
1/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

A Systematic Mapping Study on Microservices
Architecture in DevOps

Muhammad Waseem a, Peng Liang a, *, Mojtaba Shahin b

a School of Computer Science, Wuhan University, 430072 Wuhan, China

b Faculty of Information Technology, Monash University, 3800 Melbourne, Australia

m.waseem@whu.edu.cn, liangp@whu.edu.cn, mojtaba.shahin@monash.edu

ABSTRACT
Context: Applying Microservices Architecture (MSA) in DevOps has received significant
attention in recent years. However, there exists no comprehensive review of the state of research
on this topic.
Objective: This work aims to systematically identify, analyze, and classify the literature on
MSA in DevOps.
Method: A Systematic Mapping Study (SMS) has been conducted on the literature published
between January 2009 and July 2018.
Results: Forty-seven studies were finally selected and the key results are: (1) Three themes on
the research on MSA in DevOps are “microservices development and operations in DevOps”,
“approaches and tool support for MSA based systems in DevOps”, and “MSA migration
experiences in DevOps”. (2) 24 problems with their solutions regarding implementing MSA in
DevOps are identified. (3) MSA is mainly described by using boxes and lines. (4) Most of the
quality attributes are positively affected when employing MSA in DevOps. (5) 50 tools that
support building MSA based systems in DevOps are collected. (6) The combination of MSA
and DevOps has been applied in a wide range of application domains.
Conclusions: The results and findings will benefit researchers and practitioners to conduct
further research and bring more dedicated solutions for the issues of MSA in DevOps.

Keywords: Microservices Architecture, DevOps, Systematic Mapping Study

1. Introduction
Microservices Architecture (MSA) is a cloud-native architectural style, which is inspired by

Service-Oriented Architecture (SOA). Typically, microservices are organized as a suite of
small granular services that can be implemented (developed, tested, and deployed) on different
platforms through multiple technological stacks [1]. Each service of the MSA runs on its own
process and communicate with each other through, e.g., RESTful or RPC-based APIs [2].

MSA has become popular in industry because of its benefits, such as availability, flexibility,
scalability, loose coupling, and high velocity [3] According to the International Data
Corporation (IDC), by the end of 2021, 80% of cloud-based applications will be developed
using by MSA [1]. It is also argued that the worldwide DevOps market would grow to $5.6
billion in 2021 [4]. Another published report reveals that organizations may adopt MSA for
different purposes [6], for example, to gain agility (82%), to improve organization performance
(57%), and scalability (78%). This report also shows that the motivation behind implementing
MSA in 47% of organizations was DevOps [5].

DevOps is a set of practices for developing, testing, and deploying software quickly and
reliably by promoting collaboration between the developers, testers, and operators [6]. DevOps
practices aim “to decrease the time between changing a system and transforming that change

* Corresponding author at: School of Computer Science, Wuhan University, China. Tel: +86 27 68776137; fax:
+86 27 68776027. E-mail address: liangp@whu.edu.cn (P. Liang)

Waseem, M., Liang, P., Shahin, M., A Systematic Mapping Study on Microservices Architecture in DevOps.
Preprint copy – Accepted to appear in Journal of Systems and Software (JSS), 2020.

2/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

into production environment” [2]. Many practitioners and researchers advocate that MSA has
a natural progression of embracing DevOps [7, 8]. DevOps brings additional productivity with
MSA through using tools chain and a fast feedback mechanism [9].

To understand how MSA is employed in DevOps, we conducted an SMS through a
collection of primary studies on MSA in DevOps context. The objective of this SMS is to
identify, analyze, and classify the literature on MSA in DevOps with respect to the research
themes, problems, solutions, challenges, description methods, patterns, quality attributes (QAs),
tools, and application domains. The objective of this SMS is further decomposed into a number
of Research Questions (RQs) that are listed in Table 1.

The key contributions of this SMS are: (1) A classification of the research themes related to
MSA in DevOps. (2) A classification of the problems that practitioners may face during the
implementation of MSA in DevOps and the solutions adopt to address the problems. (3) A list
of identified research challenges in the context of MSA in DevOps. (4) A classification of the
tools that support MSA in DevOps. (5) A list of MSA description methods, MSA patterns, QAs,
tools, and application domains.

The rest of this paper is organized as follows: Section 2 briefly introduces MSA and DevOps,
existing literature reviews, and motivation of this SMS. Section 3 presents the research method
used in this study. Section 4 provides the study results. Section 5 discusses the results. Section
6 describes the threats to validity and Section 8 concludes the study.

2. Background
In this section, we provide an overview of MSA and DevOps, existing literature reviews,

and motivation of this SMS.

2.1. Microservices Architecture
MSA style is gaining momentum for the development and deployment of software

applications as a suite of small granular services that can be integrated through lightweight
communication mechanisms, normally RESTful APIs [10]. Microservices are small,
understandable components that hold the business capabilities around the services [11]. These
services can be scaled independently (as they are loosely coupled) by implementing different
technology stacks [2]. Many researchers and practitioners argue that MSA is an evolution of
Services Oriented Architecture (SOA), as seen in the context of independent/self-management
of services, and lightweight nature [12]. On the other hand, MSA can be differentiated from
SOA in terms of component sharing, service communication, service mediation, and remote
service access [13]. SOA is built on the idea of sharing as much as possible whereas MSA is
formed on the idea of sharing as little as possible [13, 14]. MSA uses choreography style for
inter-service communication whereas SOA employs orchestration style for service coordination.
For service mediation, MSA uses the API layer that acts as the service facade while SOA adopts
the concept of messaging middleware for service coordination. Moreover, MSA mostly relies
on Representational State Transfer (REST) protocol and simple messaging as remote service
access protocols; however, SOA can handle different types of remote access protocols
including simple messaging for accessing remote services [13].

2.2. DevOps
DevOps is an approach based on agile and lean software development principals [15]. This

approach promotes the collaboration of development and operations staff in order to develop
quality software in a continuous manner [16]. DevOps consists of a set of practices (i.e.,
continuous planning, integration, deployment, testing, and monitoring) intended to develop,
test, and deploy software changes quickly and reliably by promoting strong collaboration
between the developers, testers, and operators [17]. Furthermore, DevOps automates the
software deployment process from source code in the development environment to the
production environment by utilizing different kinds of tools (see Section 4.4). This approach
shortens the time to market by adopting continuous feedback, Continuous Integration (CI), and
Continuous Delivery (CD) practices [9].

3/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

2.3. Motivation for this Mapping Study
DevOps and MSA are emerging trends in both industry and academia. Google Trends reveals

that searches related to the terms “microservice” and “DevOps” are on the top in technology
trends, and have been growing at an equal rate after 2014 [2]. MSA is the first architectural
style after the DevOps revolution that has emerged, evolved, and widely adopted by the industry
[18]. MSA based applications consist of 10s, 100s, or even 1000s of services that could be
developed, tested, and deployed independently. All of these services and the infrastructures
where the services are developed, tested, and deployed require robust automation to handle the
number of the processes and velocity of change [19]. It is argued that DevOps can reduce the
impact of the challenges related to MSA development and operations [20]. These challenges
may occur due to distributed applications, poorly managed code infrastructure, lack of test case
automation [20, 21], and no close alignment between development and operations activities
[19].

DevOps is a culture that combines new or improved practices, processes, team structures
and responsibilities, and tools to maximize the ability of an organization to deliver applications
and services quickly [15, 22]. DevOps acts as a process framework that can be used for
developing, deploying, and managing MSA [1]. The coexistence of microservices and DevOps
enables reusability, decentralized data governance, automation, and built-in scalability [2].
MSA and DevOps have many common characteristics that make them a perfect fit for each
other. For instance, DevOps practices and MSA promote the idea of decomposing large
problems into smaller pieces and then address them through small cross-functional teams [23].
Containerized microservices can be realized independently because DevOps gives them a favor
of continuous integration and deployment. Although it is not compulsory to design software
systems based on MSA in DevOps, most of the challenges arisen in DevOps can be resolved
by using MSA [17]. This combination is expected to increase the team’s throughput and the
overall quality of the system [1, 23]. For example, with MSA and DevOps, Netflix and Amazon
engineers can do hundreds of deployments each day [19]. The MSA and DevOps combination
brings several other benefits, including frequent software release, reliability and scalability of
systems, resilience in the case of failure, and management of decentralized teams to control the
application development [24, 25]. Moreover, the DevOps toolchain helps to continually code,
build, test, package, release, configure, and monitor the MSA based systems. Furthermore, both
MSA and DevOps are designed to offer great agility and operational efficiency for an enterprise
[17].

Due to the growing importance of MSA in DevOps, an increasing amount of literature has
been published through diverse venues in the last few years. Currently, many aspects are still
unclear and scattered in literature in the context of MSA and DevOps combination. For instance,
research themes, problems that prevent adopting MSA in DevOps, solutions to address those
problems, and open research challenges. We believe that analyzing MSA in DevOps context
may help practitioners to adopt this combination smoothly and will also help researchers to
identify further research opportunities.

3. Research Methodology
The goal of this study is to get an overview of MSA in DevOps. More specifically, this study

aims to identify problems, solutions, challenges, MSA description methods, patterns, qualities
attributes, tools, application domains, and research opportunities in the context of MSA in
DevOps. To that end, we conducted an SMS to collect, classify, and analyze the primary studies
on MSA in DevOps. Another form of secondary research that can be used for conducting a
review on a phenomenon is SLR. An SLR provides “a means of identifying, evaluating, and
interpreting all available research relevant to a particular research question” [26]. While SLR
enables researchers to conduct an in-depth analysis of the literature on a research area, SMS
aims at covering the breadth of a research area. Moreover, SMS provides a systematic and
objective procedure for identifying and classifying what evidence is available in a specific
research area [27]. We decided to conduct an SMS as the scope of our studied topic (i.e., MSA
in DevOps) is broad, and it includes many topics (e.g., design, implementation, migration,

4/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

techniques, and tools). However, we did not only perform a mapping but also synthesized the
data by using thematic analysis method [28]

To conduct this SMS, we followed the guidelines proposed in [27], complemented with the
strategies presented by Kitchenham et al. for SLRs [26]. Figure 1 shows the process of this
SMS, which was executed in three steps: (i) planning the mapping study, (ii) collecting and
analyzing the data, and (iii) mapping and documenting the results.

Figure 1. Process of this Systematic Mapping Study

3.1. Research Questions
To conduct this SMS, we derived the following eight RQs (as listed in Table 1) according to

the goal of this study.
Table 1. Research Questions and their Rationale

Category 1: Demography, Classification, and Mapping of Research
Research Question Rationale

RQ1.1 What is the frequency and type
of published research on MSA in
DevOps?

This RQ aims to collect the data about intensity and type
of publications on MSA in DevOps. The answer to this
RQ will provide information about publication trends
and prominent venues for MSA in DevOps research.

RQ1.2 What are the existing research
themes on MSA in DevOps and
how can they be classified and
mapped?

The answer to this RQ will establish the foundation for
systematic analysis of the existing research on MSA in
DevOps through a taxonomy of the research themes.
This taxonomy will provide (i) a base for classifying the
existing research on MSA in DevOps and (ii) analyzing
the current state of the art on MSA in DevOps context.

Category 2: Problems, Solutions, and Challenges
Research Question Rationale

RQ2.1 What problems have been
reported when implementing
MSA in DevOps?

The implementation of MSA in DevOps context is not
without obstacles. The answer to this RQ will identify

1. Planning the
Mapping Study

2. Collecting and
Analysing Data

3. Mapping and
Documenting Results

Identify the Needs for
Mapping Study

Specify the Research
Questions

Define the Protocol
for Mapping Study

Select the
Primary Studies

Assess the
Study Quality

Analyse and Synthesise
the Data

Classify and
Map the Studies

Analyse the Validity
Threats

Report the
Results

Protocol for
Mapping Study

Protocol for
Mapping Study

Activity Step Activity Output
Step Transition Activity Transition

5/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

and classify the problems related to the adoption of MSA
in DevOps.

RQ2.2 What solutions have been
employed to address the
problems?

A solution could be a best practice, a tool, a technique,
or a framework. The answer to this RQ will help to
identify the solutions to overcome the problems related
to the implementation of MSA in DevOps context.

RQ2.3 What challenges have been
reported when implementing
MSA in DevOps?

There might be open challenges that are reported in the
selected studies without any proposed solutions. The
answer to this RQ will identify and report them as future
research opportunities in this area.

Category 3: MSA Description Methods, Patterns, and Quality Attributes
Research Question Rationale

RQ3.1 What methods are used to
describe MSA in DevOps?

MSA based applications can be designed and modeled
by using different architecture description methods. The
answer to this RQ will provide the information regarding
MSA description methods (graphical, textual, or both)
that have been used for expressing, communicating, and
analyzing the features of MSA based systems in DevOps
context.

RQ3.2 What MSA design patterns are
used in DevOps?

Several design patterns are proposed to address the
issues related to the implementation of MSA. The
answer to this RQ will help to identify the MSA design
patterns that are used to solve the common problems in
DevOps context.

RQ3.3 What quality attributes are
affected when employing MSA
in DevOps?

QAs help to establish a static organization (e.g.,
modularity, testability, and maintainability, etc.) and
dynamic behavior (e.g., throughput, robustness, and
scalability, etc.) of a software application. The answer to
this RQ will help to determine a set of QAs that have
been positively or negatively affected when using MSA
in DevOps context.

Category 4: Tool support and Application Domains
Research Question Rationale
RQ4.1 What tools are available to

support MSA in DevOps?
DevOps practices heavily rely on tool support and
process automation [29]. The answer to this RQ will
help to identify the tools that support or enable practicing
MSA in DevOps.

RQ4.2 What are the application
domains that employ MSA in
DevOps?

The combination of MSA and DevOps has been
frequently practiced in various application domains,
such as entertainment, transportation, and E-commerce.
The answer to this RQ will help to understand the
application domains where the implementation of MSA
in DevOps got much attention.

3.2. Search Strategy
The search process for this study is divided into two phases. In Phase 1, we performed

primary search by applying two search strings on the selected databases. Phase 2 employs the
snowballing technique to complement Phase 1.

3.2.1. Phase 1: Primary Search
The primary search was based on querying digital databases (see Table 2) using customized

search strings. We executed two search strings in parallel on the seven databases as shown in
Figure 2. We limited our search to the peer-reviewed studies from January 2009 to July 2018.
The year 2009 was chosen as the initial year because the term DevOps was introduced in 2009,
but we did not find any relevant study until 2015. During the primary search, we covered the
titles, abstracts, and keywords which resulted in a slightly high number of studies that were not
relevant. We evaluated the primary studies through generic, specific, and quality assessment

6/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

screening questions which are explained in Section 3.4 and summarized in Table 3 and Figure
2 After the primary search, the number of resulting primary studies reached to 45.

3.2.2. Phase 2: Snowballing
In Phase 2, we inspected the references of the primary studies through the snowballing

techniques [30] for further identification of the relevant studies. To maximize the chance of
getting more studies, we performed the forward (i.e., collecting those studies citing the selected
studies) and backward (i.e., using the references of the selected studies) snowballing to identify
the relevant studies.

3.3. Search Strings
First, we created search String 1 based on the guidelines provided in [26]. To identify and

select the primary studies, we formed search strings by considering the following factors:
• The research objective and RQs.
• Writing styles of microservices architecture (e.g., microservice, micro-services).
• Synonyms for “architecture” such as design and structure.
• No synonyms for DevOps.
• The limitations of the search engines in the digital databases.

During the pilot searches with search String 1, we observed that some well-known studies
were not retrieved. We realized that these missing studies could be retrieved through a search
string which only combines the two terms microservice and DevOps. Search String 2 was then
formulated as (microservice AND DevOps), and we decided to use both search String 1 and
search String 2 to retrieve the relevant studies. It is worth noting that the study selection
procedure (i.e., see Section 3.4) was performed twice, one for each search string. Table 2
presents the search strings and databases used for searching the primary studies.

Table 2. Search Strings and Databases Used in this Systematic Mapping Study

Search strings
String 1: ((microservi* OR micro-servi*) AND (architect* OR design OR structur*) AND DevOps)
String 2: (microservice AND DevOps)

Databases
Database Links Targeted search area

ACM Digital Library http://dl.acm.org/ Paper title, abstract
IEEE Explore http://ieeexplore.ieee.org/ Paper title, keywords, abstract
Springer Link http://link.springer.com/ Paper title, abstract
Science Direct http://www.sciencedirect.com/ Paper title, keywords, abstract
Wiley InterScience http://onlinelibrary.wiley.com/ Paper title, abstract
EI Compendex https://www.engineeringvillage.com/ Paper title, abstract
ISI Web of Science https://login.webofknowledge.com Paper title, keywords, abstract

3.4. Screening and Qualitative Assessment
We followed the guidelines proposed in [31] to shortlist the retrieved papers from the

databases. Our selection process includes screening studies and qualitatively assessing the
selected studies.

3.4.1. Screening Studies
Screening studies was conducted through a two-step process consisting of Generic Screening

and Specific Screening. The former one includes six questions, i.e., GS1 to GS6 and the latter
one has one question, i.e., SS1 (see Table 3). During the generic screening, the first author
applied the basic criteria on the retrieved studies to ensure that there is no (i) duplicate studies,
(ii) non-English papers, (iii) non-peer reviewed and white papers, (iv) secondary studies, (v)
books, and (vi) studies published before 2009. During the specific screening, the first author
also evaluated the selected studies with respect to available evidence about the problems,

7/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

solutions, challenges, description methods, patterns, QAs, application domains, and available
tools in the context of MSA and DevOps combination. The screening of studies was performed
by the first author of this study through explicitly defining and following the criteria in Section
Table 3. Then the second and third authors independently verified the screening results. All the
researchers of this study have enough expertise, knowledge, and research experience about
microservices and DevOps.

Table 3. Generic and Specific Screening Criteria for the Studies

Code Generic Screening Questions Evaluation Scale
GS1 Is the study a duplicate study? Yes No
GS2 Is the study written in English? Yes No
GS3 Is the study peer-reviewed? Yes No
GS4 Secondary study? Yes No
GS5 Book? Yes No
GS6 Is the study published between January 2009 to July 2018? Yes No
Code Specific Screening Questions Evaluation Scale
SS1 Does the study present problems, solutions, challenges,

description methods, patterns, QAs, and tools in the context of
MSA and DevOps combination?

Yes No

3.4.2. Qualitative Assessment of Studies
We took the guidelines for the qualitative evaluation from [32] and slightly tailored them

according to our study. Moreover, we calculated the quality of the selected studies with Formula
1 [31]. This formula is based on the guidelines for the qualitative assessment of the selected
studies [32]. The quality score was calculated through five generic (i.e., GI1 to GI5) and three
specific assessment factors (i.e., SI1 to SI5) as listed in Table 4, in which each factor has a
maximum score of 1. According to the criteria in [31], the contribution of the specific factors
is more important than the generic factors. Consequently, we treated the accumulative value of
S three times more than the accumulative value of G (i.e., 75% weight). To select the primary
studies with decent quality, we decided to include the studies in this SMS that had an
accumulative quality score greater than or equal to 1.5.

!"#$%&')*+,- = /∑ 	1
234	
5 + 7∑ 	1

834
5 × 3;<

(1)

Table 4. Qualitative Assessment Criteria for the Studies

Code Generic Items for Quality Assessment
(Score: Yes 1, Partially 0.5, No 0)

GI1 Are the problem definition and motivation of the study clearly presented?
GI2 Is the research environment in which the study was conducted clearly explained?
GI3 Is the research method used for the study clearly presented?
GI4 Are the insights and lessons learned from the study explicitly mentioned?
GI5 Are the limitations of the study explicitly discussed?

Code Specific Items for Quality Assessment
(Score: Yes 1, Partially 0.5, No 0)

SI1 Does the study focus on MSA in DevOps?
SI2 Does the study present problems, solutions, and challenges in the context of MSA and

DevOps combination?
SI3 Does the study present MSA description methods, MSA design patterns, QAs, and tools

in the context of MSA and DevOps combination?

3.5. Study Search
Figure 2 shows the search strings composition, database names, and the number of studies

retrieved through each step of the study search process. We divided the search process into two

8/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

phases: primary search and snowballing as described in Section 3.2.1 and Section 3.2.2
respectively.

Step 1 - String execution: We executed the two search strings separately on the seven
databases (see Table 2) and retrieved 494 studies. Figure 2 explicitly shows the numbers of
studies that we got by executing String 1 and String 2 on each database. For example, from
ACM, we got 4 studies by executing String 1 and 47 studies by executing String 2.

Step 2 - Study extraction: We retrieved 494 studies by reading their titles and keywords.
During this step, if we collected enough evidence to keep the paper for further reading, we
marked that paper as “relevant” in our datasheet. If we were not sure to include or exclude the
paper, we marked that paper as “doubted” and kept it for further reading. Otherwise, we marked
that paper as “irrelevant.” We selected 285 papers after the completion of this phase.

Step 3 - Study screening: The 285 studies were further assessed by reading their abstracts
and conclusions. Each study was carefully inspected and ranked as “relevant,” “irrelevant,” or
“doubted” according to the evidence available in the abstracts and conclusions. There were
some studies where the first author of this SMS was unable to decide about inclusion or
exclusion of the study under consideration. In such a situation, the first author transferred those
studies to the second and third authors for their opinions about studies inclusion or exclusion.
After completion of this step, we got 117 studies.

Step 4 - Study selection: In this phase, we read the full text of 117 studies and applied the
inclusion and exclusion criteria on these selected papers. If a study met all the inclusion criteria
(see Section 3.4), we included that study for this SMS. After completion of this phase, we got
45 studies.

Snowballing: We applied both forward and backward snowballing techniques on the 45
selected studies according to the guideline in [30]. In the beginning, we collected 451 titles
through backward and forward (i.e., citations and references) snowballing. After the
comparison with the titles of 494 retrieved studies, (which was the outcome of Step 1) and
duplicate studies removal, we selected 86 studies for Step 2 (abstract and conclusion reading).
We read the abstracts and conclusions of these 86 papers and picked 22 papers for full-text
reading. By reading the full text of the papers and applying the generic, specific, and qualitative
assessment screening criteria on 22 papers, we got only two studies (S46 and S47) through
snowballing.

9/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

Figure 2. Steps and Results of the Study Search Process with Two Search Strings

3.6. Data Extraction and Synthesis
1) Data Extraction
For answering the RQs formulated in Section 3.1, we defined a set of data items (see Table

5) for extracting the required information from the selected studies. To check the reliability of
the extracted data items, the first author conducted the pilot data extraction on ten studies, and
the rest of the authors evaluated the extracted data. After the evaluation of the extracted data
items, the first author used a revised set of data items for formal data extraction from the
selected studies. All the authors then discussed the extracted data to reduce potential bias and
ambiguity. Data items (D1-D3) are used to extract the general information of the selected
studies, and the rest data items (D4-D15) are used to answer the RQs as shown in Table 1. The
relationship between the data items and RQs is provided in Table 5. Finally, we used MS Excel
sheets to record and further synthesize the extracted data.

Table 5. Data Items to be Extracted from the Selected Studies and Their Relevant RQs

Code Data Item Description Relevant RQ
D1 Index The ID of the study. Overview
D2 Study title The title of the study. Overview
D3 Author(s) list The full name of the authors. Overview
D4 Year Publication year of the study. RQ1.1
D5 Venue The name of the publishing venue. RQ1.1
D6 Publication type Journal, conference, workshop, book chapter, and

technical report.
RQ1.1

D7 Authors affiliation Academia or industry or both. RQ1.1
D8 Summary The main idea of the study. RQ1.2
D9 Problems The problems reported in the study related to

adoption of MSA in DevOps.
RQ2.1

D10 Solutions The solutions proposed to solve the identified
problems in the study.

RQ2.2

Strings
Executions ACM

4+47

IEEE
Explore

65+13

Springer
Link

87+43

Wiley

24+3

EI

22+2

Web of
Science

17+3

Studies
Extraction

Studies
Screening

10+5=152+3=5 2+0=2 12+2=14 4+0=4 3+1=4
Studies

Selection

Science
Direct

151+13

String 1: ((microservi* OR micro-servi*) AND (architect* OR design OR structur*) AND DevOps)

String 2: (microservices AND DevOps)
Strings

4+6=10 73+3=76 90+15=105 15+2=17 6+1=7 3+1=4

3+4=7 30+10=40 26+2=28 35+8=43 11+2=13 3+1=4 0+1=1

0+1=1

Snowballing

494

Retrieved
Studies

56+10=66 285

117

45

Start Set

45 451 86 22 2

Comparison
with

 494 Retrieved
Studies

Abstract and
Conclusion

Reading
Selected

45 2 47

Primary Search Results Snowballing Results Final Selected Studies

+ =

10/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

D11 Challenges The problems reported without solutions in the study
related to adoption of MSA in DevOps.

RQ2.3

D12 MSA description
methods

The methods mentioned in the study for describing
MSA design.

RQ3.1

D13 MSA patterns The MSA patterns used in DevOps in the study. RQ3.2
D14 Quality attributes The QAs affected when employing MSA in DevOps. RQ3.3
D15 Tool support The tools mentioned in the study to support MSA in

DevOps.
RQ4.1

D16 Application
domains

The application domains that employ MSA in
DevOps.

RQ4.2

2) Data Synthesis
We used descriptive statistics method for analyzing the data generated against the data items

D1-D7, D12-D14, and D16. The qualitative data collected from data items D8 to D11, and D15
mostly comprise free text description (i.e., study’ focuses, problems, solutions, and challenges).
Therefore, we analyzed the qualitative data through thematic analysis [33] by following the
steps: (1) Familiarizing with data: we repeatedly read the selected studies and noted down all
points regarding the research purposes (D8), challenges (D9), solutions (D10), MSA
description methods (D11), and tools (D14). (2) Generating initial codes: after data
familiarization, we produced an initial list of codes from the extracted data about research
purposes, problems, solutions, challenges, MSA description methods, and tools. (3) Searching
for themes: during this step, we analyzed the initially generated codes and brought them under
the broader level of themes. For instance, “Performance overhead due to fine-grain
decomposition” (see Figure 6). (4) Reviewing themes: all the authors reviewed and refined the
coding results with corresponding themes. During this step, we separated, merged, and dropped
some themes based on mutual discussion between all authors. (5) Defining and naming themes:
during this step, we defined and further refined all the themes under precise and clear names.
To give an example, “Requirements of MSA based systems in DevOps” was named as a precise
category in this step (see Figure 6).

4. Results
This section reports the results of the SMS after analyzing and synthesizing the extracted

data from the selected papers. First, we report demography, classification, and mapping of the
identified research themes in Section 4.1. Second, the problems, solutions, and challenges are
reported in Section 4.2. We discuss the MSA description methods, patterns, and QAs in Section
4.3. Finally, tool support and application domains are reported in Section 4.4.

4.1. Demography, Classification, and Mapping of Research

4.1.1. RQ1.1: Publication Distribution
The distribution of publications per year is an integral part of secondary studies which

provides information regarding published studies for each year on a specific topic. In general,
the data analysis from this perspective indicates the interest of researchers and practitioners in
a specific research area.

11/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

Figure 3. Studies Distribution over Publication Years

Figure 3 shows how publications (Y-axis) are distributed along the publication years (X-
axis). Each year is mapped against the four colored bars, and each colored bar represents the
study type published from 2015 to 2018. As shown in Figure 3, 5 studies were published in
2015, 11 studies were published in 2016, 15 studies were published in 2017, and 15 studies
were published from January to July 2018. Note that we searched the studies from January 2009
to July 2018, however, studies included in this SMS were published between 2015 to July 2018.

Overall, we can see an upward trend in the number of the studies published per year
especially from Jan 2016 to July 2018, and most of the studies (43 out of 47, 91.5%) had been
published in that period, suggesting that researchers and practitioners are paying more attention
to considering and adopting MSA in DevOps.

4.1.2. RQ1.1: Publication Type
Figure 4 shows that out of the 47 studies, 48.29% (i.e., 23 studies) were published in

conference proceedings, and 25.53% (i.e., 12 studies) were published in journals, whereas this
proportion for the book chapters and workshop papers is approximately 17.02% (i.e., 8 studies)
and 8.51% (i.e., 9 studies) respectively.

Figure 4. Overview of the Publication Type

3

1
2 2

1

5

9
8

0

4
3

5

2
1 1

0
0

2

4

6

8

10

2015 2016 2017 2018

Y-
ax

is:
 N

um
be

r o
f P

ub
lic

at
io

ns

X-axis: Publication Year

Book Chapters
Conference and Symposium Papers
Journal Articles
Workshop Papers

23 (48.93%)

Conference and Symposium Papers
[S02, S04, S05, S06, S08, S09, S10, S11, S13, S14,
S15, S16, S19, S20, S24, S27, S29, S30, S32, S34,

S40, S45, S46]

Journal Articles
[S01, S12, S18, S21, S35, S36,
S37, S38, S42, S43, S44, S47]

Workshop Papers
[S03, S07, S17, S39]

Book Chapters
[S22, S23, S25, S26, S28, S31,

S33, S41]

12/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

4.1.3. RQ1.1: Publication Venues
The list of publication venues, types of publications, and the number and percentage of the

selected studies published in each venue are summarized in Table 6. The 47 selected studies
were published in 41 venues that are classified into four categories. It is noted that 80.48% (33
out of 41) of the venues belong to “Internet, Cloud, and Services Computing” and “Software
Engineering” categories.

Internet, Cloud, and Services Computing: Journals and conferences that mainly invite the
research outcomes related to internet, cloud, and service-oriented computing, such as cloud
infrastructure, cloud applications, cloud management and operations, service-oriented software
engineering, semantic services, service infrastructure, and development of service-oriented
applications. This is the most popular category, which occupies 43.90% (18 out of 41) of the
publication venues.

Software Engineering: Journals, books, and conferences that mainly publish the topics on
software requirements, architecture, design, testing, maintenance and evolution, process
improvement, project management, and software tools. In a broad sense, services computing is
part of software engineering, but we treated it as a category since this SMS is service related.
39.02% (16 out of 41) of the publication venues belong to the software engineering category.

Telecommunications and Networks: Journals and conferences that mainly include the
topics on telecommunication, information and communication technologies, network
virtualization, 5th generation networks, internet of things, and network security and privacy.
9.75% (4 out of 41) of the publication venues are identified under this category.

Multi-Disciplinary Computing: Journals and publications that bring together trends,
theories, practices, and experiences related to general computing disciplines. This category has
9.75% (4 out of 41) of the publication venues.

Table 6. Numbers and Proportions of the Selected Studies over the Venues

Category Publication Venue Type # %

In
te

rn
e,

 C
lo

ud
, a

nd
 S

er
vi

ce
s

C
om

pu
ti

ng

Microservices, IoT, and Azure Book Chapter 2 4.2
World Wide Web Journal Journal 1 2.1
IEEE Internet Computing Journal 1 2.1
IEEE Cloud Computing Journal 1 2.1
ACM Transactions on Internet Technology Journal 1 2.1
Software-Defined Cloud Centers: Operational and
Management Technologies

Book Chapter 1 2.1

Business in Real-Time Using Azure IoT and Cortana
Intelligence Suite

Book Chapter 1 2.1

International Conference on Ubiquitous Information
Technologies and Applications (CUTE)

Conference 1 2.1

European Conference on Service-Oriented and Cloud
Computing (ESOCC)

Conference 1 2.1

International Conference on Cloud Computing and
Services Science (CLOSER)

Conference 1 2.1

International Conference on Cloud Engineering (IC2E) Conference 1 2.1
IEEE Symposium on Service-Oriented System
Engineering (SOSE)

Conference 1 2.1

European Conference on Service-Oriented and Cloud
Computing (ESOCC)

Conference 1 2.1

International Conference on Service-Oriented Computing
(ICSOC)

Conference 1 2.1

International Conference on Exploring Services Science
(IESS)

Conference 1 2.1

International Conference on Services Computing (ISCC) Conference 1 2.1
International Conference on AI & Mobile Services
(AIMS)

Conference 1 2.1

So
ft

w
ar

e
E

ng
i

ne
er

i
ng

 IEEE Software Journal 3 6.3
Journal of Software: Evolution and Process Journal 2 4.2

13/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

Microservices From Day One Book Chapter 1 2.1
Managing Software Crisis: A Smart Way to Enterprise
Agility

Book Chapter 1 2.1

The DevOps Adoption Playbook: A Guide to Adopting
DevOps in a Multi-Speed IT Enterprise

Book Chapter 1 2.1

Theory and Practice of Formal Methods Book Chapter 1 2.1
ACM/SPEC International Conference on Performance
Engineering (ICPE)

Conference 2 4.2

International Symposium on Software Engineering for
Adaptive and Self-Managing Systems (SSASMS)

Conference 1 2.1

International Conference on Software Architecture (ICSA) Conference 1 2.1
International Conference on Web Engineering (ICWE) Conference 1 2.1
International Conference on Software Engineering for
Defence Applications (SEDA)

Conference 1 2.1

International Conference on Information Systems
Development (ISD)

Conference 1 2.1

International Conference on AI & Mobile Services
(AIMS)

Conference 1 2.1

International Workshop on Quality-Aware DevOps
(IWQAD)

Workshop 1 2.1

Central Europe Workshop on Continuous Software
Engineering (CSE)

Workshop 1 2.1

International Enterprise Distributed Object Computing
Workshop (EDOCW)

Workshop 1 2.1

T
el

ec
om

m
un

ic
at

io
ns

an

d
N

et
w

or
ks

Transactions on Emerging Telecommunications
Technologies

Journal 1 2.1

International Conference on Information and
Communication Technology Convergence (ICTC)

Conference 2 4.2

International Conference on Telecommunications
Network Strategy and Planning Symposium
(NETWORKS)

Conference 1 2.1

IEEE/IFIP Network Operations and Management
Symposium (NOMS)

Conference 1 2.1

M
ul

ti
-

D
is

ci
pl

in
ar

y
C

om
pu

ti
ng

Procedia Computer Science Journal 2 4.2
Hawaii International Conference on System Sciences
(HICSS)

Conference 1 2.1

International Conferences on Practice and Experience on
Advanced Research Computing (PEARC)

Conference 1 2.1

International Conference on Current Trends in Theory and
Practice of Informatics (SOFSEM)

Conference 1 2.1

4.1.4. RQ1.2: Mapping of Research Themes
Figure 5 and Table 7 show the classification of various research themes and subthemes

that have been extracted from the selected studies by following the guidelines of thematic
analysis in [33]. The result shows that the most discussed subthemes are Approaches and
Tools which have been discussed in 13 and 12 studies respectively, whereas the least
discussed subtheme is Monitoring of MSA based systems in DevOps with 4 studies. it is
worth mentioning, several studies are classified into more than one themes or subthemes. For
example, Study (S02) discussed the QAs concerns, testing, and monitoring of MSA based
systems; Study (S07) discussed the architectural tactics/strategies for MSA in DevOps along
with tool support.

Thematic classification organizes the selected studies based on the focus of research, and
the selected studies are organized in three general themes: (1) Microservices development
and operations in DevOps, (2) approaches and tool support for MSA based systems in
DevOps, and (3) MSA migration experience in DevOps.

Sub-thematic classification provides a detailed view of the thematic classification, and
eight subthemes are derived from the thematic classification: i) QAs concerns (6 studies), ii)
design (11 studies), iii) development and deployment (12 studies), iv) testing (7 studies), v)
monitoring (4 studies), vi) approaches (12 studies), vii) tools (13 studies), and viii) migration

14/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

(7 studies). It is also worth mentioning that several studies discussed more than one subtheme.
For example, Studies (S01) and (S09) discussed the design, and development and deployment
subthemes.

Figure 5. A Classification of Research Themes on MSA in DevOps from the Selected Studies

M
ic

ro
se

rv
ice

s A
rc

hi
te

ct
ur

e
in

 D
ev

Op
s

M
ic

ro
se

rv
ic

es

D
ev

el
op

m
en

t a
nd

O

pe
ra

ti
on

s
in

 D
ev

O
ps

Migration

S03, S04, S07, S08, S11,
S16, S19, S23, S25, S32,

S37, S43, S44 A
pp

ro
ac

he
s

an
d

To
ol

s
Su

pp
or

t
fo

r M
SA

 b
as

ed
 S

ys
te

m
s i

n
D

ev
O

ps

S12, S13, S29, S24, S47,
S38, S27

S05, S06, S10, S13, S15,
S18, S21, S22, S29, S36,

S40, S46

Tools

Approaches

Quality Attribute
Concerns

Design

Development and
Deployment

Testing

Monitoring

M
SA

 M
ig

ra
tio

n
Ex

pe
ri

en
ce

s
in

D

ev
O

ps

15/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

Table 7. Themes, Subthemes, and Key Points in the Classification of the Selected Studies

Themes Subthemes Key Points with Their Study IDs
M

ic
ro

se
rv

ic
es

 D
ev

el
op

m
en

t
an

d
O

pe
ra

ti
on

s
in

 D
ev

O
ps

Quality

Attribute
Concerns

• Privacy and security concerns of microservices in DevOps (S10, S35,
S36)

• Performance modeling of MSA based systems in DevOps (S02, S15)
• Non-functional requirements (e.g., scalability, exchangeability,

reusability, code quality) for MSA based systems in DevOps (S39)

Design

• MSA as an architectural pattern for cloud-native software systems
(S01)

• Architectural tactics/strategies for MSA and DevOps in Big Data as
Service (BDaaS) platforms (S07)

• MSA-driven design decisions about deployment and resource
management in DevOps (S35)

• Microservices-driven design for cloud-based DevOps’s infrastructure
(S09, S42)

• Architecting for MSA based systems in CD and DevOps (S20)
• A container-based reference MSA for the deployment of OpenStack

(S09)
• A reference architecture of the cloud's infrastructure that supports a

combination of microservices and DevOps (S22, S44)
• Domain Driven Design (DDD) for microservices in DevOps (S13, S28)

Development
and

Deployment

• Development and management of the microservices for cloud-native
systems in DevOps (S01, S41, S42)

• Development and container-based deployment of microservices for
OpenStack (S09)

• Development of MSA based mobile applications in DevOps (S13)
• Development and operations of MSA based enterprise systems (e.g.,

online store) in BizDevOps environment (S17)
• Development and deployment of MSA based enterprise systems (e.g.,

banks, customer relationship management) in DevOps (S33)
• Development, deployment, and packaging of microservices using

Microsoft Azure in DevOps (S23)
• Development of MSA based eServices in DevOps (S30)
• Continuous deployment of microservices in DevOps (S31)
• Development and deployment of MSA based applications for the

connected car in DevOps (S39)
• Automated deployment of microservices for SmartX Internet of Things

(IoT) in DevOps (S14)

Testing

• Performance testing of microservices in DevOps (S02)
• Testing of MSA based mobile applications in DevOps (S13)
• Testing strategies for microservices in CD (S28)
• A pre-production testing of microservices in DevOps (S31)
• Load testing of microservices in DevOps (S33)
• Integration testing of MSA based Smart-Energy IoT-Cloud Services in

DevOps (S34)
• A/B testing for MSA based systems in DevOps (S41)

Monitoring

• Performance monitoring of MSA based systems in DevOps (S02, S15)
• Monitoring of MSA based systems through a quality-aware DevOps

approach (S05).
• Monitoring of microservices running inside the containers in DevOps

(S18)

16/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

A
pp

ro
ac

he
s

an
d

T
oo

l s
up

po
rt

 f
or

 M
SA

 b
as

ed
 s

ys
te

m
s

in
 D

ev
O

ps

Approaches

• A quality-aware DevOps approach (i.e., Omina) for monitoring MSA
based systems (S05)

• Autonomic Management System (AMS) for performance monitoring
of MSA based systems in DevOps (S15)

• A microservices development and monitoring framework (i.e.,
Unicorn) with cloud-based DevOps IDEs support (S18)

• A Web-based deployment method for (micro)services that supports
DevOps (S06)

• A DevOps framework (i.e., ARCADIA) that considers security and
privacy requirements across development lifecycle of MSA based
systems (S10)

• A migration approach for development and deployment of MSA based
systems in DevOps (S13)

• A DevOps based Decision Support System (DSS) for the migration
from monoliths to microservices (S29)

• A microservices deployment framework (i.e., SMART VM) that
supports DevOps (S21)

• A Next-Gen DevOps solution for the multi-cloud environment that
supports the development of MSA based systems (S22)

• An approach for protecting individual microservice and enabling
autonomy of the DevOps teams (S36)

• A model-based approach (i.e., AUTOGENIC) for generating self-
configuring microservices (S40)

• An incremental integration method for microservices that supports
CD/CI/DevOps (S46)

Tools

• A development and deployment platform that supports the combination
of MSA and DevOps (S03, S04)

• A CAOPLE Integrated Development Environment (i.e., CIDE) for
development of MSA based systems with DevOps support (S08, S11).

• A Big Data as a Service (BDaaS) platform that utilizes MSA and
DevOps for fast development and delivery of the required services
(S07, S16)

• An MSA based Network Function Virtualization (NFV) platform that
supports DevOps for the development and deployment of MSA based
systems envisioned for 5G networks (S19, S43)

• An MSA development, deployment, and testing platform (i.e.,
Microsoft Azure) that supports DevOps (S23)

• A tool (i.e., Jolie Redeployment Optimiser) for automatic and
optimized (i.e., less expansive) deployment of microservices in
DevOps (S25)

• An application (e.g., microservices) deployment scheduling tool based
on multivendor environment workflow and DevOps practices (i.e., CD,
CI) (S32)

• Automation tools that support DevOps (S37)
• Tool support for microservices’ CD pipeline (S44)

M
SA

 M
ig

ra
ti

on
 E

xp
er

ie
nc

es
 in

D

ev
O

ps

Migration

• Migration of Mobile Back end as a Service (MBaaS) to MSA in
DevOps (S12).

• Patterns to migrate from monoliths to MSA in DevOps (S12)
• Migrate monolithic mobile application to MSA based application in

DevOps (S13)
• A DevOps based DSS for the migration from monoliths to

microservices (S29)
• Motivations and challenges of migrating from monoliths to MSA in

DevOps (S24, S47)
• DevOps practices that enable the migration of a monolithic architecture

to MSA (S38)
• Migration of a monolithic architecture to cloud-native MSA in CD and

DevOps (S27)

17/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

4.2. Problems, Solutions, and Challenges
This section presents the problems, solutions, and challenges identified from the selected

studies to answer RQ2 “What problems, solutions, and challenges have been reported when
implementing MSA in DevOps?”. By applying thematic analysis [33] on the extracted data for
the classification of the identified problems and solutions, we derived 8 categories and 15
subcategories of themes. The eight problem and solution themes are (i) requirements of MSA
based systems in DevOps, (ii) design of MSA based systems in DevOps, (iii) implementation
of MSA based systems in DevOps, (iv) testing of MSA based systems in DevOps, (v)
deployment of MSA based systems in DevOps, (vi) monitoring of MSA based systems in
DevOps, (vii) organizational challenges, and (viii) resource management problems. Overall,
we identified the solutions for 24 problems and provided the mapping between the problems
and solutions Figure 6 shows the classification of problems and their corresponding solutions,
whereas Table 8 presents the challenges which need further research. It should be noted that
the problems that are reported without any solutions in the selected studies are referred to as
research challenges. In other words, if a problem has at least one solution in any of the selected
studies, we will not consider that problem as a challenge. We also identified some solutions
that can address the problems in another category of problems. For example, as shown in Figure
6, the CIDE platform can address the problem of “Performance overhead due to fine-grain
decomposition” in the category of “Requirements of MSA based systems in DevOps”, and the
problem of “Modification and integration of new functionality in existing microservices” in the
category of “Implementation of MSA based systems in DevOps”.

The classification shows that the problems related to two themes “Requirements of MSA
based Systems in DevOps” and “Implementation of MSA based Systems in DevOps” are
reported in more than half of the selected studies. We briefly explain the problems and solutions
below.

4.2.1. RQ2.1 and RQ2.2: Problems and Solutions
Requirements of MSA based systems in DevOps: This category reports the problems and

solutions related to the requirements of MSA based systems. To address performance overhead
issues, Study (S08) presents DevOps based CAOPLE language Integrated Development
Environment (CIDE). This platform provides precise control over the deployment and testing
of microservices to address the performance overhead. Study (S33) proposes the VM auto-
configuration methodology to address performance issues; VM auto-configuration method
creates the central domain control agent for optimizing the performance of MSA based systems.
Study (S18) proposes Unicorn framework to avoid delays and network performance issues,
whereas Study (S24) suggests that architects should try not to decompose microservices too
fine-grain. Study (S16) presents a DevOps based approach called “Neo-Metropolis”. This
approach offers open source solutions (e.g., Terraform, Ansible, Mesos, and Hadoop) to deal
with scalability and elasticity of MSA based systems across different cloud platforms. Study
(S18) argues for the use of containers to deal with scalability issues because containers provide
an easy way to scale operations by creating more copies of the services (S18). Study (S41)
suggests that developing microservices around business capabilities can address this scalability
issue.

Design of MSA based systems in DevOps: This category reports the problems and solutions
related to the design of MSA based systems in DevOps (see Figure 6), which can be further
classified into application decomposition (S28, S33, S35, S37), security and privacy (S10, S18,
S20, S36), and uncertainty (S01). Study (S28) recommends the Domain-Driven Design (DDD)
pattern to address the application decomposition problem. By applying the DDD pattern,
architects identify the bounded context (capabilities within the system) that can be used as a
starting point for defining microservices. Similarly, Study (S33) recommends the Model-View-
Controller (MVC) pattern for application decomposition into microservices in terms of business
scope, functionalities, and responsibilities. Study (S10) presents the DevOps based ARCADIA
framework to address security issues. This framework enables security and privacy across the
microservices development lifecycle by providing multi-vendor security solutions (e.g., FWaaS
and OAuth 2). Study (S18) presents DevOps based Unicorn framework that offers policies and
constraints to meet security requirements of MSA based systems, whereas Study (S36) suggests

18/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

that a combination of standard cryptographic primitives (e.g., hash and MAC functions for
authentication encryption) can provide a high level of security to microservices communication
and flexible authentication to DevOps teams. To deal with uncertainty issues in cloud-native
architecture, Study (S01) proposes the theory-based control models at runtime patterns. Models
at runtime patterns address the uncertainty aspects (e.g., resource availability) dynamically
through the control loop.

Implementation of MSA based systems in DevOps: The identified problems and solutions
in this category belong to microservices integration and managing databases for microservices.
To deal with the operational and configuration complexity issue, Study (S20) recommends a
CD platform, which provides a CD pipeline for each service that can give control over the
integration of microservices. To address the complexity issues due to a large number of
microservices, Study (S24) suggests two guidelines: first, keep the interface of each
microservice as simple as possible for integration purposes, and second, it is recommended to
use the technology which does not require specific programming language while implementing
microservices to avoid from integration issues. Moreover, Study (S03) proposes a platform (i.e.,
HARNESS) to facilitate the integration of microservices that are developed in geographically
distributed locations. In addition to these guidelines, Study (S08) also proposes the CIDE
platform that provides precise control over testing, deployment, and integration of the new
functionality into existing systems. To handle the problem of data management of MSA based
systems, Study (S24) discusses the use of database per service and a shared database for
multiple microservices patterns. Database per service pattern can be implemented through
defining a separate set of tables per function, scheme per service, and database server per
service, whereas a shared database pattern can be implemented by defining a single database
for a group of microservices. Usually, microservices are grouped according to the business
context to use the shared database.

Testing of MSA based systems in DevOps: The number of services, inter-communication
processes, dependencies, instances, and other variables influence the testing process for MSA
based systems in DevOps. We identified six studies that stress on excessive testing of MSA
based systems in DevOps. Study (S28) claims that all traditional testing strategies (e.g., unit
testing, functional testing, regression testing, etc.) can be used to test MSA based systems.
Moreover, Study (S28) also recommends internal testing, service testing, protocol testing,
composition testing, protocol testing, scalability/throughput testing, failover/fault tolerance
testing, and penetration testing strategies. Apart from the testing strategies mentioned above,
Study (S08) and Study (S11) presents the CIDE platform that can be used to test MSA based
systems in DevOps. The tools we identified from the selected studies that can be used to test
MSA based systems are listed in Figure 7.

Deployment of MSA based systems in DevOps: Many solutions have been proposed to
address the issues of MSA based system deployment in DevOps (e.g., complexity, dynamic
deployment, and deployment in development, production, and testing environment). For
instance, Study (S12) recommends a multipurpose Docker Compose tool, which can work in
different environments, such as staging, development, deployment, and testing environments,
and smooth the deployment process of microservices in the development environment. Study
(S27) recommends Kubernetes, working with a range of containers tools (e.g., Dockers), to
deploy and scale microservices into the production environment. Study (S20) recommends that
the frequent deployment of microservices must be automated through a CD pipeline to finish
within due time. To address the problem of complexity in dynamic deployment of many
microservices, Study (S08) and Study (S11) present the CIDE platform, which provides precise
control over dynamic deployment through Communication Engine (CE) and Local Execution
Engine (LEE). To deal with the problem of MSA based SaaS deployment, Study (S21) proposes
the SmartVM framework to automate the deployment of MSA based SaaS. Study (S21) also
provides strategies (e.g., Traefik, HTTP reverse proxy, round-robin) for load balancing and
separating the functional and operational concerns. Jolie Redeployment Optimiser (JRO) has
been employed to achieve an optimal deployment of MSA based systems (S25). JRO consists
of three components: Zephyrus, Jolie Enterprise (JE), and Jolie Reconfiguration Coordinator
(JRE), in which Zephyrus generates detailed and optimal architecture for MSA based systems,
JE provides a framework for deploying and managing microservices, and JRE interacts with
Zephyrus and JE for optimized deployment.

19/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

Monitoring of MSA based Systems in DevOps: A factory design pattern-based approach,
called Omnia, has been proposed to address monitoring infrastructure problem (S05). This
approach provides a component called monitoring interface, which enables developers to
monitor MSA based systems independently and helps system administrators to build
monitoring systems that are compatible with such interface by using monitoring factory
components. Some tools can help address logging issues (see Figure 7). To address the problem
of monitoring fine-grain microservices at runtime in a shared execution environment, Study
(S18) presents DevOps based Unicorn framework, which can monitor highly decomposed MSA
based systems at runtime (S18).

Organizational Problems: This theme reports problems related to culture, people, cost, and
organization and team structure in the context of MSA and DevOps combination. To handle
the problems that may be faced with when introducing MSA and DevOps combination in a
given organization, Study (S23) suggests some guidelines, such as adopting new organizational
structure, introducing small cross-functional teams, training for learning new skills (e.g., MSA,
DevOps), changing employee habits toward the team work and sharing of responsibilities, and
providing separate physical locations to teams, etc. Study (S24) suggests that the monolithic
organizational structure needs to be aligned with the architecture of MSA based systems.
Similarly, to address the issue related to establishing skilled and educated DevOps teams, Study
(S24) suggests that the organization should arrange training programs for their employees for
learning and adopting microservices in DevOps.

Resource Management Problems: This category provides the mapping of problems and
solutions for different types of resources required to implement MSA in DevOps. Study (S01)
recommends the virtualization of applications, infrastructures, and platforms resources as a
solution for addressing resource management problems. Study (S09) suggests using containers
and VMs for microservices in DevOps to get the desired level of efficiency in resource
utilization. Study (S03) proposes the HARNESS approach (i.e., a DevOps based approach) that
provides a cloud-based platform for bringing together commodity and specialized resources
(e.g., skilled people). Study (S19) introduces an MSA based SONATA NFV platform with
DevOps to address resource management problems by providing a set of tools (e.g., GitHub,
Jenkins, Docker). The SONATA NFV platform can also create the CI/CD pipeline to automate
steps in software delivery process. Study (S09) argued that dedicated access to the host’s
hardware can be increased either by giving extra privileges to microservices or by enhancing
the capability of containers to access the host resources.

20/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

Figure 6. An Overview of Classification of Problems and Their Solutions from the Selected Studies

Performance Overhead due to Fine Grain Decomposition (S02,
S06, S08, S11, S18, S24, S30, S33, S45)

Performance Issue due to Lack of Dedicated Access to the Host's
Hardware (S09)

CIDE Platform (S08)

VM Auto-configuration Method
(S18)

Enable Dedicated Access to the
Host's Hardware (S09)

Scaling MSA-based Systems (S16, S18, S41)

Neo-Metropolis Platform (S16) Containers (S18)
Designing microservices around

business capabilities (S41)

Re
qu

ire
m

en
ts

 o
f M

SA
-b

as
ed

 Sy
st

em
s i

n
De

vO
ps

Empowering Developers through Intelligent Software (S45) Machine Learning-based Plug-In

(S45)

De
sig

n
of

 M
SA

-b
as

ed
 Sy

st
em

s i
n

De
vO

ps

Application Decomposition into Microservices
(S28, S33, S35, S37)

Security and Privacy Across Cloud-Native Applications
(S10, S18, S20, S23)

Providing Flexible Authentication to Each DevOps Team (S36)

Reducing the Uncertainty in MSA (S01)

MVC Pattern (S33)

DDD Pattern (S28)

ARCADIA Framework (S10)

Standard Cryptographic
Primitives (S36)

Models at Runtime Pattern
(S01)

Operational and Configuration Complexity
(S09, S20, S32, S44, S47)

Modification and Integration of New Functionality in Existing
Microservices (S08, S11)

Managing and Migrating Legacy Databases (S24, S41)

HARNESS Platform (S03)

Database Per Service Pattern
(S24)

Im
pl

em
en

ta
tio

n
of

 M
SA

-
ba

se
d

Sy
st

em
s i

n
De

vO
ps

Te
st

in
g o

f
M

SA
-b

as
ed

Sy

st
em

s i
n

De
vO

ps

Testing of MSA-based Systems in DevOps (S02, S20, S24, S28, S37, S38)

Testing Tools
(see studies in Figure 7)CIDE Platform (S08, S11)

Internal Testing, Service Testing,
Protocol Testing, etc (S28)

Unit Testing, Functional Testing,
Regression Testing, etc (S28)

De
pl

oy
m

en
t o

f M
SA

-b
as

ed

Sy
st

em
s i

n
De

vO
ps

Complexity in the Dynamic Deployment (S11)

Frequent Deployment in Different Environments
(S09, S12, S20, S24, S27)

Deployment of MSA-based SaaS at Fine Granular Level (S21)

Automatic Optimal Deployment of MSA-based Systems (S25)

Docker-Compose (S12)

Kubernetes (S27)

SmartVM (S21)

Jolie Redeployment Optimiser
(S25)

M
on

ito
rin

g o
f M

SA
-b

as
ed

Sy

st
em

s i
n

 D
ev

Op
s

Or
ga

ni
za

tio
na

l
Pr

ob
le

m
s

Re
so

ur
ce

M

an
ag

em
en

t
Pr

ob
le

m
s

Logging and Post-Deployment Monitoring (S05, S24, S28, S38)

Monitoring and Execution of the Adaptive Actions (S15)

Establishing and Maintaining Monitoring Infrastructure (S18)

Monitoring Microservices at Run Time (S02, S18)

Monitoring Tools
(see studies in Figure 7)

A Factory Design-Pattern based
Approach Omnia (S18)

Unicorn Framework (S18)

Introducing DevOps and MSA Culture
(S23, S24, S26, S28, S35, S37, S38)

Providing Training for Learning
New Skills (S23, S24)

Less Familiarity with Implementing DevOps (S33, S38, S44)

People Resistance to Adopting DevOps and Microservices (S42, S47)Introducing Small Cross-Functional Teams
and Sharing of Responsibilities between

Teams’ Members (S23)

Resource Management for Development, Deployment, and
Maintenance of the Cloud-Native Systems (S01, S03, S09, S19)

Virtualization of Application Infrastructure and
Platforms Resources through Containers, VMs, and

SONTA NFV (S09, S19)

CD Pipeline (S20)

Unicorn Framework (S18)

Shared Database Pattern (S24)

Apache Mesos (S24, S39)

CD Pipeline (S20)

Legend

Solution

A solution addresses a problem in the same category

A solution addresses a problem in another category

Problem

21/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

4.2.2. RQ2.3: Research Challenges
This section presents the identified challenges from the selected studies to answer RQ2.3

“What challenges have been reported while implementing MSA in DevOps?”. It should be noted
that we consider the problems that do not have any solution in the selected studies as “research
challenges” (see Table 8). We briefly present these challenges below.

Ch1: Performance issues due to frequent communication: This challenge has been
reported in three studies (S24, S30, S45). We identified different reasons for performance issues.
For instance, Study (24) reports that communication between too fine-grain microservices
introduces the complexity, with which the performance of the MSA based systems decreases.
Study (S30) highlights that inter-process communication between microservices through
synchronous HTTP could be the reason for performance issues, and Study (S45) indicates that
performance issues might also occur when microservices interactions are routed through third-
party solutions.

Ch2: Providing security at runtime: Threats related to the security of MSA based systems
increase due to virtualization of microservices through containers and VMs. Therefore, special
care about privacy and security is required at design and runtime (S35). Also, Study (S36)
reports that boundaries of MSA based systems are protected through authentication methods
(e.g., passwords) and transport layer security. Generally, the security of individual
microservices tends to be neglected, leading to security vulnerabilities at runtime for MSA
based systems (S36).

Ch3: Generating runtime architectural models: Requirements for dynamic systems (e.g.,
MSA based systems) are often necessary to be represented through runtime architectural
models, which help in decision-making process for adaptive system development (e.g., MSA
based systems). However, generating runtime architectural models from development models
and abstract representation of these models through Model-Driven Engineering (MDE)
methodology for continuous development is challenging. Study (S02) reports that performance
modeling at runtime and deployment for MSA based systems is challenging due to shifted use
cases, the lack of modelling abstractions, and keeping the models up-to-date automatically.

Table 8. Research challenges in the Context of MSA in DevOps

Challenges Key Points and Selected Studies
Ch1: Performance issues due to
frequent communication

§ Performance overhead due to frequent inter-process
communication of microservices (S24, S30, S45)

Ch2: Providing security at
runtime

§ How to deal with privacy and security at design and
runtime for MSA based systems (S35)

§ How to secure individual microservice (S36)
Ch3: Generating runtime
architectural models

§ How to introduce self-adaptive architecture for cloud-
based applications (e.g., microservices) (S01)

§ How to generate performance models at runtime for
MSA based systems (S02)

4.3. MSA Description Methods, Patterns, and Quality Attributes
This section presents the results of RQs about MSA description methods (RQ3.1), MSA

patterns (RQ3.2), and QAs when employing MSA in DevOps (RQ3.3).

4.3.1. RQ3.1: MSA Description Methods in DevOps
We identified MSA description methods used for expressing, communicating, and analyzing

MSA design in DevOps, to answer RQ3.1 “What methods are used to describe MSA in
DevOps?”. Table 9 shows 19 MSA description methods which are classified into five categories,
including boxes and lines, UML, formal methods, Architecture Description Languages (ADLs),
and Others.

The results show that most of the selected studies use informal boxes and lines for
representing the high-level design, functional decomposition, and process flow of MSA based
systems, and there are four description methods, architectural block diagram, functional flow

22/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

block diagram, tiered architecture, and flowchart, in the boxes and lines category. The
description methods under the boxes and lines category are used to describe MSA of various
systems. For example, architectural block diagrams are used to describe the MSA of CIDE in
Study (S08) and Study (S11), functional flow block diagrams are used to represent the scenarios
of a DevOps based monitoring approach (i.e., OMNIA) for microservices in Study (S05), tiered
architecture is used to illustrate MSA of High-Availability and Disaster Recovery (HADR)
system in Study (S01), and flowcharts are used to show creation and execution of containerized
microservices for IoT in Study (S14). We found that four types of UML diagrams are also used
in the studies to represent different aspects of MSA based systems. For instance, activity
diagrams (S13) are used to represent migration and development process flow of an MSA based
mobile application (i.e., EasyLearn), sequence diagrams (S03) are used to describe object
interactions of MSA based HARNESS platform, class diagrams (S46) are used to show the
static structure of the tool for incremental integration of microservices, and component
diagrams (S12) are used to reflect the physical structure of an MSA based system (i.e., Backtory)
in DevOps.

Besides informal diagrams (e.g., boxes and lines) and semi-formal diagrams (e.g., UML),
we identified four studies (S01, S29, S33, S45) that make use of formal methods to represent
MSA. For example, Fuzzy logic model (S01) and MAPE-K loop (S01) are used to capture
dynamic behavior of cloud-based systems (e.g., MSA based systems), π-Calculus is used to
model cloud services (e.g., microservices) executed by VM clusters, and formal model
architecture (S45) is used to describe the MSA of Continuous Development Intelligent
Assistant (CDIA). Moreover, we found five ADLs used in three studies (S08, S11, S25) for
describing MSA in the CIDE platform and JRO tool, including Caste-centric Agent-Oriented
Programming Language and Environment (CAOPLE), Cloud Application Modeling and
Execution Language (CAMLE), Specification Language for Agent-Based Systems (SLABS),
Service Desiderata Language (SDA), and Jolie. CAOPLE (S08), CAMLE (S08), and SLABS
(S08) are used in the CIDE platform for modeling, development, and testing of model-based
microservices, whereas SDA (S25) and Jolie (S25) facilitate the JRO for automatic and
optimized deployment of MSA based systems. Furthermore, Study (S13) used Entity
Relationship Diagrams (ERD) to model the data view of the MSA based mobile application
(i.e., EasyLearn) and Study (S33) employed Business Process Modeling Notations (BPMN) to
conceptualize the VM auto-configurator architecture for MSA based systems.

Table 9. Classification of MSA Description Methods from the Selected Studies

Category Description Method Study ID # of Studies

Boxes and Lines

Architectural Block Diagram S08, S09, S10, S11, S14,
S18, S22, S24, S27, S31,
S32, S33, S34, S36, S37,
S40, S43, S44, S47

32

Functional Flow Block Diagram S05, S06, S13, S15, S19,
S21, S31

Tiered Architecture S01, S03, S15, S21, S28
Flowchart S14

UML Activity Diagram S13, S33 6
Sequence Diagram S03
Class Diagram S46
Component Diagram S12, S27

Formal Method Fuzzy logic model S01 4
MAPE-K S01
Multi-layer Fuzzy Cognitive Maps S29
π -Calculus S33
Formal Model Architecture S45

ADL CAOPLE. Language S08, S11 3
CAMLE. Language S08
SLABS Language S08
SDA S25
Jolie S25

23/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

Others ERD S13 1
BPMN S33

4.3.2. RQ3.2: MSA Design Patterns in DevOps
To answer RQ3.2 “What MSA design patterns are used in DevOps context?”, we identified

38 MSA design patterns from 19 studies. The set of identified MSA design patterns are
presented in

Table 10. We found that a few studies discussed MSA design patterns. The most recurring
design patterns when implementing MSA in DevOps are: Circuit Breaker (5 studies), Migration
pattern (4 studies), followed by Observer (2 studies), Load Balancer (2 studies), Scalability (2
studies), and Deployment (2 studies). It is important to note that 30 MSA design patterns have
been mentioned in only two studies (S12, S33). In Study (S12) and Study (S33), four different
MSA design patterns are reported for service discovery, namely: Client-side discovery, Server-
side discovery, Service registry, Self-registration, and third-party registration. These studies
(S12 and S33) also reported MSA design patterns related to the decomposition of application
into microservices (e.g. DDD), data management (e.g., Database per service), reliability (e.g.,
Circuit Breaker), and external API (e.g., API gateway). We found that a set of studies proposed
new patterns and new approaches based on existing patterns. For instance, Study (S01)
proposed patterns to deal with uncertainty in cloud-native architecture (e.g., MSA), namely:
Quality Models at Runtime, Control-Based Feedback Loop, and HADR patterns, and Study
(S05) presents a monitoring approach for MSA based systems based on Factory pattern.

Table 10. MSA Design Patterns used in DevOps Context from the Selected Studies

MSA Design Pattern Study ID MSA Design Pattern Study ID
Circuit Breaker S02, S12, S24,

S27, S33
Migration pattern S12, S27, S29,

S38
Observer S11, S33 Load Balancer pattern S12, S33
Scalability pattern, S35, S42 Deployment pattern S12, S31

Database per Service S24, S33 Strangler pattern S47
Factory S05 TOSCA pattern S22
DDD pattern

S12

Three-Tier Architecture pattern

S33

Server-Side Discovery Model View Controller pattern
Client-Side Discovery API Gateway pattern
Internal Load Balancer Reactor pattern
External Load Balancer Inter-Process Communication
Configuration Server Event Driven pattern
Edge Server Message Broker pattern
Containerized the Services Command Query Responsibility

Segregation (CQRS)
Performance pattern Service Discovery pattern
Monitoring pattern Self-Registration pattern
Tolerant Reader pattern Third-Party Registration
Quality Models at
Runtime

S01

Resource Utilization pattern

S21 Control-based feedback
loop

API Access pattern

HADR pattern Clustering of Workload pattern
Shared Database S24 Heat pattern S41 Layered Architecture Virtual system patterns

4.3.3. RQ3.3: Quality Attributes
To answer RQ3.3 “What quality attributes are affected when employing MSA in DevOps?”,

we first confirmed the presence of QAs in the selected studies, and then we investigated whether
QAs are positively or negatively affected when employing MSA in DevOps. Various QAs are

24/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

considered for software systems (e.g., as specified in ISO/IEC 25010 [34]), but not all QAs are
equally important for MSA based systems. Thus, we decided to use those QAs that are
discussed either in MSA or SOA context, e.g., [35, 36]. We selected 15 QAs that are popular
in MSA and SOA context and identified the positive and negative effect on these QAs when
using MSA in DevOps. The results show that most of the QAs are positively affected during
the implementation of MSA in DevOps (see Table 11).

It should be noted that several studies reported more than one QAs and some of the studies
discussed both the positive and negative effects of using MSA in DevOps on the QAs; for
example, Study (S08) and Study (S14). The leading positively affected QAs are Deployability
and Scalability, which have been mentioned in 41 and 32 studies respectively. Some other
leading positively affected QAs are Performance, Maintainability, Monitoring, and Testability.
These results indicate that MSA in DevOps brings significant benefits, including, independent
scalability, flexibility to consume new frameworks, improved product quality, and zero
downtime deployment.

We also investigated the QAs that are negatively affected when employing MSA in DevOps.
We found that Security is the most negatively affected QA which is mentioned in 11 studies,
suggesting that MSA may introduce more vulnerabilities than monolithic applications. This is
because, for example, microservices run via HTTP and use vulnerable third-party components,
which may expose them for hackers’ attack.

Table 11. Quality Attributes Affected when Employing MSA in DevOps

Effect Description and Examples Quality Attributes with Study ID

P
os

it
iv

e

The combination of MSA and
DevOps offers many benefits, e.g.,
a positive impact on QAs, and helps
to achieve QAs requirements. Two
examples of the positive impact on
QAs when employing MSA in
DevOps are given below:
(1) The deployability of

microservices in DevOps can
be managed dynamically (S01,
S03).

(2) The combination of MSA and
DevOps provides a high degree
of scalability, availability,
flexibility, and portability
(S02).

Deployability (S01, S03, S05, S06, S07, S08, S09,
S10, S11, S12, S13, S14, S15, S16, S17, S18, S20,
S21, S22, S23, S24, S25, S27, S28, S29, S30, S31,
S32, S33, S34, S35, S36, S37, S38, S40, S41, S42,
S43, S44, S46, S47)
Scalability (S01, S02, S06, S07, S08, S09, S11,
S12, S13, S15, S16, S17, S18, S19, S21, S22, S24,
S25, S27, S28, S29, S31, S33, S34, S35, S36, S39,
S40, S42, S44, S46, S47)
Performance (S01, S03, S04, S07, S08, S09, S11,
S12, S15, S16, S18, S19, S21, S22, S24, S25, S28,
S31, S33, S35, S36, S40, S42, S43, S44, S47)
Maintainability (S01, S03, S05, S06, S07, S09,
S11, S12, S13, S15, S16, S19, S21, S22, S29, S30,
S31, S32, S33, S35, S36, S37, S41, S42, S43, S44,
S47)
Monitoring (S01, S02, S04, S05, S07, S08, S09,
S10, S11, S12, S15, S16, S17, S19, S21, S22, S25,
S31, S32, S37, S40, S41, S42)
Testability (S02, S03, S04, S07, S08, S11, S12,
S13, S14, S16, S17, S20, S22, S23, S28, S32, S33,
S34, S35, S42, S44, S47)
Flexibility (S01, S07, S08, S09, S11, S13, S14,
S15, S18, S19, S22, S23, S27, S28, S33, S35, S36,
S40, S41, S43)
Availability (S01, S02, S04, S07, S09, S16, S20,
S22, S26, S27, S28, S31, S32, S35, S37, S41, S42,
S43, S46)
Efficiency (S01, S03, S07, S08, S09, S11, S15,
S16, S21, S22, S27, S31, S33, S35, S38, S41, S42,
S43, S44)
Security (S04, S07, S10, S16, S19, S22, S23, S33,
S35, S36)
Portability (S02, S12, S13, S18, S22, S27, S40)
Reliability (S07, S11, S19, S29, S35, S47)
Compatibility (S20, S32, S40, S41, S46)
Modifiability (S07, S10, S20, S28, S46)

25/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

Usability (S35)

N
eg

at
iv

e

The combination of MSA and
DevOps also brings certain issues,
e.g., negative impact on QAs. Two
examples of the negative impact on
QAs when employing MSA in
DevOps are given below:
(1) Accessing host resources for

(micro)services that run over
the containers can jeopardize
the security of the host system
(S09).

(2) Degradation of network
performance when the number
of containers is increased (S06)

Security (S09, S14, S21, S22, S23, S33, S35, S36,
S43, S45, S47)
Performance (S02, S06, S08, S18, S22, S24, S30,
S35, S43)
Scalability (S18, S21)
Reliability (S37, S44)
Availability (S21)
Compatibility (S37)
Maintainability (S33)
Modifiability (S03)
Usability (S05)

4.4. Tool Support and Application Domains
This section reports the tool support for MSA based systems in DevOps (RQ4.1) and

application domains that exploit the combination of MSA and DevOps (RQ4.2). We identified
50 tools and 11 domains from the selected studies. Details of the identified tools and application
domains are presented in the subsections below.

4.4.1. RQ4.1: Tool Support
To answer RQ4.1 “What tools are available to support MSA in DevOps context?”, we first

collected the functionalities of the tools that are proposed or used in the selected studies. Then
we classified the tools into seven categories (see Figure 7) based on the collected features.

We identified a wide variety of tools that support the development of MSA based systems
in DevOps. The most popular tooling category is “Security Services and Tools” in which 14
security tools and services are reported. The second prominent category is “Monitoring Tools”,
which includes 11 tools. The “Version Control Tools” category has the least number of tools
(two tools). We observed that GitHub as a version control system and Jenkins as an integration
server are the most popular tools used in the selected studies.

The seven categories of tools are explained below:
• Security Services and Tools: Microservices provide public interfaces, use network-

exposed APIs for communicating with other services, and are developed by using
polyglot technologies and toolsets that may be un-secure (e.g., DevOps tools that do
not fulfil security requirements). These make microservices to be a potential target for
cyber-attacks; therefore, the security of MSA based systems demands serious attention.
Without considering security, a combination of cloud, DevOps, and containerized
MSA based systems may increase security risk for organizations striving to use these
technologies [37]. We identified eight studies in which 14 security services and tools
are reported. These services and tools provide different levels of security. For example,
SONATA (S10, S19, S43) protects the development lifecycle of MSA based systems.

• Monitoring Tools: The highly dynamic nature of MSA based systems requires a robust
monitoring infrastructure to diagnose and report faults and performance issues. We
identified 11 tools from eight studies that can help to monitor MSA based systems in
DevOps. JIRA is a general-purpose issue and bug tracking tool that can also be used to
monitor MSA based systems. For example, JIRA helps to create a project for each
microservice that provides enough autonomy for DevOps teams to control issues and
bugs related to each microservice.

• Continuous Integration Tools: Normally, the code of MSA based systems needs to
be frequently integrated into a shared repository. Under this category, we gathered 7
tools (see Figure 7) that are used to automate the continuous integration for MSA based
systems. For example, Jenkins is an open-source automation server that is used to
integrate various operations (e.g., build, test, and deployment) related to development

26/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

of MSA based systems. Jenkins can also be used to automate DevOps practices (e.g.,
CI, CD).

• Testing Tools: Testing MSA based systems is a challenging task due to multiple
independently deployable microservices. We identified four studies (S13, S14, S42,
S44) that employed 6 testing tools to provide support for microservices testing
strategies (e.g., unit testing, integration testing, end to end testing). For instance, Junit
(S13) can be used for both unit and integration testing of MSA based systems, and
Cucumber-Selenium (S13) can be used for end to end testing of MSA based systems.

• Configuration Management Tools: Managing configurations of MSA based systems
is a challenging task because many microservices are frequently deployed and update
their configuration files. Under this category, we report the 5 configuration
management tools that can address configuration issues of MSA based systems. We
found that Puppet and CHEF are the two most reported tools in the studies. Both tools
are easily scalable and can effectively manage the configuration of development,
testing, and monitoring infrastructure for MSA based systems. Puppet uses Puppet
Domain Specific Language (DSL) and CHEF uses Ruby DSL to centralize and
automate configuration management of microservices [38].

• Build Tools: Build tools are used to automate the process of converting source code
files into application binaries for a software release in operational environment. We
identified 4 tools in this category that are used to automate the build process of MSA
based systems in DevOps. For example, Study (S13) and Study (S37) used the Gradle
tool to automate the build process of MSA based systems. It is recommended that a
combination of Spring Boot and Gradle could be the right choice for developers to
develop and build MSA based systems in DevOps [39].

• Version Control Tools: To keep track of changes and releases, developers use version
control systems. Under this category, we identified two tools (i.e., GitHub and
Bitbucket) from the studies that are used for managing versions of MSA based systems.
GitHub provides a convenient mechanism for implementing CI/CD pipelines for MSA
based systems [40]. It also provides specialized languages (e.g., Ballerina) to support
the development and deployment of microservices. Another tool is Bitbucket that
provides not only version control, but also project planning, collaboration on code,
continuous integration, continuous testing, and continuous deployment for MSA based
systems in DevOps

27/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

Figure 7. An Overview of the Tools for MSA based Systems in DevOps

28/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

4.4.2. RQ4.2: Application Domains
This section presents the results of the identified application domains from the selected

studies. To answer the RQ4.2 “What are the application domains that exploit the combination
of MSA and DevOps?”, we used the data item (D14) from Table 5. We have characterized 9 the
application domains after analyzing the functionality of systems that were proposed or
investigated in the selected studies (see Table 12) in order to exploit the combination of MSA
and DevOps. We observed that 15 (31.91%) studies did not provide any specific information
regarding application domains. Therefore, we categorized those studies as “Not Mentioned”.

Our results show that the “Software Development Tools and Framework” application
domain has gained the most attention for implementation of MSA in DevOps, followed by
“Telecommunication” and “Mobile Software”.

Table 12. Application Domains that Exploit the Combination of MSA and DevOps

Application Domains Study ID
Not Mentioned S02, S22, S24, S26, S28, S29, S31, S35, S37, S38, S41, S44,

S45, S46, S47
Software Development
Tools and Framework

Microsoft HADR (S01), OpenStack (S01, S09), HARNESS
(S03), Omnia (S05), CIDE (S08, S11), Unicorn Framework
(S18), Azure PowerShell (S23), Azure Visual Studio Team
Services (S23), Mobile SDK (S27)

Telecommunication Cisco's Intercloud Analytics platform (S07, S16), Mobile 5G
networks (S32, S43), SONATA NFV (S19), SONATA SDK
(S43)

Mobile Software Backtory (S12), Easy Learn (S13), Mobile SDK (S27), Mobile
WebShop (S36)

E-Commerce System Electronic Commerce (S17), Retail Application (S21), Mobile
WebShop (S36)

Embedded System Edge Devices (S06), SmartX IoT (S14), Smart Energy IoT (S34)
Financial Software CRM (S33, S42), Finance (S42)
Healthcare Software Remote Patient Monitoring (S10)
Webserver Server Side as a Service (S27)
Distributed System Connected Car (S39)
Others Autonomic Management System (S15), Betting and Gaming

(S20), Web Blog (S25), eServices Developments (S30),
Container Management System (S40), Content Management
(S42), Software for non-profit (S42)

5. Discussion
In the following, we analyze and discuss the key findings of our study, along with their

implications for research and practice.

5.1. Analysis of the Results
We further analyze and synthesize the results of our RQs related to research classification,

problems, solutions, challenges, MSA description methods, MSA patterns, QAs, tool support,
and application domains for the implementation of MSA in DevOps.

5.1.1. Research Status and Themes
We limited our search to the peer-reviewed literature from January 2009 to July 2018. The

year 2009 was chosen as the terms MSA and DevOps were coined around the year 2009. We
found an upward trend in the number of studies on MSA in DevOps context (see Figure 3),
indicating researchers and practitioners are paying more attention to MSA in DevOps context.
We noticed that 43 papers (91.48%) were published from January 2016 to July 2018. Before
the year 2015, we did not find any study that discusses problems, solutions, challenges,
description methods, patterns, QAs, tools, and application domains of employing MSA in
DevOps context. Our findings show that conference & symposium papers are the most popular

29/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

publication type with 23 studies (i.e., 48.29%), followed by journal articles (12 studies, 25.53%)
(see Figure 4). One potential reason is that MSA and DevOps are fast-changing areas, and the
work submitted to conferences and symposiums can get quick feedback and publication.

The 47 studies were published in 41 venues, and most of the publication venues (34 out of
41) of the studies belong to the “Internet, Cloud, and Services Computing” and “Software
Engineering” categories (see Table 6). This result indicates that the combination of MSA and
DevOps has been a broad research topic across various publication venues and computing
disciplines (e.g., cloud computing, software engineering, telecommunication).

A systematic identification, naming, and classification of the research themes of MSA in
DevOps is provided in Figure 5 and Table 7. As shown in Figure 5, the most recurring
subthemes are Tools (13 studies, 27.65%), Approaches (12 studies, 25.53%), and Development
and Deployment (12 studies 25.53), followed by Design (10 studies, 21.27%) and Testing (7
studies, 14.89%). These results indicate that researchers are not only putting efforts for
proposing approaches and tools (e.g., CIDE, SMART VM, OMINA) to support MSA based
systems in DevOps, but also examining the development lifecycle of MSA in DevOps context
(e.g., design, implementation, testing, and deployment). Regarding requirements engineering,
we only find some QAs in the selected studies (see Table 7). We did not find any research effort
about requirements engineering practices or activities (e.g., requirement analysis, modeling,
evaluation, etc.). This indicates that there is a lack of research from a requirement engineering
perspective regarding MSA in DevOps, which is important as the input of architecting.
Regarding “Development and Deployment” subtheme, we observed that combination of MSA
and DevOps is successfully used for developing and deploying cloud-native systems (S01, S41,
S42), enterprise systems (S17, S33), eServices (S30), and IoT-based systems (S14), indicating
this combination (i.e. MSA and DevOps) can be used to build small to large-scale enterprise
systems (see Table 7). We also observed that the research around the design aspects of MSA in
DevOps is only limited to proposing reference MSA (S09, S22, S44), MSA patterns (S01, S13,
S28), and MSA tactics (S07) to some extent. There is no research on other design topics (e.g.,
MSA analysis, MSA synthesis, MSA evaluation). We found 7 studies (S02, S13, S28, S31, S33,
S34, S41) about testing MSA based systems in DevOps. The research effort in these studies is
limited to brief introduction of testing strategies (e.g., S13, S28, S34, S41), testing experiences
(e.g., S31, S33, S41), and performance testing challenge (e.g., S02) for MSA based systems.
Moreover, monitoring MSA based systems is another research theme that is not explored
adequately. We identified only 4 studies that present monitoring approaches (e.g., S05),
frameworks (e.g., S15, S18), and performance monitoring challenges (e.g., S02). Therefore,
more research effort on testing and monitoring MSA based systems in DevOps is required.
Furthermore, regarding migration to MSA in the context of DevOps, we found only 7 studies,
in which 4 studies (S12, S13, S27, S29) report the experiences of migration from monolithic
systems to MSA based systems and 3 studies (S24, S38, S47) discuss the motivation and
challenges regarding the migration. This observation reveals that the experiences and lessons
learned during the migration from monolith to MSA when adopting DevOps are rarely explored.

5.1.2. Problems and Solutions
A one-to-one mapping between problems and solutions is provided in Figure 6. The

identified solutions consist of MSA design patterns, guidelines, frameworks, development
platforms, tools, etc. We observed that only a few problems were reported regarding QAs (i.e.,
performance, scalability, security) of MSA based systems. We did not find problems and
solutions related to other QAs (e.g., availability, reusability, reliability, maintainability,
modularity, portability), for example, problems and solutions related to improving reusability
of existing microservices for new microservices in MSA based systems.

The proposed solutions for the design problems of MSA based systems in DevOps are
patterns and frameworks. For instance, DDD and MVC patterns are recommended for
decomposing an application into microservices, Model at Runtime pattern is proposed for
reducing uncertainty in cloud-native architecture (e.g., MSA), and the ARCADIA framework
is used to address security issues in MSA based systems. Our observation shows that (1)
problems and solutions regarding the design of MSA based systems are only limited to few
aspects (e.g., application decomposition, reducing uncertainty), (2) the role of DevOps in MSA

30/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

design has not been explored thoroughly, and (3) MSA architecting activities (e.g., analysis,
synthesis, evaluation, implementation, maintenance, evolution) in DevOps are not investigated.
Regarding implementation (e.g., coding) of MSA based systems in DevOps, we found only a
few problems reported that are mainly related to integrating microservices and migrating
relational databases of monolithic systems to MSA based systems. We did not find any study
that especially explored problems related to coding of MSA based systems in DevOps, and we
believe that investigating problems and solutions from the coding perspective could provide a
significant contribution to the literature related to the implementation of MSA based systems
in DevOps.

Several studies (S02, S20, S24, S28, S37, S38) reported that testing of MSA based systems
in DevOps is difficult, but we did not find any detailed discussion on how and why testing of
MSA based systems is difficult in DevOps? Moreover, recommended strategies to test (e.g.,
unit testing, functional testing, regression testing) MSA based systems in DevOps are the same
to testing monolithic systems. We did not find any testing strategy that is specifically designed
to test MSA based systems in DevOps. The selected studies also indicate that there is no study
conducted in the context of testing MSA based systems in DevOps.

DevOps infrastructure is expected to ease the deployment of MSA based systems, and our
results show that there are several solutions (e.g., Docker-compose, Kubernetes, Smart VM,
JRO) available to address the deployment problems of MSA based systems in DevOps. These
solutions mainly address the problem of frequent and optimal deployment of microservices in
DevOps. Some of these solutions are popularly and frequently used in the industry, for example,
Docker-compose and Kubernetes.

Monitoring of MSA based systems is also considered as problem by seven studies (see
Figure 6). Several studies reported logging and post deployment (S05, S15, S24, S28, S38) and
monitoring and execution of the adaptive actions (S15) as problems without recommending any
solutions. We investigated the features of the monitoring tools (see Figure 7) and some of them
(e.g., Amazon CloudWatch, Jira, Loggly) are recommended as solutions to monitoring
problems, for instance, Amazon CloudWatch can address the logging, post-deployment
monitoring, and adaptive actions monitoring by collecting operational data in the form of logs,
metrics, and events, and can also discover system-wide performance issues and take automated
actions (e.g., troubleshoot) to keep running MSA based systems smoothly.

On the other hand, we observed that the proposed solutions in terms of frameworks,
platforms, and tools are multifaceted, meaning that these solutions not only address the
problems identified in the studies (see Figure 6), but also provide services for other software
engineering activities (e.g., development, testing, deployment, and monitoring), for example,
DevOps-based ARCADIA framework supports efficient and flexible development and
operation of MSA based cloud applications (S10), and also allows developers to select multi-
vendor solutions to secure the microservices development lifecycle. Unicorn framework is not
only used to address performance, monitoring, and security issues, but also used to develop
MSA based systems (S18).

5.1.3. Challenges
We initially identified several challenges that are presented without solutions in the selected

studies, but after reviewing other selected studies, we found the solutions for most of the
challenges, and consequently treated them as problems. But we could not find any solutions for
three challenges (see Table 8). Possible reasons in this regard are that, technology is not mature
enough to address those challenges, solutions do not exist, or authors did not mention solutions
explicitly. We briefly discuss the identified challenges below.

Performance issue due to frequent communication between microservices is one of the
challenges, and this challenge occurs due to several reasons, such as, asynchronous requests,
third-party requests, selection of inappropriate databases (e.g., shared database over database
per service), spreading service requests across multiple databases, poorly established database
connection pool, etc. None of the selected studies proposes dedicated techniques and tools to
address those reasons behind performance issues due to frequent communication. However, a
few studies (e.g., [41-45]) discuss the performance of the Docker containers and VMs for the
implementation of microservices. Salah et al. experimented and found that the performance of

31/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

the services that are deployed on Amazon EC2 container is worse than services that are
deployed on Amazon EC2 VMs [41]. It is mainly due to the reason that Amazon EC2 container
does not run directly on physical hosts. Kratzke's experiment findings demonstrate that network
performance degradation due to containers is not negligible, and can be improved by 10 to 20
percent by providing VM-based Software Defined Virtual Networks (SDVN) router
applications directly on the host [42]. Potdar et al. assessed the performance of Docker
containers and VMs, and found that Docker containers performed better than VMs [43]. Hence
their findings contradict the findings of [41, 42]. Amaral et al. show that nested containers have
no significant performance impact compared to regular containers [44]. The study by Amaral
et al. also claims that the containers can be booted much quicker than the VMs. Goethals et al.
found that Unikernels outperform Docker containers in many ways [45]. For example,
Unikernels consume less memory than Docker containers when the number of deployment
instances is less. The results of the above-discussed work indicate that performance issues may
not be addressed by merely selecting the Docker containers, VMs, or Unikernels. Many other
factors also need to be considered while selecting the strategies for implementing MSA, such
as the number of services per host, development language, and cloud platform (e.g., Amazon
Web Services, Google Compute Engine, Microsoft Azure).

Security is another common concern during the implementation of MSA. We identified some
studies that discuss solutions for microservices security (see Figure 6). However, we did not
find any solution for addressing microservices security at runtime (see Table 8). As discussed
in [46], there are many reasons why security is challenging for containerized microservices, for
instance, container deployment speed, small scale microservices that make complex access
control rules and increased data traffic, and cloud-based environments. It is claimed that there
are not many mature solutions available to address security issues of MSA based systems [46].

Final challenge that we observed is about generating runtime architectural models for MSA
based systems. Runtime architectural models can help in making runtime decisions about
dynamic changes for executing MSA based systems (see the reasons in point 3 of Section 4.2.2).
Runtime architectural models can also help to understand microservices behavior during
execution, and contribute to runtime responses to changes, recovery, and evolution of MSA
based systems in DevOps.

5.1.4. MSA Description Methods
Modeling diagrams (boxes and lines, and UML), formal methods, ADLs, and other

description methods as listed in Table 9 are used to describe different aspects of MSA based
systems. The results show that Architectural Block and Functional Flow Block diagrams were
extensively employed to describe the high-level view of the MSA. The results reported
regarding the use of UML diagrams (e.g., class, sequence, component diagrams) indicate that
logical, process, and implementation views of MSA based systems have been represented using
the UML diagrams while deployment views are not. However, we did not find any clear
justification in the studies about the choice of using these UML diagrams in describing MSA
views. The use of ADLs (e.g., CAOPLE) and formal methods (i.e., Fuzzy model) suggests that
MSA is not only described by graphical models but also by formal languages and notations.
For instance, CAOPLE is an agent-oriented programming language that can be used to model
MSA in CIDE, which is a DevOps supported IDE for developing MSA based systems.

It is essential to mention that except for ADLs (e.g., CAOPLE), we did not observe any
difference between the description of MSA and that of other types of architectures (e.g.,
monoliths, SOA). For instance, architectural block diagrams, tiered architecture diagrams, and
class diagrams can be used to describe the architecture of monolithic applications, SOA, and
MSA based systems. We found that the selected studies did not mention the reasons behind
selecting certain description methods for MSA in DevOps. In line with Di Francesco et.al. [47],
we argue that this concern can be partially addressed by working on a standard ADL for
describing MSA.

5.1.5. MSA Design Patterns
This SMS reports 38 MSA design patterns in DevOps context, which are identified from 19

studies (40.42%) as listed in

32/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

Table 10. We observed that Circuit Breaker (5 studies, 10.63%) is the dominant MSA pattern,
indicating that the cascading failure is a major concern when implementing MSA in DevOps.
Another prominent MSA pattern is the Migration pattern (4 studies, 8.51%) that recommends
the best practices (e.g., enabling CI, recovering the existing architecture) for the migration from
monoliths to MSA in DevOps. We realized that several MSA patterns could be associated with
the software development activities of MSA based systems, such as DDD (S12) and MVC
(S33). Deployment patterns suggesting that microservices can be deployed by using Service
Instance Per Container (S12), Multiple Service Instances Per Host (S31), and Service Instance
Per Host (S31) patterns. Patterns for databases suggest that a database for microservice can be
manage by using Database Per Service (S24, S33) and Shared Database (S24). The application
of Database Per Service pattern is considered as an effective way to achieve loosely coupled-
MSA based systems [48], and the application of Shared Database pattern is suitable for the
situation where multiple microservices need to access persist data owned by other services [49].
The SMS results reveal several other patterns that are recommended for communication,
monitoring, and service discovery in MSA. The examples of such patterns are API Gateway,
Factory Design, Service Discovery, and Inter-Process Communication. The analysis of
identified patterns shows that many MSA patterns are borrowed from monoliths and SOA.
Examples of such patterns are MVC, Observer, and Load Balancer, and these patterns can also
be effectively employed in the design of MSA. For instance, the Observer pattern can be used
to observe the state changes of resources via RESTful API, and the Load Balancer pattern can
accommodate the increasing load on services.

However, it is worthwhile to mention that most of the identified MSA patterns exclusively
address the issues in microservices context, and except for the Migration patterns presented in
Study (S12), we did not find any other patterns specifically proposed for MSA in DevOps. To
this end, further research effort is required to propose new patterns to facilitate MSA in DevOps,
for example, patterns to support the microservice CI/CD pipeline.

5.1.6. Quality Attributes
Table 11 shows that Deployability (41 studies, 87.23%), Scalability (32 studies, 68.08%),

Performance (27 studies, 57.44%), and Maintainability (27 studies, 57.44%) are the most
frequently mentioned QAs, while other QAs (i.e., Availability, Compatibility, Codifiability,
Efficiency, Flexibility, Monitoring, Portability, Security, Reliability, Testability, Usability) are
also frequently reported. One potential reason these QAs are extensively reported is that MSA
and DevOps have a significant influence on QAs. To understand this influence, we further
analyzed the positive and negative effect of the MSA in DevOps context on QAs. The results
show that almost all the mentioned QAs are positively affected, suggesting that the combination
of MSA and DevOps offers a significant improvement in QAs. For example, MSA can help to
achieve scalability and performance along with increased efficiency and availability of MSA
based systems. On the other hand, DevOps enables software companies to establish a safe and
reliable infrastructure to improve the testability, monitoring, and deployability of microservices.

Several studies also report the negative effect of the combination of MSA and DevOps on
QAs (e.g., Security, Performance, Scalability, Reliability), suggesting that employing MSA in
DevOps may also bring some drawbacks. For example, microservices pose security challenges
due to inter-service communication over the distributed network. It is worth mentioning that all
the negatively affected QAs are also reported as the positively affected QAs in several selected
studies (see Table 11), meaning that certain QAs can be affected both positively and negatively.
For example, Study (S08) reported that MSA provides better performance than monoliths,
whereas Study (S24) mentioned that MSA can introduce a performance overhead if the
communication between microservices is done using RESTful APIs over HTTP. We also
observed that many aspects related to QAs are not explicitly presented in the selected studies.
For example, how to specify QA requirements for MSA in DevOps, how to achieve QAs
through the tactics proposed for MSA in DevOps, and how to evaluate the QAs of MSA in
DevOps.

33/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

5.1.7. Tool Support
Regarding tool support for MSA in DevOps, we identified 50 tools and classified them into

7 categories (see Figure 7). We found that “Security Services and Tools” (14 tools) and
“Monitoring Tools” (11 tools) are dominating categories, meaning that a wide range of tools
and services are available to protect and monitor MSA based systems in DevOps. We identified
several security tools (e.g., Sandbox, Open WRT, DevOps Scanner) that can be used to secure
microservices. However, we made two major observations regarding identified security tools:
(1) there is a lack of detail about how these tools can be used to secure microservices in DevOps
and (2) security has not been sufficiently explored for microservices in DevOps. Our SMS
found some tools (e.g., Amazon CloudWatch, Omnia) that can be used to monitor
microservices, but we did not find any discussion in the studies about what kind of monitoring
(e.g., application monitoring, network monitoring, user-centric monitoring) these tools can
perform, and how to use tools to automate the monitoring process for MSA based systems in
DevOps. The continuous integration category highlights Jenkins as a popular tool for CI and
CD pipeline of microservices. The results related to tool support indicate that there is a rich set
of tools that provide support to various stages of MSA based system development in DevOps.
For instance, version control of microservices (e.g., Bitbucket), build automation (e.g., Gradle),
testing (e.g., Junit), configuration management (e.g., Chef).

Even though dozens of tools are available to support MSA in DevOps, we observed that
automated decision support (e.g., AI-based) for security, monitoring, testing, configuration
management, and build is rarely available in the identified tools. The analysis of the identified
tools also reveals that except a few tools (e.g., CIDE, Omina), the industry contribution for tool
support is a way ahead of the academic contribution. One reason could be that MSA and
DevOps are originally proposed and practiced in industry, and they have an urgent need to
promote CI, CD, monitoring, testing, and deployment of MSA based systems with tool support,
which is critical for the maturity of new technologies in industry.

5.1.8. Application Domains
We observed that 15 studies (31.91%) did not provide any specific information regarding

application domains, and the domains identified from the remaining studies can be classified
into 9 categories. The dominating application domain is “Software Development Tools and
Framework” suggesting that the combination of MSA and DevOps has been applied for two
major purposes. First, it is used to develop the new IDEs (e.g., CIDE) and multi-cloud services
framework (e.g., Unicorn framework). Second, it is used to evaluate the existing technology
(e.g., Azure Visual Studio Team Services) choices for building microservices in DevOps. The
results show that on the one side the combination of MSA and DevOps has been applied in
emerging domains like Mobile 5G networks (S32, S43), Edge devices (S06), SmartX IoT (S14),
Connected car (S39), and Mobile software; on the other side, a significant number of studies
focus on traditional application domains, for example, CRM (S33, S42), Electronic commerce
(S17), Retail applications (S21), Mobile Webshop (S36), and Betting and Gaming (S20). These
results indicate that the combination of MSA and DevOps is growing in various application
domains.

Although the results indicate that the implementation of MSA in DevOps has been applied
to a wide range of application domains, there are still many application domains in which MSA
in DevOps is seldom employed, e.g., Embedded systems, Financial software, and Healthcare
software.

5.2. Implications for Researchers
(1) MSA and DevOps both have been emerged and continuously evolved in the industry.

However, we found that 55.3% of the selected studies are originated from academia, and
only 21.27% of the studies have an author from the industry. Therefore, we encourage
academic researchers to collaborate more with the industry to fill this gap.

(2) As discussed in Section 5.1.1, we did not find enough evidence related to requirements
engineering, architecture/design, development, and testing of microservices in DevOps.
One possible reason for lack of research in these areas is that the MSA and DevOps

34/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

combination is relatively new, and most of the studies emphasize proposing approaches
and providing tool support for MSA in DevOps without empirically evaluating them.
Therefore, there is a clear need for conducting empirical research in the following areas:

- How are MSA requirements engineering activities (e.g., elicitation, documentation,
and validation) practiced in DevOps?

- What are microservices architecting activities (e.g., analysis, implementation,
evaluation, description, maintenance, and evolution, etc.) practiced in DevOps
context?

- How to model runtime aspects of microservices in DevOps context?
- How to customize existing ADLs for describing MSA in DevOps.
- What are the best DevOps practices for MSA based systems?
- How does DevOps support testing MSA based systems?
- How to meet security in individual microservices without compromising the

autonomy of the DevOps teams?
(3) We did not find solutions for three challenges (see Section 4.2.2). Given the increased

importance of performance, security, and generating runtime architectural models of MSA
based systems in DevOps, there is a clear need for further research to explore the identified
challenges, for example, how MSA based systems should be designed and implemented in
DevOps to meet performance expectations and mitigate security issues, how to generate
runtime architectural models for making decisions about dynamic changes in MSA based
systems.

(4) The use of informal architectural description methods (e.g., boxes and lines) can introduce
the inconsistency issues between system design and implementation of the system [50].
Based on the evidence gained from the selected studies, we found that most of the studies
describe MSA design by using boxes and lines. Therefore, we suggest that it will be
valuable to identify and analyze the pros and cons of the informal description methods.
Moreover, further research is also needed to explore why formal description methods (e.g.,
ADLs) are rarely used when applying MSA in DevOps context.

(5) We found several MSA patterns that can be applied to the different aspects (e.g.,
development, deployment) of microservices. However, we also found that there is a lack of
patterns that are exclusively created for and can be applied to MSA in the context of
DevOps. Therefore, we encourage researchers and practitioners to investigate architecture
and design (e.g., creational, structural, behavioral) patterns in the context of MSA in
DevOps.

(6) Recently, much attention has been paid to "observability" in the MSA community.
Observability has three pillars, i.e., logging, monitoring, and distributed tracing [51, 52].
Logging means maintaining log data (e.g., error, failure, state transformation) generated by
applications and infrastructure. Monitoring is an action in which data metrics (e.g., resource
usage, system availability, threads) are collected, aggregated, and analysed to maintain the
overall health of systems, and distributed tracing is a technique with which all the trace data
is used to give meaningful insight for a request across several systems [51]. However, the
selected studies (e.g., S02, S05, S15, S18) from our SMS only discuss the monitoring of
MSA. We emphasize that further research is required to investigate logging and distributed
tracing in the context of MSA and DevOps.

(7) We did not find any study that has explored MSA in DevOps in terms of refactoring,
evolution, or maintenance. Therefore, further research is needed to explore the potential
challenges, best practices, and tools in the above-mentioned activities.

(8) Whilst a dozen of tools has been identified in this SMS, we did not find any study that
reports explicitly how these tools support MSA in DevOps. Therefore, more empirical
studies are needed to understand and evaluate the tools supporting MSA in DevOps.

5.3. Implications for Practitioners
(1) The research on MSA in DevOps is still a relatively new and unexplored research topic.

Practitioners are encouraged to frequently report their experiences when applying MSA in
DevOps. This helps to reduce the gap between academic research and practices.

35/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

(2) This SMS reveals that monitoring of 100s of independent microservices and diagnosing of
a failed service among them is a challenging task. The matter gets worse in DevOps context
as the deployment of microservices happens at an extremely accelerated pace. To alleviate
this issue, practitioners need to find smarter solutions that align with DevOps for detecting
and reporting the failed microservices in real-time.

(3) A higher number of microservices in an application demand more security solutions for
system protections. We found several studies that present security solutions for MSA based
systems. However, practitioners still need to work on more advanced solutions to handle
security for a variety of operating systems, languages, and frameworks when implementing
MSA in DevOps.

(4) Several issues are reported in the literature related to microservices performance
degradation. The typical reason for the performance degradation is that microservices
consume an enormous amount of resources across the network and the burden (e.g.,
network latency) on the servers with microservices is greater than monolithic applications.
Therefore, practitioners need to develop solutions for minimizing and mitigating
performance degradation issues.

5.4. Analysis of the Results through a Word Cloud
We generated a word cloud (see Figure 8) by considering the titles, abstracts, keywords, and

conclusions of the selected studies. Common words such as "and", "of", and "the" were
automatically removed by Wordle1. We also removed several unnecessary words like "used",
"new", and "work" from the generated word cloud. The dominant terms are "microservice" and
"DevOps" that reflect the topic of this SMS (i.e., microservices architecture in DevOps). Other
dominant terms like "development", "operation", "design", "monitoring", "testing", "approach",
"tool", and "migration" partially reflect the classification of research themes on MSA in
DevOps (see Figure 5). The terms such as "challenge", "issue" are aligned with RQ2.1 and
RQ2.3, indicating the problems and challenges of MSA in DevOps. This word cloud also
highlights several terms related to the identified solutions (see Figure 6). For instance,
"container", "Docker", and "SONATA”. We found only two QAs (i.e., "performance",
"scalability") discussed in the selected studies in the word cloud. Overall, the word cloud
mainly highlights the classifications of the research themes, problems and solutions, and
challenges in the context of MSA in DevOps.

Figure 8. An overview in a word cloud of the key terms discussed in the selected studies

6. Threats to Validity
Several threats can affect the results of this SMS. To mitigate these threats, we followed the

guidelines for conducting SMSs/SLRs [26, 27], and analyze the validity threats to our SMS
according to four types of validity threats [53, 54]. In this section, we discuss the following
validity threats associated with the different activities of this SMS.

6.1. Internal Validity
Internal validity refers to the factors that could affect the analysis of the data extracted from

the selected studies. The threats to internal validity could happen in the following steps of this
SMS:

1 http://www.wordle.net/

36/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

Study Search: There is a possibility to miss relevant studies during the study search process.
To mitigate this threat, we used the primary and snowballing search processes (see Section 3.2).
To retrieve as many primary studies as possible through the primary search, we executed two
search strings (i.e., String 1 and String 2) parallelly on seven popular databases. Additionally,
we employed two other measures to minimize the threats in the search strategy: (i) The search
strings were iteratively improved through pilot search before execution on the databases.
During the pilot search, we found that many studies could not be retrieved through String 1.
Therefore, we decided to use String 2. (ii) We also employed the backward and forward
snowballing techniques to find the relevant studies in the last round of the search process.

Study Selection: We rigorously defined the study screening and selection process in Section
3.4. To avoid personal bias in study selection, we adopted a two-step process: (i) screening
studies and (ii) qualitative assessment of the selected studies. During this process, we calculated
the maturity of the study by using Formula 1 defined in Section 3.4.2. Furthermore, the first
author of this study performed the screening of studies through explicitly defined criteria in
Section 3.4.1 and Section 3.4.2, then the second and third authors of the study independently
verified the screening results. It should be noted that all the researchers of this study have
enough expertise, knowledge, and research experience about microservices and DevOps.

Data Extraction: Researchers' bias in data extraction can be a fundamental threat in any
SMSs and SLRs. We mitigated this threat by creating the data extraction form (see Table 5) to
extract data consistently. The data was initially extracted by the first author, and in case of any
doubt about the extracted data, continuous discussions were organized between all the authors.
As suggested in [54], a subset of the extracted data was verified by the second and third authors.

Bias on Themes Classification: Incorrect classification of the data and primary studies may
bring subjective interpretation bias. To mitigate this bias, we employed the guidelines of
thematic analysis technique proposed by Braun et al. [33].

Data Synthesis: We applied qualitative and quantitative methods to analyze the extracted
data. The bias on synthesizing data may affect the interpretation of the results. To mitigate this
threat, the synthesis of the collected data was performed through a well-established thematic
analysis method for qualitative data and descriptive statistics for quantitative data.

6.2. External Validity
The threats related to external validity refer to the degree to which the results of a study can

be generalized. The results of this SMS provide an overview of the state of research on MSA
in DevOps context. Therefore, obtained results, analysis of the results, and conclusions drawn
are only valid in the study topic. In order to achieve external validity, we developed the study
protocol that rigorously specifies the whole process of conducting this SMS. In addition, to
collect the relevant studies, we searched the peer-reviewed literature published between January
2009 and July 2018 in the seven most popular databases.

6.3. Construct Validity
Construct validity concerns whether correct operational measures have been taken for

collecting the data to be studied. The primary constructs of this SMS are two concepts “MSA”
and “DevOps”. The use of incorrect or incomplete search terms and inappropriate search
strategies can bring threats like missing of relevant papers and inclusion of many irrelevant
papers during the search process, and exclusion of relevant papers during the selection process.
To alleviate these threats, we adopted the following operational measures: (i) We conducted
the pilot search to ensure the appropriateness and completeness of the search terms. (ii) We
used the seven most popular databases in computer sciences and software engineering research.
We also customized each search string according to the peculiarities of the databases to obtain
the relevant studies.

6.4. Conclusion Validity
Threats to conclusion validity are concerned with issues (e.g., inaccuracy of data) that affect

the ability to reach the correct conclusions. We tried to mitigate these threats by applying the
best practices (e.g., search protocol, pilot search, pilot data selection) proposed by Kitchenham

37/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

et al. [26] and Petersen et al. [27]. In addition, to address the threats to conclusion validity,
several brainstorming sessions were arranged among the authors about the interpretation of the
results and conclusions.

7. Existing Systematic Reviews
We identified seven secondary studies [47, 55-59] that reported different aspects of MSA or

DevOps. Five studies (including a systematic grey literature review) [47, 55-58] mainly focus
on the MSA aspects, one study [59] present review on DevOps, and only one study [60] have
presented the review on continuous architecting with MSA and DevOps.

Di Francesco et al. [47] reported the results of an SMS on MSA based on 103 primary studies
published from 2008 to May 2017. This review presents the state of the art on microservices
architecting with respect to the number of publications, research focus, and potential for
industrial adoption. Major contributions of this SMS are (i) a framework for classifying,
comparing, and evaluating the research on architecting microservices, (ii) evaluation of
research results about MSA for industrial adoption, and (iii) a systematic map for current
research and implications for future research. This SMS only focuses on architecting with
microservices while confirms that there exists a close relationship between MSA and DevOps.

Felipe et al. [55] conducted a Systematic Literature Review (SLR) on MSA patterns and
tactics. They have explored MSA patterns and tactics for microservices from 66 academics
studies published from 2011 to 2017. They also investigated the association of the QAs with
MSA patterns and tactics for microservices. Major reported findings are (i) the identification
of 38 MSA patterns, (ii) confirmation about non-availability of tactics for MSA in academic
literature, and (iii) recognition of scalability and performance as prominent QAs in MSA. This
SLR claims MSA emerged from DevOps ideologies, and MSA requires to be explored from
DevOps and Internet of Things (IoT) perspectives.

Alshuqayran et al. [56] reported an SMS on MSA based on 33 primary studies published
from 2014 to 2016. The objectives of their research are to explore the existing architectural
support for microservices and characterize a framework based on MSA challenges. This SMS
reported MSA challenges, MSA diagrams/views, and the QAs related to MSA.

Taibi et al. [60] reported the results of an SMS on MSA based on 42 primary studies
published from 2011 to 2016. The focus of this review is to characterize the MSA style patterns
and principles in the context of DevOps. This study presents a list of MSA style patterns and
the advantages, disadvantages, and lessons learned of each identified pattern. In addition, this
study also reported the DevOps techniques classification scheme aligned with DevOps
practices (e.g., planning, coding, and testing), for instance, semantic models for planning
practice and agent-oriented programming language for coding practice.

Soldani et al. [57] conducted a Systematic Grey Literature Review (SGLR) on 51 resources
(i.e., white papers, blog posts, and videos). The focus of this SGLR is to sort the gap between
academic research and industrial practices on microservices. The main contribution of this
study is the identification of technical and operational advantages and challenges, during the
design, development, and operations of MSA based systems.

Pahl et al. [58] conducted an SMS on MSA based on 21 primary studies published in 2014
and 2015. This SMS aimed to identify, classify, and systematically compare the literature
published on microservices and their application in the cloud. They organized and analyzed the
selected studies into three types (i.e., methodological support, architecture support, and
platform/tool support) by using a characterization framework. The results of this SMS show
that (i) MSA style as an emerging trend with CD/DevOps culture and (ii) MSA based
applications are mostly employed in cloud and containers.

Jabbari et al. [59] investigated 49 studies through an SMS to understand the DevOps
definitions and practices, as well as to identify similarities and differences between DevOps
and other software development methods. They explored the definitions of DevOps by
considering “central components”. The examples of the central components are development
and operations, communication, collaboration, team working, bridging the gap, Continuous
Integration (CI), and automatic deployment. To explore the DevOps practices, the authors
identified the explicitly presented practices in literature and categorized these practices

38/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

according to the software engineering knowledge areas (e.g., software engineering management,
software construction, and software configuration management). The identified DevOps
practices are continuous planning, feedback, monitoring, integration, deployment, and testing.
This SMS also compared DevOps with agile, cloud computing, cloud management, waterfall,
Information Technology Infrastructure Library (ITIL), and quality assurance.

Table 13. A Comparison of Selected Studies between this SMS and the Existing Secondary

Studies

Study # Total Included
Studies

Overlapped
Studies Type Search Period

Di Francesco et al. [47] 103 1 (S27) SMS From 2008 to 2017
Osses et al. [55] 66 1 (S02) SLR From 2011 to 2017
Alshuqayran et al. [56] 33 2 (S02, S09) SMS From 2014 to 2016
Taibi et al. [60] 42 1 (S27) SMS From 2011 to 2016
Soldani et al. [57] 51 0 SGLR From 2014 to 2017
Pahl et al. [58] 21 1 (S27) SMS From 2014 to 2015
Jabbari et al. [59] 49 0 SMS From 1969 to 2016

The existing secondary studies (see Table 13) and our work can be differentiated in the

following aspects:
1) Study Objective

The SMS [47] presents the trends, focus of research, and potential for industrial adoption of
architecting with microservices. The SMS [56] reported the challenges, diagrams/views, and
QAs related to microservices systems. The SMS [60] characterized the MSA principles and
patterns in DevOps context. The SMS [58] identified, classified, and compared the existing
research on MSA and its application in the cloud. The SGLR [57] reported the industrial
evidence about the technical and operational challenges and advantages related to the design,
development, and operations of MSA based systems. The SMS [59] presents a review of
DevOps definitions, practices, and similarity of the DevOps practices with other development
methods. Except for SMS [60], all existing reviews (see Section 7) focus on either MSA or
DevOps whereas our SMS intends to shed light on the combination of MSA and DevOps.

2) Search Strings and Search Period
Our search strings are different as we decided to combine the MSA terms with “DevOps” in

the search strings. However, the search strings designed for other reviews either only covering
MSA or DevOps. Moreover, previously reported reviews used only automatic search whereas
we used both automatic search and snowballing. Out of the 47 selected studies, we identified
two studies (S07 and S20) through the snowballing technique [30]. We searched the studies
from January 2009 to July 2018, which makes our search is the most updated one.

3) Research Questions
Our six RQs are different from the existing published SMSs. For example, RQ1.1 and RQ1.2

aim to report the frequency of the research, type of the published literature, and classification
and mapping of the research themes in an MSA and DevOps combination perspective. The RQs
related to challenges (RQ2.1) and solutions (RQ2.2) for adopting MSA in DevOps context are
unique. The RQs related to MSA description methods (RQ3.1), patterns (RQ3.2), and QAs
(RQ3.3) are similar to some extent with RQs presented in other SMSs/SGLRs. For example
RQ3.2 in our SMS and RQ1 and RQ2 (MSA patterns) in [55] respectively. Furthermore, RQ4.1
and RQ4.2 in this SMS have some overlaps with RQ3 (methods, techniques, and tool support
to enable MSA development and operation) in [58]. However, our study explicitly explores the
literature on MSA in DevOps to answer these RQs.

4) Selected Studies
We also compared the selected studies of our SMS with the selected studies of the existing

secondary studies. We identified that only three selected studies (S02, S09, S27) of this SMS
are included in other SMSs/SLRs/SGLRs (see Table 13, overlapped studies).

39/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

5) Study Results
Table 14 shows the comparison between the results of our SMS and the existing secondary

studies (i.e., SMSs/SLRs/SGLRs). It is demonstrated in Table 14 that the results of our SMS
are significantly different from the existing reviews. For instance, the existing reviews do not
provide thematic classification, problems and their solutions, challenges, positive and negative
impact on QAs, tools, and application domains in the context of MSA and DevOps combination.
For example, Pahl and Jamshidi [58] identified the existing research issues about microservices,
which are different from the challenges identified in our SMS in the context of MSA in DevOps.
However, our findings related to MSA description methods and MSA design patterns have, to
some extent, an overlap with the results of existing secondary studies. For example, some MSA
description methods (e.g., UML diagrams) identified in this SMS can also be found in the SMS
by Di Francesco et al. [47] and Alshuqayran et al. [56]. Similarly, some MSA design patterns
(e.g., circuit breaker, API gateway, database per services, shared database) identified in our
SMS can be seen in the review studies by Di Francesco et al. [47], Osses et al. [55], Taibi et al.
[60], Soldani et al. [57], and Pahl and Jamshidi [58].

Table 14. A Comparison of Results between this SMS and the Existing Secondary Studies

This SMS Results Existing Secondary Studies
[47] [55] [56] [60] [57] [58] [59]

Thematic classification (Section 4.1.4) - - - - - - -
Problems and solutions (Section 4.2.1) - - - - - - -
Challenges (Section 4.2.2) - - - - - - -
MSA description methods (Section 4.3) P - P - - - -
MSA design patterns (Section 4.3.2) P P P P P P -
Quality attributes (Section 4.3.3) - - - - - - -
Tools (Section 4.4.1) - - - - - - -
Application domains (Section 4.4.2) - - - - - - -

8. Conclusions
This SMS provides the state of research about MSA in DevOps concerning research themes,

challenges, solutions, MSA description methods, QAs, tools, and application domains. We
selected 47 studies after a comprehensive search and selection process for data analysis. The
key findings of this SMS can be summarized as follows:

(1) The increasing number of publications on MSA in DevOps context shows that this
research topic is continuously gaining significant attention from the research
community because 47 studies were published in 3 and a half years (From 2015 to July
2018).

(2) The reported research on the combination of MSA and DevOps can be classified into
three major themes: “microservices development and operations in DevOps”,
“approaches and tool support for MSA based systems in DevOps”, and “MSA
migration experiences in DevOps”.

(3) We identified 24 problems with their solutions regarding implementing MSA in
DevOps. These problems and solutions are classified into 8 categories (see Figure 6).
We also identified three open research challenges that require further investigation (see
Table 8).

(4) Concerning MSA description methods, most of the studies describe MSA design by
using boxes and lines, UML diagrams, and formal methods. Moreover, three ADLs
including CAOPLE, SDA, and Jolie were used or proposed for describing MSA in
DevOps context.

(5) We identified 38 MSA patterns reported in the selected studies, but many of them have
been not applied frequently. The most common MSA patterns reported in the studies
are Circuit Breaker (5/38) and Migration (4/38) patterns.

(6) Regarding QAs when employing MSA in DevOps, we identified 15 QAs that are
positively and negatively affected. The results show that most of the QAs are positively
affected and certain QAs are affected both positively and negatively.

40/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

(7) We identified 50 tools that support building MSA based systems in DevOps, and
further classified these tools into seven categories according to their functionalities (see
Figure 7). GitHub as a version control system, Jenkins as a continuous integration
server, and Puppet as a configuration management system, are the most popular tools.

(8) We observed that the combination of MSA and DevOps has been applied in a wide
range of application domains, in which “Software Development Tools and Framework”
and “Telecommunication” have received the most attention.

The findings of this SMS will benefit researchers who are interested in understanding the
state of research of MSA in DevOps and conducting further research to fill the open research
issues discussed in Section 5.2. Moreover, the findings of this SMS will facilitate knowledge
transfer to practitioners about the problems, solutions, challenges, MSA description methods,
MSA patterns, and tools for implementing MSA in DevOps. We argue that practitioners need
to bring more dedicated solutions for addressing the monitoring, security, and performance
degradation issues of MSA based systems in DevOps. Finally, as the next step of our work, we
plan to conduct a Systematic Grey Literature Review (SGLR) to identify the gap between
research and practice regarding MSA in DevOps.

Acknowledgement
This work is partially sponsored by the National Key R&D Program of China with Grant

No. 2018YFB1402800.

41/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

Appendix A. Selected Studies

Table 15. List of the Selected Studies of this SMS

ID Authors, Publication Title, and Venue Citation
Count

Quality
Score

Citation

S01 Claus Pahl, Pooyan Jamshidi, and Olaf Zimmermann. Architectural Principles for Cloud Software. ACM Transactions on
Internet Technology, 11(2): 1-23, 2018.

31 3.1 [61]

S02 Robert Heinrich, André van Hoorn, Holger Knoche, Fei Li, Lucy Ellen Lwakatare, Claus Pahl, Stefan Schulte, and Johannes
Wettinger. Performance Engineering for Microservices: Research Challenges and Directions. In: Proceedings of the 8th
on International Conference on Performance Engineering Companion (ICPE), L'Aquila, Italy, pp. 223-226, ACM, 2017

52 3.2 [62]

S03 Mark Stillwell, Jose Coutinho. A DevOps Approach to Integration of Software Components in an EU Research Project.
In: Proceedings of the 1st International Workshop on Quality-Aware DevOps (IWQAD), New York, USA, pp. 1-6, ACM,
2015.

27 2.9 [63]

S04 Rion Dooley, Steven Brandt, and John Fonner. The Agave Platform: An Open, Science-as-a-Service Platform for Digital
Science. In: Proceedings of the 2nd International Conferences on Practice and Experience on Advanced Research Computing
(PEARC), Pittsburgh, USA, pp. 1-8, ACM, 2018.

8 2.6 [64]

S05 Marco Miglierina, and Damian Tamburri. Towards Omnia: A Monitoring Factory for Quality-Aware DevOps. In:
Proceedings of the 8th International Conference on Performance Engineering Companion (ICPE), L'Aquila, Italy, pp. 145-
150, ACM, 2017

4 3.5 [65]

S06 Jihun Ha, Jungyong Kim, Heewon Park, Jaehong Lee, Hyuna Jo, Heejung Kim, and Jaeheon Jang. A Web-Based Service
Deployment Method to Edge Devices in Smart Factory Exploiting Docker. In: Proceedings of the 8th International
Conference on Information and Communication Technology Convergence (ICTC), Jeju, South Korea, pp. 708-710, IEEE,
2017.

7 2.5 [66]

S07 Mei Chen, Rick Kazman, Serge Haziyev, Valentyn Kropov, and Dmitri Chtchourov. Architectural Support for DevOps in
a Neo-Metropolis BDaaS Platform. In: Proceedings of the 34th Symposium on Reliable Distributed Systems Workshop
(SRDSW), Montreal, Canada, pp. 25-30. 2015

7 3.3 [67]

S08 Desheng Liu, Hong Zhu, Chengzhi Xu, Ian Bayley, David Lightfoot, Mark Green, and Peter Marshall. CIDE: An Integrated
Development Environment for Microservices. In: Proceeding of the 2nd International Conference on Services Computing
(SCC), San Francisco, USA, pp. 808-812, IEEE, 2016

17 2.9 [68]

S09 Hui Kang, Michael Le, and Shu Tao. Container and Microservice Driven Design for Cloud Infrastructure DevOps. In:
Proceeding of the 4th International Conference on Cloud Engineering (IC2E), Berlin, Germany, pp. 202-211, IEEE 2016.

108 3.6 [69]

S10 Tran Thanh Quang, Stefan Covaci, Thomas Magedanz, Panagiotis Gouvas, and Anastasios Zafeiropoulos. Embedding
Security and Privacy into the Development and Operation of Cloud Applications and Services. In: Proceedings of the

12 3.1 [70]

42/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

17th International Conference on Telecommunications Network Strategy and Planning Symposium (NETWORKS), Montreal,
Canada, pp. 31-36, IEEE, 2016.

S11 Hong Zhu and Ian Bayley. If Docker is the Answer, what is the Question? In: Proceedings of the IEEE Symposium on
Service-Oriented System Engineering (SOSE), Bamberg, Germany, pp. 152-163, 2018.

3 3.6 [71]

S12 Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. Microservices Architecture Enables DevOps: Migration to A
Cloud-Native Architecture. IEEE Software, 33(3): 42-52, IEEE, 2016.

338 4 [2]

S13 Yuan Fan, and Shang-Pin Ma. Migrating Monolithic Mobile Application to Microservice Architecture: An Experiment
Report. In: Proceeding of 13th International Conference on AI & Mobile Services (AIMS), Honolulu, USA, pp. 109-112,
IEEE, 2017.

15 3.3 [72]

S14 Jeongju Bae, Chorwon Kim, and JongWon Kim. Automated Deployment of Smartx IOT-Cloud Services Based on
Continuous Integration. In: Proceedings of 8th International Conference on Information and Communication Technology
Convergence (ICTC), Jeju, South Korea, pp. 1076-1081, IEEE, 2016.

3 2.7 [73]

S15 Cornel Barna, Hamzeh Khazaei, Marios Fokaefs, and Marin Litoiu. Delivering Elastic Containerized Cloud Applications
to Enable DevOps. In: Proceedings of the 12th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SSASMS), Buenos Aires, Argentina, pp. 65-75, IEEE, 2017.

21 2.8 [74]

S16 Hong Chen-Mei, Rick Kazman, Serge Haziyev, Valentyn Kropov, and Dmitri Chtchourov. Big Data As A Service: A Neo-
Metropolis Model Approach for Innovation. In: Proceedings of the 49th Hawaii International Conference on System
Sciences (HICSS), Koloa, HI, USA, pp. 5457-5466, IEEE, 2016.

2 3.4 [75]

S17 Paul Drews, Ingrid Schirmer, Bettina Horlach, and Carsten Tekaat. Bimodal Enterprise Architecture Management: The
Emergence of a New EAM Function for a BizDevOps-Based Fast IT. In: Proceedings of 21st International Enterprise
Distributed Object Computing Workshop (EDOCW), Quebec City, Canada, pp. 57-64, IEEE, 2017

9 2.8 [76]

S18 George Pallis, Demetris Trihinas, Athanasios Tryfonos, and Marios Dikaiakos. DevOps as a Service: Pushing the
Boundaries of Microservice Adoption. IEEE Internet Computing, 22(3): 65-71, IEEE, 2018

9 3 [77]

S19 Thomas Soenen, Steven Van Rossem, Wouter Tavernier, Felipe Vicens, Dario Valocchi, Panos Trakadas, Panos Karkazis et
al. Insights from SONATA: Implementing and integrating a Microservice-Based NFV Service Platform with a DevOps
Methodology. In: Proceedings of 30th IEEE/IFIP Network Operations and Management Symposium (NOMS), Taipei,
Taiwan, pp. 1-6, IEEE, 2018

5 3.2 [78]

S20 Lianping Chen. Microservices: Architecting for Continuous Delivery and DevOps. In: Proceedings of 2nd International
Conference on Software Architecture (ICSA), Seattle, USA, pp. 39-46, IEEE, 2018.

44 3.5 [79]

S21 Tianlei Zheng, Xi Zheng, Yuqun Zhang, Yao Deng, ErXi Dong, Rui Zhang, and Xiao Liu. SmartVM: A SLA-Aware
Microservice Deployment Framework. World Wide Web, 21(3): 1-19, Springer, 2018

6 2.9 [80]

S22 Pethuru Raj, Anupama Raman. Automated Multi-Cloud Operations and Container Orchestration. In: Software-Defined
Cloud Centres: Operational and Management Technologies and Tools, pp. 185-218.Springer, 2018.

3 2.8 [81]

S23 Bob Familiar, Jeff Barnes. DevOps Using PowerShell, ARM, and VSTS. In: Business in Real-Time Using Azure IoT and
Cortana Intelligence Suite: Driving Your Digital Transformation, pp. 21-93, Springer, 2017.

0 2.8 [82]

43/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

S24 Miika Kalske, Niko Mäkitalo, and Tommi Mikkonen. Challenges When Moving from Monolith to Microservice
Architecture. In: Proceedings of 13th International Conference on Web Engineering (ICWE), Koloa, HI, USA, pp. 32-47
Springer, 2018

17 2.5 [83]

S25 Maurizio Gabbrielli, Saverio Giallorenzo, Claudio Guidi, Jacopo Mauro, and Fabrizio Montesi. Self-Reconfiguring
Microservices. In: Theory and Practice of Formal Methods, pp. 194-210, Springer, 2015.

27 3.1 [84]

S26 Bob Familiar. From Monolithic to Microservice. In: Microservices, IoT, and Azure: Leveraging DevOps and Microservice
Architecture to Deliver SaaS Solutions, Chapter 1, pp. 1-7, Springer, 2015.

1 2.6 [85]

S27 Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. Migrating to Cloud-Native Architectures Using Microservices:
An Experience Report. In: Proceedings of the 4th European Conference on Service-Oriented and Cloud Computing
(ESOCC), Taormina, Italy, pp. 201-215, Springer, 2015.

134 3.5 [86]

S28 Bob Familiar. What is a Microservice? Microservices, IoT, and Azure: Leveraging DevOps and Microservice Architecture
to Deliver SaaS Solutions, Chapter 2, pp. 9-19, Springer, 2015.

2 2.6 [87]

S29 Andreas Christoforou, Martin Garriga, Andreas S. Andreou, and Luciano Baresi. Supporting the Decision of Migrating to
Microservices through Multi-Layer Fuzzy Cognitive Maps. In: Proceedings of the 14th International Conference on
Service-Oriented Computing (ICSOC), Malaga, Spain, pp.471-480, Springer, 2017.

6 3 [88]

S30 Maurizio Cavallari, Di Francesco Tornieri, and Marco De Marco. Organizational Impact on Software Development of
eServices Techniques. In: Proceedings of the 8th International Conference on Exploring Services Science (IESS), Rome, Italy,
pp. 64-75, Springer, 2017.

1 2.1 [89]

S31 Cloves Carneiro Jr and Tim Schmelmer. Deploying and Running Microservices. In: Microservices From Day One: Build
Robust and Scalable Software from the Start, pp. 151-174, Springer, 2016.

14 2.6 [90]

S32 Martinez Manuel Perez, Tímea László, Norbert Pataki, Csaba Rotter, and Csaba Szalai. Multivendor Deployment
Integration for Future Mobile Networks. In: Proceedings of International Conference on Current Trends in Theory and
Practice of Informatics (SOFSEM), Krems, Austria, pp. 351-364, Springer, 2018.

1 2.8 [91]

S33 Zykov Sergey, Agile Services. In: Managing Software Crisis: A Smart Way to Enterprise Agility, pp. 65-105, Springer, 2018 2 2.9 [92]
S34 Chorwon Kim, Seungryong Kim, and JongWon Kim. Understanding Automated Continuous Integration for

Containerized Smart Energy IoT-Cloud Service. In: Proceedings of the 2nd International Conference on Ubiquitous
Information Technologies and Applications (CUTE), Taichung, Taiwan, pp. 1275-1280, Springer, 2017

1 3.2 [93]

S35 Giuliano Casale, Cristina Chesta, Peter Deussen, Elisabetta Di Nitto, Panagiotis Gouvas, Sotiris Koussouris, Vlado Stankovski
Andreas Symeonidis, Vlassis Vlassiou, Anastasios Zafeiropoulos, and Zhiming Zhao. Current and Future Challenges of
Software Engineering for Services and Applications. Procedia Computer Science, 98: 34-42, Science Direct, 2016

18 2.6 [94]

S36 Kai Jander, Lars Braubach, and Alexander Pokahr. Defence-in-depth and Role Authentication for Microservice Systems.
Procedia Computer Science, 130: 456-463, Science Direct, 2018.

4 2.9 [95]

S37 Christof Ebert, Gallardo, Gorka, Hernantes, Josune, Serrano, and Nicola. DevOps. IEEE Software, 33(3): 94-100, IEEE, 2016. 141 3.4 [96]
S38 Liming Zhu, Len Bass, and George Champlin-Scharff. DevOps and its Practices. IEEE Software, 33(3): 32-34, IEEE, 2016 65 2.6 [97]

44/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

S39 Tobias Schneider, and A. Wolfsmantel. Achieving Cloud Scalability with Microservices and DevOps in the Connected
Car Domain. In: Proceedings of 1st Central Europe Workshop on Continuous Software Engineering (CEUR-WS), pp. 138-
141, 2016

13 2.7 [98]

S40 Stefan Kehrer and Wolfgang Blochinger. AUTOGENIC: Automated Generation of Self-configuring Microservices. In:
Proceedings of the 8th International Conference on Cloud Computing and Services Science (CLOSER), Funchal, Madeira,
Portugal, pp. 35-46, Springer, 2018.

9 3.5 [99]

S41 Sharma Sanjeev. DevOps Plays for Driving Innovation. In: The DevOps Adoption Playbook: A Guide to Adopting DevOps
in a Multi-Speed IT Enterprise, pp. 189-260, Wiley, 2017.

43 3.2 [100]

S42 Erich, Chintan Amrit, and Maya Daneva. A Qualitative Study of DevOps Usage in Practice. Journal of Software: Evolution
and Process 29(6): 1-20, Wiley, 2017.

42 3.3 [101]

S43 Karl, Holger, Sevil Dräxler, Manuel Peuster, Alex Galis, Michael Bredel, Aurora Ramos, Josep Martrat, Muhammad Shuaib
Siddiqui, Steven van Rossem, Wouter Tavernier, George Xilouris. DevOps for Network Function Virtualisation: An
Architectural Approach. Transactions on Emerging Telecommunications Technologies, 27(9): 1206-1215, Wiley, 2018.

37 3.1 [102]

S44 Rory O'Connor, Peter Elger, and Paul M. Clarke. Continuous Software Engineering - A Microservices Architecture
Perspective. Journal of Software: Evolution and Process, 29(11): 1-12, Wiley, 2017.

29 3 [103]

S45 Daniel Russo, Vincenzo Lomonaco, and Paolo Ciancarini. A Machine Learning Approach for Continuous Development.
In: Proceedings of the 5th International Conference on Software Engineering for Defence Applications (SEDA), Rome, Italy,
pp. 109-119, Springer, 2018.

3 3.2 [104]

S46 Prieto Zúñiga, Miguel, Emilio Insfran, Silvia Abrahão, and Carlos Cano-Genoves. Automation of The Incremental
Integration of Microservices Architectures. In: Proceedings of the 25th International Conference on Information Systems
Development (ISD), Katowice, Poland, pp. 51-68, Springer, 2017.

2 3.2 [105]

S47 Davide Taibi, Valentina Lenarduzzi, and Claus Pahl. Processes, Motivations, and Issues for Migrating to Microservices
Architectures: An Empirical Investigation. IEEE Cloud Computing, 4(5): 22-32, IEEE, 2017.

73 3.2 [106]

45/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

References
[1] X. Larrucea, I. Santamaria, R. Palacios, and C. Ebert. Microservices. IEEE Software,

35(3): 96-100, 2018.
[2] A. Balalaie, A. Heydarnoori, and P. Jamshidi. Microservices Architecture Enables

Devops: Migration to a Cloud-Native Architecture. IEEE Software, 33(3): 42-52, 2016.
[3] W. Hasselbring and G. Steinacker. Microservice Architectures for Scalability, Agility

and Reliability in E-Commerce. In: Proceedings of the 1st International Conference on
Software Architecture Workshops (ICSAW), Gothenburg, Sweden, pp. 243-246, 2017.

[4] S. Elliot, T. Grieser, M. Ballou, and L. Carvalho. Worldwide Devops Software Forecast
Update, 2017–2021. https://www.idc.com/getdoc.jsp?containerId=US43276517.
Accessed on 2018-11-02.

[5] LightStep. Global Microservices Trends Report Report. http://na-
sj24.marketo.com/lp/260-KGM-472/global-microservices-trends-report-2018.html.
Accessed on 2018-11-05.

[6] M. Yousif. Microservices. IEEE Cloud Computing, 3(5): 4-5, 2016.
[7] F. Gauna. Thinking About Microservices? You Need Devops First.

https://www.nebbiatech.com/2017/05/15/thinking-microservices-need-devops-first/.
Accessed on 2018-12-12.

[8] J. Humble and D. Farley. Continuous Delivery: Reliable Software Releases through
Build, Test, and Deployment Automation. Pearson Education, 2010.

[9] D. Stahl, T. Martensson, and J. Bosch. Continuous Practices and Devops: Beyond the
Buzz, What Does It All Mean? In: Proceedings of the 43rd Euromicro Conference on
Software Engineering and Advanced Applications (SEAA), Vienna, Austria, pp. 440-
448, 2017.

[10] M. Garriga. Towards a Taxonomy of Microservices Architectures. In: Proceedings of
the 8th International Conference on Software Engineering and Formal Methods
(SEFM), Toulouse, France, pp. 203-218, 2017.

[11] S. Newman. Building Microservices: Designing Fine-Grained Systems. O'Reilly
Media, Inc., 2015.

[12] O. Zimmermann. Microservices Tenets. Computer Science-Research and
Development, 32(3-4): 301-310, 2017.

[13] M. Richards. Microservices Vs. Service-Oriented Architecture.
https://www.oreilly.com/learning/microservices-vs-service-oriented-architecture.
Accessed on 2019-2-11.

[14] N. Wilde, B. Gonen, E. El-Sheikh, and A. Zimmermann. Approaches to the Evolution
of Soa Systems. In: Emerging Trends in the Evolution of Service-Oriented and
Enterprise Architectures, Springer, pp. 5-21, 2016.

[15] E. Mueller. What is Devops? https://theagileadmin.com/what-is-devops/. Accessed on
2018-18-12.

[16] S. Sharma and B. Coyne. Devops for Dummies. John Wiley & Sons, 2013.
[17] L. Bass, I. Weber, and L. Zhu. Devops: A Software Architect's Perspective. Addison-

Wesley Professional, 2015.
[18] N. Ford and R. Arsons. Microservices as an Evolutionary Architecture.

https://www.thoughtworks.com/insights/blog/microservices-evolutionary-architecture.
Accessed on 2019-03-11.

[19] B. Wootton. Why Microservices Require a Devops Approach.
https://www.contino.io/insights/why-microservices-require-a-devops-approach.
Accessed on 2019-10-24.

[20] H. Knoche and W. Hasselbring. Drivers and Barriers for Microservice Adoption–a
Survey among Professionals in Germany. Enterprise Modelling and Information
Systems Architectures, 14(1): 1–35, 2019.

[21] J. Ghofrani and D. Lübke. Challenges of Microservices Architecture: A Survey on the
State of the Practice. In: Proceedings of the 10th Central-European Workshop on
Services and their Composition (ZEUS), Dresden, Germany, pp. 1-8, 2018.

[22] M. Sánchez-Gordón and R. Colomo-Palacios. Characterizing Devops Culture: A
Systematic Literature Review. In: Proceedings of the 18th International Conference on

46/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

Software Process Improvement and Capability Determination (SPICE), Thessaloniki,
Greece, pp. 3-15, 2018.

[23] S. Watts. The Role of Microservices in Devops. https://www.bmc.com/blogs/devops-
microservices/. Accessed on 2020-04-20.

[24] Mulesoft. Microservices and Devops: Better Together.
https://www.mulesoft.com/resources/api/microservices-devops-better-together.
Accessed on 2020-04-10.

[25] J. Mukherjee. What Can Microservices Bring to Devops?
https://dzone.com/articles/what-can-microservices-bring-to-devops. Accessed on
2020-04-10.

[26] B. Kitchenham and S. Charters. Guidelines for Performing Systematic Literature
Reviews in Software Engineering. Version. 2.3. EBSE Technical Report EBSE-2007-
01, Keel University and Durham University, 2007.

[27] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson. Systematic Mapping Studies in
Software Engineering. In: Proceedings of the 12th International Conference on
Evaluation and Assessment in Software Engineering (EASE), Bari, Italy, pp. 68-77,
2008.

[28] R. E. Boyatzis. Transforming Qualitative Information: Thematic Analysis and Code
Development, SAGE, 1998.

[29] L. Bass. The Software Architect and Devops. IEEE Software, 35(1): 8-10, 2017.
[30] C. Wohlin. Guidelines for Snowballing in Systematic Literature Studies and a

Replication in Software Engineering. In: Proceedings of the 18th International
Conference on Evaluation and Assessment in Software Engineering (EASE), London,
United Kingdom, pp. 1-10, 2014.

[31] A. Ahmad and M. A. Babar. Software Architectures for Robotic Systems: A Systematic
Mapping Study. Journal of Systems and Software, 122(12): 16-39, 2016.

[32] P. Brereton, B. Kitchenham, D. Budgen, M. Turner, and M. Khalil. Lessons from
Applying the Systematic Literature Review Process within the Software Engineering
Domain. Journal of Systems and Software, 80(4): 571-583, 2007.

[33] V. Braun and V. Clarke. Using Thematic Analysis in Psychology. Qualitative Research
in Psychology, 3(2): 77-101, 2006.

[34] ISO/IEC, Systems and Software Engineering - Systems and Software Quality
Requirements and Evaluation (SQuaRE) - System and Software Quality Models,
ISO/IEC 25010:2011, 2011.

[35] G. Márquez and H. Astudillo. Actual Use of Architectural Patterns in Microservices-
Based Open Source Projects. In: Proceedings of the 25th Asia-Pacific Software
Engineering Conference (APSEC), Nara, Japan, pp. 31-40, 2018.

[36] L. O'Brien, P. Merson, and L. Bass. Quality Attributes for Service-Oriented
Architectures. In: Proceedings of the 1st International Workshop on Systems
Development in SOA Environments (SDSOA), Minneapolis, USA, pp. 1-7, 2007.

[37] A. Chaturvedi. Securing Microservice Architectures.
https://www.ibm.com/downloads/cas/JY6LNAWX. Accessed on 2019-09-10.

[38] J. Terra. Chef Vs Puppet: Major Differences and Similarities.
https://www.simplilearn.com/chef-vs-puppet-differences-and-similarities-article.
Accessed on 2020-04-17.

[39] H. Mendes. Docker + Spring Boot Microservice (with Gradle).
https://medium.com/@hudsonmendes/docker-spring-boot-microservice-with-gradle-
9785087e7992. Accessed on 2020-04-28.

[40] A. Fernando. Effective Microservices CI/CD with Github Actions and Ballerina.
https://dzone.com/articles/effective-microservices-cicd-with-github-actions-a.
Accessed on 2020-05-02.

[41] T. Salah, M. J. Zemerly, C. Y. Yeun, M. Al-Qutayri, and Y. Al-Hammadi. Performance
Comparison between Container-Based and VM-Based Services. In: Proceedings of the
20th Conference on Innovations in Clouds, Internet and Networks (ICIN), Paris, France,
pp. 185-190, 2017.

[42] N. Kratzke. About Microservices, Containers and Their Underestimated Impact on
Network Performance. arXiv:1710.04049, 2017.

47/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

[43] A. M. Potdar, D. Narayan, S. Kengond, and M. M. Mulla. Performance Evaluation of
Docker Container and Virtual Machine. Procedia Computer Science, 171: 1419-1428,
2020.

[44] M. Amaral, J. Polo, D. Carrera, I. Mohomed, M. Unuvar, and M. Steinder. Performance
Evaluation of Microservices Architectures Using Containers. In: Proceedings of the
14th International Symposium on Network Computing and Applications (ISNCA),
Cambridge, MA, USA, pp. 27-34, 2015.

[45] T. Goethals, M. Sebrechts, A. Atrey, B. Volckaert, and F. De Turck. Unikernels Vs
Containers: An in-Depth Benchmarking Study in the Context of Microservice
Applications. In: Proceedings of the 8th International Symposium on Cloud and
Service Computing (SC2), Paris, France, pp. 1-8, 2018.

[46] M. Korolov. Why Securing Containers and Microservices is a Challenge.
https://www.csoonline.com/article/3268922/why-securing-containers-and-
microservices-is-a-challenge.html. Accessed on 2020-04-10.

[47] P. Di Francesco, P. Lago, and I. Malavolta. Architecting with Microservices: A
Systematic Mapping Study. Journal of Systems and Software, 150(4): 77-97, 2019.

[48] C. Richardson. Microservices Patterns with Examples in Java. Manning Publications,
2018.

[49] C. Richardson. What are Microservices?. https://microservices.io/patterns/index.html.
Accessed on 2019-08-13.

[50] H. Zhu. Description of Software Architecture. In: Software Design Methodology: From
Principles to Architectural Styles, 1st Edition.Butterworth-Heinemann, 2005.

[51] D. Bryant, M. Julian, K. Krab, I. Levine, C. Majors, and U. Friedrichsen. Observability.
The InfoQ Emag, (58), 2018.

[52] K. Indrasiri and P. Siriwardena. Observability. In: Microservices for the Enterprise,
Apress, Berkeley, CA, 2018.

[53] X. Zhou, Y. Jin, H. Zhang, S. Li, and X. Huang. A Map of Threats to Validity of
Systematic Literature Reviews in Software Engineering. In: Proceedings of the 23rd
Asia-Pacific Software Engineering Conference (APSEC), Hamilton, New Zealand, pp.
153-160, 2016.

[54] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén.
Experimentation in Software Engineering. Springer Science & Business Media, 2012.

[55] F. Osses, G. Márquez, and H. Astudillo. Review of Architectural Patterns and Tactics
for Microservices in Academic and Industrial Literature. IEEE Latin America
Transactions, 16 (9): 2321-2327, 2018.

[56] N. Alshuqayran, N. Ali, and R. Evans. A Systematic Mapping Study in Microservice
Architecture. In: Proceedings of the 9th International Conference on Service-Oriented
Computing and Applications (SOCA), Macau, China, pp. 44-51, 2016.

[57] J. Soldani, A. Tamburri, and J. Van. The Pains and Gains of Microservices: A
Systematic Grey Literature Review. Journal of Systems and Software, 146(12): 215-
232, 2018.

[58] C. Pahl and P. Jamshidi. Microservices: A Systematic Mapping Study. In: Proceedings
of the 6th International Conference on Cloud Computing and Services Science
(CLOSER), Setubal Portugal, pp. 137-146, 2016.

[59] R. Jabbari, N. Ali, K. Petersen, and B. Tanveer. What is Devops? A Systematic
Mapping Study on Definitions and Practices. In: Proceedings of the 17th International
Conference Extreme Programming (XP), Edinburgh, UK, pp. 1-11, 2016.

[60] D. Taibi, V. Lenarduzzi, and C. Pahl. Continuous Architecting with Microservices and
Devops: A Systematic Mapping Study. In: Proceedings of the 6th International
Conference on Cloud Computing and Services Science (CLOSER), Funchal, Madeira,
Portugal, pp. 126-151, 2018.

[61] C. Pahl, P. Jamshidi, and O. Zimmermann. Architectural Principles for Cloud Software.
ACM Transactions on Internet Technology, 18(2): 17, 2018.

[62] R. Heinrich, A. van Hoorn, H. Knoche, F. Li, L. E. Lwakatare, C. Pahl, S. Schulte, and
J. Wettinger. Performance Engineering for Microservices: Research Challenges and
Directions. In: Proceedings of the 8th International Conference on Performance
Engineering Companion (ICPE), L'Aquila, Italy, pp. 23-226, 2017.

48/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

[63] M. Stillwell and J. G. Coutinho. A Devops Approach to Integration of Software
Components in an Eu Research Project. In: Proceedings of the 1st International
Workshop on Quality-Aware DevOps (IWQAD), New York, USA, pp. 1-6, 2015.

[64] R. Dooley, S. R. Brandt, and J. Fonner. The Agave Platform: An Open, Science-as-a-
Service Platform for Digital Science. In: Proceedings of the 2nd International
Conferences on Practice and Experience on Advanced Research Computing (PEARC),
Pittsburgh USA, pp. 1-8, 2018.

[65] M. Miglierina and D. A. Tamburri. Towards Omnia: A Monitoring Factory for Quality-
Aware Devops. In: Proceedings of the 8th International Conference on Performance
Engineering Companion (ICPE), L'Aquila, Italy, pp. 145-150, 2017.

[66] J. Ha, J. Kim, H. Park, J. Lee, H. Jo, H. Kim, and J. Jang. A Web-Based Service
Deployment Method to Edge Devices in Smart Factory Exploiting Docker. In:
Proceedings of the 8th International Conference on Information and Communication
Technology Convergence (ICTC), Jeju, South Korea, pp. 708-710, 2017.

[67] H.-M. Chen, R. Kazman, S. Haziyev, V. Kropov, and D. Chtchourov. Architectural
Support for Devops in a Neo-Metropolis Bdaas Platform. In: Proceedings of the 34th
Symposium on Reliable Distributed Systems Workshop (SRDSW), Montreal, Canada,
pp. 25-30, 2015.

[68] D. Liu, H. Zhu, C. Xu, I. Bayley, D. Lightfoot, M. Green, and P. Marshall. Cide: An
Integrated Development Environment for Microservices. In: Proceedings of the 2nd
International Conference on Services Computing (SCC), Francisco, USA, pp. 808-812,
2016.

[69] H. Kang, M. Le, and S. Tao. Container and Microservice Driven Design for Cloud
Infrastructure Devops. In: Proceedings of the 4th International Conference on Cloud
Engineering (IC2E), Berlin, Germany, pp. 202-211, 2016.

[70] T. Q. Thanh, S. Covaci, T. Magedanz, P. Gouvas, and A. Zafeiropoulos. Embedding
Security and Privacy into the Development and Operation of Cloud Applications and
Services. In: Proceedings of the 17th International Conference on Telecommunications
Network Strategy and Planning Symposium (NETWORKS), Montreal, Canada, pp.
31-36, 2016.

[71] H. Zhu and I. Bayley. If Docker is the Answer, What is the Question? In: Proceedings
of the Symposium on Service-Oriented System Engineering (SOSE), Bamberg,
Germany, pp. 152-163, 2018.

[72] C. Y. Fan and S.-P. Ma. Migrating Monolithic Mobile Application to Microservice
Architecture: An Experiment Report. In: Proceedings of the 13th International
Conference on AI & Mobile Services (AIMS), Honolulu, USA, pp. 109-112, 2017.

[73] J. Bae, C. Kim, and J. Kim. Automated Deployment of Smartx Iot-Cloud Services
Based on Continuous Integration. In: Proceedings of the 8th International Conference
on Information and Communication Technology Convergence (ICTC), Jeju, South
Korea, pp. 1076-1081, 2016.

[74] C. Barna, H. Khazaei, M. Fokaefs, and M. Litoiu. Delivering Elastic Containerized
Cloud Applications to Enable Devops. In: Proceedings of the 12th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems
(SSASMS), Buenos Aires, Argentina, pp. 65-75, 2017.

[75] H. M. Chen, R. Kazman, S. Haziyev, V. Kropov, and D. Chtchourov. Big Data as a
Service: A Neo-Metropolis Model Approach for Innovation. In: Proceedings of the
49th Hawaii International Conference on System Sciences (HICSS), Koloa, HI, USA,
pp. 5458-5467, 2016.

[76] P. Drews, I. Schirmer, B. Horlach, and C. Tekaat. Bimodal Enterprise Architecture
Management: The Emergence of a New Eam Function for a Bizdevops-Based Fast It.
In: Proceedings of the 21st International Enterprise Distributed Object Computing
Workshop (EDOCW), Quebec City, Canada, pp. 57-64, 2017.

[77] D. Trihinas, A. Tryfonos, M. D. Dikaiakos, and G. Pallis. Devops as a Service: Pushing
the Boundaries of Microservice Adoption. IEEE Internet Computing, 22(3): 65-71,
2018.

[78] T. Soenen, S. Van Rossem, W. Tavernier, F. Vicens, D. Valocchi, P. Trakadas, P.
Karkazis, G. Xilouris, P. Eardley, and S. Kolometsos. Insights from Sonata:

49/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

Implementing and Integrating a Microservice-Based Nfv Service Platform with a
Devops Methodology. In: Proceedings of the 30th IEEE/IFIP Network Operations and
Management Symposium (NOMS), Taipei, Taiwan, pp. 1-6, 2018.

[79] L. Chen. Microservices: Architecting for Continuous Delivery and Devops. In:
Proceedings of the 2nd International Conference on Software Architecture (ICSA),
Seattle, WA, USA, pp. 39-46, 2018.

[80] T. Zheng, X. Zheng, Y. Zhang, Y. Deng, E. Dong, R. Zhang, and X. Liu. Smartvm: A
Sla-Aware Microservice Deployment Framework. World Wide Web, 22(1): 275-293,
2019.

[81] P. Raj and A. Raman. Automated Multi-Cloud Operations and Container Orchestration.
In: Software-Defined Cloud Centers, Springer, pp. 185-218, 2018.

[82] B. Familiar and J. Barnes. Devops Using Powershell, Arm, and Vsts. In: Business in
Real-Time Using Azure Iot and Cortana Intelligence Suite, Springer, pp. 21-93, 2017.

[83] M. Kalske, N. Mäkitalo, and T. Mikkonen. Challenges When Moving from Monolith
to Microservice Architecture. In: Proceedings of the 13th International Conference on
Web Engineering (ICWE), Koloa, HI, USA, pp. 32-47, 2017.

[84] M. Gabbrielli, S. Giallorenzo, C. Guidi, J. Mauro, and F. Montesi. Self-Reconfiguring
Microservices. In: Theory and Practice of Formal Methods, Springer, pp. 194-210,
2016.

[85] B. Familiar. From Monolithic to Microservice. In: Microservices, IOT, and Azure,
Springer, pp. 1-7, 2015.

[86] A. Balalaie, A. Heydarnoori, and P. Jamshidi. Migrating to Cloud-Native Architectures
Using Microservices: An Experience Report. In: Proceedings of the 4th European
Conference on Service-Oriented and Cloud Computing (ESOCC), Taormina, Italy, pp.
201-215, 2015.

[87] B. Familiar. What Is a Microservice? In: Microservices, IOT, and Azure, Springer, pp.
9-19, 2015.

[88] A. Christoforou, M. Garriga, A. S. Andreou, and L. Baresi. Supporting the Decision of
Migrating to Microservices through Multi-Layer Fuzzy Cognitive Maps. In:
Proceedings of the 14th International Conference on Service-Oriented Computing
(ICSOC), Malaga, Spain, pp. 471-480, 2017.

[89] M. Cavallari, F. Tornieri, and M. De Marco. Organizational Impact on Software
Development of Eservices Techniques. In: Proceedings of the 8th International
Conference on Exploring Services Science (IESS), Rome, Italy, pp. 64-75, 2017.

[90] C. C. Jr and T. Schmelmer. Deploying and Running Microservices. In: Microservices
from Day One: Build Robust and Scalable Software from the Start, Springer, pp. 151-
174, 2016.

[91] M. P. Martinez, T. László, N. Pataki, C. Rotter, and C. Szalai. Multivendor Deployment
Integration for Future Mobile Networks. In: Proceedings of the International
Conference on Current Trends in Theory and Practice of Informatics (SOFSEM),
Krems, Austria, pp. 351-364, 2018.

[92] S. V. Zykov. Managing Software Crisis: A Smart Way to Enterprise Agility. vol. 92
Springer, 2018.

[93] C. Kim, S. Kim, and J. Kim. Understanding Automated Continuous Integration for
Containerized Smart Energy IOT-Cloud Service. In: Advances in Computer Science
and Ubiquitous Computing, Springer, pp. 1275-1280, 2017.

[94] G. Casale, C. Chesta, P. Deussen, E. Di Nitto, P. Gouvas, S. Koussouris, V. Stankovski,
A. Symeonidis, V. Vlassiou, and A. Zafeiropoulos. Current and Future Challenges of
Software Engineering for Services and Applications. Procedia Computer Science, 97:
34-42, 2016.

[95] K. Jander, L. Braubach, and A. Pokahr. Defense-in-Depth and Role Authentication for
Microservice Systems. Procedia Computer Science, 130: 456-463, 2018.

[96] C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano. Devops. IEEE Software, 33(3):
94-100, 2016.

[97] L. Zhu, L. Bass, and G. Champlin-Scharff. Devops and Its Practices. IEEE Software,
33(3): 32-34, 2016.

50/50
Preprint - accepted to be published in Journal of Systems and Software (2020)

[98] T. Schneider and A. Wolfsmantel. Achieving Cloud Scalability with Microservices and
Devops in the Connected Car Domain. In: Proceedings of the 1st Central Europe
Workshop on Continuous Software Engineering (CEUR-WS), pp. 138-141, 2016.

[99] S. Kehrer and W. Blochinger. Autogenic: Automated Generation of Self-Configuring
Microservices. In: Proceedings of the 8th International Conference on Cloud
Computing and Services Science (CLOSER), Funchal, Madeira, Portugal, pp. 35-46,
2018.

[100] S. Sharma. The Devops Adoption Playbook: A Guide to Adopting Devops in a Multi-
Speed It Enterprise. John Wiley & Sons, 2017.

[101] F. Erich, C. Amrit, and M. Daneva. A Qualitative Study of Devops Usage in Practice.
Journal of Software: Evolution and Process, 29(6): e1885, 2017.

[102] H. Karl, S. Dräxler, M. Peuster, A. Galis, M. Bredel, A. Ramos, J. Martrat, M. S.
Siddiqui, S. Van Rossem, and W. Tavernier. Devops for Network Function
Virtualisation: An Architectural Approach. Transactions on Emerging
Telecommunications Technologies, 27(9): 1206-1215, 2016.

[103] R. V. O'Connor, P. Elger, and P. M. Clarke. Continuous Software Engineering—a
Microservices Architecture Perspective. Journal of Software: Evolution Process,
29(11): 1-12 , 2017.

[104] D. Russo, V. Lomonaco, and P. Ciancarini. A Machine Learning Approach for
Continuous Development. In: Proceedings of the 5th International Conference on
Software Engineering for Defence Applications (SEDA), Rome, Italy, 2016.

[105] M. Zúñiga-Prieto, E. Insfran, S. Abrahão, and C. Cano-Genoves. Automation of the
Incremental Integration of Microservices Architectures. In: Proceedings of the 25th
International Conference on Information Systems Development (ISD), Katowice,
Poland, 2017.

[106] D. Taibi, V. Lenarduzzi, and C. Pahl. Processes, Motivations, and Issues for Migrating
to Microservices Architectures: An Empirical Investigation. IEEE Cloud Computing,
4(5): 22-32, 2017.

