministry of Economic Development.

After the development of the first two microservices, the teams adopted

RabbitMQ as message bus, for managing communications between the mi-

croservices and the monolithic system. Then, after the implementation

of the third microservice, they started using RabbitMQ also as an API-

Gateway.

The five microservices are functionally different, but structurally similar.

All of them are written in the same language (Java) and their main purpose

is to manage data from invoices or tax declarations and store or access them

in different formats and from different locations (local database, SQL Server,

or the APIs of the Ministry of Economic Development).

4.3. Study Execution and Data Collection

We monitored the migration process from August 2014 to September

2018.

The study was performed in two steps.

• Automated TD analysis: In this step, we collected data on code TD

in system, before and during the migration, to answer our RQ1.1.

• Focus group to understand the usefulness of the TD analysis and

gather more qualitative insights (RQ2.1)

18

Automated TD Analysis.

The TD data was obtained by analyzing the system’s commits using

SonarQube9 (version 7.0). For the analysis, we used SonarQube’s standard

quality profile and analyzed each commit two years before the migration

and after the start of the migration.

We analyzed the TD provided by SonarQube considering the distribution

of the following types of TD issues:

• TD M: SonarQube ”Technical Debt”, also called ”Maintainability Re-

mediation Effort” (issues classified by SonarQube as ”Code Smells”)

• TD R: Reliability Remediation Effort (issues classified as ”Bugs”)

• TD S: Security Remediation Effort (issues classified as ”Security Vul-

nerabilities”)

Focus Group. To confirm the results of the automated TD analysis and

gain more qualitative insights on the results, we performed a focus group as

the second step. The focus group was based on a face-to-face semi-structured

interview. The goal was to discuss whether the migration to microservices

had been beneficial and whether the participants had experienced any of the

expected benefits. The focus group was moderated by one of the authors.

The whole focus group session was audio-recorded. To be able to do this,

we obtained a written consent from all the participants. The relevant parts

were transcribed and then coded by the moderator of the focus group, and

verified by one of the authors.

During the focus group, we asked four questions:

9https://www.sonarqube.org

19

Q1: What benefits and issues have you perceived after the migration to mi-

croservices? Please write the issues on the red Post-it notes and the benefits

on the yellow ones.

The goal of this question was to understand whether the practitioners per-

ceived some benefits that can be associated to the change of TD.

Q2: Is the quality of the code changed after the migration to microservices?

This question aimed at understanding the perception of the overall project

quality by the developers before and during the migration.

Q3: Has the TD decreased after the migration to microservices?

Before asking this question, the moderator introduced the notion of TD.

The goal of this question was to understand the perceived overall TD from

the developers’ point of view.

Q4: Have you postponed any technical activities before or during the migra-

tion to microservices? Please report the postponed activities (or group of

activities) before and during the migration on the Post-it notes.

At the end of the session, the moderator presented the results obtained

from the SonarQube analysis and asked for feedback to the developers.

For Q1 and Q4, each participant reported their answers on Post-it notes

and attached them to a whiteboard. Then, each participant described their

answer and grouped it with similar ones based on the group discussion.

For Q2 and Q4, after the participants had agreed on the qualities and

postponed activities, the moderator asked them to associate them with one

of the ISO/IEC 25010 [44] quality characteristics (Functionality, Perfor-

mance/Efficiency, Compatibility, Usability, Reliability, Security, Maintain-

ability, and Portability). The moderator highlighted seven areas on a large

whiteboard and asked the participants to discuss to which category each

activity belongs to.

20

4.4. Data Analysis

In order to answer RQ1, we analyzed the growth of the total TD in

minutes before and after migrating to microservices. We compared the rate

of growth of the TD, analyzing the overall TD (sum of TD M, TD R, and

TD S) and all the three TD issue types independently, applying linear re-

gression to the data before and after migrating to microservices. The growth

rates of the two regression lines were compared by inspecting the slope co-

efficients of the lines. The R2 values for the regression lines were also de-

termined. We complemented the results of RQ1 obtained by the automated

TD analysis by analyzing the answers of the focus group to Q2 and Q3.

The results were analyzed by comparing the positive and negative answers

(yes/no).

For RQ2, we determined the relative proportion of each TD issue type

in the total TD of each commit. Then, we determined whether the relative

distribution of TD issue types was statistically significant before and after

migrating to microservices by applying the Mann-Whitney test. This is a

non-parametric test for which the null hypothesis is that the distributions

for both tested groups are identical and thus there is an even probability

that a random sample from one group is larger than a random sample from

the other group [45]. The results are considered statistically significant if the

p-value is smaller than 0.01. We calculated the Mann-Whitney test using

the default value of pythons scipy package which ”computes p-value half the

size of the two-sided p-value and a different U statistic.”

Moreover, in order to determine the magnitude of the measured differ-

ences, we used Cliff’s Delta, which is a non-parametric effect size test for

ordinal data. The results were interpreted using guidelines provided by Gris-

som and Kim [46]. The effect size is small if 0.100 ≤ |d| < 0.330, medium if

21

0.330 ≤ |d| < 0.474, and large if |d| > 0.474.

Last, we analyzed the responses from the focus group to Q4 in order

to complement the results of the aforementioned analysis. Since the coding

regarding the different software quality characteristics was performed by the

participants, we only analyzed the results using descriptive statistics.

5. Results

In this Section, we present the main outcomes of our study.

To answer our RQs, we first analyzed the data collected with SonarQube

(RQ1.1, RQ2.1) and then we conducted the focus group to provide insights

into the reasons for the evolution of TD (RQ1.2, RQ2.2).

As for the SonarQube analysis, the data we used stems from two separate

time frames: before the migration (23rd August 2014 - 30th April 2016) and

after the migration (3rd January 2017 - 20th September 2018). The time

period between May and December 2016 is left out, as during that time the

monolithic system was not actively developed.

As for the focus group, eleven members of the company participated:

four developers from one team, five developers from another team, the soft-

ware architect, and the project manager. The focus group study lasted for

two hours.

5.1. RQ1: Is the TD of a monolithic system growing with the same trend as

a microservices-based system?

Considering the trend of TD analyzed by SonarQube (RQ1.1), the overall

TD (sum of TD M, TD R, and TD S) of the monolithic system before the

migration was lower than the overall TD right after the migration (Figure 1).

Immediately after the introduction of a new microservice, the sum of the

22

TD of the monolithic system and all the microservices grew faster compared

to the growth of the TD before the migration.

As soon as a microservice became stable, the TD decreased significantly

and started growing with a lower trend compared to the growth of the

monolithic system before the migration. Once the TD was stabilized after

the extraction of a feature from the monolithic system as a new microservice,

the TD trend grew much slower than before the migration.

It is worth noting that, in the five microservices we monitored, TD com-

monly increases immediately after the creation of a new microservice and

decreases later on.

Figure 1 shows the overall TD evolution over time and the linear regres-

sion lines fitted to the data before and after the migration to microservices.

The slope coefficients for the regression line and its R2 value is reported

in Table 1. The table shows that the slope coefficient for the overall TD

dropped significantly after migrating to microservices, and that the coef-

ficient after migration was 89.76% smaller than when using a monolithic

system. This implies a remarkable drop in the overall TD growth rate.

Table 1: TD slope coefficients before and after the migration to microservices.

Type

TD M TD R TD S TD

Before migration

Slope coeff. 6.21 1.11 7.38 14.71

R2 0.81 0.55 0.97 0.93

After migration

Slope coeff. -0.77 -0.54 2.81 1.51

R2 0.16 0.48 0.60 0.64

23

0

5K

10K

15K

20K

25K

30K

Aug-14
Oct-

14

Dec-1
4

Fe
b-15

Apr-1
5

Jun-15

Aug-15
Oct-

15

Dec-1
5

Fe
b-16

Apr-1
6

Jun-16

Aug-16
Oct-

16

Dec-1
6

Fe
b-17

Apr-1
7

Jun-17

Aug-17
Oct-

17

Dec-1
7

Fe
b-18

Apr-1
8

Jun-18

Aug-18
Oct-

18

TD
 in

 m
in

ut
es

 (
th

ou
sa

nd
s)

Monolithic System Microservice 1 Microservice 2 Microservice 3 Microservice 4
Microservice 5 Total TD linear (before) linear (after)

Figure 1: Overall TD evolution of the five microservices and the monolithic system

(TD M+TD R+TD S)

Table 2: The descriptive statistics for TD types before and after the migration and the

results from the Mann-Whitney and Cliff’s Delta tests.

Type

TD M TD R TD S

Before migration

mean 0.95 0.012 0.035

median 0.95 0.012 0.037

stdev 0.01 0.003 0.005

After migration

mean 0.97 0.004 0.028

median 0.97 0.005 0.027

stdev 0.01 0.001 0.005

Mann-Whitney
U 18,066 0 57,269

p-value 0 0 0

Cliff’s Delta
d -0.91 1 0.70

CI -0.93 - -0.88 1.00 - 1.00 0.66 - 0.74

24

0

2K

4K

6K

8K

10K

12K

14K

16K

Aug-14
Oct-

14

Dec-1
4

Fe
b-15

Apr-1
5

Jun-15

Aug-15
Oct-

15

Dec-1
5

Fe
b-16

Apr-1
6

Jun-16

Aug-16
Oct-

16

Dec-1
6

Fe
b-17

Apr-1
7

Jun-17

Aug-17
Oct-

17

Dec-1
7

Fe
b-18

Apr-1
8

Jun-18

Aug-18
Oct-

18

TD
 in

 m
in

ut
es

 (
th

ou
sa

nd
s)

Monolithic System Microservice 1 Microservice 2 Microservice 3 Microservice 4
Microservice 5 Total TD_M linear (before) linear (after)

Figure 2: TD M evolution of the five microservices and the monolithic system

The developers’ perceived TD also confirms this trend (RQ1.2).

During the focus group, the developers confirmed that during the first

months after the introduction of a new microservice, several activities were

postponed (Q4). In particular, the participants reported that a total of 29

activities were postponed during the development of the monolithic system,

while 30 were postponed during the development of the microservices (Ta-

ble 3). This was done because they wanted to prioritize the delivery of the

system in production.

Developers explained the vertical drops in the SonarQube TD, even be-

yond the points of introduction of new microservices, due to the process

they adopted to create the microservices. Microservices were initially cre-

ated by copying the code from the monolithic system into the microservice.

Then, developers started to integrate and refactor the code, with the result

of obtaining more clean code and reducing TD. This process took a different

25

time for each microservice, and this might explain the different delays on

the reduction of TD.

The participants reported that the increased amount of perceived TD

during the introduction of new microservices, was mainly due to two rea-

sons:

• The delivery of the system in production had the highest priority, and

sometimes required to make temporary sub-optimal choices, to deliver

on time.

• Need for writing the code connecting the monolithic system to the

microservices. The rationale behind this was that the development of a

new microservice involves duplicating the existing service and adopting

a large number of temporary solutions before the microservice becomes

stable.

Compared to the monolithic system, all the participants agreed that the

activities postponed in the microservices, even if they will accrue TD, will

be much easier to implement in the microservices than they would have been

in the monolithic system. They named the limited size of the microservices

as the main reason for this.

Regarding the amount of perceived TD after the migration (Focus Group

- Q3), the developers, the project manager, and the software architect had

different opinions. The software architect and the project manager per-

ceived the increase of effort in the microservices as a negative issue, since

the overall development cost increased by more than 20% due to the cost

of developing a distributed system. The increased overhead is in line with

previous research [6][1].

26

The software architect was also concerned about the architectural deci-

sions postponed due to the urgent need of releasing new features or fixing

bugs. However, both the project manager and the software architect felt

that the TD in the microservice-based system is lower and also grows slower

than in the monolithic system.

Developers also confirmed that TD decreased after the introduction of

the microservice and accumulates slower compared to the legacy monolithic

system. Moreover, they also reported being less under pressure after each

microservice became stable, compared to the work pressure they felt during

the development of the monolithic system.

Below are several examples of postponed technical decisions. For exam-

ple, in two microservices, the team kept the old SQL database, even though

they had planned to migrate to a NoSQL database. Another postponed de-

cision regarded the outdated libraries in the monolithic system. Upgrading

the libraries to newer versions would have required several changes in the

code, and the team decided to postpone doing this due to time constraints.

The third important postponed activity was the refactoring of the code ex-

tracted for microservice 5. The developers had planned to deeply refactor

the code extracted from the monolithic system before using it in production.

However, the refactoring had to be postponed because of an urgent new fea-

ture request impacting microservice 5. The team reported that they had

the choice of either implementing the new feature in the monolithic system

and then applying all the changes to the almost migrated microservice, or

implementing the new feature directly in the new microservice. Yet another

important postponed decision was the development of an API-Gateway. The

company used the RabbitMQ message bus as an API-Gateway, but they are

planning to migrate to a proper API-Gateway in the future. Overall, de-

27

spite all the voluntarily postponed activities, all the participants perceived

the overall TD as decreased.

RQ1 Summary: TD detected by SonarQube grew 90% slower in

the microservice-based system. After the initial introduction of each

microservice, TD grew for a limited period of time, because of the

legacy code was reused as it was. When the code of the microservice

was completely refactored and stabilized, TD decreased and started

growing linearly with a growing trend much lower than in the mono-

lithic system. TD perceived by the development team also follows the

same trends.

5.2. RQ2: How the different types of TD change after the migration to mi-

croservices?

As for distribution of the different SonarQube TD types (RQ2.1 - Fig-

ure 5), in order to determine whether the change in the relative distributions

between the different TD issue types was statistically significant, we applied

the Mann-Whitney test for each type, reporting the results in Table 2. As

the p-values are smaller than 0.01 for all types, we conclude that the relative

distributions of TD issue types did change after migration to microservices.

The results from the Cliff’s Delta test are also presented in Table 2. All

measured values of |d| were greater than 0.474 and thus the effect size is

considered large for all types. Also, the confidence intervals (CI) for d using

0.99 confidence are greater than 0.474.

Looking at the distinct TD types (Figure 5), a vast difference can be

noticed as well after the migration to microservices. In particular, TD M and

TD R had a negative coefficient after the migration, indicating a decrease

28

in TD after the adoption of microservices. Also, the coefficient of TD S was

reduced, resulting in a much slower TD growth rate.

Since the vast majority of business processes are still in the monolithic

system after the migration, we expect the TD M of the whole system to

be lower than the TD M of the monolithic system after all of the business

processes have been migrated.

Figures 2, 3, and 4 show the linear regression lines fitted to the data

before and after the migration to microservices together with the individ-

ual TD related to vulnerability, reliability, and maintainability, respectively.

The slope coefficients for the regression lines and their R2 values are reported

in Table 1.

0

500

1K

2K

2K

3K

3K

Aug-14
Oct-

14

Dec-1
4

Fe
b-15

Apr-1
5

Jun-15

Aug-15
Oct-

15

Dec-1
5

Fe
b-16

Apr-1
6

Jun-16

Aug-16
Oct-

16

Dec-1
6

Fe
b-17

Apr-1
7

Jun-17

Aug-17
Oct-

17

Dec-1
7

Fe
b-18

Apr-1
8

Jun-18

Aug-18
Oct-

18

TD
 in

 m
in

ut
es

 (
th

ou
sa

nd
s)

Monolithic System Microservice 1 Microservice 2 Microservice 3 Microservice 4
Microservice 5 Total TD_R linear (before) linear (after)

Figure 3: TD R evolution of the five microservices and the monolithic system

As in RQ1, the focus group enabled us to confirm the trend reported by

SonarQube and get more insights on the different qualities affected by the

migration (RQ2.1).

29

0

2K

4K

6K

8K

10K

12K

14K

Aug-14
Oct-

14

Dec-1
4

Fe
b-15

Apr-1
5

Jun-15

Aug-15
Oct-

15

Dec-1
5

Fe
b-16

Apr-1
6

Jun-16

Aug-16
Oct-

16

Dec-1
6

Fe
b-17

Apr-1
7

Jun-17

Aug-17
Oct-

17

Dec-1
7

Fe
b-18

Apr-1
8

Jun-18

Aug-18
Oct-

18

TD
 in

 m
in

ut
es

 (
th

ou
sa

nd
s)

Monolithic System Microservice 1 Microservice 2 Microservice 3 Microservice 4
Microservice 5 Total TD_S linear (before) linear (after)

Figure 4: TD S evolution of the five microservices and the monolithic system

As for the overall code quality (Focus Group - Q2), all of the participants

confirmed that the code in the microservices is easier to read and modify.

They also selected the created microservices as the components with the

highest quality. They did so even though the migration process did not

involve a complete rewrite of the code, as pointed out by the developers.

Instead, they refactored only parts of the code and largely reused the existing

code.

The participants assigned the postponed activities to four groups based

on their quality characteristics (Focus Group Q4): Performance/Efficiency,

Reliability, Security, and Maintainability. No activity was assigned to the

ISO/IEC 25010 [44] quality characteristics: Functionality, Compatibility,

and Usability. Each activity was assigned to only one group. Details on

the number of postponed activities are reported in Table 3.

It is worth noting that three out of four quality characteristics correspond

30

90 %

91 %

92 %

93 %

94 %

95 %

96 %

97 %

98 %

99 %

100 %

23-A
ug-14

23-N
ov-1

4

23-Feb-15

23-M
ay-1

5

23-A
ug-15

23-N
ov-1

5

23-Feb-16

23-M
ay-1

6

23-A
ug-16

23-N
ov-1

6

23-Feb-17

23-M
ay-1

7

23-A
ug-17

23-N
ov-1

7

23-Feb-18

23-M
ay-1

8

23-A
ug-18

 TD_M TD_R TD_S

Figure 5: Relative distribution of TD issue types.

to the TD categories proposed by SonarQube. Moreover, even though the

results are only related to the number of postponed activities and not to

the time needed to refactor them, we can still see an increased number of

postponed activities related to security characteristics.

The developers reported that during the development of the microser-

vices, they paid a lot of attention to the future maintainability of the

system. A reduction in the number of postponed activities regarding

maintainability-related aspects was therefore expected. This result is also

in line with the results obtained from SonarQube (RQ2.1), where the TD M

trend is inverted compared to the trend in the monolithic system. After the

introduction of each microservice, the TD M tended to decrease instead of

increasing as before.

Developers also reported that the migration had an impact on testing

the system. They reported that unit testing is easier in the microservices.

31

However, integration testing was considered much more complicated, mainly

because it is more complex to replicate the whole system locally on a de-

veloper’s machine. No differences were reported for end-to-end testing. All

the old Selenium tests10 that were performed on the graphical user interface

were executed without changes.

Considering security-related activities, the developers reported that the

migration to microservices forced them to postpone more activities com-

pared to when they developed the monolithic system. One of the main issues

experienced by the developers was that there was a single sign-on approach

between applications. The developers initially extended the authentication

system of the monolithic system to provide authorizations to the individual

services instead of implementing a system based on OAuth 2.011, as planned

by the software architect. The postponement of this activity was due to the

time pressure for delivering the new updates for the next tax year.

As for performance- and efficiency-related activities, the developers only

postponed one activity during the development of the microservices. They

reported that the performance had generally not been very important in the

past, as the system never had important performance issues. The only ex-

ception was uploading of the PDF invoices, which is a task a tax accountant

usually performs once a year in batch. Invoices need to be processed, sent

to the Italian Ministry of Economy and Finance, and then stored perma-

nently. The software architect and the development team planned to im-

plement this process with a serverless function to enhance the performance

10Selenium - Web Browser Automation. https://www.seleniumhq.org Last access: Au-

gust 2019
11OAuth 2. https://oauth.net/2/

32

and avoid over-sizing the whole infrastructure for an activity performed only

once a year. However, time constraints forced the developers to postpone

this activity to the next year as well.

Regarding reliability, the developers invested a lot of effort into getting

a reliable system. However, they had to postpone some activities because

of time pressure and technical reasons. Because of the NDA, we are not

allowed to describe all the postponed activities.

Table 3: Activities postponed before and during the migration to microservices

Before the Migration During the Migration

Performance/Efficiency 3 1

Reliability 5 2

Security 10 18

Maintainability 11 9

Total 29 30

RQ2 Summary: All the three types of TD decreased significantly

after the microservices got stable, with an important drop rate in T M

and TD R. This trend is also confirmed by developers, that they paid

attention to the different qualities of the microservices.

6. Discussion

The migration to microservices is a non-trivial task that requires deep re-

engineering of the whole system. This heavily impacts on the whole project

cost, but should also facilitate maintenance in the long run.

Our case company highlighted that if the system had remained mono-

lithic, they might have missed the deadlines of the annual updates of the

33

system. This was caused by the constant grow of TD, as each year it took

longer to adapt the system to the new tax rules. Therefore, despite the in-

creased overall development costs, the migration was considered beneficial.

The reasons for the extra costs were manifold. First of all, the developers had

to deal with a new system architecture. They also had to consider various

aspects, such as enabling the legacy system to communicate via Enterprise

Service Bus with the microservices, dealing with authentication issues, as

well as with process-related issues such as the introduction of the DevOps

culture.

Our case study on the migration to microservices confirmed our expec-

tations. As expected, the TD in the monolithic system was growing with

a higher rate than with microservices. This is confirmed by the significant

decrease of the maintenance predictors proposed by SonarQube, and thus a

reduction of the remediation effort related to ”code smells”, and by the per-

ception of the developers. Despite developers postponed a similar number of

activities during the development of the monolithic and of the microservice-

based system, they perceived a lower amount of TD, since they consider the

activities postponed in the microservice easier to implement and less trivial

then in the monolithic system.

The vast majority of postponed activities were related to quality aspects,

except for unit and integration tests. The most important type of postponed

activities were those related to architectural decisions, mainly because they

were not aware of common patterns and anti-patterns. As an example,

the developers connected all microservices point-to-point, instead of using

a message bus during the first period, and then they had to refactor the

systems, introducing the message bus later.

The focus group enabled us to get more insights on the benefits and

34

issues the company faced migrating to microservices.

The main benefits were decreased bug-fixing time and a large increase

in the system’s understandability. These were also the main initial expec-

tations the company had had for the migration. Other minor benefits were

the reduced need for synchronization between teams and the possibility to

deploy new features without re-compiling and re-deploying the whole sys-

tem.

However, regarding the main issues, the project manager and the soft-

ware architect highlighted higher development costs, possibly because the

developers used microservices for the first time. The developers highlighted

the complexity of connecting the different microservices to each other or to

the monolithic system. The monolithic system had the advantage of local

calls, while with microservices, they had to rely on a distributed system.

The extra cost was considered positive, as it included some activities that

had not been performed in the past or that had been postponed. With the

introduction of microservices, the company also introduced continuous de-

livery and increased the test coverage of the system in order to have higher

confidence in the automatic builds. Other important issues were related

to the availability of a microservice template, that in the case of the first

microservice was not perfectly suitable, and required some extra work.

The initial increase of TD after the introduction of each microservice was

probably due to the lack of a service template at the beginning. The second

microservice was not easy to develop, but it was easier than developing the

first one because of the availability of the template developed for the first

microservice. We recommend other companies investing more effort into

the definition of a set of service templates, as this will dramatically ease the

development of new microservices in the future.

35

Another important issue was related to the postponement of architec-

tural decisions. Continuous architecture principles recommend postponing

architectural decisions until they are really needed [47]. However, we ob-

served that implementing postponed architectural decisions requires signifi-

cantly more effort than it would have initially required. An example was the

usage of the lightweight message bus (RabbitMQ) as API-Gateway instead

of the using a proper API-Gateway. The SME of our case study is still using

RabbitMQ as their API-Gateway. However, they are aware that implement-

ing a proper API-Gateway at the beginning would have cost much less than

migrating from RabbitMQ after two years.

As for the results obtained by the SonarQube analysis, developers con-

firmed their interest in the measurement, and especially in security and

reliability rules. The team analyzed the most recurring violations in their

monolithic and in the microservices, realizing that rules commonly violated

in the monolithic system were not commonly violated in the microservices.

The reason might be that developers are now more trained on quality as-

pects than in the past, and that during the development of the microservices

they also paid a special attention on writing clean code.

Developers did not agree on the importance, and especially on the sever-

ity, of several rules considered harmful by SonarQube. As an example,

they did not consider harmful the rule ”Generic exceptions should never

be thrown”. SonarQube reports that using such generic exceptions as ”Er-

ror”, ”RuntimeException”, ”Throwable”, and ”Exception” prevents call-

ing methods from handling true, system-generated exceptions differently

than application-generated errors. This rule is classified by SonarQube as a

”Code Smell” (rules that decrease code maintainability) and of major sever-

ity. However, developers appreciated the availability of other rules, that in

36

their opinion are more severe than what is reported by SonarQube. As an

example, they consider rules related to unused variables but especially to

unused classes and methods, that enable them to understand if the method

or class should be removed or if it should have been used by another method

but for some unexpected reason it is not used. Developers also rated the

importance of the security rules high, as they enable them to spot security

vulnerabilities they were not able to manually identify.

As a result of the focus group, the company decided to adopt SonarQube

in production and to integrate it into their CD/CI pipeline. The next step

will be the identification of the actually harmful rules. For this purpose, in

future works, we will support them investigating the fault- and change-prone

rules combining their experience with the results of the actual change- and

fault-proneness of the rules detected on their source code using a similar

approach to the one we adopted on open-source projects [48][49][50].

Based on the the experience gained in this work, we recommend compa-

nies to first evaluate the need to migrate to microservices [51] and to care-

fully investigate possible migration opions [52]. Then, once they started to

develop the microservice-based system, to continuously apply quality mon-

itoring approaches in their development process, monitoring the technical

debt and code quality [53][54] but also technical debt at the architectural

levels, so as to avoid the presence of microservice anti-patterns [55] and bad

smells [56].

7. Threats to Validity

In this Section, we will introduce the threats to validity following the

structure suggested by Yin [57], reporting construct validity, internal va-

37

lidity, external validity, and reliability. Moreover, we will also debate the

different tactics adopted to mitigate them.

Construct Validity concerns the identification of the measures adopted

for the concepts studied in this work. We analyzed the TD using the model

provided by SonarQube. Therefore, different tools and approaches might

have provided different results. We are aware that other types of TD, such

as requirements TD or architectural TD, can heavily impact the TD of a

system. We are aware that the accuracy of the TD detected by SonarQube

might be biased [58]. However, SonarQube was the only tool that we were

allowed to use at the company. We are also aware that important postponed

activities could have created a large amount of TD. We mitigated this threat

by performing the focus group and by asking the teams to discuss other

possible types of TD. A more thorough discussion on the amount of TD

that these postponed activities will generate will be part of our future work.

Threats to Internal Validity concern factors that could have influenced

the obtained results. The postponed activities were collected using a group

discussion. It is possible that some developers did not want to publicly

expose some activities they had postponed.

Threats to External Validity concern the generalization of the obtained

results. The results of this paper are based on the monitoring of the devel-

opment process of a single company. The results could be slightly different

in other companies. However, based on previous studies on microservices,

the developers confirmed that microservices increase maintainability, code

readability, and system understandability [1]. Therefore, we expect that

other systems could also benefit from a decrease of the TD when migrating

to microservices. The microservices we investigated were structurally and

functionally similar. Therefore, systems implementing microservices with

38

different structures or functionalities might experience different results.

Threats to Reliability refer to the correctness of the conclusions reached

in the study. This study was a preliminary study, and therefore we applied

simple statistical techniques to compare the trends of the TD before and

after the migration. The results of the statistical technique applied are

also confirmed by Figure 1. We are aware that more accurate statistical

techniques for time series could have provided a more accurate estimate

of the difference of the slopes. However, we do not expect that different

statistical techniques would provide a contradictory result.

8. Conclusion

In this work, we compared the technical debt (TD) before and after

the migration to microservices of a twelve-year-old software project (280K

Lines of Code) developed by an Italian SME. This is one of the first studies

investigating Technical Debt in SMEs adopting Microservices [59].

We conducted a case study to investigate the different perspectives of

TD during the migration of microservices, including the TD detected at

code level by SonarQube and perceived by the developers

For this purpose, we analyzed with SonarQube the code TD of a system

under development (two years before and two years after the migration).

Then, we conducted a focus group to analyze the developers’ perceived TD

and the related postponed activities in depth and to get more insights into

the results.

The first result revealed that TD grew 90% slower after the development

of microservices. After the initial introduction of each microservice, TD

grew for a limited period of time, mainly because of the new development

39

activities. When the code of the microservice stabilized, TD decreased and

started growing linearly, with a growing trend much lower than for the

monolithic system.

Unexpectedly, when comparing the distributions of TD issue types be-

fore and after the introduction of microservices, important and statistically

significant differences emerged. The proportion of SonarQube issues classi-

fied as bugs and security vulnerabilities decreased, while code smells (main-

tainability issues) increased. Since microservices are supposed to facilitate

software maintenance, we expected a reduction of code smells.

The developers confirmed the overall results, perceiving reduced main-

tenance complexity and increased velocity. The overall development effort

increased after the introduction of microservices because of the extra effort

due to the re-development of the system, the connection of the legacy sys-

tem to the new microservices, introduction of a distributed authentication

mechanism, and many other activities not previously considered. However,

the manager confirmed that the increased velocity and team freedom com-

pensated for the required extra effort. For the company, it was especially

important that the migration allowed them to remain on the market, releas-

ing the annual tax rules update required by the government on time.

Future work will include an investigation of the impact of other types

of TD during the migration to microservices. We aim to analyze the same

projects using tools for detecting architectural smells. Moreover, we aim to

investigate TD due to temporary architectural decisions. Our next goal is to

understand how long different activities could be postponed before the ben-

efit of postponing an activity is canceled out by the increased effort needed

to refactor it. As an example, if an activity has an interest equal to zero

(i.e., if the development/refactoring effort does not increase if postponed),

40

it can be postponed until it is needed, whereas if an activity has a monthly

interest of 10% (i.e., 10% extra interest per month), it should be refactored

as soon as possible before becoming too expensive. Last, but not least, we

are also planning to investigate the evolution of TD in companies adopting

serverless functions [60] for the development of microservices-based systems,

so as to prevent anti-patterns and to keep TD under control [61].

As the company finally decided to adopt SonarQube in production, an-

other future work will focus on the identification of harmful SonarQube rules

and therefore, an accurate definition of the quality model to be used.

Acknowledgements

This research was partially supported by the ”SHAPIC” grant awarded

by the Ulla Tuominen Foundation (Finland)

References

References

[1] D. Taibi, V. Lenarduzzi, C. Pahl, Processes, motivations, and issues

for migrating to microservices architectures: An empirical investigation,

IEEE Cloud Computing 4 (2017) 22–32.

[2] D. Taibi, V. Lenarduzzi, C. Pahl, Architectural patterns for microser-

vices: A systematic mapping study, in: 8th International Conference

on Cloud Computing and Services Science (CLOSER), p. 8.

[3] H. Knoche, W. Hasselbring, Using microservices for legacy software

modernization, IEEE Software 35 (2018) 44–49.

41

[4] W. Cunningham, The wycash portfolio management system, in: OOP-

SLA ’92.

[5] Z. Li, P. Avgeriou, P. Liang, A systematic mapping study on technical

debt and its management, Journal of Systems and Software 101 (2015)

193 – 220.

[6] J. Soldani, D. A. Tamburri, W.-J. V. D. Heuvel, The pains and gains of

microservices: A systematic grey literature review, Journal of Systems

and Software 146 (2018) 215 – 232.

[7] S. de Toledo, A. Martini, A. Przybyszewska, D. I. Sjøberg, Architectural

technical debt in microservices: A case study in a large company, in:

Proceedings of the 2019 International Conference on Technical Debt,

TechDebt ’19.

[8] S. Newman, Building Microservices, O’Reilly Media, Inc., 1st edition,

2015.

[9] S. McConnell, Managing technical debt, ICSE Keynote (2013).

[10] P. Avgeriou, P. Kruchten, R. L. Nord, I. Ozkaya, C. Seaman, Reducing

friction in software development, IEEE Softw. 33 (2016) 66–73.

[11] A. Nugroho, J. Visser, T. Kuipers, An empirical model of technical

debt and interest, in: Workshop on Managing Technical Debt, MTD

’11, pp. 1–8.

[12] C. Seaman, Y. Guo, Chapter 2 - measuring and monitoring technical

debt, volume 82 of Advances in Computers, Elsevier, 2011, pp. 25 – 46.

42

[13] N. Zazworka, R. O. Sṕınola, A. Vetro’, F. Shull, C. Seaman, A case

study on effectively identifying technical debt, in: Int. Conf. on Evalu-

ation and Assessment in Software Engineering, EASE ’13, pp. 42–47.

[14] N. Zazworka, A. Vetro’, C. Izurieta, S. Wong, Y. Cai, C. Seaman,

F. Shull, Comparing four approaches for technical debt identification,

Software Quality Journal 22 (2014) 403–426.

[15] Y. Guo, R. Sṕınola, C. Seaman, Exploring the costs of technical debt

management – a case study, Empirical Software Engineering 21 (2016)

159–182.

[16] M. Fowler, K. Beck, Refactoring: Improving the design of existing code,

Addison-Wesley Longman Publishing Co., Inc. (1999).

[17] K. Mordal-Manet, F. Balmas, S. Denier, S. Ducasse, H. Wertz, J. Laval,

F. Bellingard, P. Vaillergues, The squale modela practice-based indus-

trial quality model, in: 2009 IEEE International Conference on Software

Maintenance, IEEE, pp. 531–534.

[18] J.-L. Letouzey, M. Ilkiewicz, Managing technical debt with the sqale

method, IEEE software 29 (2012) 44–51.

[19] B. Curtis, J. Sappidi, A. Szynkarski, Estimating the principal of an

application’s technical debt, IEEE software 29 (2012) 34–42.

[20] J. Fritzsch, J. Bogner, A. Zimmermann, S. Wagner, From monolith

to microservices: A classification of refactoring approaches, in: J.-M.

Bruel, M. Mazzara, B. Meyer (Eds.), Software Engineering Aspects of

Continuous Development and New Paradigms of Software Production

43

and Deployment, Springer International Publishing, Cham, 2019, pp.

128–141.

[21] N. Lu, G. Glatz, D. Peuser, Moving mountains practical approaches

for moving monolithic applications to microservices, in: International

Conference on Microservices (Microservices 2019).

[22] M. L. Abbott, M. T. Fisher, The Art of Scalability: Scalable Web

Architecture, Processes, and Organizations for the Modern Enterprise,

Addison-Wesley Professional, 2nd edition, 2015.

[23] C. Richardson, Pattern: Microservice architecture (2017).

[24] G. Kecskemeti, A. C. Marosi, A. Kertesz, The entice approach to de-

compose monolithic services into microservices, in: 2016 International

Conference on High Performance Computing Simulation (HPCS), pp.

591–596.

[25] T. Vresk, I. Cavrak, Architecture of an interoperable iot platform based

on microservices, in: MIPRO, IEEE, 2016, pp. 1196–1201.

[26] M. Gysel, L. Kölbener, W. Giersche, O. Zimmermann, Service cut-

ter: A systematic approach to service decomposition, in: European

Conference, ESOCC 20162016, pp. 185–200.

[27] R. Chen, S. Li, Z. Li, From monolith to microservices: A dataflow-

driven approach, in: 2017 24th Asia-Pacific Software Engineering Con-

ference (APSEC), pp. 466–475.

[28] A. A. C. De Alwis, A. Barros, A. Polyvyanyy, C. Fidge, Function-

splitting heuristics for discovery of microservices in enterprise systems,

44

in: C. Pahl, M. Vukovic, J. Yin, Q. Yu (Eds.), Service-Oriented Com-

puting, Springer International Publishing, Cham, 2018, pp. 37–53.

[29] T. D. Stojanovic, S. D. Lazarevic, M. Milic, I. Antovic, Identifying

microservices using structured system analysis, in: 2020 24th Interna-

tional Conference on Information Technology (IT), pp. 1–4.

[30] M. Cojocaru, A. Uta, A. Oprescu, Attributes assessing the quality of

microservices automatically decomposed from monolithic applications,

in: 18th International Symposium on Parallel and Distributed Com-

puting (ISPDC), pp. 84–93.

[31] D. Rud, A. Schmietendorf, R. R. Dumke, Product metrics for service-

oriented infrastructures product metrics for service-oriented infrastruc-

tures, in: Applied Software Measurement. Proceedings of the Inter-

national Workshop on Software Metrics and DASMA Software Metrik

Kongress (IWSM/MetriKon 2006).

[32] U. Zdun, E. Navarro, F. Leymann, Ensuring and assessing architecture

conformance to microservice decomposition patterns, in: M. Maximi-

lien, A. Vallecillo, J. Wang, M. Oriol (Eds.), Service-Oriented Comput-

ing, pp. 411–429.

[33] T. Engel, M. Langermeier, B. Bauer, A. Hofmann, Evaluation of

microservice architectures: A metric and tool-based approach, in:

J. Mendling, H. Mouratidis (Eds.), Information Systems in the Big

Data Era, Springer International Publishing, Cham, 2018, pp. 74–89.

[34] A. Chhonker, R. ”de Lemos”, Microservices architectures and tech-

45

nical debt: A self-adaptation view, in: International Conference on

Microservices (Microservices 2019).

[35] D. Taibi, V. Lenarduzzi, On the definition of microservice bad smells,

IEEE Software 35 (2018) 56–62.

[36] D. Taibi, V. Lenarduzzi, C. Pahl, Microservices architectural, code and

organizational anti-patterns, Springer Book on Microservices (2019).

[37] J. Bogner, T. Boceck, M. Popp, D. Tschechlov, S. Wagner, A. Zim-

mermann, Towards a collaborative repository for the documentation

of service-based antipatterns and bad smells, in: 2019 IEEE Interna-

tional Conference on Software Architecture Companion (ICSA-C), pp.

95–101.

[38] J. Bogner, J. Fritzsch, S. Wagner, A. Zimmermann, Limiting technical

debt with maintainability assurance: An industry survey on used tech-

niques and differences with service- and microservice-based systems, in:

Proceedings of the 2018 International Conference on Technical Debt,

TechDebt ’18, ACM, New York, NY, USA, 2018, pp. 125–133.

[39] J. Bogner, J. Fritzsch, S. Wagner, A. Zimmermann, Assuring the evolv-

ability of microservices: Insights into industry practices and challenges,

in: 35th International Conference on Software Maintenance and Evo-

lution (ICSME).

[40] G. Márquez, H. Astudillo, Helping novice architects to manage archi-

tectural technical debt in microservices architecture, in: XIII Jornadas

Iberoamericanas de Ingeniera de Software e Ingeniera del Conocimiento.

46

[41] F. Rademacher, S. Sachweh, A. Zndorf, Aspect-oriented modeling of

technology heterogeneity in microservice architecture, in: 2019 IEEE

International Conference on Software Architecture (ICSA), pp. 21–30.

[42] A. Brogi, D. Neri, J. Soldani, Freshening the air in microservices: Re-

solving architectural smells via refactoring, in: S. Yangui, A. Bouguet-

taya, X. Xue, N. Faci, W. Gaaloul, Q. Yu, Z. Zhou, N. Hernandez,

E. Y. Nakagawa (Eds.), Service-Oriented Computing – ICSOC 2019

Workshops, Springer International Publishing, Cham, 2020, pp. 17–29.

[43] P. Runeson, M. Höst, Guidelines for conducting and reporting case

study research in software engineering, Empirical Softw. Engg. 14

(2009) 131–164.

[44] ISO/IEC, ISO/IEC 25010 System and software quality models, Tech-

nical Report, 2010.

[45] P. E. McKnight, J. Najab, Mann-whitney u test, The Corsini encyclo-

pedia of psychology (2010) 1–1.

[46] R. J. Grissom, J. J. Kim, Effect sizes for research: A broad practical

approach., Lawrence Erlbaum Associates Publishers, 2005.

[47] M. Erder, P. Pureur, Continuous Architecture: Sustainable Architec-

ture in an Agile and Cloud-Centric World, Morgan Kaufmann, Ams-

terdam, 2016.

[48] N. Saarimäki, V. Lenarduzzi, D. Taibi, On the diffuseness of code

technical debt in java projects of the apache ecosystem, in: Second

International Conference on Technical Debt, TechDebt 19, IEEE Press,

2019, pp. 98–107.

47

[49] V. Lenarduzzi, F. Lomio, D. Taibi, H. Huttunen, Are sonarqube rules

inducing bugs?, International Conference on Software Analysis, Evo-

lution and Reengineering (SANER 2020). Preprint: arXiv:1907.00376

(2019).

[50] V. Lenarduzzi, N. Saarimki, D. Taibi, Some sonarqube issues have a

significant but small effect on faults and changes. a large-scale empirical

study, arXiv:1908.11590 (2019).

[51] M. F. Floria Auer, Valentina Lenarduzzi, D. Taibi, From monolithic

systems to microservices: An assessment framework, arXiv:1909.08933

(2020).

[52] D. Taibi, K. Systä, A decomposition and metric-based evaluation frame-

work for microservices, in: D. Ferguson, V. Méndez Muñoz, C. Pahl,

M. Helfert (Eds.), Cloud Computing and Services Science, Springer

International Publishing, Cham, 2020, pp. 133–149.

[53] A. Janes, V. Lenarduzzi, A. C. Stan, A continuous software qual-

ity monitoring approach for small and medium enterprises, in: 8th

ACM/SPEC on International Conference on Performance Engineering

Companion, ICPE ’17 Companion, pp. 97–100.

[54] V. Lenarduzzi, A. C. Stan, D. Taibi, D. Tosi, G. Venters, A dy-

namical quality model to continuously monitor software maintenance,

in: 11th European Conference on Information Systems Management

(ECISM2017).

[55] D. Taibi, V. Lenarduzzi, C. Pahl, Microservices Anti-patterns: A Tax-

onomy, Springer International Publishing, Cham, pp. 111–128.

48

[56] V. L. Ilaria Pigazzini, Francesca Arcelli Fontana, D. Taibi, Towards

microservice smells detection, in: IEEE/ACM International Conference

on Technical Debt (TechDebt2020).

[57] R. Yin, Case Study Research: Design and Methods, 4th Edition (Ap-

plied Social Research Methods, Vol. 5), SAGE Publications, Inc, 4th

edition, 2009.

[58] N. Saarimaki, M. T. Baldassarre, V. Lenarduzzi, S. Romano, On the

accuracy of sonarqube technical debt remediation time, in: 45th Eu-

romicro Conference on Software Engineering and Advanced Applica-

tions (SEAA 2019), pp. 317–324.

[59] V. Lenarduzzi, T. Orava, N. Saarimki, K. Systa, D. Taibi, An empir-

ical study on technical debt in a finnish sme, in: 2019 ACM/IEEE

International Symposium on Empirical Software Engineering and Mea-

surement (ESEM), pp. 1–6.

[60] J. Nupponen, D. Taibi, Serverless: What it is,what to do and what not

to do, in: International Conference on Software Architecture (ICSA

2020).

[61] D. Taibi, B. Kehoe, D. Poccia, Serverless: From bad practices to good

solutions, 2020. Under review.

[62] H. Maimbo, G. Pervan, Designing a case study protocol for application

in is research, PACIS 2005 Proceedings (2005) 106.

[63] V. Lenarduzzi, N. Saarimäki, D. Taibi, The technical debt dataset, in:

15th conference on PREdictive Models and data analycs In Software

Engineering, PROMISE ’19.

49

Appendix A The migration process adopted by the case com-

pany

In this Appendix, we summarize the process adopted by the case com-

pany to migrate their monolithic system to microservice.

The company started discussing the migration to microservices in April

2016. The software architect, together with the support of two consultants

with experience in migration to microservices, analyzed the feasibility and

the potential usefulness of the migration, estimating costs and evaluating

the availability and need of resources.

They decided to migrate, despite an estimated high initial cost due to

the migration overhead, as microservices often increase development veloc-

ity and enable teams to work independently, therefore reducing the hassle

during the very short time they have for implementing the new features ev-

ery year. Moreover, they decided to hire two consultants with experience in

the development of microservices and experience in decomposing monolithic

systems into microservices.

The company froze the development of the system between May and De-

cember 2016, implementing only critical bug fixes. During this time frame,

the company sent the developers to training courses on microservices, and

the software architect, with the support of the two consultants, started the

analysis of the monolithic system and planned the migration.

In January 2017, a team composed by four internal developers, and the

two consultants started implementing the first microservice. The consul-

tants had more than five years of experience with microservices. The four

internal members were experienced developers (two with more than 20 years

of experience in Java, and two with five years of experience in Java), but

50

with no experience on developing microservice, except from the experience

they had during the training course.

The migration process was implemented in three main steps.

Step 1 Identification of decomposition options, architectural guidelines, and

migration plan. The software architect and the consultants sliced the

system into independent microservices. First they analyzed the inter-

nal dependencies with Structure 10112. Then they identified decom-

position options based on the different services corresponding to the

business capabilities and proposed them together with a set of architec-

tural guidelines that all the extracted microservices should follow. As

an example, they decided that microservices should not communicate

directly with each other but should use the publishsubscribe pattern

to communicate through the RabbitMQ message bus13. Moreover,

they also decided to temporarily use RabbitMQ as API-Gateway. Fi-

nally, they involved all of the team members in the prioritization of

the microservices, discussing which services should be developed with

the highest priority. The priorities were assigned based on different

criteria. In some cases, services had high priority because they had a

lot of bugs, and the re-implementation as a microservice would enable

the developers to completely re-develop from scratch and thus to fix

the issues. In other cases, microservices were prioritized based on their

business priority. The only major constraint imposed of the company

was that during the period from December to April, only one service

could be migrated, as the highest priority had to be on adapting the

12Structure101 Software Architecture Environment - http://www.structure101.com
13RabbitMQ Message Broker. Online: https://www.rabbitmq.com

51

system to the new tax laws.

Step 2 Implementation of the first microservice. The company decided to im-

plement some of the new regulations in the first microservice, instead

of implementing them in the monolithic system and then migrating

them later. The first microservice was based on a low-risk component,

which would have made it possible to move all changes to the mono-

lithic system if major issues had arisen.

Before the implementation of the first microservice, the consultants

provided a skeleton of a sample microservice and supported the com-

pany in setting up a continuous delivery pipeline using Gitlab-CI14.

Step 3 Implementation of the other microservices. Based on the results of the

implementation of the first microservice, the other teams gradually

started the implementation of other microservices, based on the plan

proposed in Step 1.

Appendix B Study Protocol

As reported by Runenson and Höst [43], it is important to report a case

study protocol for case studies. For this purpose, in this Section, we report

protocol we adopted, following the guidelines they recommend [62].

The purpose of the protocol is to define the detailed procedures for col-

lection and analysis of the raw data, enabling other researchers to replicate

this study in other contexts.

This study was based on two sub-studies.

14https://about.gitlab.com/product/continuous-integration/

52

• Sub-Study 1: Automated TD analysis: In this step, we collected data

on code TD in system, before and during the migration.

• Sub-Study 2: Focus group to understand the usefulness of the TD

analysis and gather more qualitative insights

In the next Sections, we describe the procedure for the collection and

analysis of the two sub-studies.

B.1 Sub-Study 1: Automated TD Analysis

In this Step, we analyzed the TD of the project using SonarQube Sonar-

Qube15 (version 7.0).

B.1.1 Procedures

For the automatic TD analysis, we need access to the source code of the

company, and the possibility to execute SonarQube on the code. For this

purpose, one author scheduled weekly visits to the company where he was

able to access to the source code, collect the data, and execute the analysis.

As for NDA, all the analysis must be performed on the company servers.

The company provided a desk for our researcher, and a virtual machine

with 64 cores and 65GB of RAM for performing the analysis and install

SonarQube.

B.1.2 Data Collection

We first analyzed each commit of the monolithic project, starting from

August 2014, using the SonarQube default model. Then we extracted the

data from the SonarQube APIs.

15https://www.sonarqube.org

53

• SonarQube Analysis of all Commits: We first analyzed each com-

mit of the monolithic project, starting from August 2014, using the

SonarQube default model. For this purpose, we developed a script

to checkout each commit from the git repository in chronological or-

der, and execute the SonarQube analysis using the Sonar-Scanner for

Maven16. It is important to note that the analysis performed using

the libraries in the private Maven repository, hosted in the company

servers, to guarantee a successful compilation SonarQube analysis.

Then, we analyzed separately each microservices following the same

approach.

• Data Extraction from SonarQube After the monolithic project

and the microservices had been analyzed with SonarQube, we ex-

tracted the data related to the projects from SonarQube API, using the

”SonarQube Exporter” version 0.4.017. ”SonarQube Exporter” makes

it possible to extract SonarQube project measures and issues in CSV

format. The results provided by the SonarQube Exporter have the

same structure of the Technical Debt Dataset [63], with a table ”Mea-

sures” that reports all the measures analyzed by SonarQube such as

lines of code, code complexity and amount of comment lines, and the

table ”Issues” that include all the issues reported by SonarQube.

16Sonar-Scanner for Maven https://docs.sonarqube.org/latest/analysis/scan/sonarscanner-

for-maven/
17https://github.com/clowee/SonarQube-Exporter/releases

54

B.2 Sub-Study 2: Focus Group

The purpose of the Focus Group was to gain more qualitative insights

on the results provided by SonarQube The focus group was based on a

face-to-face semi-structured interview. The goal was to discuss whether the

migration to microservices had been beneficial and whether the participants

had experienced any of the expected benefits.

The focus group was moderated by one of the authors. The whole focus

group session was audio-recorded. To be able to do this, we obtained written

consent from all the participants. The relevant parts were transcribed and

then coded by the moderator of the focus group, and verified by one of the

authors.

B.2.1 Procedures

The focus group was planned to last up to 2.5 hours. We selected a

limited number of issues to be covered so that sufficient time can be allo-

cated for the participants to comprehend the issue and have a meaningful

discussion and interaction about them.

Selection of the Participants: Participants were selected among the

developers of the system. We invited all the team members involved in the

development of the monolithic and microservice system, except for develop-

ers with less than one year of experience in the monolithic system. Before

the focus group session, we sent an invitation email to the potential partic-

ipants, also reporting that the session would have been audio-recorded.

Focus Group Session Conduction: The session was moderated by

our last author, that carefully took care of managing the schedule to make

sure that all main contributions can be made during the allocated time.

The session was initiated by welcoming the participants and collecting

55

the informed consents, where participants agreed on collecting the data and

audio-recording the session. Then, the moderator made an introduction

describing the goals and ground rules of the session.

After the introductory session, that was planned to last 10 minutes, each

of the topics was presented one after another.

Tasks: The moderator acted as a chair of the session, supporting the

discussion and guiding the participants thru four different tasks:

• T1: Identification of benefits and issues perceived after the migration

to microservices

– Write the issues on the red Post-it notes and the benefits on the

yellow ones

– Collaboratively group the benefits and issues. Each member read

their issue and benefits and stick the Post-it note with the issues

on the left side of the wall and the ones with benefits on the right

side of the wall. In case of similar issues, the group discussed if

the issue or benefit must be merged with an existing one.

• T2: Identification of perceived changes of quality

– Write the qualities that changed on the Post-it notes

– Collaboratively group and discuss the qualities. The mod-

erator created eight areas on the wall, one for each of

the ISO/IEC 25010 [44] quality characteristics (Functionality,

Performance/Efficiency, Compatibility, Usability, Reliability, Se-

curity, Maintainability, Portability). Then, each participant red

their quality and sticked the Post-it note on the whiteboard. In

56

case of similar qualities, the group discussed if the issue or benefit

must be merged with an existing one.

• T3: Identification of perceived change on the TD

– The moderator first introduced the concept of TD. Then asked

the participant to discuss on their feeling on the TD, if it was

increased or not.

• T4: Identification of postponed activities before or during the migra-

tion to microservices

– Write the activities you postponed before the migration on the red

Post-it notes and the ones you postponed during the development

of the microservices on the yellow ones.

– Collaboratively group and discuss the activities and associate

them with the quality characteristics reported in T2

• General Feedback on the SonarQube analysis

– The moderator presented the results of the SonarQube analysis

to the participants.

– Discussion on the results of the SonarQube analysis

• Wrap-Up

B.2.2 Research Instrument

The Focus group was based on four tasks. Each task was driven by a

Question:

Q1 What benefits and issues have you perceived after the migration to

microservices?

57

Q2 Is the quality of the code changed after the migration to microservices?

Q3 Has the TD decreased after the migration to microservices?

Q4 Have you postponed any technical activities before or during the mi-

gration to microservices?

58

	1 Introduction
	2 Background
	2.1 Microservices
	2.2 Technical Debt
	2.2.1 Technical Debt Measurement

	3 Related Work
	3.1 Migration from Monolithic to Microservice
	3.2 Microservices and Technical Debt

	4 Case Study Design
	4.1 Goal and Research Questions
	4.2 Case and Subject Selection
	4.3 Study Execution and Data Collection
	4.4 Data Analysis

	5 Results
	5.1 RQ1: Is the TD of a monolithic system growing with the same trend as a microservices-based system?
	5.2 RQ2: How the different types of TD change after the migration to microservices?

	6 Discussion
	7 Threats to Validity
	8 Conclusion
	A The migration process adopted by the case company
	B Study Protocol
	B.1 Sub-Study 1: Automated TD Analysis
	B.1.1 Procedures
	B.1.2 Data Collection

	B.2 Sub-Study 2: Focus Group
	B.2.1 Procedures
	B.2.2 Research Instrument

