
Technical debt forecasting: An empirical study on open-source
repositories
Dimitrios Tsoukalas a,b,∗, Dionysios Kehagias a, Miltiadis Siavvas a,
Alexander Chatzigeorgiou b

a Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki 57001, Greece
b Department of Applied Informatics, University of Macedonia, Thessaloniki 54643, Greece

Keywords:
Technical debt
Technical debt forecasting
Machine learning
Empirical study

a b s t r a c t

Technical debt (TD) is commonly used to indicate additional costs caused by quality compromises
that can yield short-term benefits in the software development process, but may negatively affect the
long-term quality of software products. Predicting the future value of TD could facilitate decision-
making tasks regarding software maintenance and assist developers and project managers in taking
proactive actions regarding TD repayment. However, no notable contributions exist in the field of TD
forecasting, indicating that it is a scarcely investigated field. To this end, in the present paper, we
empirically evaluate the ability of machine learning (ML) methods to model and predict TD evolution.
More specifically, an extensive study is conducted, based on a dataset that we constructed by obtaining
weekly snapshots of fifteen open source software projects over three years and using two popular
static analysis tools to extract software-related metrics that can act as TD predictors. Subsequently,
based on the identified TD predictors, a set of TD forecasting models are produced using popular
ML algorithms and validated for various forecasting horizons. The results of our analysis indicate that
linear Regularization models are able to fit and provide meaningful forecasts of TD evolution for shorter
forecasting horizons, while the non-linear Random Forest regression performs better than the linear
models for longer forecasting horizons. In most of the cases, the future TD value is captured with a
sufficient level of accuracy. These models can be used to facilitate planning for software evolution
budget and time allocation. The approach presented in this paper provides a basis for predictive TD
analysis, suitable for projects with a relatively long history. To the best of our knowledge, this is the
first study that investigates the feasibility of using ML models for forecasting TD.
1. Introduction

The Technical Debt (TD) notion, a term inspired by the fi-
nancial debt of economic theory, was introduced in 1992 by
Ward Cunningham (Cunningham, 1993) as a metaphor intended
to describe the problem of introducing long-term problems to
software products, by not resolving existing quality issues early
enough in the overall software development lifecycle (SDLC). The
TD metaphor was initially related to software implementation
(i.e., at the code level) but was gradually extended to other
phases of the SDLC, i.e., software architecture, design, documen-
tation, requirements, and testing (Brown et al., 2010). In the same
manner like financial debt, TD incurs interest payments in the
form of increased future software costs, usually caused by poor

∗ Corresponding author at: Information Technologies Institute, Centre for
Research and Technology Hellas, Thessaloniki 57001, Greece.

E-mail addresses: tsoukj@iti.gr (D. Tsoukalas), diok@iti.gr (D. Kehagias),
siavvasm@iti.gr (M. Siavvas), achat@uom.gr (A. Chatzigeorgiou).
https://doi.org/10.1016/j.jss.2020.110777
0164-1212/

2020 Elsevier Inc. All rights reserved.
design and code quality. To effectively manage the identification,
quantification, and repayment of TD during the software devel-
opment lifecycle, researchers and practitioners have developed
and adopted a multitude of theories, methods and tools (Li et al.,
2015).

However, predicting the accumulated TD during the evolu-
tion of a software application is an open and challenging re-
search issue, as both the software system and its TD emerge
in parallel (Digkas et al., 2017). The opportunity to predict TD
is of paramount importance to software maintainability, which
is recognized as one of the most effort-intense activities in the
SDLC (Ampatzoglou et al., 2015a). System engineers and project
managers need the right tools and appropriate training sup-
port to be able to perform long-term effective software main-
tenance (Ampatzoglou et al., 2015a). Therefore, forecasting the
evolution of TD could be valuable in assessing the point at which
the software product could become unmaintainable and to iden-
tify software artifacts, which are prone to accumulate significant
levels of TD.

mailto:tsoukj@iti.gr
mailto:diok@iti.gr
mailto:siavvasm@iti.gr
mailto:achat@uom.gr
https://doi.org/10.1016/j.jss.2020.110777

2

Although the topic of predicting the evolution of various as-
pects directly or indirectly related to the TD concept, such as
code smells (Fontana et al., 2016a), fault-proneness (Arisholm and
Briand, 2006) and general software evolution trends (Chaikalis
and Chatzigeorgiou, 2015), has attracted the attention of both
academia and industry, to the best of our knowledge no studies
are focusing on the forecasting of TD itself (Tsoukalas et al., 2018).
Hence, a method or tool that would provide practical decision-
making support by predicting future TD of a software system
that is expected to evolve over time can be valuable to soft-
ware development teams. Consequently, software architects and
project managers would be able to gain a better understanding of
future TD issues and plan well in advance appropriate refactoring
activities for saving maintenance costs.

As a first step towards TD forecasting, in our previous work,
we have studied and applied statistical time series models for
TD Principal forecasting (Tsoukalas et al., 2019). Statistical time
series models are mostly univariate, i.e., they require only the his-
torical data of the variable of interest to forecast its future evolu-
tion behavior and have thus been widely used in the literature for
predicting software evolution trends, future change requests or
software defects (Chaikalis and Chatzigeorgiou, 2015; Yazdi et al.,
2014; Raja et al., 2009; Goulão et al., 2012; Kenmei et al., 2008).
We used a dataset of 5 real-world open-source Java applications
and found that the Autoregressive Integrated Moving Average
model ARIMA(0,1,1) can provide accurate TD Principal predictions
over a sufficiently long time period for all sampled applications.
However, even though the overall ARIMAmodel performance was
satisfactory for short-term TD Principal forecasting (up to 8 weeks
ahead), we observed that its predictive performance dropped
significantly for long-term predictions. Moreover, we concluded
that ARIMA models might prove difficult to tune, as one has to
follow the entire Box–Jenkins methodology (Box et al., 2015).

The work presented in this paper is a logical continuation
and extension of our previous efforts (Tsoukalas et al., 2019), in
order to provide a more complete approach for TD forecasting.
More specifically, we believe that we can achieve better scores
by trying out more advanced multivariate models able to support
feature engineering, i.e., take into account various TD-related
features and their combinations to generate better TD predic-
tions. Therefore, while in our previous study (Tsoukalas et al.,
2019) the main focus lied on univariate time series forecasting
methods, in the present paper we attempt to empirically evaluate
the ability of multivariate Machine Learning (ML) methods to
adequately forecast future TD trends of software applications and
achieve better and more practical results in both short-and long-
term predictions. Building multivariate models that, alongside the
evolution of the target variable, learn also from the evolution of
additional features related to the target variable is a widely-used
strategy (Bidarkota, 1998; du Preez and Witt, 2003), since the
covariation of time series that follow similar time-based patterns
can model interesting interdependencies and therefore improve
forecast accuracy. To this end, in this paper, we extend our initial
dataset by adding 10 more software applications (15 in total) and
investigate whether the combination of software-related metrics
acting as TD indicators and already existing ML forecasting meth-
ods could lead to the development of novel models that provide
predictions about the evolution of TD in a software project. To-
wards this direction, we have studied and applied various popular
ML methods, such as Regression, Regularization, Support Vector
Regression, and Regression Trees to forecast the evolution of TD
Principal.

The problem that our work attempts to solve can be summa-
rized in the following research question:

RQ: Is the usage of machine learning models on a specific set

of Technical Debt indicators a meaningful and accurate approach
to forecasting Technical Debt Principal in a long-lived, open-source
software?

The objective of this study is to evaluate the ability of ML
methods to model and predict the TD evolution of a software
application, based on a set of TD indicators selected as TD pre-
dictors. The viewpoint is that of researchers who intend to inves-
tigate how different ML approaches can be effectively adopted by
project managers and developers to accurately forecast the evo-
lution of TD Principal and thus, support planning and decision-
making. The context is an empirical study on TD Principal values
of 15 real-world open-source Java applications publicly available
in the GitHub repository. The included TD Principal values cover
almost 3 years of each application’s evolution, which corresponds
to nearly 150 snapshots in weekly intervals. As such, the re-
sulting models are expected to be meaningful in the context of
the dataset constructed for this study. A positive answer to the
formulated research question will suggest that ML models trained
on a selected set of Technical Debt indicators can potentially be
used as the basis for the construction of a TD Forecasting tool.
We will also investigate the extent to which these models can
properly capture the evolution of TD Principal values in terms of
accuracy and forecasting length.

To shed light on this question, we conducted an empirical
study following the roadmap illustrated in Fig. 1. Initially, we
studied the relevant literature and identified TD indicators that
could act as predictors, such as TD-related features and vari-
ous Object Oriented (OO) metrics. Afterward, we constructed a
relatively large code repository comprising 15 real-world open-
source Java applications retrieved from the GitHub1 online repos-
itory. For each application, we collected a subsequent number of
snapshots (commits) ranging from 100 to 150 in weekly intervals,
spanning up to almost 3 years of each application’s evolution.
This approach led to a dataset containing 1850 snapshots in total
(171M lines of code). In order to extract the identified TD-related
features and various Object Oriented (OO) metrics that could act
as predictors, we used two popular tools, namely SonarQube2
and CKJM Extended3 respectively. This process led to 15 inde-
pendent application-specific datasets containing TD indicators
and TD values for each snapshot. Subsequently, we employed
techniques like correlation analysis, univariate and multivari-
ate analysis, which allowed us to select the most statistically
significant TD predictors and thus retain as much discrimina-
tory information as possible. Finally, we examined potential ML
forecasting models and algorithms that could be applied for TD
prediction and compared their accuracy for various forecasting
horizons in order to reach safer conclusions regarding the signif-
icance of the observed results. To the best of our knowledge, this
is the first study in the field of TD that examines the applicability
of ML models for TD forecasting.

An overview of the methodology described above is presented
in Fig. 1.

The meaningfulness of any forecasting model is also related
to its ability of reflecting the developers’ perspective on whether
the modeled phenomena and predicted evolution are useful. To
this end, we have performed a survey to empirically evaluate the
meaningfulness of the TD forecasting approach introduced in this
study and to investigate the usefulness of the TD Forecasting con-
cept in general, via a questionnaire distributed to representatives
of a software company.

The rest of the paper is structured as follows: Section 2
presents the background concepts in the field of forecasting and
TD. Section 3 presents the related work in the field of forecasting

1 https://github.com/
2 https://www.sonarqube.org/
3 http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/

https://github.com/
https://www.sonarqube.org/
http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/

3

Fig. 1. Paper roadmap.
models and more specifically in their applicability for TD fore-
casting. Section 4 thoroughly describes data definition, collection
and pre-processing steps. Section 5 describes forecasting model
training, testing and benchmarking, as well as the current state
of technical implementation of the proposed approach. Section 6
presents the results of a survey that has been conducted to empir-
ically evaluate the meaningfulness of the TD forecasting approach
introduced in this study. Section 7 reports the limitations and
validity threats of this empirical study, while Section 8 discusses
significant implications for both research and practice. Finally,
Section 9 concludes the paper and discusses ideas for future work.

2. Background

This section provides an overview of relevant background on
Forecasting and TD, in order to introduce unfamiliar readers with
the main concepts of this paper.

2.1. Forecasting concepts

Forecasting is the process of making predictions of the future
based on past and present data, usually by analysis of trends. Be-
ing able to predict future values of an observed attribute plays an
important role in nearly all fields of science and engineering (Palit
and Popovic, 2006). Due to the increasing variety and complexity
of forecasting problems over the years, many forecasting tech-
niques have been developed, and continue to be developed until
today, each for a special use. The forecasting domain has been
influenced, for a long time, by statistical methods that can be
classified under two broad categories: causal (or associative) and
time series models. Causal models (including the widely used
regression analysis) assume that there is a cause-and-effect re-
lationship between the variable of interest and other variables,
and therefore try to discover that relationship to forecast future
values. Time series models (including the widely used ARIMA
model) treat the examined system as a black box and assume
that information needed to forecast is contained in a set of time-
dependent data that will continue to follow same patterns as in
the past (Das, 2012). During the last decades however, Machine
Learning (ML) models have drawn attention and have estab-
lished themselves as serious contenders to classical statistical
models in the forecasting community (Bontempi et al., 2013).
These models, also called black box or data-driven models, are
self-correcting learning algorithms that utilize supervised, unsu-
pervised or reinforcement learning to acquire knowledge of the
stochastic dependency between the past and the future, based

only on historical data.
The experts’ opinions regarding which of the two approaches
(i.e., time series and ML) yields more accurate predictions vary.
In a recent study by Makridakis et al. (2018), the authors claim
that ML methods need to become more accurate, requiring less
computer time, and be less of a black box. A major contribution
of their paper is in showing that traditional statistical methods
are more accurate than ML ones and pointing out the need to
discover the reasons involved, as well as devising ways to reverse
the situation. However, in their comparisons they made clear that
the results might be related to the specific dataset being used.
They believe that if the series are much longer in length, ML
methods can train their weights more optimally. On the other
hand, in related studies Werbos showed that Artificial Neural Net-
works (ANNs) can achieve better results compared to traditional
statistical methods such as linear regression and Box–Jenkins
(ARMA, ARIMA) approaches (Werbos, 1974, 1988). A similar study
by Lapedes and Farber (1987) concludes that ANNs can be suc-
cessfully used for modeling and forecasting nonlinear time series.
Recently, other models appeared such as regression trees, sup-
port vector regression and nearest neighbor regression (Friedman
et al., 2001; Alpaydin, 2010).

2.1.1. Causal or associative models
Causal, or associative, models assume that the variable that

needs to be forecasted is somehow related to other variables in
the environment through a cause-and-effect relationship. In this
case, the forecasting challenge is to discover the relationships
between the variable of interest and these other variables. These
relationships, which can be very complex, take the form of a
mathematical model, which is used to forecast future values of
the variable of interest. Some of the best-known causal models
are regression models, such as Linear and Multivariate regression,
or regularization models, such as Ridge and Lasso regression.

Linear and Multivariate regression are the most commonly
used techniques for modeling the relationship between two or
more independent variables and a dependent variable by fitting
a linear equation to observed data. In the simplest case, the
Linear regression model allows for a linear relationship between
the forecast variable and a single predictor variable. When there
are two or more predictor variables, Multivariate regression is
used. The main advantages of these techniques are their sim-
plicity and that they are supported by many popular statistical
packages. During Linear and Multivariate regression, the coeffi-
cients of these variables are estimated using the least squares
method. However, quite often simple linear regression models
are suffering from over-fitting or under-fitting. Hoerl and Ken-

nard (2000) and Tibshirani (1996) regression are some of the

4

simple techniques to reduce model complexity, reduce multi-
collinearity and prevent over-fitting by applying regularization,
i.e., add some more constrains to the loss function. In the case of
Ridge regression, those constraints are the sum of squares of the
coefficients multiplied by the regularization coefficient (lambda).
This regularization type is called L2. Lasso regression, works in a
similar way but instead of adding squares to the loss function it
adds absolute values of the coefficients. As a result, during the
optimization process, coefficients of unimportant features may
become zero, which allows for automated feature selection. This
regularization type is called L1.

2.1.2. Machine learning methods
ML models are self-correcting learning algorithms that utilize

various forms of learning, such as supervised, unsupervised or
reinforcement, to predict new outcomes based on previously
known results. Although most of these methods have existed for
a long time, it is only during the last decades that they have
drawn attention due to the constantly improving models, data
and processing capacities. While traditional statistical forecasting
techniques use only strictly formatted historical data, ML fore-
casting can take advantage of several data sources, since data
can be of different source, format, dimensionality, etc. However,
if not handled correctly, these methods can suffer from seri-
ous drawbacks such as the lack of interpretability (black box),
expensive computational requirements or overfitting. Some of
the most widely used ML forecasting models are Support Vector
regression, K-Nearest Neighbor regression, Decision Trees, Ran-
dom Forest regression and various ANN variants, such as Multi-
Layer Perceptron, Bayesian and Generalized Regression Neural
Networks (Makridakis et al., 2018).

Support Vector Machines (SVM) were originally developed for
solving classification problems but have been later extended to
the domain of regression problems. The goal of Support Vector
regression (SVR) (Drucker et al., 1997) is to find a function that
approximates the actually obtained target values for all the train-
ing data, and has a minimum generalization error. To achieve this,
it tries to learn a non-linear function by linearly mapping features
into high-dimensional, kernel-induced feature space. K-Nearest
Neighbor regression (Altman, 1992) is a nonparametric regression
method basing its forecasts on a similarity measure, i.e., the Eu-
clidean distance between the points used for training and testing
the method. Thus, given a number of inputs, the method picks the
closest training data points and sets the prediction as the average
of the target output values for these points.

As in the case of SVM, Decision Trees were originally de-
veloped for solving classification problems but were later ex-
tended to the domain of regression problems. A Regression Tree
(RT) (Breiman, 2017) is a variant of decision trees that is built
through an iterative process of splitting the data into partitions,
and then splitting it up further on each of the branches. Initially
all of the samples in the training set are put together in one node.
The algorithm chooses an independent variable with values that
minimize the sum of the squared deviations from the mean in
the separate parts. An enhanced version of the RT algorithm is
Random Forest (RF) method (Ho, 1998). RF is an ensemble of De-
cision Trees trained with the ‘‘bagging’’ method (Breiman, 1996).
Bagging repeatedly selects a random sample with replacement of
the training set and fits trees to these samples. After training,
predictions for unseen samples can be made by averaging the
predictions from all the individual regression trees or by taking
the majority vote.
2.2. Technical debt concepts

Nowadays, TD is seen as an important part of software man-
agement, as many studies have identified several causes for its
creation. Fowler (2003, 2009) states that software development
debt is usually a consequence of time pressure. Kruchten et al.
(2012) assign TD to YAGNI decisions (You Ain’t Gonna Need It)
that often result in unjustified and unnecessary investments in
new features, architecture, over engineering, etc. Fowler (2009)
proposes TD quadrant, a 2×2 matrix (Intentionality x Awareness),
to visualize four different pathways that lead to TD. McConnell
(2012) suggests a similar categorization, arguing that TD may
be unintentional and intentional. Unintentional debt is often a
consequence of poor coding practices, while intentional debt is
a result of non-optimal decisions that are committed on pur-
pose. Suryanarayana et al. (2014) point out that extreme situation
when accumulated TD is enormous and cannot be paid off could
lead to technical bankruptcy. Moreover, several recent studies
have highlighted the need to analyze TD from SDLC point of
view. Li et al. (2015) classify different TD types into ten levels
based on their occurrence during the main phases of a software
development process (i.e., requirements, design and architecture,
implementation, testing, building, documentation, infrastructure,
versioning, and defects).

2.2.1. Technical debt main components
The main component of TD is the Principal, which refers to the

cost that has to be paid in order to eliminate the debt, i.e., the
effort required to address the difference between the current and
the optimal level of design-time quality. Depending on the type
of TD, this can be translated into different kinds of activities,
such as code refactoring, documentation updates or improving
test coverage (Li et al., 2015). The second main component of
TD is Interest, which is composed of two parts: (i) the interest
amount, i.e., the potential penalty in terms of increased effort and
decreased productivity that will have to be paid in the future
as a result of not completing these tasks in the present (Sea-
man and Guo, 2011), and (ii) the interest probability, i.e., the
probability that the artifact that contains the debt will undergo
maintenance. When this additional effort (interest) reaches a
level that makes maintenance so difficult and expensive that the
system is no longer financially viable, the project is declared
bankrupted (Ampatzoglou et al., 2018).

2.2.2. Technical debt indexes
In an attempt to provide an empirical TD quantification and

assessment, various TD indexes, that is, indexes that offer an
evaluation of the overall quality (in terms of TD) of a software
application, have been proposed by researchers and subsequently
implemented as industrial tools (Fontana et al., 2016b). To quan-
tify their TD indexes, these tools, initially gather their atomic data
by calculating several TD indicators, such as OO metrics, soft-
ware quality metrics, violations or code and architectural smells.
Subsequently, to assess the quality of both the architecture and
the code of an application they employ well-known models for
modeling TD, such as the ISO/IEC 25010 standard (ISO/IEC, 2011),
and the Software Quality Assessment based on Lifecycle Expecta-
tions (SQALE) (Letouzey and Ilkiewicz, 2012) methodology among
others (Curtis et al., 2012; Marinescu, 2012; Letouzey, 2012).

Regarding the various TD indexes and corresponding tools
that have been proposed, in their study, Curtis et al. (2012) are
based on Software Economics theories and quantify TD as the
cost of violating architectural and code rules, giving three levels
of severity to violations: high, medium and low. To achieve that,
they introduce a cost function that quantifies principal and inter-
est taking as input the number of must-fix violations, the time

5

u
Q
p
a
a
T
a
n
c
r
t
i
a

required to fix each violation, and the cost for fixing a violation.
To further support their findings, they integrate their formula into
CAST,4 a tool that quantifies TD by identifying architectural and
code violations and categorizing them by quality attributes. In an-
other work, Marinescu (2012) introduces a novel framework for
assessing TD using a technique for identifying architectural smells
(called design disharmonies), detected by evaluating different
metric-based rules that cover the majority of the aspects of de-
sign, such as complexity, coupling, and encapsulation. The impact
of disharmonies is formulated as an index that uses three factors
for its calculation, namely influence, granularity, and severity.
This framework was integrated into inFusion,5 a tool that eval-
ates software quality by providing a global score known as the
uality Deficit Index (QDI). In a related study, Letouzey (2012)
resents the widely used SQALE method for monitoring and
ssessing the quality and TD of the source code of a software
pplication. One of the most representative tools for assessing the
D of a software product using the SQALE method is SQuORE,6
commercial quality management tool that uses four indicators
amely: efficiency, portability, maintainability, and reliability to
alculate code TD. For each of these indicators, a set of quality
ules is assigned. One of the advantages of this tool is that it
akes into account source code, unit tests, documentation qual-
ty, available functional requirements, etc. resulting in a more
ccurate and complete calculation of TD. Finally, SonarQube7 is

a widely-used open source platform for continuous inspection
of code quality that provides analysis functionalities and a wide
range of metrics for measuring code quality attributes. During the
previous years, SonarQube used the SQALE method to assess the
TD of a software product but has now switched to a different
method. More specifically, it now checks code compliance against
a set of classified coding rules and if the code violates any of
these rules, it considers it as a violation or a TD item. Other pop-
ular quality assessment tools that worth mentioning are Sigrid,8
Structure101,9 NDepend,10 and Teamscale.11

3. Related work

TD, a metaphor inspired by the financial debt of economic
theory, indicates quality compromises that can yield short-term
benefits in the software development process, but may negatively
affect the long-term quality of software products. Numerous tech-
niques, methods, and tools have been proposed over the years
for estimating and managing TD, providing a variety of options
to the developers and project managers of software applications.
However, apart from managing TD, predicting its future value is
equally important since this knowledge is expected to facilitate
decision-making tasks regarding software implementation and
maintenance, such as incurring or paying off TD instances. In
this section, we investigate the state-of-the-art and examine the
major contributions that have been made until today in the field
of TD forecasting.

Software evolution is a term used in software engineering
to refer to the process that starts with the development and
then provides incremental updates of the software. According

4 https://www.castsoftware.com/
5 inFusion tool is no longer supported and has been evolved into http:

//www.aireviewer.com/.
6 https://www.vector.com/int/en/products/products-a-z/software/squore/
7 https://www.sonarqube.org/
8 https://www.softwareimprovementgroup.com/solutions/sigrid-software-

assurance-platform/
9 http://structure101.com/products/workspace/

10 https://www.ndepend.com/
11 https://www.cqse.eu/en/products/teamscale/landing/
to Lehman’s laws of software evolution, software systems must
evolve over time or they will become irrelevant (Lehman, 1980).
Gaining a higher level of information about the evolution of large
software systems is a key challenge in dealing with increas-
ing complexity and decreasing software quality (Gall and Lanza,
2006). For this reason, the attempts to analyze, understand and
predict the evolution of a software system have increased consid-
erably in the last years (Godfrey and German, 2008), and nowa-
days, the terms software evolution and software maintenance
are often used as synonyms (Mens, 2008). In his work, Mens
(2008) stresses the need to develop better predictive models for
measuring and estimating the cost and effort of software main-
tenance and evolution activities with higher accuracy. Therefore,
the improvement of these models can be proven of great value
in software development, since being able to estimate the future
evolution of a software product, could provide valuable insight
for its quality as well.

According to ISO/IEC 25010 (ISO/IEC, 2011), which is a well-
accepted international standard, the notion of software quality
is hierarchically decomposed into a set of quality attributes, like
maintainability, reliability, and security. A multitude of quality
models have been proposed over the years allowing the as-
sessment and/or prediction of these quality attributes individu-
ally (Wagner, 2009; Van Koten and Gray, 2006; Zhou and Le-
ung, 2007). For instance, Wagner (2009) implements a model
based on Bayesian Belief Networks for assessing and predicting
the maintainability of a software application based on a set of
software metrics. Similarly, Van Koten and Gray (2006) try to
predict object-oriented software maintainability by applying a
Bayesian network, while Zhou and Leung (2007) approach the
same problem by using multivariate adaptive regression splines.

Since quality attributes are relatively abstract and difficult
to be measured directly from the artifacts of software products
(e.g., source code), ISO/IEC 25010 (ISO/IEC, 2011) further de-
composes them into a set of more concrete quality properties
(e.g., complexity), which can be directly quantified through com-
mon metrics (e.g., McCabe’s Cyclomatic Complexity). Similarly, to
the high-level quality attributes, a large number of methods have
been proposed to estimate the future evolution of software qual-
ity properties and metrics used to calculate them, such as future
number of changes (Yazdi et al., 2014; Kenmei et al., 2008; Chug
and Malhotra, 2016; Elish and Elish, 2009), software defects (Raja
et al., 2009; Nagappan et al., 2006), fault-proneness (Arisholm and
Briand, 2006; Goulão et al., 2012; Gondra, 2008; Khoshgoftaar
et al., 2002), code smells (Fontana et al., 2016a), and vulnerabil-
ities (Roumani et al., 2015). The majority of these methods try
to approach the subject by applying time series or ML prediction
models on individual software properties based on the analysis of
available information (historical data, trends, source code metrics,
etc.).

A commonly used technique to analyze the evolution of soft-
ware systems is time series analysis. In their study, Yazdi et al.
(2014) model the evolution of the design of software systems by
applying ARMA time series to several typical projects success-
fully. Based on the empirical results the authors point out that
time series models can predict the future changes of the next
revisions of the systems with sufficient accuracies. In another
study, Kenmei et al. (2008) use time series models to forecast
future change requests evolution and to identify trends based on
data collected from three large open source applications. They
highlight that time series are capable to model change requests
and act as a support tool for project staffing and planning. Like-
wise, Raja et al. (2009) use the time series approach to predict
defects in software evolution. They use defect reports for eight
open source projects and build time series models to predict soft-

ware defects which lead to the conclusion that the model may be

https://www.castsoftware.com/
http://www.aireviewer.com/
http://www.aireviewer.com/
https://www.vector.com/int/en/products/products-a-z/software/squore/
https://www.sonarqube.org/
https://www.softwareimprovementgroup.com/solutions/sigrid-software-assurance-platform/
https://www.softwareimprovementgroup.com/solutions/sigrid-software-assurance-platform/
http://structure101.com/products/workspace/
https://www.ndepend.com/
https://www.cqse.eu/en/products/teamscale/landing/

6

used to facilitate planning for software evolution budget and time
allocation. Finally, Goulão et al. (2012) build a time series model
to forecast the change requests evolution based on data collected
from Eclipse’s change request tracking system. Additionally, they
include the identification of seasonal patterns and tendencies,
which is important to validate that usage of seasonal information
significantly improves the estimation ability of this model, when
compared to other ARIMA models.

In addition to time series analysis, multiple studies address the
problem of forecasting the evolution of various aspects of soft-
ware quality by employing ML techniques. In their study, Chug
and Malhotra (2016) introduce a benchmarking framework for
predicting the number of changes, and therefore the maintain-
ability of a software application, using OO metrics as predictors.
Through their framework, they compare the effectiveness of 17
ML techniques (including linear regression, decision trees, SVM
and genetic algorithms) over seven open source systems. They
conclude that although good predictive performance is achieved
by almost all ML techniques, the genetically adaptive learning
models perform better than the others do. In a similar study, Elish
and Elish (2009) compare various ML techniques, such as mul-
tivariate linear regression, SVM, ANN, TreeNet, and regression
trees, also for predicting maintainability through the number of
line changes. Their results indicate that competitive prediction
accuracy is achieved when applying the TreeNet model. In the
same way, Fontana et al. (2016a) compare 16 different supervised
ML techniques for code smell detection using 74 software sys-
tems. They report that the highest performance is obtained by
using J48 and Random Forest algorithms, while code smells can
be detected with very high accuracy. Regarding fault-proneness
prediction, in a study conducted by Arisholm and Briand (2006),
the authors propose a multivariate regression model for predict-
ing fault-prone components of object-oriented legacy systems
by using history change and fault data from previous releases.
Moreover, in (Gondra, 2008), Gondra et al. propose the use of ML
to predict software fault-proneness. Their approach first employs
sensitivity analysis to select software metrics that are more likely
to indicate the existence of errors, and afterward, trains an ANN
to predict future fault-proneness. In a relative study, Nagappan
et al. (2006) use principal component analysis on code metrics
to build regression models that accurately predict the likeli-
hood of post-release defects. Finally, Khoshgoftaar et al. (2002)
use regression and classification trees to identify fault and non-
fault prone modules on multiple releases of a large scale legacy
telecommunications system, concluding that these algorithms
result in predictions with satisfactory accuracy and robustness.

The multitude of models that are available in the literature
for predicting the evolution of specific quality attributes and
quality properties reveal the importance of quality prediction
and forecasting in the software engineering community. How-
ever, with the evolution of a software system, accumulated TD
is evolving as well. Since TD is an indicator of software quality
(with an emphasis on maintainability), predicting its future value
is considered equally important. Various studies have focused
on analyzing the evolution of TD and its impact on software
development, from different perspectives (Digkas et al., 2017;
Ampatzoglou et al., 2018; Digkas et al., 2018; Tan et al., 2018;
Ampatzoglou et al., 2015b; Chatzigeorgiou et al., 2015). In their
study, Ampatzoglou et al. (2015b) highlight the need for know-
ing TD evolution, while stressing the need for project managers
to be able to preserve a software product maintainable for as
long as possible. For that purpose, Chatzigeorgiou et al. (2015)
introduce the term ‘‘breaking point’’, which refers to the point
in time when the accumulated interest will be equal to the TD
principal, i.e., the cost becomes higher than the benefit. Trying

to expand this work, Ampatzoglou et al. (2018) instantiate and
validate FITTED, a framework that assesses the breaking point of
source code modules to support decision making with respect
to investments on improving quality of a software, thus pro-
viding managers with an insightful decision-making tool. Hence,
forecasting the evolution of TD principal and interest could be
valuable for estimating the point in which the software product
could become unmaintainable.

To effectively predict how the TD of a software system will
progress in the future in order to improve the TD repayment
strategy, it is necessary to constantly monitor and analyze its
evolution. While the previously mentioned studies indicate that
there has been extensive research with respect to forecasting
the evolution of quality attributes and properties, directly or
indirectly related to TD, only a few contributions exist so far
regarding TD forecasting (Skourletopoulos et al., 2014; Tsoukalas
et al., 2019), indicating that it is a scarcely investigated field. The
need for forecasting the evolution of TD has been highlighted
by a recent study by Tsoukalas et al. (2018), in which the au-
thors raise the awareness of the gap in the field of TD. They
claim that an interesting topic would be to investigate different
efficient ways to produce TD forecasting models for accurate
prediction of TD principal and interest evolution. In addition, they
stress that it would be useful to examine if TD forecasting could
foster the development of high-quality software products. In a
first attempt towards this issue, Skourletopoulos et al. (2014)
introduce the concept of predicting TD for Software as a Service
(SaaS) systems, by exploiting COCOMO, a software cost model
proposed by Boehm et al. (1984). However, their study is limited
only to cloud computing systems. In another study (Tsoukalas
et al., 2019), the authors empirically evaluate the ability of time
series analysis to model and predict TD evolution in long-lived,
open-source software projects. They find that the autoregressive
integrated moving average model (ARIMA) can provide accurate
predictions over a fairly long period of up to 8 weeks. However,
they observe that predictive power decreases considerably for
longer forecasting horizons.

Under those circumstances, being able to forecast not only
the evolution of software quality but also the evolution of TD
principal and interest of a software system in the future is of
great significance and value. Through our study, we identified
some interesting open issues that should be addressed through
further research. In particular, no concrete contributions exist in
the related literature regarding TD forecasting, while there is still
a large volume of potential metrics and techniques that have not
been used and that could potentially enhance the completeness
of the software quality forecasting concept. Such a work would
enable project managers and developers to support decision-
making in uncertainty and plan precise payback strategies, in
order to manage TD promptly and avoid unforeseen situations
long-term.

4. Data definition, collection and preparation

For the execution of this study, we aimed at combining dif-
ferent TD-related features and metrics into a common dataset
(source triangulation) with the purpose of investigating if and
to what extent multivariate ML models can be used in order
to accurately predict the TD evolution of software applications.
This section describes in detail the definition, collection and pre-
processing of the dataset that was used later as input by the
produced TD forecasting models. As a first step towards creating
the TD-related dataset, we studied the literature and selected
an initial set of TD indicators. As soon as the appropriate TD
indicators were selected, we downloaded multiple consecutive
snapshots (commits) of 15 open-source projects and then used

7

the SonarQube12 and CKJM Extended13 tools to extract these in-
dicators, along with the TD Principal value of each snapshot. Once
the data collection step had finished, we performed data pre-
processing on the collected data. Techniques such as descriptive
statistics, correlation analysis, and feature selection were applied
on the dataset to prepare it as an input for forecasting models.
Finally, we restructured each application specific dataset to a
format that can be used as input to the forecasting models. In
what follows, the above procedure is presented in detail.

4.1. TD indicator definition

TD indicators allow to discover TD items by analyzing different
artifacts created during the SDLC. Most TD indicators proposed in
the literature are related to software metrics (Li et al., 2015; Alves
et al., 2016) that allow the assessment of attributes, features,
or characteristics of software artifacts. In the context of object-
oriented (OO) programming, various sets of metrics, such as the
metric suit proposed by Chidamber and Kemerer (1994) or the
Quality Model for Object Oriented Design (QMOOD) (Bansiya and
Davis, 2002), make it possible to characterize the size, complexity,
coupling and cohesion of the code among others. These metrics
have been widely used in the literature to predict maintenance
effort and maintainability (Riaz et al., 2009; Fioravanti and Nesi,
2001), which is the quality attribute that is most closely related
to TD. Besides OO metrics, code smells are also a well-known
indicator of the presence of code TD (Alves et al., 2016; Palomba
et al., 2018). Code smells are warning signs indicating possible
deeper problems in the design or code of software, often resulting
from the violation of at least one programming principle (Fowler,
1999). These problems may impede the software maintenance
process and impose the need for code refactoring (Fontana et al.,
2012). In addition, Automatic Static Analysis (ASA) tools, such
as FindBugs14 or Checkstyle,15 are also widely used to indicate
TD (Vetro’, 2012; Zazworka et al., 2014; Izurieta et al., 2012).
ASA tools allow the analysis of source code in search for bugs or
violations of good programming practices that can cause failures
or quality decay of the software. Most of these violations can
be removed through refactoring to avoid unforeseen problematic
situations (Zazworka et al., 2013).

As discussed above, OO metrics, code smells, issues extracted
from ASA tools, and software quality metrics extracted from qual-
ity assessment tools have been widely used in the literature as
indicators able to monitor and quantify TD and the quality of soft-
ware maintainability in general. In the approach presented in this
paper, we treat these indicators coming from different sources as
potential TD predictors (source triangulation) and combine them
with already existing forecasting methods to develop novel mod-
els that provide predictions about the future evolution of TD in a
software application. Two of the most popular and widely used
tools for calculating such TD indicators are SonarQube and CKJM
Extended. SonarQube is an open source platform for continuous
inspection of code quality that provides analysis functionalities
and a wide range of metrics for measuring quality attributes
of code, tests, and design. As of today, it has been adopted by
more than 120K organizations16 including nearly more than 100K
public open-source projects.17 In this study, SonarQube has been
used as proof of concept for research purposes, since according to
two recent studies on Technical Debt Management (Li et al., 2015;

12 https://www.sonarqube.org/
13 http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/
14 http://findbugs.sourceforge.net/
15 https://checkstyle.sourceforge.io/
16 https://www.sonarqube.org/
17 https://sonarcloud.io/explore/projects
Ampatzoglou et al., 2015a), it is the most frequently used tool for
estimating TD principal. In addition, another reason for selecting
this tool is the fact that it is highly customizable, allowing the
users to adjust the standard out-of-the-box set of rules (named
‘‘sonar way’’) that it provides in order to better meet their needs.
In a relevant study (Lenarduzzi et al., 2019), the authors sug-
gest that companies should continuously re-consider the adopted
SonarQube rules based on business’s objectives and preferences.
In a similar way, developers and users of the TD Forecasting tool
described in this study could fine-tune the rule-set of SonarQube
prior to obtaining TD-related measurements, so that predictions
can be tailored based on the company’s critical needs.

Therefore, in the present work, we opted for the TD-related
metrics18 that are provided by SonarQube, as our primary TD
Principal predictors. The version of SonarQube used within the
context of this work is 6.7.4. Furthermore, SonarQube was also
used to compute the target variable, i.e., to quantify the TD Prin-
cipal of the selected software applications. To do so, SonarQube
checks code compliance against a set of classified coding rules
and if the code violates any of these rules, it considers it as
a violation or a TD item. For each of the identified TD items,
SonarQube computes the remediation time (i.e., estimated effort)
needed to refactor it and considers it as TD.

To complement the TD predictor set we decided to account
also for the popular Chidamber and Kemerer (C&K) metrics and
Quality Model for Object Oriented Design (QMOOD) metrics (Chi-
damber and Kemerer, 1994; Bansiya and Davis, 2002). The reason
behind this choice is that C&K metrics, such as DIT, NOC, RFC,
LCOM and WMC, and QMOOD metrics, such as DAM, MOA, and
CAM have been intensively studied for their ability to predict
maintainability and maintenance effort (Riaz et al., 2009; Fiora-
vanti and Nesi, 2001) (see ‘‘Studies’’ column in Table 1). One of
the main limitations of SonarQube tool is the lack of OO detection
mechanisms. Therefore, to collect OO metrics for our applications,
we chose the popular CKJM Extended (Jureczko and Spinellis,
2010), an extended version of the CKJM open-source tool able to
calculate a wide range of metrics19 (including those defined in
C&K and QMOOD suites), by processing the bytecode of Java files.
Indicators extracted by CKJM Extended can be calculated at the
source-code level, and can be used to assess well-known quality
properties associated with the architecture of a software appli-
cation, such as complexity, coupling, cohesion, and inheritance
among others. In addition, CKJM Extended calculates C&K metrics
strictly according to the original (1994) definition by Chidamber
and Kemerer.

In Table 1, the metrics that were selected as TD indicators and
therefore used as independent variables for the creation of our
dataset are presented along with a short description. Moreover,
to strengthen the TD indicators selection, we provide references
to studies that relate each metric with TD and the quality of
software maintainability in general. The first half of the table
describes metrics computed by SonarQube, while the last half
describes metrics extracted by CKJM Extended. The target vari-
able, i.e., the variable that we want to forecast, is denoted here as
total_principal. We define total_principal as the effort (in minutes)
to fix all issues and we compute it as the sum of code smell, bug,
and vulnerability remediation effort.

At this point, it should be noted that an obvious choice of
related metrics to be included as independent variables in the
multivariate models that we investigate in this work are the
constituent components of TD Principal (i.e., total_principal) as
computed by SonarQube, i.e., the code smells, bugs, and vul-
nerabilities. However, apart from the TD Principal constituent

18 https://docs.sonarqube.org/latest/user-guide/metric-definitions/
19 http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/metric.html

https://www.sonarqube.org/
http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/
http://findbugs.sourceforge.net/
https://checkstyle.sourceforge.io/
https://www.sonarqube.org/
https://sonarcloud.io/explore/projects
https://docs.sonarqube.org/latest/user-guide/metric-definitions/
http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/metric.html

8

Table 1
TD indicators.
Metric Description studies

Project-level metrics (computed by SonarQube)

Technical debt metrics

sqale_index Effort to fix all code smell issues. The measure is stored in minutes.

reliability_remediation_effort Effort to fix all bug issues. The measure is stored in minutes.

security_remediation_effort Effort to fix all vulnerability issues. The measure is stored in minutes.

total_principal Effort to fix all issues. The sum of the three metrics mentioned above, i.e., code smell, bug
and vulnerability remediation effort. The measure is stored in minutes.

Reliability metrics

bugs Total number of bug issues of a project. Xuan et al. (2017) Griffith
et al. (2014) and Digkas
et al. (2017)

Security metrics

vulnerabilities Total number of vulnerability issues of a project. Griffith et al. (2014) Digkas
et al. (2017) and Siavvas
et al. (2019)

Maintainability metrics

code_smells Total number of code smell issues of a project. Digkas et al. (2017), Fontana
et al. (2012) Zazworka et al.
(2011) Olbrich et al. (2010)
Charalampidou et al. (2017)
Sjøberg et al. (2012) and
Mamun et al. (2019)

Size metrics

comment_lines Number of lines containing either comment or commented-out code of a project. Griffith et al. (2014) and
Karus and Dumas (2012)

ncloc Number of physical lines of a project that contain at least one character, which is neither a
whitespace nor a tabulation nor part of a comment.

Digkas et al. (2017) Mamun
et al. (2019) Lucca et al.
(2004) Eski and Buzluca
(2011) and Elish and Elish
(2009)

Coverage metrics

uncovered_lines Number of lines of code of a project, which are not covered by unit tests. Griffith et al. (2014)

Duplication Metrics

duplicated_blocks Number of duplicated blocks of lines of a project. (Griffith et al., 2014)
(Nugroho et al., 2011) and
(Marinescu, 2012)

Complexity metrics

complexity The Cyclomatic Complexity of a project calculated based on the number of paths through the
code.

Giger et al. (2012) Bruntink
and van Deursen (2006)
and Singh and Saha (2012)

Class-level metrics aggregated at project-level (computed by CKJM Extended)

Complexity metrics

AMC Average method complexity: The average method size for each class (number of Java binary
codes in the method), averaged for all project classes.

Karus and Dumas (2012)
and Zhou and Xu (2008)

WMC Weighted Methods per Class: The total number of methods that a class contains weighted by
their complexity values, averaged for all project classes.

Eski and Buzluca (2011)
Giger et al. (2012) Singh
and Saha (2012) Van Koten
and Gray (2006) Shatnawi
and Li (2008) Zhou and
Leung (2007) and Elish and
Elish (2009)

DIT Depth of Inheritance tree: The depth of inheritance tree for each class from the object
hierarchy top, averaged for all project classes.

Giger et al. (2012) Singh
and Saha (2012) Van Koten
and Gray (2006) Shatnawi
and Li (2008) (Zhou and
Leung, 2007) (Zhou et al.,
2012) and (Elish and Elish,
2009)

(continued on next page)
components that have an evident effect on the target variable
itself, we decided to investigate also other, not directly related
metrics (presented in Table 1), which however are known to
act as TD indicators, in order to examine whether they have an
equally (or more) significant impact on TD Principal. To this end,
the extensive feature selection analysis reported in Section 4.3
will allow us to come up with the best predictors set, tailored to
our dataset and experimental setup.

9

Table 1 (continued).
Metric Description studies

NOC Number of children: The number of immediate descendants (i.e., children) of a class, averaged
for all project classes.

Giger et al. (2012) Bruntink
and van Deursen (2006)
Shatnawi and Li (2008)
Zhou and Leung (2007)
Zhou et al. (2012) and Elish
and Elish (2009)

RFC Response for a class: The number of local methods plus the number of methods called by
class methods, averaged for all project classes.

Eski and Buzluca (2011)
Giger et al. (2012) Bruntink
and van Deursen (2006)
Singh and Saha (2012) Van
Koten and Gray (2006)
Shatnawi and Li (2008)
Zhou and Leung (2007) and
Zhou et al. (2012)

Coupling metrics

CBO Coupling between objects: The total number of classes coupled to a given class, averaged for
all project classes.

Eski and Buzluca (2011)
Giger et al. (2012) Singh
and Saha (2012) Shatnawi
and Li (2008) and Zhou
et al. (2012)

Ca Afferent coupling: The total number of other classes that call methods of the given class,
averaged for all project classes.

Karus and Dumas (2012)
Zhou et al. (2012) and Elish
(2010)

Ce Efferent coupling: The total number of other classes that their methods are called by the
given class, averaged for all project classes.

Karus and Dumas (2012)
Zhou et al. (2012) and Elish
(2010)

CBM Coupling between methods: The total number of parent classes to which a given class is
coupled, averaged for all project classes.

Eski and Buzluca (2011)
Giger et al. (2012) and
Singh and Saha (2012)

IC Inheritance coupling: The total number of new or redefined methods of a class to which all
its inherited methods are coupled, averaged for all project classes.

Eski and Buzluca (2011)
and Giger et al. (2012)

Cohesion metrics

LCOM Lack of Cohesion in Methods: The number of methods pairs in a class that are not
interrelated through the sharing of some of the class fields, averaged for all project classes.

(Eski and Buzluca, 2011)
Giger et al. (2012) Van
Koten and Gray (2006)
Shatnawi and Li (2008)
Zhou and Leung (2007)
Zhou et al. (2012) and Elish
and Elish (2009)

LCOM3 Lack of Cohesion in Methods: Similar to LCOM but ranging from 0 to 2. Singh and Saha (2012) and
Zhou et al. (2012)

CAM Cohesion Among Methods: This metric computes the relatedness among methods of a class
based on their parameter lists, averaged for all project classes (Range 0 to 1).

Eski and Buzluca (2011)

Other metrics

NPM Number of Public Methods: The total number of methods in a class that are declared as
public, averaged for all project classes.

Bruntink and van Deursen
(2006) Singh and Saha
(2012) Van Koten and Gray
(2006) Zhou and Leung
(2007) and Elish and Elish
(2009)

DAM Data Access Metric: The ratio of the number of private or protected fields to the total
number of fields declared in the class, averaged for all project classes (Range 0 to 1).

(Kaur and Anand, 2013) and
Goyal and Joshi (2014)

MOA Measure of Aggregation: The total number of data declarations (class fields) whose types are
user defined classes, averaged for all project classes.

Kaur and Anand (2013) and
Goyal and Joshi (2014)
4.2. Collection of data

To start the dataset construction process, we initially selected
15 popular open-source applications from the GitHub20 reposi-
tory. The selected 15 applications have different sizes and belong
to different application domains, which range from Networking
Software (e.g., Kafka, Dubbo, OKHttp, Retrofit, Openfire, Web-
Socket) to Business Software (e.g., OFBiz), and from Scientific
Software (e.g., SystemML) to Utilities Software (e.g., Commons
IO, Guava, Jenkins, ZXing). The selection criteria were based on
the software popularity, activity level, data availability, and the

20 https://github.com
Java programming language. More specifically, we exploited the
advanced search mechanism provided by GitHub by selecting
only Java projects in the ‘‘Languages’’ filter, and then sorting
the results based on ‘‘Most Stars’’ filter. This resulted to an ini-
tial set of Java applications ranked by their popularity. Next,
to assess the activity level of each application, we used the
‘‘Insights’’ GitHub functionality to examine the total number of
commits and compare it to the lifespan of the application. We se-
lected only applications whose commit activity was frequent (at
least once per week) and long-lived (at least 3 years). Moreover,
since SonarQube and CKJM Extended both work on compiled
classes to compute metrics values, selected projects needed to be
compilable, i.e., not producing any errors during compiling.

https://github.com

10
For each application that met the above criteria, approxi-
mately 150 snapshots (commits) in weekly intervals were fetched,
spanning up to 3 years of each project’s evolution. More precisely,
we opted for the last commit in every analyzed week as the
time point of analysis. The rationale behind this option, i.e., to
ensure fixed and weekly time intervals between the commits
is twofold. First, ensuring fixed time distance between the re-
trieved samples (i.e., commits) is critical for the reliability of
the produced forecasting models. Secondly, collecting snapshots
at weekly rather than daily intervals is a more viable solution
as rarely do projects keep daily commits. In addition to this,
another reason that led us to the decision to take snapshots
at weekly rather than daily intervals or even to analyze all
consecutive commits, is to avoid as many periods of inactivity
as possible, but not eliminate them. Periods of inactivity are
consecutive snapshots in which no significant new changes were
committed to a codebase. While including many such snapshots
could potentially introduce a high level of noise in the dataset,
including a reasonable number of ‘low or no activity’ periods is
important for an accurate model: Generating forecasts that (po-
tentially) indicate future periods of inactivity could prove useful
in practice for project managers in decision-making activities.
Choosing longer intervals (e.g., monthly) would probably reduce
the periods of inactivity even further, but it would result in
significantly fewer data and thus significantly lower forecasting
performance, whereas the produced models would be able to
provide forecasts only at a monthly basis and not for shorter
periods (e.g., some weeks ahead), which would restrict their
practicality in decision-making.

The approach described above led to a codebase containing up
to 1850 snapshots in total (171M lines of code). A sufficiently high
number of applications is fundamental to reach a conclusion that
does not depend on a specific dataset, allowing to generalize the
obtained results. For the purpose of constructing the dataset, a
dedicated crawler was created. In order to facilitate the repro-
ducibility and the extensibility of the present study, as well as
the construction of similar datasets, this crawler has been made
available online.21 In Table 2, the applications that were selected
for constructing the codebase are presented in detail.

After fetching the source code of each snapshot for the 15
selected applications, we proceeded to the next step, i.e., using
SonarQube and CKJM Extended (as described in Section 4.1) in
order to analyze each snapshot and build 15 application-specific
datasets consisting of the TD indicators described in Table 1. We
chose the format of each application-specific dataset to be the fol-
lowing: each row contains a specific snapshot of the application
in chronological order (time series), whereas the columns contain
the values of the TD indicators, plus one column containing
the value of total TD principal for that particular snapshot. This
format helped us also during the forecasting model construction
phase described later.

Since the work presented in this paper aims at modeling TD
evolution of the entire software project (system), rather than
predicting the TD of individual software artifacts (e.g., classes),
we performed data collection for each application at the sys-
tem level. In other words, each application snapshot (commit)
provided a single observation in the application-specific dataset.
TD-related metrics extracted by SonarQube analysis are com-
puted at system-level by default, so no further modifications
were needed. However, most of the metrics extracted by CKJM
Extended, such as DIT, RFC, and NOC, are originally defined at the
class level. Therefore, those metrics could not be directly used
as independent variables. For this purpose, we aggregated CKJM
metrics at system-level, i.e., we used their weighted mean among

21 https://sites.google.com/view/technical-debt-forecasting/main
classes. More specifically, in our approach the system-level value
of each metric is the aggregation of its class-level values weighted
by the lines of code of each class, divided by the total lines of code
of the system under analysis. This aggregation approach has been
used in relevant studies by Baggen et al. (2012) and Wagner et al.
(2015), but also in some of our previous studies as well (Siavvas
et al., 2017a,b).

4.3. Data preparation

Selection of independent (input) variables is a critical part in
the design of a ML algorithm. Each additional input unit adds
another dimension and contributes to the ‘‘curse of dimension-
ality’’ (Bellman, 2003), a phenomenon in which performance
degrades as the number of inputs increases. Furthermore, irrel-
evant or partially relevant features can negatively impact model
performance. Thus, after constructing our dataset, the next step
is to provide a clear understanding of the statistical attributes of
our variables, and then to reduce the number of input variables
described in Table 1 by keeping only the most important ones,
i.e., the ones that are highly significant for TD Principal forecast-
ing. Techniques like correlation analysis, univariate and multi-
variate analysis will allow us to retain as much discriminatory
information as possible.

In order to study the statistical significance of each indicator
over the TD quality and be able to safely perform dimensionality
reduction of our dataset, also known as feature selection, we
need to maximize diversity and representativeness by consider-
ing a comparable number of different heterogeneous applications.
The dataset we constructed and described in Section 4.2 for
forecasting purposes consists of 15 applications, a number that
may not be suitable for generalizing our findings and reach to
a generic conclusion regarding feature selection. Therefore, to in-
crease the size of our dataset for feature selection purposes, in ad-
dition to those applications, we have also exploited a benchmark
repository that consists of the 100 most popular Java libraries
(e.g., Junit, Xerces, HyperSQL, etc.) retrieved from the Maven
Repository.22 The same dataset was used in the study by Siavvas
et al. (2017a) for calibrating a Quality Assessment Model, as well
as in a similar study (Siavvas et al., 2017b) for investigating
the interrelationship of software metrics and specific vulnera-
bility types. For the purpose of this work, we further extended
the repository by adding 110 more Maven applications, based
on their popularity. As a result, the final benchmark repository
contains 210 open-source software Java applications, comprising
approximately 30 million lines of code, which is considered an
adequate number for the purpose of identifying most significant
TD indicators. To extract all required indicators from the extended
dataset, as in the case of the initial 15 applications, we analyzed
the source code of each application using SonarQube and CKJM
Extended, as described in Section 4.2. Finally, we merged these
metrics with the metrics obtained from the last snapshot of each
of our analyzed applications presented in Table 2, leading to an
extended dataset containing metrics from a total of 225 appli-
cations. We chose to add only the last snapshot of the analyzed
applications presented in Table 2 in order to ensure equal repre-
sentativeness, since each software application in the benchmark
repository is represented by only one commit. Furthermore, we
assumed that the last snapshot of each project would be more
mature and bigger in size compared to its previous snapshots.
This extended dataset can be found online.23

At this point, it should be noted that the extended dataset was
used only for correlation analysis and feature selection purposes,

22 https://mvnrepository.com/
23 https://sites.google.com/view/technical-debt-forecasting/main

https://sites.google.com/view/technical-debt-forecasting/main
https://mvnrepository.com/
https://sites.google.com/view/technical-debt-forecasting/main

11
Table 2
Applications of the TD dataset.
Application name Analyzed weekly snapshots Last

snapshot
LOC

Total
commits

GitHub
contributors

GitHub
stars

Description

Timeframe

apache/kafka 150 30/10/2015 −

−07/09/2018
116.000 7.055 621 14.8k Kafka is a platform used for building

real-time data pipelines and streaming apps.

apache/commons-io 150 11/09/2015 −

−27/07/2018
30.000 2.303 53 657 Commons IO library contains utility classes,

stream implementations, file filters, file
comparators, and much more.

apache/ofbiz 100 04/11/2016 −

−28/09/2018
243.000 24.427 20 678 OFBiz is an ERP system that houses a large

set of libraries, entities, services and features
to run all aspects of your business.

apache/systemml 150 02/10/2015 −

−10/08/2018
200.000 6.039 59 798 SystemML provides an optimal workplace for

machine learning using big data.

apache/groovy 150 25/12/2015 −

−02/11/2018
210.000 16.806 290 3.6k Groovy is a powerful, dynamic language,

with static-typing and static compilation
capabilities for the Java platform.

apache/nifi 100 04/11/2016 −

−28/09/2018
289.000 5.599 280 1.9k NiFi supports powerful and scalable directed

graphs of data routing, transformation, and
system mediation logic.

apache/incubator-dubbo 100 28/07/2017 −

−01/02/2019
67.000 4.139 279 20.3k Dubbo (incubating) is a high-performance,

Java based open source RPC framework.

google/guava 150 25/12/2015 −

−02/11/2018
114.000 5.190 219 35.8k Guava is a set of core libraries that includes

graphs, APIs/utilities for concurrency, I/O,
hashing, string processing, and much more!

square/okhttp 150 18/12/2015 −

−26/10/2018
24.000 4.438 198 35.8k OKHttp is an HTTP & HTTP/2 client for

Android and Java applications.

square/retrofit 100 27/01/2017 −

−21/12/2018
7.900 1.782 131 34.8k Retrofit is a type-safe HTTP client for

Android and Java by Square, Inc.

jenkinsci/jenkins 150 25/03/2016 −

−01/02/2019
147.000 29.265 599 14.8k Jenkins is the leading open-source

development workflow automation server.

spring-projects/spring-
boot

100 04/11/2016 −

−28/09/2018
15.000 25.004 646 28.6k Spring Boot makes it easy to create

Spring-powered, production-grade
applications and services with absolute
minimum fuss.

TooTallNate/Java-
WebSocket

100 17/03/2017 −

−25/01/2019
5.200 954 62 1.9k WebSocket server and client implementation

written in Java.

zxing/zxing 100 10/03/2017 −

−01/02/2019
29.000 3.524 96 24.6k ZXing is an open-source, multi-format 1D/2D

barcode image-processing library
implemented in Java.

igniterealtime/Openfire 100 18/11/2016 −

−12/10/2018
100.000 9.214 114 2.1k Openfire is a real time collaboration (RTC)

server that uses the only widely adopted
open protocol for instant messaging, XMPP.
as the additional 210 applications obtained from the benchmark
repository do not contain project history (past commits), and
therefore, are not suitable for forecasting model experiments.
After feature analysis and selection, we switched back to our
original dataset, containing 15 applications with their commit
history (1850 commits in total) for forecasting model training.

4.3.1. Descriptive statistics
Descriptive statistics is the term given to the analysis of data

that helps describe data in a meaningful way, allowing for simpler
interpretation. It provides simple summaries about the sample
and about the observations that have been made. Descriptive
statistics include measures of central tendency, such as the mean,
median, and mode, and measures of variability, such as standard
deviation, variance, the minimum and maximum variables, and
the kurtosis and skewness. After extracting the metrics of each
application (using SonarQube and CKJM Extended) and merging
them into a common dataset as described in the previous section,
the descriptive statistics of TD indicators calculated based on the
extended dataset are presented in Table 3. As a reminder, the
extended dataset comprises a superset of the dataset that was
constructed for forecasting purposes (i.e., the 15 applications pre-
sented in Table 2) and the additional 210 applications that were
added at a later stage for feature selection purposes. Therefore,
for the computation of the statistical metrics presented in Table 3
we have included all 225 applications. For the conduction of our
experiments, we used the Python programming language and
more specifically the Pandas24 data analysis library.

Metrics that vary little are not likely to be useful predictors. In
our case, from Table 3 we observed that for all metrics there are
significant differences between the lower 25th (lower) percentile,
the median, and the 75th (upper) percentile, thus showing strong
variations. Therefore, all metrics were selected to be used for
subsequent analysis. We also observed that, as it is the case with
software engineering data (Chidamber and Kemerer, 1994), most
of our metrics are highly skewed, which means that few outlier
observations may substantially affect the results, if not treated
carefully. To mitigate this risk, in the rest of the analysis that
follows we opted for techniques that perform well when the
distribution of values in the feature space cannot be assumed.

In Fig. 2, histograms of each metric are presented to further
complement our initial analysis. We used histograms to further
examine the normality and skewness of each metric. A normal

24 https://pandas.pydata.org/

https://github.com/apache/kafka
https://github.com/apache/commons-io
https://github.com/apache/ofbiz
https://github.com/apache/systemml
https://github.com/apache/groovy
https://github.com/apache/nifi
https://github.com/apache/incubator-dubbo
https://github.com/google/guava
https://github.com/square/okhttp
https://github.com/square/retrofit
https://github.com/jenkinsci/jenkins
https://github.com/spring-projects/spring-boot
https://github.com/spring-projects/spring-boot
https://github.com/TooTallNate/Java-WebSocket
https://github.com/TooTallNate/Java-WebSocket
https://github.com/zxing/zxing
https://github.com/igniterealtime/Openfire
https://pandas.pydata.org/

12
Table 3
Descriptive statistics of TD indicators (extended dataset).
Metric Mean value Standard

deviation
Minimum value Lower quartile Median value Upper quartile Maximum value Skewness Kurtosis

bugs 29.665 61.148 0 3 9 30 585 5.286 37.601
vulnerabilities 38.818 125.935 0 1 7 32 1598 9.675 114.507
code_smells 858.660 2095.092 2 94 235 732 16442 5.551 35.262
comment_lines 5113.780 15587.257 1 387 1381 3889 170698 8.203 77.661
ncloc 19524.278 37253.222 175 2655 7068 20438 357664 5.262 38.091
uncovered_lines 9815.507 17856.102 32 1302 3297 10288 137326 3.905 19.212
duplicated_blocks 110.177 429.327 0 0 12 47 4219 7.771 67.183
complexity 3914.024 7420.959 11 421 1352 4284 61862 4.275 23.544
AMC 53.370 74.382 9.407 25.374 36.565 52.876 819.191 6.697 58.288
WMC 36.399 82.087 2.085 12.638 18.921 31.524 814.007 7.136 57.322
DIT 0.760 0.309 0 0.655 0.813 0.964 1.523 −0.936 0.977
NOC 0.527 1.900 0 0.080 0.261 0.481 26.770 12.828 176.915
RFC 71.453 90.004 11.618 39.508 54.295 78.112 993.299 7.631 69.342
CBO 17.177 21.071 0 9.056 13.554 18.983 245.469 7.139 68.779
Ca 6.243 8.145 0 2.463 3.850 7.399 73.761 4.974 31.903
Ce 12.425 18.100 0 5.922 9.664 13.024 210.225 7.710 73.955
CBM 0.143 0.231 0 0.026 0.085 0.164 2.340 5.366 41.706
IC 0.098 0.106 0 0.025 0.071 0.137 0.595 2.054 5.452
LCOM 442.525 1552.824 −12160.67 61.584 153.151 503.916 13693.182 0.885 46.386
LCOM3 0.863 0.151 0.435 0.776 0.840 0.916 1.648 1.377 5.060
CAM 0.337 0.081 0.050 0.278 0.333 0.377 0.683 0.858 3.011
NPM 23.251 51.913 0.250 8.009 12.287 21.058 655.642 9.550 109.341
DAM 0.661 0.178 0.024 0.574 0.682 0.779 1.000 −0.952 1.526
MOA 3.579 7.849 0 0.761 1.591 3.263 81.424 6.701 56.123
Fig. 2. Histograms of TD indicators (extended dataset).
distribution is symmetric and bell-shaped. We observed that
most of the metrics are not normally distributed.

To further validate this finding we used boxplots, which can be
found online25 as supportive material. Boxplots provide a stan-
dardized way of displaying the distribution of data. These graphs
divide the dataset into a five-number summary: the minimum,
first quartile (Q1), median, third quartile (Q3), and maximum.
Outlier observations are often easy to identify by inspecting a
boxplot, since they are plotted as individual points lying out-
side the boundaries set by the minimum and maximum values.
We observed that some of the metrics seem to have outlier

25 https://sites.google.com/view/technical-debt-forecasting/main
observations. We further investigated these findings during the
univariate (one variable outlier) and multivariate (two or more
variable outlier) analysis described below.

4.3.2. Correlation analysis
As previously stated, performance of a ML algorithm degrades

as the number of inputs increases. Irrelevant or partially relevant
features can negatively affect model performance. In order to
successfully reduce the number of input variables by keeping
only the most important ones, we first applied Spearman’s rank
correlation coefficient (ρ) (Spearman, 1987) analysis between
TD Principal as computed by SonarQube and each TD indicator
described in Table 3 for the 225 applications. Spearman’s rank
correlation was selected, as it is a nonparametric test that is

https://sites.google.com/view/technical-debt-forecasting/main

13
not sensitive to outliers. Additionally, it does not assume any
distribution for the studied data, which is important in our case,
as our data did not seem to follow any known distribution. To
interpret the strength of the correlations Cohen (1977) suggestion
was used. According to Coehen et al. a correlation less than 0.3
is considered weak, between 0.3 and 0.5 is considered moderate,
and above 0.5 is considered strong. Finally, to ensure that the ob-
served associations did not occur by chance, the correlations were
tested for statistical significance. For this purpose, the p-value of
each correlation was examined. A p-value of 0.05 means that we
are 95% confident that the observed association has not occurred
by chance. Hence, we examined the statistical significance of the
observed correlations at 95% level of confidence.

In Fig. 3, the correlation between each metric is illustrated
based on color warmness, i.e., the more red a box, the higher the
correlation between the corresponding metrics. We focused on
the last row, which represents the correlation between our de-
pendent variable, i.e., TD Principal and each independent variable,
i.e., TD indicators.

To further complement Spearman’s correlation analysis, the
correlations between TD and each TD indicator, as well as the sig-
nificance (p-value) of each correlation are presented in numbers
in Table 4. To facilitate the readability of the correlation table,
alphabetical symbols are used to denote the strength of each cor-
relation based on the Coehen’s et al. suggestion described above.
In particular, the values marked with (a), (b) and (c) correspond to
weak, medium and strong correlations respectively. In addition,
statistically significant p-values (p = < 0.05) are marked in bold,
while not statistically significant p-values (p > 0.05) are in regular
font.

As a first step towards feature selection, metrics that have
either a low correlation score (i.e., correlation < 0.3), or a non-
significant statistical correlation (i.e., p-value > 0.05) with respect
to TD were marked as candidates for removal. In particular, five
metrics were identified as non-correlated (i.e., CBM, IC, LCOM3,
CAM, DAM), while 3 metrics had statistically insignificant corre-
lations (i.e., RFC, CE, LCOM) with respect to TD and consequently
were filtered out, leaving 16 out of 24 TD indicators for further
analysis.

4.3.3. Univariate analysis
After applying the correlation analysis as the first filter to-

wards feature selection, we considered to apply a univariate
regression analysis between each remaining metric (TD indicator)
and the TD for the extended dataset (225 applications). The
importance of controlling for potential confounders in empirical
studies of object-oriented products has been emphasized in the
study by El Emam et al. (2001). Univariate regression focuses on
determining the relationship between one independent variable
(i.e., each metric) and the dependent variable (i.e., TD Principal)
and has been widely used in software engineering studies to ex-
amine the effect of each metric separately (Arisholm and Briand,
2006; Zhou and Xu, 2008; El Emam et al., 2001). Thus, we used
this method as a second filter, to help us with the process of
removing metrics whose underlying relationship is not statisti-
cally significant to TD. During descriptive statistics however, we
observed that most of the metrics were highly skewed. In order
to render the data suitable for univariate regression analysis we
applied the natural logarithm log(ln) transformation to the values
of the remaining metrics (Makridakis et al., 2018). Using the nat-
ural logarithm reduces the skew of the response and predictors
(linear regression assumptions include normal distribution of the
residuals).

Table 5 summarizes the results of the univariate linear regres-
sion analysis for each metric, applied on the extended dataset
Table 4
Spearman’s rank correlation of TD indicators (extended dataset).
Metric Correlation with

total principal
p-value

Project-level metrics (computed by SonarQube)

Reliability metrics

bugs 0.784c 8.10023e−45
Security metrics

vulnerabilities 0.722c 5.25492e−35
Maintainability metrics

code_smells 0.962c 1.0044e−118
Size metrics

comment_lines 0.838c 3.77265e−91
ncloc 0.917c 2.20628e−58

Coverage metrics

uncovered_lines 0.929c 2.45155e−56
Duplication metrics

duplicated_blocks 0.846c 1.23839e−84
Complexity metrics

complexity 0.915c 2.35973e−83
Class-level metrics aggregated at project-level (computed by CKJM)

Complexity metrics

AMC 0.349b 8.79842e−10
WMC 0.408b 2.83379e−09
DIT −0.471b 6.05013e−13
NOC 0.396b 8.26175e−09
RFC 0.463b 0.106134

Coupling metrics

CBO 0.568c 0.0376558
Ca 0.562c 2.88947e−19
Ce 0.492b 0.442171
CBM 0.053a 7.94597e−19
IC 0.003a 3.53632e−14

Cohesion metrics

LCOM 0.385b 0.958871
LCOM3 0.112a 6.03566e−07
CAM −0.144a 2.4988e−11

Other metrics

NPM 0.440b 0.015035
DAM −0.168a 2.09667e−07
MOA 0.337b 1.66596e−12

aWeak correlation
bMedium correlation
cStrong correlation

Table 5
Univariate analysis results of TD indicators (extended dataset).
Metric R2 p-value Standard error Relationship

bugs 0.625 0.000 0.048 +

vulnerabilities 0.528 0.000 0.045 +

code_smells 0.931 0.000 0.019 +

comment_lines 0.685 0.000 0.036 +

ncloc 0.823 0.000 0.033 +

uncovered_lines 0.847 0.000 0.029 +

duplicated_blocks 0.692 0.000 0.031 +

complexity 0.812 0.000 0.032 +

AMC 0.107 0.000 0.164 +

WMC 0.131 0.000 0.131 +

DIT 0.143 0.000 0.518 –
NOC 0.037 0.005 0.311 +

CBO 0.298 0.000 0.136 +

Ca 0.317 0.000 0.132 +

NPM 0.160 0.000 0.127 +

MOA 0.098 0.000 0.141 +

14
Fig. 3. Spearman’s rank correlation of TD indicators (extended dataset).
(225 applications). Column ‘‘R2’’ gives the coefficient of deter-
mination, i.e., the proportion of the total variation in the de-
pendent variable that is explained by the model. Columns ‘‘p-
value’’, ‘‘Standard error’’, and ‘‘Relationship’’ show the statistical
significance, the standard error, and the sign of the regression
coefficient for the independent variable, respectively.

We set the significance level at α = 0.05. Metrics with
p-values lower than 0.05 (p-value ≤ 0.05) are considered sta-
tistically significant to TD, and therefore can be selected as TD
indicators for further analysis. On the contrary, metrics with p-
values greater than 0.05 can be removed from further analysis,
since they are not considered statistically significant. In our case,
all 16 remaining metrics had p-values lower than 0.05. Therefore,
no further metrics were dropped during this step.

4.3.4. Multivariate analysis
Since univariate analysis did not filter out any metrics, we pro-

ceeded with applying multivariate regression analysis (Efroym-
son, 1960) as a final filtering step towards feature selection. While
univariate analysis is used to examine the effect of each inde-
pendent variable on the target variable separately, multivariate
analysis examines the common effectiveness of a set of indepen-
dent variables at predicting the dependent variable. Multivariate
analysis is usually combined with Stepwise regression (Efroym-
son, 1960), a feature selection method in which the choice of
predictive variables is carried out by an automatic procedure,
thus allowing for removing independent variables based on their
significance (p-values). Backward Elimination, a special type of
Stepwise regression, involves starting with all candidate vari-
ables, testing the deletion of each variable using a multiple linear
regression, deleting the variable whose loss gives the most sta-
tistically insignificant deterioration of the model fit (i.e., highest
p-value), and repeating this process until no further variables can
be deleted without a statistically significant loss of fit (i.e., until

all remaining variables have p-values less than the user-defined
significance level). This technique has been widely used in em-
pirical software engineering studies to examine the effects of
combined metrics on the software quality, defect or code smells
prediction (Arisholm and Briand, 2006; Nagappan and Ball, 2005;
Challagulla et al., 2005; Munson and Khoshgoftaar, 1990; Khosh-
goftaar and Munson, 1990). During this step, all metrics reported
in Table 5 were examined since all of them were found to be
statistically significant (i.e., p-value < 0.05) during the univariate
regression analysis.

While one can argue that another round of feature selection
might be unnecessary, we decided to perform it mainly for two
reasons. First, this additional filtering layer will capture instances
where an independent variable that was found to be significant
with respect to the dependent variable while being indepen-
dently examined (univariate analysis), may not have significant
predictive power when combined with other variables. Therefore,
including it to the final set may lead to redundant information
and increase model complexity. Second, the ‘‘sliding window’’
method described in Section 4.4 will extend each initial sample of
the dataset by including past information and future information
simultaneously into a single row. If for example, we decide to
leave the size of independent variable set as is, i.e., 16 features,
and we want to include information up to 2 lags in the past (+1
for the current lag), the final set will comprise 3 * 16 = 48 inde-
pendent variables. While ML models generally support complex
relationships between variables, this data reframing approach
may result in a dramatic increase in the number of features, and
therefore increase the complexity of the prediction algorithms to
a point where the performance drops significantly. That being
said, we considered to keep our independent variables set as
small as possible, but without losing much of its explanatory
power.

Before starting the Backward Elimination process, a signifi-
cance level has to be set. This value acts as a significance thresh-

old that determines the stopping point, i.e., the point at which

15
we no longer need to drop any independent variables (i.e., pre-
dictors). In our case, we set the significance level value at 0.05
to examine the statistical significance of each TD indicator to
act as a predictor at a 95% level of confidence. Subsequently,
the Backward Elimination process involved performing multiple
iterations of fitting a multiple linear regression model with all
possible predictors, inspecting the p-values of each predictor,
and then finding and removing the most insignificant predictor,
i.e., the predictor with the highest p-value. As long as there was
a predictor that could be removed (i.e., its p-value is greater than
0.05), the process was repeated by fitting a new model excluding
the previously removed predictors. The process stopped when all
remaining predictors had p-values less than the significant level
of 0.05.

After multiple iterations of applying Backward Elimination,
details of the final multivariate linear regression model are shown
in Table 6. As can be seen, the final model has four covariates,
meaning that four metrics, namely bugs, code smells, duplicated
blocks, and afferent coupling (Ca), seem to have the most signifi-
cant impact on TD and act as good TD predictors, at least for the
dataset under investigation (225 applications). For each covariate,
we provide its coefficient, the standard error, the t-ratio and the
statistical significance (p-value) of the coefficient. The t-ratio is
the ratio of the coefficient estimate to its standard error. Since
our sample is relative large, a t-ratio greater than 1.96 (in absolute
value) suggests that our coefficients are statistically significantly
different from zero at the 95% confidence level. We observe
that all remaining predictors have high t-ratio values (>1.96). In
addition, the p-value for each covariate tests the null hypothesis
that the coefficient is equal to zero (no effect). We observe that
after performing Backward Elimination, all remaining predictors
have low p-values (< 0.05), thus they are likely to be meaningful
since the null hypothesis is rejected. The intermediate results that
we obtained throughout the various iterations of the Backward
Elimination process can be found online26 and provide informa-
tion regarding the metric that was eliminated at each iteration
until reaching the final set of TD indicators shown in Table 6. We
also provide details regarding the coefficient, the standard error,
the t-ratio, and the statistical significance (p-value) of each metric
during every iteration of the process.

Finally, to strengthen the feature selection process followed,
we tested the optimal TD predictors selected above for mul-
ticollinearity. Multicollinearity is a phenomenon where two or
more predictors show high intercorrelations, i.e., they are highly
linearly related. While correlation between a predictor and the
target variable is an indication of good model performance, cor-
relation among the predictors is usually an issue. If this issue
is not taken care of during the feature selection analysis, it can
later cause unpredictable variance and lead to overfitting, as the
model cannot ascertain how important a feature is to the target
variable. One of the most common ways to identify and quantify
the severity of multicollinearity in a linear regression analysis
is the Variance Inflation Factor (VIF) (Marquaridt, 1970). The
VIF is calculated by taking each predictor, regressing it against
every other predictor in the model and then using the produced
coefficient of determination (R2) into the following formula:

VIF =
1

1 − R2 (1)

VIF values range from 1 upwards. As a rule of thumb, a VIF
value between 1 and 5 indicates that a predictor is moderately
correlated with the other predictors, while a value between 5 and
10 indicates that multicollinearity is likely present and thus, the
predictor should be removed. We computed VIF factors for each
of the predictors presented in Table 6. As can be seen, all VIF
values are considerably less than 5, indicating that our final TD
predictor set does not suffer from multicollinearity.

26 https://sites.google.com/view/technical-debt-forecasting/main
Table 6
Multivariate analysis model of TD indicators (extended dataset).
Metric Coefficient Standard error t-ratio p-value VIF

bugs 0.1075 0.027 4.056 0.000 2.503
code_smells 0.7489 0.029 25.899 0.000 3.574
duplicated_blocks 0.1276 0.020 6.494 0.000 2.752
Ca 0.1816 0.040 4.567 0.000 1.247

All the analysis described above was performed by using the
Python programming language and more specifically the scikit-
learn27 ML library. To conclude, among the initial 24 metrics (TD
indicators) under investigation, four of them were found to have
statistically significant effects on TD. Therefore, the optimal TD
predictors extracted through this process were bugs, code smells,
duplicated blocks, and afferent coupling (Ca). These metrics will be
considered as input to the forecasting models during the model
training phase described in Section 5.

4.4. Sliding window method

In general, ML models do not directly support the notion
of observations over time. As a result, time series data usually
need to be re-framed in a form suitable for supervised learning
problems before used for forecasting tasks. To understand this
notion, an example of dummy data collected in temporal order
is presented in Table 7. Each row represents a sample of data
collected at a specific lag (timestamp). Columns 2 to 4 hold
the values of independent variables X1 to X3 respectively, while
column Y1 holds the value of the target variable. One thing that
is apparent in this table is that the structure of the data does
not quite fit the supervised learning framework. Two problems
arising from this particular data format are the following: First,
if the dataset is used in this format during model training, no
past information will be included in the samples, due to the fact
that each row only includes information about one specific lag.
Second, since the target variable of each row points to a current
lag value, the model will learn to make estimations only for the
current lag (rather than forecasts).

A benefit of using ML models over traditional statistical ap-
proaches (e.g., ARIMA) is their ability to support more than
one input features. Trying to take advantage of this, we used a
method called ‘‘sliding window’’ (Dietterich, 2002) to transform
the dataset in a format that integrates into a single sample
multiple prior time steps as inputs (X) to predict future time steps
as output (Y). In short, this method extends each initial sample of
the dataset by including past information and future information
simultaneously into a single row. This approach is described in
more detail below.

The number of past time steps that we want to include as
input into each sample is called the ‘‘window width’’ or size of the
lag. As a first step, the width of the sliding window needs to be
chosen. Window width, illustrated as a red box in Table 7, corre-
sponds to the number of rows, i.e., the current lag (indicated with
a red arrow) plus a number of past lags that will be merged into
a new single row. In this example, supposing that t is the current
lag, the red box in Table 7 indicates that independent variables of
the samples at lags t and t-1 (one step in the past) will be merged
into one new row that incorporates not only current but also
past information. Additionally, the desired forecasting horizon,
illustrated as a blue box in Table 7, needs to be chosen. More
specifically, the blue box in this example indicates that we want
forecasts for 1 step-ahead, thus the Y value of t+1 sample will be
selected as the target variable. In case we wanted to prepare the

27 https://scikit-learn.org/stable/

https://sites.google.com/view/technical-debt-forecasting/main
https://scikit-learn.org/stable/

16
Table 7
Dataset collected in temporal order.
Table 8
The reframed dataset after applying the sliding window approach.
X Y

Index X1 (t-1) X2 (t-1) X3 (t-1) X1 (t) X2 (t) X3 (t) Y1 (t+1)

0 10 100 1000 20 200 2000 30000
1 20 200 2000 30 300 3000 40000
2 30 300 3000 40 400 4000 50000
3 40 400 4000

dataset for 2 steps-ahead forecasts, t+2 value would be selected
as the target variable, and so on. The above process will result
in a new row, as depicted in Table 8. The process is repeated
by shifting the two boxes simultaneously over the samples, one
step at a time, creating new rows until the window reaches the
end of the table. Applying the above transformation will result
in a reframed dataset that uses one past lag plus the current lag
of independent variables to forecast 1 step-ahead. The reframed
dataset is presented in Table 8.

There is no standard answer regarding the choice of the win-
dow width, i.e., the number of past lags that will be merged
per row. This choice usually depends on the number of inde-
pendent variables, the length of the forecasting horizon and the
forecasting model itself. Therefore, during the initial window
width selection, a balance needs to be found between the model
complexity and the optimal prediction quality. It is often a good
idea to test different numbers by training an algorithm and see
what values work better for different forecasting horizons, based
on an error minimization criterion. For instance, we found out
that choosing a window width of 2 lag observations resulted
in the minimum Mean Absolute Error (MAE) when trying to
forecast for 5 steps ahead, for most of the application-specific
datasets across different models. Adding more than 2 lags simply
increased models complexity, without profound impact on the
model accuracy. Respectively, for longer forecasting horizons, a
larger window appeared to be more suitable and resulted in
better model performance.

We restructured each application-specific dataset using this
method, depending on the forecasting length we wanted to test
our models, to make it suitable for supervised ML. Once a time
series dataset is prepared this way, any of the standard linear and
non-linear ML algorithms can be applied, as long as the order of
the rows is preserved. A fragment of the Apache Kafka reframed
dataset, after applying the sliding window approach is presented
in Table 9.

Another particular challenge that emerges from the concept
of TD forecasting is the need to make multi-step forecasts, that
is, forecasts for more than one time-step into the future. This
need is driven by the fact that we are trying to capture the
entire future TD evolution of a software application, rather than
the TD value at a particular time step in the future. There are
three main approaches that ML methods can use to make multi-

step forecasts: (i) the Direct approach, where a separate model
is developed to forecast each forecast lead time, (ii) the Recursive
approach, where a single model is developed to make one-step
forecasts, and the model is used recursively where prior forecasts
are used as input to forecast the subsequent lead time, and (iii)
the Multiple output approach, where a single model with multiple
outputs is developed, capable of predicting the entire forecast
sequence in a one-shot manner.

Most ML-based regression models, with the exception of
ANNs, do not directly support more than one outputs. Hence,
we excluded Multiple output approach. Moreover, the sliding
window method described above assumes that the dataset is
reformed in a multivariate way, i.e., it includes lag observations
from independent variables. As a result, Recursive approach is also
excluded because it would require also forecasted values of the
independent variables to predict further than one step ahead.
Therefore, we adopted the Direct approach, which means that
separate models will be developed to forecast each forecasting
horizon. In practice, this means that when trying to forecast for
N steps-ahead, the dataset will be reframed N times by following
the sliding window approach described above, where each time
the dependent variable Y will point to a value from t+1 to t+N
steps ahead. Subsequently, N separate models will be created,
each dedicated to forecast one future point starting from t+1 up
to t+ N. Finally, the outputs of the models will be merged into
a common vector that depicts the entire forecasted TD evolution
up to N steps ahead.

5. Machine learning approach for TD forecasting

In the previous section, we first introduced various software-
related metrics that have been widely used in the literature as TD
indicators and, then described the data collection process we fol-
lowed in order to prepare our initial application-specific datasets.
Subsequently, during the feature selection process described in
Section 4.3, we reduced the initial 24 features (TD indicators) to
4 in order to reduce model complexity. The optimal TD predictors
selected were Code Smells, Bugs, Duplicated Blocks and Afferent
Coupling (Ca). Finally, we restructured each application-specific
dataset using the sliding window method to make it suitable for
supervised ML. In this section, we examine the ability of various
ML models to forecast the evolution of TD Principal for each
application-specific dataset based on the selected TD predictors.
To do so, we train and test the selected models for various
forecasting horizons ranging from 1 to 40 steps (weeks) ahead by
means of time series validation. Obtained prediction errors of the
investigated algorithms are compared among the various fore-
casting horizons and their benchmarking and evaluation results
are documented thoroughly.

5.1. Model training, testing and benchmarking

In this section, we investigate the ability of linear and non-
linear ML models to forecast TD evolution of 15 software appli-
cations. To do so, we applied a collection of ML models such as

17
Table 9
The Apache Kafka dataset reframed for 1 step-ahead forecasts using a sliding window with a width of 2.
X Y

Index cs (t-2) bu (t-2) db (t-2) ca (t-2) cs (t-1) bu (t-1) db (t-1) ca (t-1) cs (t) bu (t) db (t) ca (t) TD (t+1)

0 1277.0 89.0 29.0 7.985 1267.0 91.0 31.0 7.961 1102.0 88.0 33.0 7.986 23782.0
1 1267.0 91.0 31.0 7.961 1102.0 88.0 33.0 7.986 1104.0 89.0 37.0 8.064 23791.0
2 1102.0 88.0 33.0 7.986 1104.0 89.0 37.0 8.064 1107.0 89.0 37.0 7.995 23852.0
3 .

Where cs = Code smells, bu = Bugs, db = Duplicated blocks, ca = Afferent coupling, t = Time step
Multivariate Linear Regression (MLR), Ridge and Lasso regression,
Stochastic Gradient Descent (SGD), Support Vector Regression
(SVR) with both linear and Gaussian kernel, and Random For-
est regression and compared their results for each application-
specific dataset. Most of these models have been extensively
compared and evaluated in the literature for their ability to
predict software quality attributes, such as Maintainability (Riaz
et al., 2009; Chug and Malhotra, 2016; Jin and Liu, 2010; Malhotra
and Lata, 2018; Elish and Elish, 2009) and Security (Walden et al.,
2014; Chowdhury and Zulkernine, 2011; Shin et al., 2011), or
lower-level software properties, such as code smells (Fontana
et al., 2016a) and defects (Challagulla et al., 2005). However,
choosing the most appropriate ML model is often the result
of trial and error, as the predictive performance of these algo-
rithms strongly depends on the size and structure of the data.
Therefore, within the context of this paper, we considered in-
vestigating a broad spectrum of ML models in order to account
for highly diverging data relationships that may govern the dif-
ferent application-specific datasets and overcome the limitations
of different techniques. The selected models are briefly described
below:

• Multivariate linear regression (MLR) is the most commonly
used technique for modeling the relationship between two
or more independent variables and a dependent variable by
fitting a linear equation to observed data. During MLR, the
coefficients of the variables are estimated using the least
squares method. The main advantages of this technique are
its simplicity, interpretability and the fact that it performs
well when the relationship to be modeled is not extremely
complex. In addition, it is supported by many popular sta-
tistical packages. However, quite often simple MLR models
are suffering from overfitting.

• Ridge and Lasso regression are simple techniques that aim
to reduce model complexity and thus, prevent overfitting by
applying regularization, i.e., add some constrains to the loss
function. In the case of Ridge regression, those constraints
are the sum of squares of the coefficients multiplied by
the regularization coefficient (lambda). This regularization
type is known as L2. Lasso regression works similarly but
instead of adding the squares of the coefficients to the loss
function, it adds absolute values. As a result, during the
optimization process, coefficients of unimportant features
may become zero, which acts as an automated feature se-
lection. This regularization type is known as L1. The main
advantages of these regularization techniques, apart from
the fact that they prevent overfitting, are the simplicity and
computational efficiency of the produced model. However,
regularization models are often suffering from high bias
error.

• Gradient descent is the process of minimizing a function by
following the gradients of the loss function. This involves
knowing the form of the loss as well as the derivative so
that the function can move towards the minimum value.
Stochastic Gradient Descend (SGD) regression is based on
gradient descent, but instead of updating coefficients based
on the derivative of the data, the algorithm updates the
coefficients based on the derivative of a randomly chosen
sample. In that way, SGD allows the function to converge
and overcome local minima faster. Because of the random-
ness involved, the main advantage of SGD is its ability to
perform well with noisy data.

• The goal of Support Vector regression (SVR) is to find a func-
tion that approximates the target values for all the training
data with the minimum generalization error. To achieve
this, it tries to learn a non-linear function by linearly map-
ping features into high-dimensional, kernel-induced feature
space. The main advantage of SVR is the efficient non-linear
data handling by using the kernel trick. In addition, SVR
supports regularization capabilities (L2 Regularization) that
prevent overfitting. However, hyper-parameter tuning and
choosing an appropriate kernel function can be proven a
difficult task.

• Starting with the base case, a Regression Tree (RT) is a vari-
ant of decision trees that is built through an iterative process
of splitting the data into partitions on each of the decision
nodes, known as binary recursive partitioning. An enhanced
version of the RT is Random Forest (RF) method. RF is an
ensemble of RTs trained with the ‘‘bagging’’ method. Bagging
repeatedly selects random samples by replacing the training
set and fits trees to these samples. After training, predictions
for unseen samples are made by averaging the predictions,
or by taking the majority vote of all the individual RTs.
The main advantages of RF are its interpretability and the
fact that it is great at learning complex, highly non-linear
relationships. However, RF models are slower and require
more memory compared to the other models presented. In
addition, RF models are prone to major overfitting due to
the training nature of decision trees.

For the conduction of our experiments, we used the Python
programming language and more specifically the scikit-learn28
ML library. For reasons of brevity, the ML approaches presented
below will focus mainly on the Apache Kafka software system.
However, results and model comparisons will include also the
rest of the applications.

Once our dataset is ready for supervised learning, the next
step is to train and validate the performance of the selected algo-
rithms. Validation methods extensively used in ML, such as k-fold
cross-validation, cannot be directly used with time series data
due to the temporal order in which values were observed. Hence,
observations cannot be randomly split into groups without re-
specting the temporal order. To better assess prediction accuracy
and compare different models we adopted the Walk-forward
Train–Test validation method (Stone, 1974), a strategy inspired
by k-fold cross-validation. Walk-forward Train–Test validation is
a commonly used way to evaluate time series models perfor-
mance, based on the notion that models are updated when new
observations are made available. In brief, during Walk-forward
Train–Test validation a subset of n consecutive points extracted
from the original time series is used to train an initial model.

28 https://scikit-learn.org/stable/

https://scikit-learn.org/stable/

18
Fig. 4. Walk-forward Train–Test validation.

Then, accuracy of the model is tested against future time steps
and prediction is evaluated against the known value to compute
prediction errors. Finally, the time window is expanded to in-
clude the known values into the training set and the process is
repeated. Validation results are combined (e.g., averaged) over the
rounds to give an estimate of the model’s predictive performance.
Using Walk-forward Train–Test validation will result in more
models being trained, and in turn, a more accurate estimate of
the performance of the models on unseen data. Fig. 4 provides a
visualization of the Walk-forward Train–Test validation behavior.

The Apache Kafka dataset consists of 150 observations (snap-
shots). For Walk-forward Train–Test validation we chose the
number of splits = 5, meaning that training set will start from
25 samples and will expand up to 125 samples during the last
iteration. The test set will constantly contain 25 observations. The
number of splits = 5 was chosen such that each train/test group
of data samples is large enough to be statistically representative
of the broader dataset. A larger number of splits would result in
overly small train/test groups, which in turn would suffer from
large variability (Kohavi et al., 1995). It is worth mentioning
here that number of splits = 5 was chosen also for the other
application datasets that contain 150 observations. For those that
contain 100 observations, we chose the number of splits = 4 to
maintain the train/test group size analogy. To test predictive per-
formance of our models for different future horizons, we repeated
the whole validation process five times, where predictions were
made for the next n+1 (1 week), n+5 (5 weeks), n+10 (10 weeks),
n+20 (20 weeks), and n+40 (40 weeks) future steps respectively.

Before the learning process begins, a hyper-parameter tuning
process must take place in order to increase models’ predictive
performance. A model hyper-parameter is an external attribute
of the model. In contrast to typical model parameters, e.g., the
coefficients of a Linear Regression model, the value of a hyper-
parameter cannot be estimated from data during the training
process. Hyper-parameter examples may include the penalty pa-
rameter C of the error term in SVM, the number of trees in the
Random Forest, etc. In order to tune our models in the best possi-
ble way, we used the GridSearchCV29, a python implementation
of the Grid-search method (Feurer et al., 2015). Grid-search is
commonly used to find the optimal hyper-parameters of a model
that result in the most accurate predictions, by performing an
exhaustive search over specified parameter values for an estima-
tor. We chose R^2 (coefficient of determination) as the objective
function of the estimator to evaluate a parameter setting. R^2
is the proportion of the variance in the dependent variable that
is predictable from the independent variable(s). We performed
hyper-parameter selection on every application-specific dataset
during the 5-fold Walk-forward Train–Test validation described
above to avoid overfitting and ensure that the selected models
have a good degree of generalization.

29 https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.
GridSearchCV.html
We evaluated and compared the forecasting performance of
the investigated models using the Mean Absolute Percentage Er-
ror (MAPE). The MAPE is a popular measure for forecast accuracy
that uses absolute values to measure the size of the error in
percentage terms. MAPE has two advantages. First, the absolute
values keep the positive and negative errors from canceling out
each other. Second, because relative errors do not depend on the
scale of the dependent variable, this measure allows for compar-
ing forecast accuracy between differently scaled time-series data
(e.g., different software applications). The equation of MAPE is
given below:

MAPE =
100
n

n∑
i=1

⏐⏐yi − ŷi
⏐⏐

yi
(2)

where n is the number of observations, yi is the actual value and
ŷi is the forecast value.

To further complement model evaluation, we also computed
the Mean Absolute Error (MAE) as well as the Root Mean Squared
Error (RMSE). Both of these errors are widely used in forecasting
tasks. MAE measures the average magnitude of the errors in a
set of predictions, without considering their direction. RMSE is a
quadratic scoring rule that also measures the average magnitude
of the error. Both MAE and RMSE express average model predic-
tion error in units of the variable of interest. The equations of
MAE and RMSE are given below:

MAE =

∑n
i=1

⏐⏐yi − ŷi
⏐⏐

n
(3)

RMSE =

√1
n

n∑
i=1

(
yi − ŷi

)2 (4)

Again, n is the number of observations, yi is the actual value and
ŷi is the forecast value.

In Table 10, we report a comparison of prediction errors of
the regression models trained on the Apache Kafka dataset for
multiple (1, 5, 10, 20 and 40) time steps (weeks) into the fu-
ture. Prediction errors in each cell of the table are averaged
values of the testing errors for all train–test splits that were
performed during Walk-forward Train–Test validation. Prediction
errors indicated in bold are averaged values of the specific mod-
els that were created for each week-ahead prediction category
(i.e., 1-week, 5-weeks, 10-weeks ahead models, etc.).

As a reminder, since we adopted the Direct approach described
in Section 4.4, each examined model provides a single output,
that is, the predicted value of the horizon that it was trained
to provide forecasts for. In practice, this means that the values
of the errors presented below refer to a forecast for a specific
individual point in the future, not the entire forecasted evolution
of up to that point. We present aggregated forecasts that illustrate
the entire evolution of the examined applications in the Model
Execution phase described in Section 5.2.

Fig. 5 illustrates the MAPE of the forecasting models, averaging
the five forecasting horizon cases (i.e., 1, 5, 10, 20 and 40 weeks
ahead) under investigation. Fig. 6, Fig. 7, Fig. 8, Fig. 9 and Fig. 10
illustrate the MAPE of the forecasting models for 1, 5, 10, 20 and
40 steps (weeks) ahead respectively.

By observing Fig. 5, it is clearly depicted that linear mod-
els, such as MLR, Lasso, Ridge and SVR(linear) Regression, have
generally lower MAPE values and perform better that non-linear
models, such as SVR(rbf) and Random Forest Regression. More-
over, we observe that among linear models, the best accuracy
is demonstrated by models that apply Regularization in order to
prevent overfitting, i.e., Lasso and Ridge Regression. More specif-
ically, Lasso Regression is the best candidate with an average

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

19
Table 10
Apache Kafka TD predictions using Walk-forward Train–Test validation.
Model Weeks ahead MAE (min) RMSE (min) MAPE (%)

MLR

1 594.799 819.085 1.267
5 2655.770 3094.180 5.906
10 3105.604 3613.806 6.595
20 4163.185 4948.930 8.146
40 6214.496 6790.829 11.072

Average 3346.771 3853.366 6.597

Lasso regressor

1 430.106 676.957 0.881
5 1474.881 1768.435 3.055
10 2240.932 2615.345 4.455
20 2894.261 3239.653 5.444
40 4700.503 5004.199 8.655

Average 2348.137 2660.918 4.498

Ridge regressor

1 438.024 682.877 0.898
5 1579.645 1869.698 3.260
10 2579.991 2922.568 4.979
20 3239.642 3627.422 5.977
40 5061.284 5428.619 9.177

Average 2579.717 2906.237 4.858

SGD regressor

1 789.139 1049.557 1.690
5 2812.558 3253.977 6.225
10 3069.528 3606.347 6.419
20 3940.336 4718.533 7.617
40 6383.504 7063.643 11.311

Average 3428.834 3970.349 6.706

SVR regressor (linear)

1 571.416 830.770 1.214
5 3457.010 4004.375 7.567
10 2811.954 3344.931 6.153
20 3760.544 4551.495 7.564
40 6569.625 7304.984 11.89

Average 3428.834 3970.349 6.706

SVR regressor (rbf)

1 4758.278 5254.790 9.561
5 5753.172 6257.845 11.819
10 4657.056 5348.217 9.798
20 3687.333 4485.870 7.591
40 5240.294 5794.354 9.835

Average 4819.227 5428.215 9.721

Random forest regressor

1 4273.391 4731.381 8.824
5 5454.023 5936.521 11.259
10 4430.855 4994.763 9.252
20 3425.365 4173.618 6.798
40 3664.173 3947.600 7.007

Average 4262.788 4767.657 8.660
Fig. 5. Apache Kafka TD predictions — MAPE averaged for all steps-ahead using
Walk-forward Train–Test validation.

MAPE value of 4.5%, followed by Ridge Regression with an average
MAPE value of 4.86%.

When it comes to shorter forecasting length (i.e., 1–10 weeks
ahead), the difference between linear and non-linear model per-
formance becomes even clearer. By having a look at Fig. 6, we
notice that forecasting the TD of the Apache Kafka project for
Fig. 6. Apache Kafka TD predictions — MAPE for 1 step-ahead using
Walk-forward Train–Test validation.

1 step ahead (1 week) using Lasso Regression gives a MAPE of
0.88%, while for the same horizon SVR with a Gaussian kernel
gives 9.56% and Random Forest Regression gives 8.84%. Corre-
spondingly, by having a look at Fig. 7 and Fig. 8 we observe
that Lasso Regression for 5 steps (5 weeks) and 10 steps (10
weeks) ahead gives a MAPE of 3.06% and 4.46%, while for the

20
Fig. 7. Apache Kafka TD predictions — MAPE for 5 steps-ahead using
Walk-forward Train–Test validation.

Fig. 8. Apache Kafka TD predictions — MAPE for 10 steps-ahead using
Walk-forward Train–Test validation.

Fig. 9. Apache Kafka TD predictions — MAPE for 20 steps-ahead using
Walk-forward Train–Test validation.

same horizons SVR with a Gaussian kernel gives 11.82% and 9.80%
respectively.

Linear models are the best candidates even for a forecasting
length of 20 steps (20 weeks) ahead, as can be seen by Fig. 9.
However, an interesting observation is that while their predictive
power drops significantly as we try to forecast longer into the
future, non-linear models seem to have an almost stable perfor-
mance over the holdout sample for all steps ahead. This could be
an indicator that for even longer lengths, non-linear models could
perform better than the linear ones. Indeed, by having a look in
Fig. 10, we observe that for a forecasting horizon of 40 steps (40
Fig. 10. Apache Kafka TD predictions — MAPE for 40 steps-ahead using
Walk-forward Train–Test validation.

Fig. 11. 15 projects TD predictions — MAPE averaged for all steps-ahead using
Walk-forward Train–Test validation.

weeks) ahead, Random Forest Regression is the best candidate
and gives the lowest MAPE (7.01%).

To further examine the ability of the investigated algorithms
to forecast TD Principal and get an understanding of how the
models perform, we repeated the same experiments for each of
the 15 applications in our dataset. We will not go through each
project one by one, but instead we will provide averaged scores.
Detailed results of applying Walk-forward Train–Test validation
for the rest of the applications can be found at the Appendix
section (Tables 14–27). Fig. 11 below illustrates the MAPE of the
forecasting models, averaging the five forecasting horizon cases
(1, 5, 10, 20 and 40 weeks ahead) and the 15 software applications
under investigation. Fig. 12, Fig. 13, Fig. 14, Fig. 15 and Fig. 16
illustrate the MAPE of the forecasting models for 1, 5, 10, 20 and
40 steps (weeks) ahead respectively, averaging the 15 software
applications under investigation.

Similarly to the Apache Kafka case, we observe that for shorter
forecasting lengths, linear models that apply Regularization, such
as Lasso and Ridge regression, have generally lower MAPE values
and higher performance compared to the non-linear models. As
depicted in Figs. 12 and 13, Ridge and Lasso Regression models
are the best candidates with MAPE values of 1.44%–3.91% and
1.39%–4.11% respectively. We also observe that again, the pre-
dictive power of linear models drops significantly as we forecast
longer into the future. However, the non-linear Random Forest
Regression algorithm seems to have an almost stable perfor-
mance over the holdout sample for all steps (weeks) ahead. In
fact, starting from 20 (Fig. 15) up to 40 steps ahead (Fig. 16), we
observe that Random Forest Regression is the best candidate and

21
Fig. 12. 15 projects TD predictions — MAPE for 1 step-ahead using
Walk-forward Train–Test validation.

Fig. 13. 15 projects TD predictions — MAPE for 5 steps-ahead using
Walk-forward Train–Test validation.

Fig. 14. 15 projects TD predictions — MAPE for 10 steps-ahead using
Walk-forward Train–Test validation.

performs better than the other models giving the lowest MAPE
value of 7.38% and 5.94% respectively.

To sum up, an interesting finding that we can extract from
the analysis of the experiments is the observation that linear
models that apply Regularization, i.e., Lasso and Ridge Regres-
sion, are capable of achieving high forecasting performance for
shorter forecasting lengths (<10 weeks ahead), while the non-
linear Random Forest Regression is performing better than the
rest of the investigated models for longer forecasting lengths
(>10 weeks ahead). The fact that the above results are observed
in all of the 15 application-specific datasets is also interesting
Fig. 15. 15 projects TD predictions — MAPE for 20 steps-ahead using
Walk-forward Train–Test validation.

Fig. 16. 15 projects TD predictions — MAPE for 40 steps-ahead using
Walk-forward Train–Test validation.

and of high significance, whereas it increases our confidence
regarding the generalizability of the aforementioned findings.
Although we cannot be sure that these results may apply to
similar applications, they do make a valuable contribution to the
beginning of the TD forecasting landscape composition. Therefore,
a TD forecasting tool could leverage the predictive power from
both of these algorithms combined to deliver good predictions
and adequately forecast future TD Principal trends of software
applications.

5.2. Model execution

Following the construction and benchmarking of our models
described in Section 5.1, this section presents indicative examples
of model execution as well as indicative visualizations of the fore-
casting results. As reported in Section 4.4, we decided to adopt the
Direct approach, meaning that separate models were developed
to forecast each forecast lead time. In Fig. 17 below, we provide
an example of forecasting the TD Principal evolution of Apache
Kafka application for 20 steps (weeks) ahead using Random For-
est regression, which during the model validation phase was
reported to have a stable performance and perform better than
the other examine models for longer forecasting lengths. The red
line denotes the forecast, while the blue line denotes the ground
truth. It should be noted that the samples covered by the red
line (i.e., test set) were excluded during the model-training phase.
Behind the scenes, according to the adopted Direct approach, 20
models were executed, one for each specific length of interest
(starting from 1 step to 20 steps), while their forecasted TD values

22
Fig. 17. Apache Kafka TD Principal forecasting for 20 steps ahead using Random Forest and the Direct approach.
where aggregated into a common vector, and then plotted as the
projected TD evolution.

Indicative visualizations illustrating the forecasting results of
Random Forest regression for 20 steps ahead for the rest of the
14 applications are provided in the online30 supportive mate-
rial. As can be seen in both Fig. 17 and the online material,
similar observations can be made for all 15 applications under
investigation. In particular, the Random Forest regression seems
to provide meaningful long-term forecasts for each one of the
studied cases (i.e., software applications). In fact, the selected
algorithm is able to capture the trend of the future evolution of
the TD Principal, whereas in most of the cases the future value
of the TD Principal is also captured with a sufficient level of
accuracy. For reasons of brevity, we do not provide illustrations
of TD evolution forecasts for the rest of the algorithms. However,
similarly to the case of long-term TD Principal forecasting using
Random Forest regression, satisfying forecasts were also obtained
by using Regularization models (i.e., Lasso and Ridge regression)
for shorter forecasting lengths, as expected by the results that
were reported during model benchmarking in Section 5.1.

5.3. Technical implementation

The work presented in this paper introduces an approach aim-
ing to cover the existing gap in the field and set the foundations
towards methods and accompanying tools able to deliver TD
forecasts and therefore assist developers and project managers
in taking proactive actions regarding TD management activities.
The SDK4ED31 European project aims to address this challenging
issue by implementing the proposed approach in the form of a
tool, i.e., the TD Forecasting tool, as a part of the integrated TD
Management (TDM) framework. To this end, an envisaged TD
Forecasting tool has been implemented as individual standalone
tool in order to facilitate its applicability in practice. This tool
consists of a backend server dedicated to the deployment of a
set of forecasting models, a web service that exposes the server,
and an interactive Graphic User Interface (GUI) that allows the
invocation of forecasting models and displays the results, pro-
viding users with insightful information for the future evolution

30 https://sites.google.com/view/technical-debt-forecasting/main
31 https://sdk4ed.eu/
of TD. Both the backend and frontend of the TD Forecasting tool
are components of the overall SDK4ED Dashboard, which forms
the final outcome of the SDK4ED project. The TD Forecasting tool,
integrated into a preliminary version of the SDK4ED Dashboard,
can be found online32 (currently being used for development
purposes). The main screen of the tool is provided in Fig. 18.

The main screen of the TD Forecasting tool comprises a drop-
down button, two interactive plots and one table. The dropdown
button allows the user to select the forecasting horizon for which
they would like to see predictions for. Once the forecasting hori-
zon is selected, the backend server invokes the proper forecasting
algorithm (depending on the selected horizon) and returns the
predictions back to the GUI, which in turn parses the result. Then,
the interactive plots showing the ground truth (green) and the
predicted (red) TD Principal evolution appear on the screen. The
first plot shows the entire evolution followed by the forecasted
evolution of the application, whereas the second plot focuses
solely on the forecast, giving a more fine-grained view. In addition
to the plots, a complementary table comprising the detailed re-
sults of the forecasts is presented at the bottom-right part of the
screen. This table presents the forecasted TD values for the up-
coming weeks, as well as the difference between the current TD
value and the forecasted TD values per week, which may serve as
an indicator of whether the TD Principal will increase or decrease,
and to what extent. This additional information is expected to
help the developers take even more informed decisions regarding
the prioritization of their TD repayment activities.

6. Case study

In this section, we present the results of an industrial study
conducted to empirically evaluate the meaningfulness of the TD
forecasting approach introduced in this work and to investi-
gate the extent to which this approach can provide valuable
insights and affect developers’ decisions regarding the evolution
of software, via a questionnaire distributed to representatives of
a software company.

32 http://160.40.52.130:3000/tdforecast

https://sites.google.com/view/technical-debt-forecasting/main
https://sdk4ed.eu/
http://160.40.52.130:3000/tdforecast

23
Fig. 18. Main screen of the TD Forecasting tool.
6.1. Survey design

To minimize the possibility that current work will remain
a statistical exercise detached from real software development
practices, we have designed a survey through which we seek
feedback from practitioners. The goal of this survey is twofold:
(a) to empirically evaluate the meaningfulness and accuracy of
the TD forecasting methodology proposed in this study, and (b)
to empirically assess the usefulness and acceptance of the TD
Forecasting concept in general, especially for software companies
that deal with daily TD management activities.

For the purposes of this survey, we have involved a Greek
department (located in Thessaloniki, Greece) of a large European
software company (hereafter referred to as Company) that pro-
vides IT development services in multiple technologies to private
and public organizations. The Company employs more than 2.200
highly-skilled professionals worldwide. However, the Company
wants to keep its anonymity, thus all records in the dataset
have been anonymized, and no personalized information can be
provided, either about the company and its projects, or the case
study participants. In the case of this survey, although partici-
pants might not be extremely familiar with the TD concepts and
terminology, they are all experienced in issues related to quality
assessment, since the Company uses SonarQube for continuous
inspection of code quality during its software development pro-
cess. A possible lack of experience in TD terminology has been
considered during the design of the data collection instrument.
Furthermore, the fact that the Company uses SonarQube as a
quality inspection tool, allows us to partially validate also the
SonarQube TD measurement mechanism, in a sense that we can
determine, through communication with the developers, if the TD
measurements are in line with real events occurring during the
software development process.
As a survey instrument, we opted for a questionnaire, which
is described in detail below and can be found also online.33 The
most important part of developing a questionnaire is the selection
of questions. In our survey, this process was governed by the
guidelines provided by Kitchenham and Pfleeger (2002): (a) keep
the amount of questions low, (b) questions should be purposeful
and concrete, (c) answer categories should be mutually exclusive,
and (d) the number, the order and the wording of questions
should avoid biasing the respondent. To this end, we constructed
a questionnaire with 13 main questions (4 multiple-choice and 9
short-answer), organized into three main parts (see Table 11), and
an introductory part (2 questions). The questionnaire begins with
the introductory part (i.e., Part-1) where participants are asked
to provide some demographic information, such as their role and
years of experience in the Company. Subsequently, in Part-2, par-
ticipants are first introduced to some background information on
the concept of TD and its main components (such as TD Principal,
inefficiency types, etc.) and then asked to rate, on a Likert scale,
a group of questions that aim to evaluate the usefulness of TD
Forecasting. The last two parts of the questionnaire, i.e., Part-3
and Part-4, refer to some project-specific questions (to be able
to provide valid answers in Part-3 and Part-4, the participants
should have been actively involved in the development of these
projects). The process of designing and formulating the questions
of Part-3 and Part-4 are thoroughly described below.

During our visit to the premises of the Company, we were
given access to a dedicated SonarQube instance hosting the anal-
ysis results of a large set of software applications, in order to
find the most suitable candidates for the design of our survey.
The criteria we relied on to select an application are as follows.
First, the application needs to be developed in Java programing
language. Second, it needs to be constantly maintained and thus,

33 https://forms.gle/Jjg8RoA55m1EwMJ77

https://forms.gle/Jjg8RoA55m1EwMJ77

24
Table 11
Survey instrument.
ID Question

Part 1 — Demographics
Q1.1 What is your role in the company?
Q1.2 How many years of experience do you have in this position?

Part 2 — The usefulness of TD Forecasting
Q2.1 How useful is it to have an estimation of the current TD Principal of a software project?
Q2.2 How useful is it to have a forecast of the future TD Principal of a software project?
Q2.3 To what extent would a forecast of the TD Principal make you consider changing the planned

future development of a project?
Q2.4 Supposed that a forecast shows an increasing trend of the TD Principal, what actions would

you take to repay TD?

Part 3 — TD Principal Evolution
Project A

Q3.1 Case 1: A temporal TD increase (6/1/19–9/1/19). What is the cause of this change?
Q3.2 Case 2: A sharp TD increase (18/1/19–27/2/19). What is the cause of this change?
Q3.3 Case 3: A sharp TD increase (4/4/19–12/5/19). What is the cause of this change?
Q3.4 Case 4: A gradual TD increase (27/10/19–14/2/20). What is the cause of this change?

Project B

Q3.5 Case 1: A gradual TD increase (23/2/19–28/7/19). What is the cause of this change?
Q3.6 Case 2: A sharp TD decrease (28/7/19–18/8/19). What is the cause of this change?
Q3.7 Case 3: A sharp TD increase (21/11/19–19/2/20). What is the cause of this change?

Part 4 — TD Principal Forecasting
Project A

Q4.1 The latest commits of Project A show relatively stable TD evolution. However, the forecast for
10 commits ahead shows a gradual increase in the TD principal. By having a look at this
forecast, would you change anything in the planned development process? Would you
consider performing code refactoring in order to prevent this increase?

Project B

Q4.2 The latest commits of Project B show a gradual increase in the TD evolution. However, the
forecast for 10 commits ahead shows a slight decrease in TD principal increasing rate. By
having a look at this forecast, would you change anything in the planned development
process? Would you consider investing in enhancing already existing, or adding new
functionalities?
to provide a relative long history of commits, as well as the
associated SonarQube analysis measurements available for these
commits. Finally, its SonarQube analysis measurements need to
contain (at the minimum) code smells, bugs, duplicated blocks,
lines of code and the TD Principal itself. The first three metrics
are required for the construction of the TD forecasting models,
since they were selected as the most statistically significant TD
predictors based on the analysis conducted within Section 4.
Unfortunately, the fourth TD predictor, i.e., afferent coupling (Ca)
was not available for this analysis, since the Company does not
use the CKJM Extended tool. Furthermore, we were not given
access to the source code of the applications, in order to execute
the CKJM Extended tool ourselves. However, we believe that the
unavailability of one independent variable will not significantly
affect the forecasting performance of our models, especially since
afferent coupling (Ca) was found to have the highest standard
error among the final four variables, as presented in Table 6.

Based on the above criteria, we ended up with two soft-
ware applications belonging to the Business Software domain,
namely Project A and Project B, with a size of 58K LoC and 384K
LoC respectively. Specifically, analysis data from the SonarQube
database of the Company included 62 commits for Project A and
51 commits for Project B. At this point, it should be noted that
although committing code updates at a weekly basis (i.e., at the
end of each week) is considered an integral part of the Company’s
routine, we were informed that there existed a few cases where
SonarQube did not run for a particular week, mainly due to
technical issues. As a result, collecting SonarQube analysis data at
fixed weekly intervals (as introduced in Section 4.2 to establish
the dataset) was no longer a viable approach. To overcome this

issue, we decided to replace the concept of weekly snapshots with
that of consecutive commits. Therefore, within the context of this
survey and more specifically in Part-4 of the questionnaire where
we present TD forecasts for each application, forecasting for 10
steps ahead is referring to 10 commits rather than 10 weeks
ahead. The SonarQube measurements of the two anonymized
software applications selected during this step of the process can
be found online.34

As a first step, we parsed the collected SonarQube analy-
sis data, performed some required pre-processing steps and ex-
tracted two plots (one for each application) illustrating the en-
tire TD Principal evolution of the two applications under in-
vestigation. Subsequently, we manually inspected the plots and
extracted selected periods where we identified abrupt (but in-
teresting) TD Principal trends, i.e., a trend showing a gradual
increase| decrease, sharp increase| decrease, temporary increase|
decrease, etc. Therefore, in Part-3 of the questionnaire, for each
of the identified cases, participants are asked what the root cause
of these abrupt trends was. For instance, if a trend shows a sharp
TD Principal decrease during some period, maybe that is due to
a code deletion or code refactoring that removed TD-ill code.
If the participants are aware of specific actions they performed
that justify these abrupt trends (e.g., refactoring, code additions
or deletions, deadlines, etc.), then it means that SonarQube TD
measurement mechanism can capture these changes and is in
line with real events occurring during the software development
process.

As a second step, we applied forecasting models to predict
the future TD Principal evolution of both Project A and Project
B for 10 steps ahead. To do so, we exploited a prototype of the

34 https://sites.google.com/view/technical-debt-forecasting/main

https://sites.google.com/view/technical-debt-forecasting/main

25
TD Forecasting tool described in Section 5.3 in order to extract
forecasting plots in an automated way, that is, without repeating
the tedious process of model training, testing and benchmarking
through the usage of Python scripts. Therefore, in Part-4 of the
questionnaire, a TD forecast for each application is presented
to the participants and they are asked if they would be willing
to change anything in the planned development process based
only on the projected TD Principal evolution. For instance, if the
TD evolution of a specific application has been constant up to
a point but forecasts show a sharp TD increase in the future,
we ask them if they would consider performing refactoring to
prevent that increase. Respectively, if the TD evolution has been
gradually increasing up to a point but forecasts show a sharp
TD decrease, we ask them if they would consider investing in
enhancing new functionalities instead of performing refactoring.
In that way, the practical usefulness and meaningfulness of TD
forecasts is, at least partially, evaluated using qualitative feedback
from the participants.

The majority of the questions in Part 2 of the questionnaire
have been answered on a Likert Scale ranging from 1 to 5, with
the exception of the last question (Q2.4) which gives the re-
spondents the following options: (a) ‘‘Refactoring’’, (b) ‘‘Writing
new code that is TD-free’’, (c) ‘‘No actions’’, and (d) ‘‘Other: ___’’.
However, the last two parts of the questionnaire, i.e., Part-3 and
Part-4, refer to some project-specific questions and require a
short description, so they have been answered by providing a
‘‘short answer’’ text box.

6.2. Survey analysis and results

In this section, we present the results of the survey study,
through presenting some demographics and subsequently ana-
lyzing and discussing the answers of the participants. In total,
we obtained four (4) complete answers. The reason that we
received only four complete answers is due to the fact that Part-3
and Part-4 of the questionnaire require deep knowledge of the
applications under analysis. In fact, during our communication
with the company, we specifically requested that participants
should be actively involved in the development of these projects
so that they can provide valid answers. To facilitate the process
of distinguishing between the responses of the four participants
but at the same time maintain their anonymity, the participants
of this survey are hereafter referred to as P1 to P4. Regarding
the demographics of the participants extracted from Part-1 of
the questionnaire, three out of four participants (P2, P3, and P4)
are working in the Company as Software Developers, while one
participant (P1) is working as a Software Architect. Moreover,
participants’ years of experience in this position range from 2 to
12 years, with a mean value of 6.25 years.

First, we analyzed the answers from Part-2 to understand the
usefulness of TD forecasting in an industrial context. More specif-
ically, regarding Q2.1 ‘‘How useful is it to have an estimation of
the current TD Principal of a software project?’’, on a Likert scale
ranging from: 1 — ‘‘Not Useful’’ to 5 — ‘‘Very Useful’’, two out
of four of the participants (P1 and P4) chose ‘‘Useful’’ (option 4),
while the remaining two (P2 and P3) chose ‘‘Very Useful’’ (option
5). These responses suggest that TD Principal monitoring is per-
ceived as highly important for software development companies,
as it can provide valuable information regarding the effort and,
in turn, the cost that is required for maintaining and extending a
software application.

Regarding Q2.2 ‘‘How useful is it to have a forecast of the fu-
ture TD Principal of a software project?’’, on a Likert scale ranging
again from: 1 — ‘‘Not Useful’’ to 5 — ‘‘Very Useful’’, two out of
four participants (P1 and P2) chose ‘‘Useful’’ (option 4), while
the remaining two (P3 and P4) chose ‘‘Very Useful’’ (option 5).
These responses suggest that TD Principal forecasting is of great
significance and value for software development companies, since
they would be able to gain a better understanding of future TD
issues and plan well in advance appropriate refactoring activities
for saving maintenance costs.

Regarding Q2.3 ‘‘To what extent would a forecast of the TD
Principal make you consider changing the planned future de-
velopment of a project?’’, on a Likert scale ranging from: 1 —
‘‘Not at all’’ to 5 — ‘‘To a great extent’’, three participants (P1,
P2, and P4) chose ‘‘To a moderate extent’’ (option 4), while the
remaining one (P3) chose ‘‘To a great extent’’ (option 5). These
responses suggest that all participants would consider changing
the planned future development of a project based on a forecast
of the TD Principal. In fact, this statement is further evaluated
through specific questions presented to the participants in Part-4
of this questionnaire.

Finally, regarding Q2.4 ‘‘Supposed that a forecast shows an
increasing trend of the TD Principal, what actions would you
take to repay TD?’’, three out of four participants (P1, P2, and
P4) responded with ‘‘Refactoring’’, while the remaining one (P3)
responded with ‘‘First make sure that the new code will have less
TD and then, when time plan allows it, refactor existing code’’.
While code refactoring is a well-established approach for TD
repayment (Fowler, 1999), clean code has recently emerged as
a promising TD prevention strategy. By inspecting respondents’
answers, we notice that while P1, P2, and P4 would opt for
refactoring the already existing code to repay TD, the latter an-
swer indicates that P3, possibly forced by strict deadlines that
require the delivery of new functionalities, would prefer to in-
crease the overall quality of the project by writing new TD-free
code, i.e., clean code that contributes positively to the overall TD.
This question is also further assessed through specific questions
presented to the participants in Part-4 of this questionnaire.

Subsequently, we analyzed the answers from Part-3 of the
questionnaire. In Part-3, for a series of identified cases where the
TD Principal of Project A and Project B showed abrupt trends, par-
ticipants were asked what was the root cause of these changes.
The main goal of this part is to assess whether participants are
aware of specific actions the development team had performed
that justify these abrupt trends (e.g., refactoring, code additions
or deletions, deadlines, etc.), and therefore to validate that Sonar-
Qube TD measurement mechanism can capture these changes
and is in line with real events occurring during the software
development process. Participants’ answers are summarized in
Tables 12 and 13, which refer to comments regarding observed
TD Principal trends of Project A and Project B respectively. By
inspecting the tables, it can be seen that three participants (P2, P3,
and P4) are working on Project A, while two participants (P1 and
P3) are working on Project B (with P3 working on both projects).
The figures of the identified cases illustrated in the tables can be
also found online.35

By reading participants’ comments regarding the identified TD
Principal trends in Table 12, we can note that in almost all cases,
developers involved in Project A are aware of specific actions
they performed that justify these abrupt trends. More specifically,
according to the participants, the temporal TD Principal increase
of Project A depicted in Q3.1 can be attributed to a large amount
of functionality that was added from less experienced engineers
in order to meet deadlines, followed by improvements to the
code that led TD Principal to decrease again. Similarly, the sharp
TD Principal increase depicted in Q3.2 can be attributed to rapid
code additions that had to be completed in limited time and
without proper testing, in order to deliver the 1st version of
the project to a customer. Subsequently, the sharp TD Principal

35 https://sites.google.com/view/technical-debt-forecasting/main

https://sites.google.com/view/technical-debt-forecasting/main

26
Table 12
Participants comments on TD Principal trends of Project A.
increase depicted in Q3.3 can be attributed to some new addi-
tional functionalities that were requested by the customer and
thus were quickly added after the 1st delivery of the project.
Finally, the gradual TD Principal increase depicted in Q3.4 can
be attributed to rapid bug fixing and code expansion, without
properly testing previous and new implementations. Based on
the above, we could state that the SonarQube TD measurement
mechanism is indeed able to capture real events occurring during
the software development process.

Similarly to the case of Project A, by reading participants’ com-
ments regarding the identified TD Principal trends in Table 13, we
can observe that developers involved in Project B are also aware
of specific actions they performed that justify these abrupt trends.
More specifically, according to the participants, the gradual TD
Principal increase of Project A depicted in Q3.5 can be attributed
to specific strict deadlines, such as the delivery of the 1st and 2nd
version of the product to the customer and a demo for a new
contest, that forced the Company to involve more developers into
this project. Similarly, the sharp TD Principal decrease depicted in
Q3.6 can be attributed to code refactoring and defects fixing that
the developers performed during the summer period. Finally, the
sharp TD Principal increase depicted in Q3.7 can be attributed to
new features that were added for a new customer and affected
specific parts of code, thus making developers constantly having
to switch between two customers in a limited time. The comment
from the developer stating that SonarQube did not run for a
long time does not affect the magnitude of the TD increase but
implies that in that case, the increase could be gradual instead
of sharp. Similarly to the observations made regarding project
A, in the case of Project B we could also state that SonarQube
TD measurement mechanism can capture real events occurring
during the software development process.

Summarizing the answers of the respondents regarding Q3.1
to Q3.7, that is, Part-3 of the questionnaire, we observe that most
of the TD pattern types observed during the TD evolution of
Projects A and B can be attributed to similar events that occurred
during the software development cycle. More specifically, TD
growth (either sharp or gradual) is mainly attributed to rapid
code additions, usually without proper testing, in order to im-
plement new features and functionalities that were requested by
clients of the Company under strict time constraints. Similarly,
temporal TD growth is related to quick and ‘‘dirty’’ code expan-
sions in order to meet deadlines, which however were followed
by prompt refactoring actions that improved the TD quality of
the recently-added code. On the other hand, TD drop is attributed
to heavy refactoring cycles that were performed during relatively
relaxed periods, to repay the large amount of accumulated TD and

thus, improve the quality and maintainability of the suboptimal

27
Table 13
Participants comments on TD Principal trends of Project B.
code introduced in the two projects during a long period of rapid
code expansions mentioned above. The above events are in line
with the definition of the TD metaphor and verify the necessity
for which it was inspired in the first place. The quality compro-
mises made by the Company during the studied period may have
yielded the desired short-term benefits, such as the quick delivery
of code to the clients, but have resulted in quality decay of the
Company’s software products, which made developers aware of
the need to spend additional time on refactoring actions in order
to bring the software back to a maintainable state.

Finally, we analyzed the answers from Part-4 of the ques-
tionnaire. In Part-4, TD forecasts for Project A and Project B
were presented to the participants and they were asked if they
would be willing to change anything in the planned development
process based only on the projected TD Principal. In that way, the
main goal of this part is to evaluate the practical usefulness and
meaningfulness of TD forecasts using qualitative feedback from
the developers. Figs. 19 and 20 illustrate 10 steps-ahead forecasts
(red line) for Project A and Project B respectively, using Ridge
Regression that performed better for short-term predictions. In
this point, it should be noted that in the figures included in the
questionnaire, the ground truth (blue line) from the starting point
of the forecasts and onwards was hidden from the participants.
However, we include this information here for reasons of com-
pleteness and validation of the forecasting approach presented in
this work. In addition, the time point from which we decided to
start our forecasts was carefully selected to signal a significant
change in the current trend up to that point. The reason behind
this choice is that we want to assess the willingness of devel-
opers to change their planned development processes, based on
a change they cannot foresee just by looking at the past trend.
Participants’ answers to Q4.1 and Q4.2 are summarized below.

Q4.1 ‘‘The latest commits of Application A show relatively
stable TD evolution. However, the forecast for 10 commits ahead
shows a gradual increase in the TD principal. By having a look at
this forecast, would you change anything in the planned develop-
ment process? Would you consider performing code refactoring
in order to prevent this increase?’’

P3: ‘‘This project is almost completed and minor changes and
additions to functionality are expected. I would focus to solve
any blocking, critical and major bugs to prevent software
misbehavior during the use from the end user.’’
P2: ‘‘Yes, code refactoring is of utmost importance for not only
preventing TD increase but also to decrease TD principal future
rate.’’
P4: ‘‘Code refactoring is mandatory at this point but the
manager does not approve that. That means that even if the
development team wants to implement better architectures and
refactor the code in order to be maintainable and re-usable this
must be approved by the management. If the management has
low priority on producing quality software the TD increase will
be continuous. Also, if the code is mainly developed by junior
engineers without guidance by senior engineers the TD will be
incremental.’’

By revisiting Q3.4 in Part-3 of the questionnaire, we observe
that this gradual TD Principal increase was attributed by the
participants to rapid code expansion without properly testing
previous and new implementations. This means that the develop-
ers invested more in new functionalities rather than refactoring
the already existing code. However, in this question (Q4.1), the
developers are presented with a forecast that predicts a gradual
increase in the TD principal of the application during that period.
Based on their answers, we notice that by having a look at
this forecast they would reconsider this decision and proceed
with refactoring instead of adding new code. In fact, by reading
participants’ answers to Q4.1, we observe that all respondents
are actually willing to take action in order to reduce the TD
Principal that is expected to increase based on the forecast shown

28
Fig. 19. Project A TD Principal forecasting for 10 steps ahead using Ridge (the ground truth from the starting point of the forecasts and onwards was hidden from
the participants).
Fig. 20. Project B TD Principal forecasting for 10 steps ahead using Ridge (the ground truth from the starting point of the forecasts and onwards was hidden from
the participants).
in Fig. 19. More specifically, the first two respondents state that
they would perform refactoring to prevent future TD principal
increasing rate and solve any defects that might arise to hinder
the expected software behavior. The third respondent also agrees
that code refactoring is mandatory at that point in order to
prevent this increase. However, he/she states that any deviation
from the planned development process must first be approved
by the project manager. As a matter of fact, the perfect balance
between repaying TD (and therefore increasing software quality)
and reducing time to market of a software project is usually
hard to achieve and lies at the decision-making abilities of the
manager. This confirms the fact that future evolution of software
quality depends heavily on business-related parameters such as

planned features, release deadlines etc.

Q4.2 ‘‘The latest commits of Application B show a gradual in-

crease in the TD evolution. However, the forecast for 10 commits

ahead shows a slight decrease in TD principal increasing rate. By

having a look at this forecast, would you change anything in the

planned development process? Would you consider investing in

enhancing already existing, or adding new functionalities?’’

29
P1: ‘‘For sure, we already have done some critical refactorings
of code to decrease TD and from now on, that we have better
handling of the project, we reassure that each line of code
written, will not increase TD, but if it does, we apply refactors at
the end of a sprint.’’
P3: ‘‘This is a still developing project with lots of functionality to
be added. Ideally, I would pause the developing process and
refactor the existing code. However since future TD seems to
decrease I want to try to decrease the TD in the new code, then
when time plan allows it go back and refactor problematic
areas.’’

By revisiting Q3.6 in Part-3 of the questionnaire, we observe
that this slight decrease in TD principal was attributed by the
participants to code refactoring and defects fixing that the de-
velopers performed during the summer period. This means that
during a relatively relaxed period, they invested time in cleaning
up the already existing code and therefore decreasing the contin-
uously growing TD Principal rate. While there is nothing wrong
with this strategy, an alternative solution could be to invest in
writing new but TD-free code instead of refactoring the existing
one. In fact, writing new ‘clean’ code could be (in the long term)
as efficient as code refactoring, especially when considering the
difficulty of introducing heavy refactoring cycles in the industry,
due to time limitations. In this question (Q4.1), the developers
are presented with a forecast that predicts a slight decrease in
TD principal increasing rate of the application during that period.
Based on their answers, we notice that by having a look at this
forecast they would reconsider this decision and proceed with
adding new TD-free code instead of refactoring the existing one.
In fact, by reading participants’ answers to Q4.2, we observe that
both respondents state that they are willing to take advantage of
the forecasted slight decrease in TD principal in order to pause
refactoring activities and start adding new functionalities to the
software application, by focusing more on adding new TD-free
code. This would result in both preventing TD from increasing and
at the same time delivering new functionalities. More specifically,
the first respondent states that she/he would reassure that each
new line of code written will not increase TD, but in case it does,
they will apply refactoring at the end of the sprint. Similarly,
the second respondent states that ideally she/he would pause the
developing process and apply refactoring. However, since there is
a lot of pending functionality to be added and the forecast shows
a slight TD decrease, she/he would focus more on writing new
TD-free code.

Through the industrial study reported in this section, we have
a first level of validation that (a) actual TD trends reflect the
circumstances and/or decisions taken during past development,
and (b) forecasts derived through well-studied ML-models can
provide valuable insights and affect developers’ decisions regard-
ing the evolution of software. Of course, further research would
be needed to solidify any claims on the usefulness of TD forecast-
ing approaches, taking into account the numerous human- and
business-related factors that drive the evolution of any software
project.

7. Limitations and threats to validity

In this section, we discuss the limitations and validity threats
of this empirical study. The accuracy of any forecasting model
is by definition constrained, especially in the software domain,
where future evolution of software quality depends heavily on
numerous business-related factors such as planned features, re-
lease deadlines and fluctuations in the size of the development
team. Therefore, anticipating such scheduled or unanticipated
events would be a challenging endeavor beyond the scope of
our study. We believe that over longer time horizons, repeat-
ing phenomena are captured by a project’s history and building
a prediction model based on historical data can provide some
knowledge on future evolution. As described in Section 6, we have
performed a study in an industrial setting to investigate the value
of predictions regarding TD evolution. Nevertheless, we acknowl-
edge the inability of the proposed approach to take into account
planned or unforeseen business-related events. Apart from the
aforementioned limitations, the methodology proposed in this
paper suffers from the usual threats to external and internal
validity.

External validity refers to the ability to generalize results. The
results of the study are unavoidably subject to external validity
threats, since the applicability of ML models to forecast TD is
examined on a sample set of 15 applications. It is always possible
that another set of applications might exhibit different phenom-
ena. Nevertheless, the fact that the selected applications are quite
diverse with respect to application domains, size, etc. partially
mitigates threats to generalization. In addition, a large part of
the proposed methodology consists of constructing forecasting
models that learn from past versions and therefore can be easily
adapted to any software application, as long as sufficient and
reliable historic data are available. A similar threat stems from
the fact that our dataset consists of open source Java applications,
thus limiting the ability to generalize the conclusions to applica-
tions of a different domain or programming language. However,
the process of building TD forecasting models described in this
paper primarily builds upon the output of the tools used to
compute software-related metrics that can act as indicators of the
quality attribute of TD. This means that the proposed models can
be easily adapted to forecast the TD of applications that are coded
in a different programming language, as long as there are tools
that support the extraction of software-related metrics that can
act as TD indicators for the respective language. This also con-
tributes to mitigating threats to generalization. However, since
the dataset does not include industry applications, we cannot
make any speculation on closed-source applications. Commercial
systems as well as other object-oriented programming languages
can be the subjects of further research. Finally, another possi-
ble threat to external validity is the small sample size of the
survey performed within the context of the case study of this
work, as reported in Section 6. In particular, the low number
of participants and the small number of investigated software
applications used for validation may have insufficient power to
provide valuable insights regarding the meaningfulness of the
proposed TD forecasting methodology in practice.

Concerning the internal validity, i.e., the possibility of having
unwanted or unanticipated relationships between the parameters
that might affect the variable that we are trying to predict, it
is reasonable to assume that numerous other metrics that affect
TD might have not been taken into consideration. However, the
fact that we constructed our initial set of TD predictors based
on software-related metrics that have been widely used in the
literature as indicators of the presence of TD, such as OO software
metrics, code smells and code issues extracted from ASA tools,
limits this threat. Regarding the final selection of TD predictors,
if we had limited our feature selection analysis to only corre-
lations between the TD estimates and software-related metrics
acting as TD predictors, then there would have been a threat to
internal validity. However, we attempted to mitigate this threat
through the use of univariate and multivariate regression analysis
to further explore the relationships between the dependent and
independent variables. Furthermore, in order to study the statis-
tical significance of each indicator over the TD quality and be able
to safely perform feature selection, we maximized diversity and
representativeness by extending our dataset with additional 210
different heterogeneous applications.

30
Construct validity refers to the meaningfulness of measure-
ments and that the independent and dependent variables are
represented correctly. In this study, the main threats related to
construct validity are due to possible inaccuracies in the identifi-
cation of software-related metrics acting as TD indicators, as well
as the identification and quantification of TD itself. In order to
mitigate this risk, we decided to use two well-known and widely
used tools, namely SonarQube and CKJM Extended. It should be
noted that both of these tools were used as a proof of concept of
the proposed forecasting methodology. The forecasting approach
described in the present study is not dependent on the selected
tools, as it could be applied to the measurements produced by
other tools, based on user preference. However, the results pre-
sented in this study depend on the measurements obtained by
these tools and, consequently, on the tools themselves. Therefore,
more experimentation is required to assess the correctness of
results obtained via other tools. As for the experimented pre-
diction models, we exploited the ML algorithms implementation
provided by the scikit-learn library, which is widely considered
as a reliable tool. System-level forecasting also poses a threat
to the validity of the findings as a tool for guiding TD repay-
ment. In order for the refactoring activities to be more effective,
recommendations for TD repayment need to be made at lower
levels of granularity (e.g., class-level). However, the main goal
of the proposed forecasting approach is to help developers and
project managers make high-level decisions on whether there is
a need to perform TD repayment in the next period of the project
in general, and not to provide fine-grained recommendations on
which software components the repayment activities should be
focused.

Finally, reliability threats concern the possibility of replicat-
ing this study. To facilitate such replication studies, we provide
an experimental package containing both the dataset and the
scripts that were used for our analysis and forecasting model
construction. This material can be found online.36 Moreover, the
source code repositories of the 15 selected projects are available
on GitHub to obtain the same data.

8. Implications to researchers and practitioners

To the best of our knowledge, this is the first study in the
field of TD that examines the applicability of ML models for TD
forecasting. Across the 15 independently developed open source
Java projects, our analysis indicates that linear Regularization
models and the non-linear Random Forest regression are able
to provide meaningful forecasts of TD evolution, and in most
of the cases, with a sufficient level of accuracy. This work has
significant implications for both research and practice, despite the
limitations noted in the previous section.

8.1. Implications for research

Through our study, we identified some interesting open issues
that should be addressed through further research. In particu-
lar, although there has been extensive research with respect to
predicting the evolution of individual software features, quality
attributes, and quality properties that are directly or indirectly
related to the TD of a software project, no concrete contributions
exist in the related literature regarding TD forecasting. Therefore,
we believe that this study has a high impact on the scientific
community and therefore, we suggest and encourage researchers
to further explore this direction. An interesting topic of future
work would be to extensively evaluate TD forecasting techniques

36 https://sites.google.com/view/technical-debt-forecasting/main
on a broader spectrum of real-world software applications cover-
ing different domains or programming languages. In addition, it
would be useful to investigate different efficient ways to produce
forecasting models for accurate prediction of TD principal and
interest evolution, by bringing into the equation other types
of software repositories that could be a potential source of TD
related data, such as project management and issue-tracking
systems. More specifically, mining TD related data from project-
and issue-tracking systems, such as the reported effort of fixing
bugs on Bugzilla or closing issues on Jira, could provide valuable
information towards enhancing the TD forecasting approach. Ul-
timately, an approach that would pair all the above information
with specialized techniques for forecasting, code analysis, soft-
ware evolution analysis, and natural language processing could
pave the way for the advance in the state of the art in this domain.

Predicting the future value of TD interest would be also critical
for decision making, as it can be used to timely determine the
point at which a software product would become unmaintainable,
and therefore to respond promptly through appropriate refactor-
ing activities in order to prevent this situation. More specifically,
an interesting way of approaching the problem of TD interest
forecasting would be to examine whether forecasting techniques
could contribute towards enhancing the process of identifying the
‘‘breaking point’’ of an application, a term introduced by Chatzi-
georgiou et al. (2015) that refers to the point in time where the
accumulated interest is equal to the TD principal and, thus, the
cost becomes higher than the benefit.

8.2. Implications for practice

Monitoring and forecasting the evolution of TD is highly im-
portant for software development companies, as it can provide
valuable information regarding the effort and, in turn, the cost
that is required for maintaining and extending a software appli-
cation. Therefore, a TD forecasting methodology integrated into a
relative tool, such as the outcome of the present research work,
could be crucial for companies that want to remain competitive,
while taking planned decisions regarding their TD management
activities. In a hypothetical scenario where a software company
has to make an investment to a specific application, our TD fore-
casting tool could provide an effective method to facilitate plan-
ning for budget and time allocation. More specifically, when the
model predicts a declining number of TD, a project manager can
then proactively allocate resources to software enhancements,
or to other projects in more need. When the model predicts
an increase in TD, an organization a priori can allocate the re-
sources needed to quickly repay it by taking actions such as post
development refactoring activities. This research has therefore
the potential to make a great economic impact by helping soft-
ware companies save budget by foreseeing TD accumulation and
therefore avoid a potential bankruptcy in the future.

This empirical study has focused exclusively on modeling soft-
ware evolution at the system level, thus allowing project man-
agers to efficiently prioritize TD activities when dealing with
different software applications. When it comes to a specific ap-
plication however, the developers are often overwhelmed with
a large volume of TD liabilities (e.g., code smells, bugs, vulnera-
bilities, etc.) that they need to fix. This renders the TD repayment
procedure tedious, time consuming and effort demanding. In such
cases, the significance of prioritizing which software components
to refactor is highlighted even further, since fixing TD items in
dormant parts of the code does not effectively affect maintenance
costs (Schmid, 2013). As a future work, we will investigate the
possibility of extending TD forecasting techniques to lower levels
of granularity of a software project (e.g., package, class or function
level). This would enable for a more granular prioritization of TD

https://sites.google.com/view/technical-debt-forecasting/main

31
liabilities by incorporating information retrieved from TD fore-
casting techniques, allowing for a ranking of a software project’s
artifacts based on predictions of their long-term accumulated TD
values.

9. Conclusions and future work

Technical Debt (TD) refers to inefficiencies during all phases
of software development lifecycle that lead to extra maintenance
effort. In recent years, TD has attracted the attention of both
academia and industry. As a result, there has been a considerable
increase in the number and provided functionality of methods
and tools that support TD management. TD repayment, a high-
level activity of TD management aims to resolve or mitigate TD
in a software system by techniques such as reengineering and
refactoring. However, a decision regarding whether to repay or
not a TD item has different consequences depending on when it is
made. This stresses the need for methods and accompanying tools
that would enable system engineers and project managers to
perform long-term effective software maintenance, by providing
insights regarding where and when to apply refactoring. There-
fore, what the stakeholders require is a decision-support system
to help them make such choices and support decision-making
under uncertainty. Under those circumstances, a method or tool
able to track and forecast the evolution of TD of a software sys-
tem could lead to the development of practical decision-making
mechanisms aiming to improve the TD repayment strategy and
estimate the point in which a software product could become
unmaintainable.

The purpose of this paper is to examine whether and to what
extend is the usage of ML models a meaningful and accurate
approach to forecasting TD Principal in long-lived, open-source
software applications (RQ1). Across the 15 independently devel-
oped, maintained, and managed open source projects, we have
shown that TD Principal patterns can be modeled adequately
by ML techniques. More specifically, for forecasting horizons be-
tween 1 and 20 weeks ahead, Regularization models (i.e., Lasso
and Ridge regression) are able to fit and provide meaningful
forecasts of TD Principal evolution. Trying to forecast longer into
the future however, we noticed that their predictive power drops
significantly. On the contrary, the non-linear Random Forest re-
gression seems to have an almost stable performance over the
holdout sample for all examined steps ahead. In fact, for fore-
casting horizons longer than 20 weeks ahead, Random Forest
regression was able to capture the trend of the future evolution
of the TD Principal with higher predictive power compared to
the linear models. This indicates that a more complex model per-
forms better when the forecast horizon is longer. From the above
analysis, we can conclude that ML models constitute a suitable
and effective approach for TD Principal forecasting, as they are
able to fit and provide meaningful estimates of TD evolution over
a relatively long period, while in most of the cases, the future TD
value is captured with a sufficient level of accuracy.

To the best of our knowledge, this is the first study in the
field of TD that examines the applicability of ML models for TD
forecasting and therefore, it constitutes a good basis for future re-
search and experimentation. Future work includes the extensive
evaluation of TD forecasting techniques on a broader spectrum
of real-world software applications, as well as to lower levels of
granularity of a software project (e.g., package, class or function
level). To solidify any claims on the usefulness of TD forecasting
approaches, we plan to conduct an extended case study where
we will provide practitioners with future predictions, track the
actual development, and observe the impact of the forecasting
results adoption. We also plan to investigate the ability of already
examined or new forecasting models to provide more accurate
Table 14
Apache Ofbiz TD predictions using Walk-forward Train–Test validation.
Model MAE (min) RMSE (min) MAPE (%)

MLR 11800.06 14939.92 5.70
Lasso regressor 2586.26 2881.59 1.25
Ridge regressor 3580.03 4043.14 1.73
SGD regressor 3998.45 4749.17 1.93
SVR regressor (linear) 4041.08 4945.64 1.96
SVR regressor (rbf) 5371.22 6492.32 2.60
Random forest regressor 1842.31 2100.87 0.89

Table 15
Apache SystemML TD predictions using Walk-forward Train–Test validation.
Model MAE (min) RMSE (min) MAPE (%)

MLR 4489.38 5151.21 3.78
Lasso regressor 3949.70 4864.14 3.32
Ridge regressor 4125.15 5070.44 3.50
SGD regressor 4182.12 4712.35 3.53
SVR regressor (linear) 8771.71 10464.37 7.49
SVR regressor (rbf) 4201.63 4850.27 3.52
Random forest regressor 4096.68 4661.39 3.46

Table 16
Apache Groovy TD predictions using Walk-forward Train–Test validation.
Model MAE (min) RMSE (min) MAPE (%)

MLR 44141.98 57592.53 20.41
Lasso regressor 24910.16 32278.33 11.56
Ridge regressor 26379.48 33607.69 12.16
SGD regressor 29316.00 38734.54 13.51
SVR regressor (linear) 22512.98 29346.43 10.56
SVR regressor (rbf) 15716.78 20060.46 7.38
Random forest regressor 10384.53 13494.23 4.92

Table 17
Apache Nifi TD predictions using Walk-forward Train–Test validation.
Model MAE (min) RMSE (min) MAPE (%)

MLR 5293.48 6251.46 5.65
Lasso regressor 1920.77 2197.68 1.95
Ridge regressor 2041.70 2320.67 2.09
SGD regressor 2386.59 2678.10 2.47
SVR regressor (linear) 6359.22 7132.60 6.66
SVR regressor (rbf) 3852.61 4252.67 4.03
Random forest regressor 3233.18 3461.34 3.34

Table 18
Google Guava TD predictions using Walk-forward Train–Test validation.
Model MAE (min) RMSE (min) MAPE (%)

MLR 11800.06 14939.92 5.70
Lasso regressor 2586.26 2881.59 1.25
Ridge regressor 3580.03 4043.14 1.73
SGD regressor 3998.45 4749.17 1.93
SVR regressor (linear) 4041.08 4945.64 1.96
SVR regressor (rbf) 5371.22 6492.32 2.60
Random forest regressor 1842.31 2100.87 0.89

predictions for even longer forecasting horizons. Last but not
least, we plan to investigate other types of software repositories
that could be a potential source of TD related data, such as project
management and issue-tracking systems, as well as archived
communication between project personnel. More specifically, the
analysis of the communication between project personnel could
reveal indications of high-TD artifacts that concentrate a large
part of maintenance effort. These indications could then be fac-
tored in TD forecasting techniques to target these critical – from
a maintenance point of view – artifacts. In fact, we believe that
there is great potential in mining this information to achieve
source triangulation and thus, yield more accurate TD forecasting
estimates.

32
Table 19
Square Okhttp TD predictions using Walk-forward Train–Test validation.
Model MAE (min) RMSE (min) MAPE (%)

MLR 990.90 1116.48 10.24
Lasso regressor 620.66 725.74 6.24
Ridge regressor 434.47 524.53 4.38
SGD regressor 902.72 1018.00 9.36
SVR regressor (linear) 3096.27 3414.23 32.97
SVR regressor (rbf) 749.76 862.88 7.66
Random forest regressor 316.21 383.99 3.20

Table 20
Square Retrofit TD predictions using Walk-forward Train–Test validation.
Model MAE (min) RMSE (min) MAPE

MLR 603.55 678.93 13.25
Lasso regressor 247.41 283.32 5.65
Ridge regressor 239.37 274.13 5.48
SGD regressor 470.46 517.63 10.42
SVR regressor (linear) 902.16 1061.68 19.68
SVR regressor (rbf) 423.43 469.03 9.54
Random forest regressor 198.28 233.01 4.67

Table 21
Spring Boot TD predictions using Walk-forward Train–Test validation.
Model MAE (min) RMSE (min) MAPE (%)

MLR 128.56 151.70 5.50
Lasso regressor 122.08 141.07 5.23
Ridge regressor 124.33 142.50 5.30
SGD regressor 119.47 138.43 5.11
SVR regressor (linear) 642.80 786.51 28.05
SVR regressor (rbf) 141.77 163.29 6.11
Random forest regressor 101.38 116.44 4.30

Table 22
Apache CommonsIO TD predictions using Walk-forward Train–Test validation.
Model MAE (min) RMSE (min) MAPE (%)

MLR 240.97 311.95 6.80
Lasso regressor 160.64 208.43 4.35
Ridge regressor 160.98 210.00 4.36
SGD regressor 233.35 294.95 6.52
SVR regressor (linear) 230.17 311.15 6.38
SVR regressor (rbf) 220.05 289.50 6.10
Random forest regressor 314.67 369.86 8.44

Table 23
Apache Incubator TD predictions using Walk-forward Train–Test validation.
Model MAE (min) RMSE (min) MAPE (%)

MLR 8666.60 10957.26 22.13
Lasso regressor 3221.57 3770.47 8.33
Ridge regressor 3085.79 3576.34 7.97
SGD regressor 6060.73 7022.08 15.40
SVR regressor (linear) 2932.74 3404.16 7.56
SVR regressor (rbf) 2913.77 3432.83 7.51
Random forest regressor 2731.86 3110.55 7.06

Table 24
Java WebSocket TD predictions using Walk-forward Train–Test validation.
Model MAE (min) RMSE (min) MAPE (%)

MLR 652.78 713.54 43.29
Lasso regressor 368.33 412.58 25.98
Ridge regressor 409.87 449.94 29.94
SGD regressor 645.63 703.79 43.82
SVR regressor (linear) 586.90 654.24 39.97
SVR regressor (rbf) 682.55 742.21 50.80
Random forest regressor 444.89 494.17 32.52
Table 25
Zxing TD predictions using Walk-forward Train–Test validation.
Model MAE (min) RMSE (min) MAPE (%)

MLR 205.99 238.87 1.57
Lasso regressor 94.77 105.33 0.72
Ridge regressor 77.02 85.17 0.58
SGD regressor 105.05 119.87 0.79
SVR regressor (linear) 114.15 130.16 0.86
SVR regressor (rbf) 112.55 127.93 0.85
Random forest regressor 79.54 89.46 0.60

Table 26
Jenkins TD predictions using Walk-forward Train–Test validation.
Model MAE (min) RMSE (min) MAPE (%)

MLR 2689.58 3244.52 3.35
Lasso regressor 2694.02 3216.50 3.35
Ridge regressor 3009.70 3519.39 3.73
SGD regressor 2286.04 2774.47 2.83
SVR regressor (linear) 4443.72 5393.16 5.54
SVR regressor (rbf) 2469.89 3029.77 3.05
Random forest regressor 2309.38 2737.34 2.87

Table 27
Openfire TD predictions using Walk-forward Train–Test validation.
Model MAE (min) RMSE (min) MAPE (%)

MLR 9764.29 11254.28 18.30
Lasso regressor 7943.13 9464.07 14.94
Ridge regressor 9844.82 11965.04 17.84
SGD regressor 6584.61 7622.49 11.53
SVR regressor (linear) 12931.75 14325.71 21.48
SVR regressor (rbf) 8136.43 12571.07 14.42
Random forest regressor 10991.14 12090.32 17.55

CRediT authorship contribution statement

Dimitrios Tsoukalas: Conceptualization, Data curation, For-
mal analysis, Investigation, Methodology, Software, Visualization,
Writing - original draft, Writing - review & editing. Dionys-
ios Kehagias: Formal analysis, Funding acquisition, Methodol-
ogy, Project administration, Resources, Validation, Visualization,
Writing - review & editing. Miltiadis Siavvas: Data curation,
Formal analysis, Software, Visualization, Writing - review & edit-
ing. Alexander Chatzigeorgiou: Conceptualization, Investigation,
Resources, Supervision, Validation, Visualization, Writing - review
& editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgment

This work is funded by the European Union’s Horizon 2020
Research and Innovation Programme through SDK4ED project
under Grant Agreement No. 780572.

Appendix

See Tables 14–27.

References

Alpaydin, E., 2010. Introduction to Machine Learning, second ed. The MIT Press.
Altman, N.S., 1992. An introduction to kernel and nearest-neighbor nonpara-

metric regression. Amer. Statist. 46 (3), 175–185. http://dx.doi.org/10.2307/
2685209.

http://refhub.elsevier.com/S0164-1212(20)30190-4/sb1
http://dx.doi.org/10.2307/2685209
http://dx.doi.org/10.2307/2685209
http://dx.doi.org/10.2307/2685209

33
Alves, N.S.R., Mendes, T.S., de Mendonça, M.G., Spínola, R.O., Shull, F., Sea-
man, C., 2016. Identification and management of technical debt: A systematic
mapping study. Inf. Softw. Technol. 70, 100–121. http://dx.doi.org/10.1016/j.
infsof.2015.10.008.

Ampatzoglou, A., Ampatzoglou, A., Avgeriou, P., Chatzigeorgiou, A., 2015b.
Establishing a framework for managing interest in technical debt. http:
//dx.doi.org/10.5220/0005885700750085.

Ampatzoglou, A., Ampatzoglou, A., Chatzigeorgiou, A., Avgeriou, P., 2015a. The
financial aspect of managing technical debt: A systematic literature review.
Inf. Softw. Technol. 64, 52–73. http://dx.doi.org/10.1016/j.infsof.2015.04.001.

Ampatzoglou, A., Michailidis, A., Sarikyriakidis, C., Ampatzoglou, A., Chatzigeor-
giou, A., Avgeriou, P., 2018. A framework for managing interest in technical
debt: An industrial validation. http://dx.doi.org/10.1145/3194164.3194175.

Arisholm, E., Briand, L.C., 2006. Predicting fault-prone components in a java
legacy system.

Baggen, R., Correia, J.P., Schill, K., Visser, J., 2012. Standardized code quality
benchmarking for improving software maintainability. Softw. Qual. J. 20 (2),
287–307. http://dx.doi.org/10.1007/s11219-011-9144-9.

Bansiya, J., Davis, C.G., 2002. A hierarchical model for object-oriented design
quality assessment. IEEE Trans. Softw. Eng. 28 (1), 4–17. http://dx.doi.org/
10.1109/32.979986.

Bellman, R.E., 2003. Dynamic Programming. Dover Publications.
Bidarkota, P.V., 1998. The comparative forecast performance of univariate and

multivariate models: an application to real interest rate forecasting. Int. J.
Forecast. 14 (4), 457–468. http://dx.doi.org/10.1016/S0169-2070(98)00036-3.

Boehm, B.W., et al., 1984. Software engineering economics. IEEE Trans. Softw.
Eng. SE-10 (1), 4–21. http://dx.doi.org/10.1109/TSE.1984.5010193.

Bontempi, G., Taieb, S.B., Le Borgne, Y.-A., 2013. Machine learning strategies
for time series forecasting. In: Machine Learning Strategies for Time Series
Forecasting. Springer Berlin Heidelberg.

Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M., 2015. Time Series Analysis:
Forecasting and Control, fifth ed. John Wiley & Sons.

Breiman, L., 1996. Bagging predictors. Mach. Learn. 24 (2), 123–140. http://dx.
doi.org/10.1007/BF00058655.

Breiman, L., 2017. Classification and Regression Trees. Routledge.
Brown, N., et al., 2010. Managing technical debt in software-reliant systems. In:

Proceedings of the Workshop on Future of Software Engineering Research.
FSE/SDP, pp. 47–52. http://dx.doi.org/10.1145/1882362.1882373.

Bruntink, M., van Deursen, A., 2006. An empirical study into class testability. J.
Syst. Softw. 79 (9), 1219–1232. http://dx.doi.org/10.1016/j.jss.2006.02.036.

Chaikalis, T., Chatzigeorgiou, A., 2015. Forecasting java software evolution trends
employing network models. IEEE Trans. Softw. Eng. 41 (6), 582–602. http:
//dx.doi.org/10.1109/TSE.2014.2381249.

Challagulla, V.U.B., Bastani, F.B., Paul, R.A., 2005. Empirical assessment of ma-
chine learning based software defect prediction techniques. In: 10th IEEE
International Workshop on Object-Oriented Real-Time Dependable Systems.
WORDS, pp. 263–270. http://dx.doi.org/10.1109/WORDS.2005.32.

Charalampidou, S., Ampatzoglou, A., Chatzigeorgiou, A., Avgeriou, P., 2017.
Assessing code smell interest probability: a case study. In: Proceedings of
the XP2017 Scientific Workshops. p. 5. http://dx.doi.org/10.1145/3120459.
3120465.

Chatzigeorgiou, A., Ampatzoglou, A., Ampatzoglou, A., Amanatidis, T., 2015.
Estimating the breaking point for technical debt. In: IEEE 7th International
Workshop on Managing Technical Debt. MTD, pp. 53–56. http://dx.doi.org/
10.1109/MTD.2015.7332625.

Chidamber, S.R., Kemerer, C.F., 1994. A metrics suite for object oriented design.
IEEE Trans. Softw. Eng. 20 (6), 476–493. http://dx.doi.org/10.1109/32.295895.

Chowdhury, I., Zulkernine, M., 2011. Using complexity coupling and cohesion
metrics as early indicators of vulnerabilities. J. Syst. Archit. 57, 294–313.
http://dx.doi.org/10.1016/j.sysarc.2010.06.003.

Chug, A., Malhotra, R., 2016. Benchmarking framework for maintainability
prediction of open source software using object oriented metrics. Int. J.
Innovative Comput. Inf. Control 12 (2), 615–634.

Cohen, J., 1977. Statistical Power Analysis for the Behavioral Sciences. Academic
Press.

Cunningham, W., 1993. The WyCash portfolio management system. ACM
SIGPLAN OOPS Messenger 4 (2), 29–30. http://dx.doi.org/10.1145/157710.
157715.

Curtis, B., Sappidi, J., Szynkarski, A., 2012. Estimating the size, cost, and types
of technical debt. In: Proceedings of the Third International Workshop on
Managing Technical Debt, MTD, 2012, pp. 49–53.

Das, J., 2012. Statistics for Business Decisions. Academic Publishers.
Dietterich, T.G., 2002. Machine learning for sequential data: A review. In:

Joint IAPR International Workshops on Statistical Techniques in Pattern
Recognition (SPR) and Structural and Syntactic Pattern Recognition. SSPR,
pp. 15–30. http://dx.doi.org/10.1007/3-540-70659-3_2.

Digkas, G., Lungu, M., Avgeriou, P., Chatzigeorgiou, A., Ampatzoglou, A., 2018.
How do developers fix issues and pay back technical debt in the apache
ecosystem? In: 2018 IEEE 25th International Conference on Software Anal-
ysis, Evolution and Reengineering. SANER, pp. 153–163. http://dx.doi.org/10.
1109/SANER.2018.8330205.
Digkas, G., Lungu, M., Chatzigeorgiou, A., Avgeriou, P., 2017. The evolution of
technical debt in the apache ecosystem. In: European Conference on Software
Architecture. ECSA, pp. 51–66. http://dx.doi.org/10.1007/978-3-319-65831-
5_4.

Drucker, H., Burges, C.J., Kaufman, L., Smola, A.J., Vapnik, V., 1997. Support vector
regression machines. In: Proceedings of the 9th International Conference on
Neural Information Processing Systems, NIPS, pp. 155–161.

du Preez, J., Witt, S.F., 2003. Univariate versus multivariate time series forecast-
ing: an application to international tourism demand. Int. J. Forecast. 19 (3),
435–451. http://dx.doi.org/10.1016/S0169-2070(02)00057-2.

Efroymson, M., 1960. Multiple regression analysis. In: Mathematical Methods for
Digital Computers. pp. 191–203.

El Emam, K., Benlarbi, S., Goel, N., Rai, S.N., 2001. The confounding effect of class
size on the validity of object-oriented metrics. IEEE Trans. Softw. Eng. 27 (7),
630–650. http://dx.doi.org/10.1109/32.935855.

Elish, M.O., 2010. Exploring the relationships between design metrics and
package understandability: A case study. In: 2010 IEEE 18th International
Conference on Program Comprehension. ICPC, pp. 144–147. http://dx.doi.org/
10.1109/ICPC.2010.43.

Elish, M.O., Elish, K.O., 2009. Application of TreeNet in predicting object-oriented
software maintainability: A comparative study. In: 2009 13th European
Conference on Software Maintenance and Reengineering. CSMR, pp. 69–78.
http://dx.doi.org/10.1109/CSMR.2009.57, Mar.

Eski, S., Buzluca, F., 2011. An empirical study on object-oriented metrics and
software evolution in order to reduce testing costs by predicting change-
prone classes. In: 2011 IEEE Fourth International Conference on Software
Testing, Verification and Validation. ICST, pp. 566–571. http://dx.doi.org/10.
1109/ICSTW.2011.43.

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., Hutter, F., 2015.
Efficient and robust automated machine learning. In: Proceedings of the 28th
International Conference on Neural Information Processing Systems, Vol. 2.
NIPS, pp. 2962–2970. http://dx.doi.org/10.5555/2969442.2969547.

Fioravanti, F., Nesi, P., 2001. Estimation and prediction metrics for adaptive
maintenance effort of object-oriented systems. IEEE Trans. Softw. Eng. 27
(12), 1062–1084. http://dx.doi.org/10.1109/32.988708.

Fontana, F.A., Ferme, V., Spinelli, S., 2012. Investigating the impact of code smells
debt on quality code evaluation. In: Proceedings of the Third International
Workshop on Managing Technical Debt. MTD, pp. 15–22. http://dx.doi.org/
10.1109/MTD.2012.6225993.

Fontana, F.A., Mäntylä, M.V., Zanoni, M., Marino, A., 2016a. Comparing and
experimenting machine learning techniques for code smell detection. Empir.
Softw. Eng. 21 (3), 1143–1191. http://dx.doi.org/10.1007/s10664-015-9378-
4.

Fontana, F.A., Roveda, R., Zanoni, M., 2016b. Technical debt indexes provided by
tools: a preliminary discussion. In: 2016 IEEE 8th International Workshop on
Managing Technical Debt. MTD, pp. 28–31. http://dx.doi.org/10.1109/MTD.
2016.11.

Fowler, M., 1999. Refactoring: Improving the Design of Existing Code.
Addison-Wesley Professional.

Fowler, M., 2003. Technical debt. http://www.martinfowler.com/bliki/
TechnicalDebt.html, (Accessed 30 July 2018).

Fowler, M., 2009. Technical debt quadrant. http://www.martinfowler.com/bliki/
TechnicalDebtQuadrant.html, (Accessed 30 July 2018).

Friedman, J., Hastie, T., Tibshirani, R., 2001. The Elements of Statistical Learning,
Vol. 1. In: Springer series in statistics New York.

Gall, H.C., Lanza, M., 2006. Software evolution: analysis and visualization. In:
Proceedings of the 28th International Conference on Software Engineering.
ICSE, http://dx.doi.org/10.1145/1134285.1134502.

Giger, E., Pinzger, M., Gall, H.C., 2012. Can we predict types of code changes?
An empirical analysis. In: 2012 9th IEEE Working Conference on Mining
Software Repositories. MSR, pp. 217–226. http://dx.doi.org/10.1109/MSR.
2012.6224284.

Godfrey, M.W., German, D.M., 2008. The past, present, and future of software
evolution. In: Frontiers of Software Maintenance. FoSM, pp. 129–138. http:
//dx.doi.org/10.1109/FOSM.2008.4659256.

Gondra, I., 2008. Applying machine learning to software fault-proneness predic-
tion. J. Syst. Softw. 81 (2), 186–195. http://dx.doi.org/10.1016/j.jss.2007.05.
035.

Goulão, M., Fonte, N., Wermelinger, M., e Abreu, F.B., 2012. Software evolution
prediction using seasonal time analysis: a comparative study. In: 16th
European Conference on Software Maintenance and Reengineering. CSMR,
pp. 213–222. http://dx.doi.org/10.1109/CSMR.2012.30.

Goyal, P.K., Joshi, G., 2014. QMOOD metric sets to assess quality of Java program.
In: 2014 International Conference on Issues and Challenges in Intelligent
Computing Techniques. ICICT, pp. 520–533. http://dx.doi.org/10.1109/ICICICT.
2014.6781337.

Griffith, I., Reimanis, D., Izurieta, C., Codabux, Z., Deo, A., Williams, B., 2014. The
correspondence between software quality models and technical debt esti-
mation approaches. In: Sixth International Workshop on Managing Technical
Debt. MTD, pp. 19–26. http://dx.doi.org/10.1109/MTD.2014.13.

http://dx.doi.org/10.1016/j.infsof.2015.10.008
http://dx.doi.org/10.1016/j.infsof.2015.10.008
http://dx.doi.org/10.1016/j.infsof.2015.10.008
http://dx.doi.org/10.5220/0005885700750085
http://dx.doi.org/10.5220/0005885700750085
http://dx.doi.org/10.5220/0005885700750085
http://dx.doi.org/10.1016/j.infsof.2015.04.001
http://dx.doi.org/10.1145/3194164.3194175
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb7
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb7
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb7
http://dx.doi.org/10.1007/s11219-011-9144-9
http://dx.doi.org/10.1109/32.979986
http://dx.doi.org/10.1109/32.979986
http://dx.doi.org/10.1109/32.979986
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb10
http://dx.doi.org/10.1016/S0169-2070(98)00036-3
http://dx.doi.org/10.1109/TSE.1984.5010193
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb13
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb13
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb13
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb13
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb13
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb14
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb14
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb14
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1007/BF00058655
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb16
http://dx.doi.org/10.1145/1882362.1882373
http://dx.doi.org/10.1016/j.jss.2006.02.036
http://dx.doi.org/10.1109/TSE.2014.2381249
http://dx.doi.org/10.1109/TSE.2014.2381249
http://dx.doi.org/10.1109/TSE.2014.2381249
http://dx.doi.org/10.1109/WORDS.2005.32
http://dx.doi.org/10.1145/3120459.3120465
http://dx.doi.org/10.1145/3120459.3120465
http://dx.doi.org/10.1145/3120459.3120465
http://dx.doi.org/10.1109/MTD.2015.7332625
http://dx.doi.org/10.1109/MTD.2015.7332625
http://dx.doi.org/10.1109/MTD.2015.7332625
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1016/j.sysarc.2010.06.003
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb25
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb25
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb25
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb25
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb25
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb26
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb26
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb26
http://dx.doi.org/10.1145/157710.157715
http://dx.doi.org/10.1145/157710.157715
http://dx.doi.org/10.1145/157710.157715
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb29
http://dx.doi.org/10.1007/3-540-70659-3_2
http://dx.doi.org/10.1109/SANER.2018.8330205
http://dx.doi.org/10.1109/SANER.2018.8330205
http://dx.doi.org/10.1109/SANER.2018.8330205
http://dx.doi.org/10.1007/978-3-319-65831-5_4
http://dx.doi.org/10.1007/978-3-319-65831-5_4
http://dx.doi.org/10.1007/978-3-319-65831-5_4
http://dx.doi.org/10.1016/S0169-2070(02)00057-2
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb35
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb35
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb35
http://dx.doi.org/10.1109/32.935855
http://dx.doi.org/10.1109/ICPC.2010.43
http://dx.doi.org/10.1109/ICPC.2010.43
http://dx.doi.org/10.1109/ICPC.2010.43
http://dx.doi.org/10.1109/CSMR.2009.57
http://dx.doi.org/10.1109/ICSTW.2011.43
http://dx.doi.org/10.1109/ICSTW.2011.43
http://dx.doi.org/10.1109/ICSTW.2011.43
http://dx.doi.org/10.5555/2969442.2969547
http://dx.doi.org/10.1109/32.988708
http://dx.doi.org/10.1109/MTD.2012.6225993
http://dx.doi.org/10.1109/MTD.2012.6225993
http://dx.doi.org/10.1109/MTD.2012.6225993
http://dx.doi.org/10.1007/s10664-015-9378-4
http://dx.doi.org/10.1007/s10664-015-9378-4
http://dx.doi.org/10.1007/s10664-015-9378-4
http://dx.doi.org/10.1109/MTD.2016.11
http://dx.doi.org/10.1109/MTD.2016.11
http://dx.doi.org/10.1109/MTD.2016.11
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb45
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb45
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb45
http://www.martinfowler.com/bliki/TechnicalDebt.html
http://www.martinfowler.com/bliki/TechnicalDebt.html
http://www.martinfowler.com/bliki/TechnicalDebt.html
http://www.martinfowler.com/bliki/TechnicalDebtQuadrant.html
http://www.martinfowler.com/bliki/TechnicalDebtQuadrant.html
http://www.martinfowler.com/bliki/TechnicalDebtQuadrant.html
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb48
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb48
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb48
http://dx.doi.org/10.1145/1134285.1134502
http://dx.doi.org/10.1109/MSR.2012.6224284
http://dx.doi.org/10.1109/MSR.2012.6224284
http://dx.doi.org/10.1109/MSR.2012.6224284
http://dx.doi.org/10.1109/FOSM.2008.4659256
http://dx.doi.org/10.1109/FOSM.2008.4659256
http://dx.doi.org/10.1109/FOSM.2008.4659256
http://dx.doi.org/10.1016/j.jss.2007.05.035
http://dx.doi.org/10.1016/j.jss.2007.05.035
http://dx.doi.org/10.1016/j.jss.2007.05.035
http://dx.doi.org/10.1109/CSMR.2012.30
http://dx.doi.org/10.1109/ICICICT.2014.6781337
http://dx.doi.org/10.1109/ICICICT.2014.6781337
http://dx.doi.org/10.1109/ICICICT.2014.6781337
http://dx.doi.org/10.1109/MTD.2014.13

34
Ho, T.K., 1998. The random subspace method for constructing decision forests.
IEEE Trans. Pattern Anal. Mach. Intell. 20 (8), 832–844. http://dx.doi.org/10.
1109/34.709601.

Hoerl, A.E., Kennard, R.W., 2000. Ridge regression: Biased estimation for
nonorthogonal problems. Technometrics 12 (1), 55–67. http://dx.doi.org/10.
1080/00401706.2000.10485983.

ISO/IEC, 2011. ISO/IEC 25010 - Systems and Software Engineering - Systems
and Software Quality Requirements and Evaluation (SQuaRE) - System and
Software Quality Models. ISO/IEC.

Izurieta, C., Vetrò, A., Zazworka, N., Cai, Y., Seaman, C., Shull, F., 2012. Organizing
the technical debt landscape. In: Proceedings of the Third International
Workshop on Managing Technical Debt. MTD, Zurich, Switzerland, pp. 23–26.
http://dx.doi.org/10.5555/2666036.2666040.

Jin, C., Liu, J., 2010. Applications of support vector machine and unsupervised
learning for predicting maintainability using object-oriented metrics. In:
International Conference on Multimedia and Information Technology, Vol.
1. MITA, pp. 24–27. http://dx.doi.org/10.1109/MMIT.2010.10.

Jureczko, M., Spinellis, D., 2010. Using object-oriented design metrics to predict
software defects. In: Models and Methodology of System Dependability.
Oficyna Wydawnicza Politechniki Wroclawskiej, Wroclaw, Poland, pp. 69–81.

Karus, S., Dumas, M., 2012. Code churn estimation using organisational and code
metrics: An experimental comparison. Inf. Softw. Technol. 54 (2), 203–211.
http://dx.doi.org/10.1016/j.infsof.2011.09.004.

Kaur, K., Anand, S., 2013. A maintainability estimation model and metrics for
object-oriented design (MOOD). Int. J. Adv. Res. Comput. Eng. Technol. 2 (5).

Kenmei, B., Antoniol, G., Di Penta, M., 2008. Trend analysis and issue prediction
in large-scale open source systems. In: 12th European Conference on Soft-
ware Maintenance and Reengineering. CSMR, pp. 73–82. http://dx.doi.org/10.
1109/CSMR.2008.4493302.

Khoshgoftaar, T.M., Allen, E.B., Deng, J., 2002. Using regression trees to classify
fault-prone software modules. IEEE Trans. Reliab. 51 (4), 455–462. http:
//dx.doi.org/10.1109/TR.2002.804488.

Khoshgoftaar, T.M., Munson, J.C., 1990. Predicting software development errors
using software complexity metrics. IEEE J. Sel. Areas Commun. 8 (2),
253–261. http://dx.doi.org/10.1109/49.46879.

Kitchenham, B.A., Pfleeger, S.L., 2002. Principles of survey research: Part 3:
Constructing a survey instrument. SIGSOFT Softw. Eng. Notes 27 (2), 20–24.
http://dx.doi.org/10.1145/511152.511155.

Kohavi, R., et al., 1995. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In: Proceedings of the 14th International
Joint Conference on Artificial Intelligence, Vol. 2. IJCAI, pp. 1137–1145.
http://dx.doi.org/10.5555/1643031.1643047.

Kruchten, P., Nord, R.L., Ozkaya, I., 2012. Technical debt: From metaphor to
theory and practice. IEEE Softw. 29 (6), 18–21. http://dx.doi.org/10.1109/MS.
2012.167.

Lapedes, A., Farber, R., 1987. Nonlinear signal processing using neural networks:
Prediction and system modelling, United States.

Lehman, M.M., 1980. Programs, life cycles, and laws of software evolution. Proc.
IEEE 68 (9), 1060–1076. http://dx.doi.org/10.1109/PROC.1980.11805.

Lenarduzzi, V., Lomio, F., Taibi, D., Huttunen, H., 2019. On the fault proneness of
sonarqube technical debt violations: A comparison of eight machine learning
techniques. Comput. Res. Repos. CoRR abs/1907.00376, [Online]. Available:
http://arxiv.org/abs/1907.00376.

Letouzey, J.-L., 2012. The SQALE method for evaluating technical debt. In: Third
International Workshop on Managing Technical Debt. MTD, pp. 31–36. http:
//dx.doi.org/10.1109/MTD.2012.6225997.

Letouzey, J.-L., Ilkiewicz, M., 2012. Managing technical debt with the sqale
method. IEEE Softw. 29 (6), 44–51. http://dx.doi.org/10.1109/MS.2012.129.

Li, Z., Avgeriou, P., Liang, P., 2015. A systematic mapping study on technical debt
and its management. J. Syst. Softw. 193–220. http://dx.doi.org/10.1016/j.jss.
2014.12.027.

Lucca, G.A.D., Fasolino, A.R., Tramontana, P., Visaggio, C.A., 2004. Towards the
definition of a maintainability model for web applications. In: Proceedings
of the Eighth Euromicro Working Conference on Software Maintenance and
Reengineering. CSMR’04, USA, p. 279. http://dx.doi.org/10.1109/CSMR.2004.
1281430.

Makridakis, S., Spiliotis, E., Assimakopoulos, V., 2018. Statistical and machine
learning forecasting methods: Concerns and ways forward. PLoS One 13 (3),
e0194889. http://dx.doi.org/10.1371/journal.pone.0194889.

Malhotra, R., Lata, K., 2018. On the application of cross-project validation for
predicting maintainability of open source software using machine learning
techniques. In: 2018 7th International Conference on Reliability, Infocom
Technologies and Optimization. ICRITO, pp. 175–181. http://dx.doi.org/10.
1109/ICRITO.2018.8748749.

Mamun, M.A.A., Martini, A., Staron, M., Berger, C., Hansson, J., 2019. Evolution
of technical debt: An exploratory study. In: 2019 Joint Conference of the
International Workshop on Software Measurement and the International
Conference on Software Process and Product Measurement. IWSM, pp.
87–102.
Marinescu, R., 2012. Assessing technical debt by identifying design flaws in
software systems. IBM J. Res. Dev. 56 (5), 9:1–9:13. http://dx.doi.org/10.1147/
JRD.2012.2204512.

Marquaridt, D.W., 1970. Generalized inverses, ridge regression, biased linear
estimation, and nonlinear estimation. Technometrics 12 (3), 591–612. http:
//dx.doi.org/10.1080/00401706.1970.10488699.

McConnell, S., 2012. How to categorize and communicate technical debt.
https://www.castsoftware.com/blog/steve-mcconnell-on-categorizing-
managing-technical-debt, (Accessed 30 July 2018).

Mens, T., 2008. Introduction and roadmap: History and challenges of software
evolution. In: Introduction and Roadmap: History and Challenges of Software
Evolution, Software Evolution. Springer (Chapter 1).

Munson, J., Khoshgoftaar, T., 1990. Regression modelling of software quality:
empirical investigation. Inf. Softw. Technol. 32 (2), 106–114. http://dx.doi.
org/10.1016/0950-5849(90)90109-5.

Nagappan, N., Ball, T., 2005. Static analysis tools as early indicators of pre-
release defect density. In: Proceedings of the 27th International Conference
on Software Engineering. ICSE, pp. 580–586. http://dx.doi.org/10.1109/ICSE.
2005.1553604.

Nagappan, N., Ball, T., Zeller, A., 2006. Mining metrics to predict component
failures. In: Proceedings of the 28th International Conference on Software
Engineering. ICSE, pp. 452–461. http://dx.doi.org/10.1145/1134285.1134349.

Nugroho, A., Visser, J., Kuipers, T., 2011. An empirical model of technical debt
and interest. In: Proceedings of the 2nd Workshop on Managing Technical
Debt. pp. 1–8. http://dx.doi.org/10.1145/1985362.1985364.

Olbrich, S.M., Cruzes, D.S., Sjøberg, D.I., 2010. Are all code smells harmful? A
study of God Classes and Brain Classes in the evolution of three open source
systems. In: 2010 IEEE International Conference on Software Maintenance.
ICSM, pp. 1–10. http://dx.doi.org/10.1109/ICSM.2010.5609564.

Palit, A.K., Popovic, D., 2006. Computational Intelligence in Time Series Fore-
casting: Theory and Engineering Applications. Springer Science & Business
Media.

Palomba, F., Bavota, G., Di Penta, M., Fasano, F., Oliveto, R., De Lucia, A., 2018.
On the diffuseness and the impact on maintainability of code smells: a
large scale empirical investigation. Empir. Softw. Eng. 23 (3), 1188–1221.
http://dx.doi.org/10.1007/s10664-017-9535-z.

Raja, U., Hale, D.P., Hale, J.E., 2009. Modeling software evolution defects: a time
series approach. J. Softw. Maint. Evol. 21 (1), 49–71. http://dx.doi.org/10.
1002/smr.398.

Riaz, M., Mendes, E., Tempero, E., 2009. A systematic review of software
maintainability prediction and metrics. In: Proceedings of the 2009 3rd Inter-
national Symposium on Empirical Software Engineering and Measurement.
ESEM, pp. 367–377. http://dx.doi.org/10.1109/ESEM.2009.5314233.

Roumani, Y., Nwankpa, J.K., Roumani, Y.F., 2015. Time series modeling of
vulnerabilities. Comput. Secur. 51, 32–40. http://dx.doi.org/10.1016/j.cose.
2015.03.003.

Schmid, K., 2013. A formal approach to technical debt decision making. In:
Proceedings of the 9th International ACM Sigsoft Conference on Quality
of Software Architectures. QoSA, New York, NY, USA, pp. 153–162. http:
//dx.doi.org/10.1145/2465478.2465492.

Seaman, C., Guo, Y., 2011. Measuring and monitoring technical debt. In: Advances
in Computers, Vol. 82. Elsevier, pp. 25–46.

Shatnawi, R., Li, W., 2008. The effectiveness of software metrics in identifying
error-prone classes in post-release software evolution process. J. Syst. Softw.
81 (11), 1868–1882. http://dx.doi.org/10.1016/j.jss.2007.12.794.

Shin, Y., Meneely, A., Williams, L., Osborne, J.A., 2011. Evaluating complexity code
churn and developer activity metrics as indicators of software vulnerabilities.
IEEE Trans. Softw. Eng. 37 (6), 772–787. http://dx.doi.org/10.1109/TSE.2010.
81.

Siavvas, M.G., Chatzidimitriou, K.C., Symeonidis, A.L., 2017a. QATCH-an adaptive
framework for software product quality assessment. Expert Syst. Appl. 86,
350–366. http://dx.doi.org/10.1016/j.eswa.2017.05.060.

Siavvas, M., Kehagias, D., Tzovaras, D., 2017b. A preliminary study on the
relationship among software metrics and specific vulnerability types. In:
2017 International Conference on Computational Science and Computational
Intelligence. CSCI, pp. 916–921. http://dx.doi.org/10.1109/CSCI.2017.159.

Siavvas, M., et al., 2019. An empirical evaluation of the relationship between
technical debt and software security. In: 9th International Conference on
Information Society and Technology, ICIST 2019.

Singh, Y., Saha, A., 2012. Prediction of testability using the design metrics
for object-oriented software. Int. J. Comput. Appl. Technol. 44 (1), 12–22.
http://dx.doi.org/10.1504/IJCAT.2012.048204.

Sjøberg, D.I., Yamashita, A., Anda, B.C., Mockus, A., Dybå, T., 2012. Quantifying
the effect of code smells on maintenance effort. IEEE Trans. Softw. Eng. 39
(8), 1144–1156. http://dx.doi.org/10.1109/TSE.2012.89.

Skourletopoulos, G., Mavromoustakis, C.X., Bahsoon, R., Mastorakis, G., Pallis, E.,
2014. Predicting and quantifying the technical debt in cloud software
engineering. In: 19th International Workshop on Computer Aided Modeling
and Design of Communication Links and Networks. CAMAD, pp. 36–40.
http://dx.doi.org/10.1109/CAMAD.2014.7033201.

http://dx.doi.org/10.1109/34.709601
http://dx.doi.org/10.1109/34.709601
http://dx.doi.org/10.1109/34.709601
http://dx.doi.org/10.1080/00401706.2000.10485983
http://dx.doi.org/10.1080/00401706.2000.10485983
http://dx.doi.org/10.1080/00401706.2000.10485983
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb58
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb58
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb58
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb58
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb58
http://dx.doi.org/10.5555/2666036.2666040
http://dx.doi.org/10.1109/MMIT.2010.10
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb61
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb61
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb61
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb61
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb61
http://dx.doi.org/10.1016/j.infsof.2011.09.004
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb63
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb63
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb63
http://dx.doi.org/10.1109/CSMR.2008.4493302
http://dx.doi.org/10.1109/CSMR.2008.4493302
http://dx.doi.org/10.1109/CSMR.2008.4493302
http://dx.doi.org/10.1109/TR.2002.804488
http://dx.doi.org/10.1109/TR.2002.804488
http://dx.doi.org/10.1109/TR.2002.804488
http://dx.doi.org/10.1109/49.46879
http://dx.doi.org/10.1145/511152.511155
http://dx.doi.org/10.5555/1643031.1643047
http://dx.doi.org/10.1109/MS.2012.167
http://dx.doi.org/10.1109/MS.2012.167
http://dx.doi.org/10.1109/MS.2012.167
http://dx.doi.org/10.1109/PROC.1980.11805
http://arxiv.org/abs/1907.00376
http://dx.doi.org/10.1109/MTD.2012.6225997
http://dx.doi.org/10.1109/MTD.2012.6225997
http://dx.doi.org/10.1109/MTD.2012.6225997
http://dx.doi.org/10.1109/MS.2012.129
http://dx.doi.org/10.1016/j.jss.2014.12.027
http://dx.doi.org/10.1016/j.jss.2014.12.027
http://dx.doi.org/10.1016/j.jss.2014.12.027
http://dx.doi.org/10.1109/CSMR.2004.1281430
http://dx.doi.org/10.1109/CSMR.2004.1281430
http://dx.doi.org/10.1109/CSMR.2004.1281430
http://dx.doi.org/10.1371/journal.pone.0194889
http://dx.doi.org/10.1109/ICRITO.2018.8748749
http://dx.doi.org/10.1109/ICRITO.2018.8748749
http://dx.doi.org/10.1109/ICRITO.2018.8748749
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb79
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb79
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb79
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb79
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb79
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb79
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb79
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb79
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb79
http://dx.doi.org/10.1147/JRD.2012.2204512
http://dx.doi.org/10.1147/JRD.2012.2204512
http://dx.doi.org/10.1147/JRD.2012.2204512
http://dx.doi.org/10.1080/00401706.1970.10488699
http://dx.doi.org/10.1080/00401706.1970.10488699
http://dx.doi.org/10.1080/00401706.1970.10488699
https://www.castsoftware.com/blog/steve-mcconnell-on-categorizing-managing-technical-debt
https://www.castsoftware.com/blog/steve-mcconnell-on-categorizing-managing-technical-debt
https://www.castsoftware.com/blog/steve-mcconnell-on-categorizing-managing-technical-debt
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb83
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb83
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb83
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb83
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb83
http://dx.doi.org/10.1016/0950-5849(90)90109-5
http://dx.doi.org/10.1016/0950-5849(90)90109-5
http://dx.doi.org/10.1016/0950-5849(90)90109-5
http://dx.doi.org/10.1109/ICSE.2005.1553604
http://dx.doi.org/10.1109/ICSE.2005.1553604
http://dx.doi.org/10.1109/ICSE.2005.1553604
http://dx.doi.org/10.1145/1134285.1134349
http://dx.doi.org/10.1145/1985362.1985364
http://dx.doi.org/10.1109/ICSM.2010.5609564
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb89
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb89
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb89
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb89
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb89
http://dx.doi.org/10.1007/s10664-017-9535-z
http://dx.doi.org/10.1002/smr.398
http://dx.doi.org/10.1002/smr.398
http://dx.doi.org/10.1002/smr.398
http://dx.doi.org/10.1109/ESEM.2009.5314233
http://dx.doi.org/10.1016/j.cose.2015.03.003
http://dx.doi.org/10.1016/j.cose.2015.03.003
http://dx.doi.org/10.1016/j.cose.2015.03.003
http://dx.doi.org/10.1145/2465478.2465492
http://dx.doi.org/10.1145/2465478.2465492
http://dx.doi.org/10.1145/2465478.2465492
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb95
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb95
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb95
http://dx.doi.org/10.1016/j.jss.2007.12.794
http://dx.doi.org/10.1109/TSE.2010.81
http://dx.doi.org/10.1109/TSE.2010.81
http://dx.doi.org/10.1109/TSE.2010.81
http://dx.doi.org/10.1016/j.eswa.2017.05.060
http://dx.doi.org/10.1109/CSCI.2017.159
http://dx.doi.org/10.1504/IJCAT.2012.048204
http://dx.doi.org/10.1109/TSE.2012.89
http://dx.doi.org/10.1109/CAMAD.2014.7033201

35
Spearman, C., 1987. The proof and measurement of association between
two things. Am. J. Psychol. 100 (3/4), 441–471. http://dx.doi.org/10.2307/
1422689.

Stone, M., 1974. Cross-validatory choice and assessment of statistical predictions.
J. R. Stat. Soc. Ser. B Stat. Methodol. 36 (2), 111–133. http://dx.doi.org/10.
1111/j.2517-6161.1974.tb00994.x.

Suryanarayana, G., Samarthyam, G., Sharma, T., 2014. Refactoring for Software
Design Smells: Managing Technical Debt. Morgan Kaufmann.

Tan, J., Lungu, M., Avgeriou, P., 2018. Towards studying the evolution of technical
debt in the python projects from the apache software ecosystem. In: 17th
Belgium-Netherlands Software Evolution Workshop, BENEVOL, pp. 43–45.

Tibshirani, R., 1996. Regression shrinkage and selection via the lasso. J. R. Stat.
Soc. Ser. B Stat. Methodol. 58 (1), 267–288. http://dx.doi.org/10.1111/j.2517-
6161.1996.tb02080.x.

Tsoukalas, D., Jankovic, M., Siavvas, M., Kehagias, D., Chatzigeorgiou, A., Tzo-
varas, D., 2019. On the applicability of time series models for technical debt
forecasting. In: 15th China-Europe International Symposium on Software
Engineering Education (CEISEE 2019). (In press).

Tsoukalas, D., Siavvas, M., Jankovic, M., Kehagias, D., Chatzigeorgiou, A., Tzo-
varas, D., 2018. Methods and tools for TD estimation and forecasting:
A state-of-the-art survey. In: IEEE International Conference on Intelligent
Systems (IS 2018). pp. 698–705. http://dx.doi.org/10.1109/IS.2018.8710521.

Van Koten, C., Gray, A., 2006. An application of Bayesian network for predicting
object-oriented software maintainability. Inf. Softw. Technol. 48 (1), 59–67.
http://dx.doi.org/10.1016/j.infsof.2005.03.002.

Vetro’, A., 2012. Using automatic static analysis to identify technical debt. In:
Proceedings of the 34th International Conference on Software Engineering.
ICSE, Zurich, Switzerland, pp. 1613–1615. http://dx.doi.org/10.5555/2337223.
2337499.

Wagner, S., 2009. A Bayesian network approach to assess and predict software
quality using activity-based quality models. In: Proceedings of the 5th
International Conference on Predictor Models in Software Engineering, Vol.
1. PROMISE, http://dx.doi.org/10.1145/1540438.1540447.

Wagner, S., et al., 2015. Operationalised product quality models and assessment:
The Quamoco approach. Inf. Softw. Technol. 62, 101–123. http://dx.doi.org/
10.1016/j.infsof.2015.02.009.

Walden, J., Stuckman, J., Scandariato, R., 2014. Predicting vulnerable components:
Software metrics vs text mining. In: International Symposium on Software
Reliability Engineering. ISSRE, pp. 23–33. http://dx.doi.org/10.1109/ISSRE.
2014.32.

Werbos, P., 1974. Beyond Regression: New Tools for Prediction and Analysis in
the Behavioral Sciences. Harvard University, Cambridge.

Werbos, P.J., 1988. Generalization of backpropagation with application to a
recurrent gas market model. Neural Netw. 1 (4), 339–356. http://dx.doi.org/
10.1016/0893-6080(88)90007-X.

Xuan, J., Hu, Y., Jiang, H., 2017. Debt-prone bugs: Technical debt in software
maintenance. Comput. Res. Repos. CoRR, abs/1704.04766, [Online]. Available:
http://arxiv.org/abs/1704.04766.

Yazdi, H.S., Mirbolouki, M., Pietsch, P., Kehrer, T., Kelter, U., 2014. Analysis and
prediction of design model evolution using time series. In: International
Conference on Advanced Information Systems Engineering. CAiSE, pp. 1–15.
http://dx.doi.org/10.1007/978-3-319-07869-4_1.

Zazworka, N., Seaman, C., Shull, F., 2011. Prioritizing design debt investment
opportunities. In: Proceedings of the 2nd Workshop on Managing Technical
Debt. MTD, pp. 39–42. http://dx.doi.org/10.1145/1985362.1985372.
Zazworka, N., Spínola, R.O., Vetro, A., Shull, F., Seaman, C., 2013. A case study
on effectively identifying technical debt. In: Proceedings of the 17th Inter-
national Conference on Evaluation and Assessment in Software Engineering.
EASE, http://dx.doi.org/10.1145/2460999.2461005.

Zazworka, N., et al., 2014. Comparing four approaches for technical debt iden-
tification. Softw. Qual. J. 22 (3), 403–426. http://dx.doi.org/10.1007/s11219-
013-9200-8.

Zhou, Y., Leung, H., 2007. Predicting object-oriented software maintainability us-
ing multivariate adaptive regression splines. J. Syst. Softw. 80 (8), 1349–1361.
http://dx.doi.org/10.1016/j.jss.2006.10.049.

Zhou, Y., Xu, B., 2008. Predicting the maintainability of open source software
using design metrics, Wuhan university. J. Nat. Sci. 13 (1), 14–20. http:
//dx.doi.org/10.1007/s11859-008-0104-6.

Zhou, Y., et al., 2012. An in-depth investigation into the relationships between
structural metrics and unit testability in object-oriented systems. Sci. China
Inf. Sci. 55, 2800–2815. http://dx.doi.org/10.1007/s11432-012-4745-x.

Dimitrios Tsoukalas holds a B.Sc. in ‘‘Applied Informatics’’ and a M.Sc. in
‘‘Computer Systems’’ from the Department of Applied Informatics - University of
Macedonia (UoM). He also holds a MSc. in ‘‘Intelligent Systems – Computational
Intelligence Methodologies and Applications’’ from the Department of Electrical
and Computer Engineering – Aristotle University of Thessaloniki (A.U.Th.). Since
May 2018, he is a Ph.D. candidate at the Department of Applied Informatics
of the University of Macedonia (UoM). His main research interests lie in the
areas of Software Engineering and Intelligent Systems. He is currently a Research
Associate at the Centre for Research and Technology Hellas (CERTH/ITI).

Dionysios Kehagias received the Diploma and Ph.D. degrees in electrical and
computer engineering from the Aristotle University of Thessaloniki, Thessaloniki,
Greece, in 1999 and 2006, respectively. He is currently a Researcher Grade B with
the Information Technologies Institute of the Centre for Research and Technology
Hellas (CERTH). His research interests include software technologies, algo-
rithms, data mining, machine learning, time-series analysis, big data analytics,
service-oriented architectures and ontology-based knowledge engineering.

Miltiadis Siavvas received the Diploma degree in electrical and computer
engineering from the Aristotle University of Thessaloniki in 2016, and the Ph.D.
degree in Software Security and Reliability from the Intelligent Systems and
Networks Group, Imperial College London, in 2019. He is currently a Research
Associate at the Information Technologies Institute of the Centre for Research
and Technology Hellas (CERTH/ITI). His main research interests lie in the areas
of software engineering (with emphasis on software quality, reliability, and
security), machine learning and data science.

Dr. Alexander Chatzigeorgiou is a Professor of Software Engineering in the
Department of Applied Informatics at the University of Macedonia, Thessaloniki,
Greece and since 2017 he serves as the Dean of the School of Information
Sciences. He received the Diploma in Electrical Engineering and the Ph.D. degree
in Computer Science from the Aristotle University of Thessaloniki, Greece,
in 1996 and 2000, respectively. From 1997 to 1999 he was with Intracom,
as a software designer. His research interests include object-oriented design,
software maintenance and evolution. He has published more than 140 articles
in international journals and conferences.

http://dx.doi.org/10.2307/1422689
http://dx.doi.org/10.2307/1422689
http://dx.doi.org/10.2307/1422689
http://dx.doi.org/10.1111/j.2517-6161.1974.tb00994.x
http://dx.doi.org/10.1111/j.2517-6161.1974.tb00994.x
http://dx.doi.org/10.1111/j.2517-6161.1974.tb00994.x
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb106
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb106
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb106
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://dx.doi.org/10.1111/j.2517-6161.1996.tb02080.x
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb109
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb109
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb109
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb109
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb109
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb109
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb109
http://dx.doi.org/10.1109/IS.2018.8710521
http://dx.doi.org/10.1016/j.infsof.2005.03.002
http://dx.doi.org/10.5555/2337223.2337499
http://dx.doi.org/10.5555/2337223.2337499
http://dx.doi.org/10.5555/2337223.2337499
http://dx.doi.org/10.1145/1540438.1540447
http://dx.doi.org/10.1016/j.infsof.2015.02.009
http://dx.doi.org/10.1016/j.infsof.2015.02.009
http://dx.doi.org/10.1016/j.infsof.2015.02.009
http://dx.doi.org/10.1109/ISSRE.2014.32
http://dx.doi.org/10.1109/ISSRE.2014.32
http://dx.doi.org/10.1109/ISSRE.2014.32
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb116
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb116
http://refhub.elsevier.com/S0164-1212(20)30190-4/sb116
http://dx.doi.org/10.1016/0893-6080(88)90007-X
http://dx.doi.org/10.1016/0893-6080(88)90007-X
http://dx.doi.org/10.1016/0893-6080(88)90007-X
http://arxiv.org/abs/1704.04766
http://dx.doi.org/10.1007/978-3-319-07869-4_1
http://dx.doi.org/10.1145/1985362.1985372
http://dx.doi.org/10.1145/2460999.2461005
http://dx.doi.org/10.1007/s11219-013-9200-8
http://dx.doi.org/10.1007/s11219-013-9200-8
http://dx.doi.org/10.1007/s11219-013-9200-8
http://dx.doi.org/10.1016/j.jss.2006.10.049
http://dx.doi.org/10.1007/s11859-008-0104-6
http://dx.doi.org/10.1007/s11859-008-0104-6
http://dx.doi.org/10.1007/s11859-008-0104-6
http://dx.doi.org/10.1007/s11432-012-4745-x

	Technical debt forecasting: An empirical study on open-source repositories
	Introduction
	Background
	Forecasting concepts
	Causal or associative models
	Machine learning methods

	Technical debt concepts
	Technical debt main components
	Technical debt indexes

	Related work
	Data definition, collection and preparation
	TD indicator definition
	Collection of data
	Data preparation
	Descriptive statistics
	Correlation analysis
	Univariate analysis
	Multivariate analysis

	Sliding window method

	Machine learning approach for TD forecasting
	Model training, testing and benchmarking
	Model execution
	Technical implementation

	Case study
	Survey design
	Survey analysis and results

	Limitations and threats to validity
	Implications to researchers and practitioners
	Implications for research
	Implications for practice

	Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	Appendix
	References

