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ABSTRACT

Bots are frequently used in Github repositories to automate repetitive activities that are part of the
distributed software development process. They communicate with human actors through comments.
While detecting their presence is important for many reasons, no large and representative ground-
truth dataset is available, nor are classification models to detect and validate bots on the basis of such
a dataset. This paper proposes a ground-truth dataset, based on a manual analysis with high interrater
agreement, of pull request and issue comments in 5,000 distinct Github accounts of which 527 have
been identified as bots. Using this dataset we propose an automated classification model to detect
bots, taking as main features the number of empty and non-empty comments of each account, the
number of comment patterns, and the inequality between comments within comment patterns. We
obtained a very high weighted average precision, recall and F1-score of 0.98 on a test set containing
40% of the data. We integrated the classification model into an open source command-line tool to
allow practitioners to detect which accounts in a given Github repository actually correspond to bots.

1. Introduction

The collaborative nature of software development has
inherently made it a social phenomenon, which has led to
the advent of social coding platforms such as GitHub, Bit-
Bucket, and GitLab [14]. These online platforms have taken
the collaborative nature of open source software develop-
ment to a new level, by integrating mechanisms such as is-
sue reporting, pull requests (PR), commenting and reviewing
support into distributed version control tools [33, 67, 68].
The pull-based development process is the primary means
for integrating code from thousands of developers in dis-
tributed development platforms such as GitHub [33]. This
model has had a significant impact on the development of
open-source software, but at the same time has significantly
increased the workload of repository maintainers to commu-
nicate with other contributors, review source code, deal with
contributor license agreement issues, explain project guide-
lines, run tests and build code, and merge pull requests [34].

To reduce this workload, developers have been adopting
automated tools to perform repetitive tasks in the develop-
ment process [71], such as updating dependencies [57] (e.g.
dependabot) and fixing vulnerabilities (e.g. snykbor), im-
proving code reviews (e.g. Review bot) [4] and documenting
code refactorings [60]. Such tools are commonly known as
DevBots [24], or bots for short. They are generally seen as
a promising approach to deal with the ever-increasing com-
plexity of contemporary distributed software development.
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While the use of bots in open source software reposito-
ries can alleviate maintainer workload, their presence poses
challenges for empirical software engineering researchers
that aim to study socio-technical aspects of software de-
velopment. For example, in a previous study we analysed
the impact of discussions on pull request (PR) decisions in
GitHub repositories [31] by studying these discussions in
188K PRs of GitHub repositories. We ignored the presence
of bots in that study, deferring it to future work. Repeating
the same analysis taking into account the bots allowed us to
discover that 20% of those comments belong to bots, and that
bots were involved in 31% of all PRs. Bots were responsi-
ble of accepting or rejecting 25% of all PRs. Moreover, we
found that the proportion of successfully integrated PRs was
twice as high for PRs involving bots.

Other empirical socio-technical analyses based on histor-
ical software repository data are likely to have been biased
as well by not considering the presence of bots. Some em-
pirical studies explicitly acknowledge the presence of bots,
and attempt to remove them during data preprocessing (e.g.
filtering out bots) or postprocessing (e.g. removing out-
liers) [16, 53]. It is therefore important to consider the pres-
ence of bots in such studies, and to treat them differently than
humans.

A prerequisite for considering bots is the ability to iden-
tify their presence in software development activities. This
is not a simple task because, depending on the considered
data source, bots often do not have a distinct representation
in social coding platforms, and may look, act like or even
impersonate humans. Our review of the research literature
(see Section 2) revealed a few attempts to manually identify
and classify bots. We only came across one study attempting
to automate the bot identification process based on commit
activity in GitHub repositories [17]. The current paper has
a similar focus, but based on a different data source, namely
PR and issue comments in GitHub repositories.
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As a first major contribution, we propose a large and
reliable ground-truth dataset, consisting of 5,000 distinct
GitHub accounts of which 527 were manually identified
as bots based on their PR and issue commenting contents.
As a second major contribution, we use this ground-truth
to create and evaluate a classification model that relies on
comment-related features to accurately classify accounts as
either bot or human. As a third contribution, we propose an
open-source tool based on the classification model to allow
GitHub contributors to detect which accounts in their repos-
itories actually correspond to bots.

The remainder of this paper is structured as follows: Sec-
tion 2 presents the related work. Section 3 explains the steps
to create the ground-truth dataset. Section 4 details which
features we selected for the classification model. Section 5
explains the workflow to select an appropriate classification
model and evaluates the selected classification model. Sec-
tion 6 presents an open source tool implementing this model.
Section 7 discusses the results. Section 8 presents the main
threats to validity of the research. Section 9 outlines future
research avenues and Section 10 concludes.

2. Related Work

The earliest idea of computer software imitating humans
dates back to the ideas by Alan Turing in 1950 [69]. In re-
cent years, the development of Al and machine learning has
led to a proliferation of automated tools that substitute hu-
mans to perform particular repetitive tasks [15]. For exam-
ple, chatbots imitate natural language to communicate with
humans through a conversational interface [46], and auto-
mated social actors (ASA) automatically create content on
social networks [1]. Bots are also widely used in other con-
texts such as education [44, 6, 28], e-commerce [5, 66], cus-
tomer services [30, 41], peer production communities such
as Wikipedia [13, 29], and social networks (such as Twit-
ter). Social network bots are generally aimed at spamming
and sending fake news and hence they seek to hide their true
nature. Because of this, numerous studies are focused on
identifying them [56, 20, 61, 3]. These studies have pro-
posed machine learning models which aim to identify bots
based on features such as profile specification (e.g., age, lo-
cation and biography), tweet content (e.g., hashtags, URLs
and similarity of sentiments), tweet time (e.g., burstness and
average tweets per day), and user network profile (e.g., in-
teraction between users). Such features either do not have
any equivalent in social coding platforms (e.g., hashtags) or
require a lot of effort to collect (e.g., user network profiles).
Moreover, bots in social networks appear to be quite different
from bots in social coding platforms (i.e., DevBots), whose
purpose is to help developer teams carry out automated ac-
tivities in the software development process. We did not find
any evidence of intentionally malicious use of DevBots.

In the context of software development, bots are auto-
mated software agents that perform repetitive well-defined
tasks that support and integrate with the activities of human
developers [71, 26]. They are capable of communication and
decision making [65] and carry out tasks that involve inter-

actions with humans [48]. They support both technical and
social activities [51] to coordinate collaborative software de-
velopment [59], such as improving feedback on code con-
tributions [39], repairing continuous integration build fail-
ures [70], and deployment and evaluation of software engi-
neering analysis techniques [7].

Recent research has focused on the practical value of
bot adoption in software engineering, such as how bots in-
crease software development productivity [65], how bots en-
able faster software dependency updates [57] and how bots
can help reduce the friction points software developers face
when working collaboratively [47]. Other studies have intro-
duced new bots and analysed their effect on software repos-
itory activities such as test bots [23], bots to improve new-
comers’ experience and help them to better engage in the
project [18], bots for answering developer questions using
historical Q&A data [63], bots for assisting in the develop-
ment of microservice architecture and the use of NLP [52].

A prerequisite for studying the impact of bots on soft-
ware production processes is the ability to identify such bots
in the first place. We found very few studies trying to iden-
tify and categorise bots. Wessel et al. [71] conducted a
study about prevalence and effect of bots in GitHub reposito-
ries. They manually analysed 351 repositories and found that
26% of them use bots. By manual inspection of GitHub ac-
counts they identified 48 different bots in 93 projects. They
found statistical differences regarding the number of com-
mits, number of changed files, and closing time of PRs be-
tween projects before and after bot adoption. They reported
both positive and negative challenges of bot adoption from
integrators and contributors’ viewpoints. In another study,
they discuss six useful bots in GitHub’s PR process [72].
They analysed the negative aspects of bots in code contribu-
tions and introduce a meta-bot that acts as a middleman to
mitigate this effect.

Erlenhov et al. [22] presented a taxonomy that classifies
11 existing development-related bots in GitHub and Slack.
Lebeuf [49] provided a multi-faceted classification of bots
(including many well-known examples of bots), combining
their properties and behaviour. None of these studies pro-
poses an automated approach to identify bots.

Dey et al. [17] did propose an automatic method to
identify bot accounts in git projects. Each identity in their
dataset consists of an author name and email address. They
studied three different approaches to find bots, based on
(1) the presence of the string “bot” at the end of the author
name, (ii) commit messages, and (iii) features related to files
changed in commits and projects the commits are associated
with. They combined these three different approaches into a
single ensemble model that was validated on a dataset of 67
bots of which 58 cases (85%) were effectively captured by
the model.

Their study is fundamentally different from ours, since
their dataset is based on commit data in GitHub reposito-
ries, whereas we will focus exclusively on GitHub issue and
PR comments. They also identified authors based on the au-
thor name and email address, whereas we rely on the GitHub
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account name exclusively. Both datasets are quite comple-
mentary, as we found many examples of bots that are only
involved in commit activity and others that are only involved
in issue and PR activities. Moreover, the nature and contents
of commit comments is quite different from issue and PR
comments, requiring other features to establish an accurate
classification model.

3. Ground truth dataset

In order to be able to evaluate an automated algorithm
to detect bots based on their commenting activity in GitHub
issues and pull requests, a ground truth dataset is required.
Such a ground truth dataset indicates, given a contributor
commenting in an issue or a pull request, whether this con-
tributor is a human or a bot. To be effective and representa-
tive, the ground truth dataset should be large enough, i.e., it
should cover a considerable number of GitHub repositories,
contributors, issues and pull requests.

Since we did not encounter any such representative
ground truth dataset in the research literature, we set out to
create it ourselves. To do so, we downloaded and manually
examined comments from thousands of issues and pull re-
quests, labelling each contributor either as a bot or a human
commenter. Despite the considerable effort needed to create
such a dataset, it was a worthwhile endeavour, since it will
be a valuable resource for other researchers as well.

This section explains how we proceeded to create and
validate our ground truth dataset, from the raw data we
downloaded to the process of rating and labelling each con-
tributor.

3.1. Terminology

In the context of this paper, we will consistently use the
following terminology. We use the term bot to refer to a
GitHub bot, defined by Wessel [71] as “a task-oriented bot,
responsible for automating well-defined tasks on GitHub
repositories. A GitHub bot behaves like a human user, serv-
ing as an interface between users and services.”

Since our study focuses on distributed software devel-
opment on GitHub, we use the term repository to refer to a
GitHub repository. Contributors to a repository can be iden-
tified by their unique (GitHub) account. Contributions to a
repository can take different forms, such as code commits,
issues and pull requests (PR). The focus of this paper will
be on issues and PRs.

Contributors can add (uniquely identifiable) comments
to PRs and issues in a repository. We use the term com-
menter to refer to the GitHub account having provided this
comment. We also use the term comment to refer to its ac-
tual textual content. Since a commenter can be either a bot
or a human contributor, we will refer to them as bot com-
menter and human commenter, which we will abbreviate
to bot and human, respectively.

3.2. Data extraction
Our goal is to identify bot and human commenters based
on the comments they made in issues and pull requests of

collaborative software development repositories on GitHub.
GitHub is one of the leading online collaborative develop-
ment platform. As of November 2020, GitHub reported hav-
ing over 48 million users and more than 195 million reposi-
tories (including at least 37 million public repositories).

Following the guidelines provided by Kalliamvakou et
al. [42], we want to avoid repositories that have been created
merely for experimental or personal reasons, or that only
show sporadic traces of issue and PR comments. Moreover,
since our focus is on software development repositories, we
want to exclude repositories that are not related to software
development. To comply with these constraints, we relied
on libraries.io [43], a monitoring service indexing informa-
tion for several million packages being distributed through
37 software package registries, such as npm, PyPl, etc.

We downloaded the data dump of January 2020° con-
taining, among others, links to the GitHub repositories re-
lated to these distributed software packages. Since it con-
tains more than 3.3 million GitHub repositories, we ran-
domly selected around 136K of them as the starting point
of our dataset creation process. For each of these reposi-
tories, we extracted on 16 February 2020 the last 100 com-
ments of the last 100 issues and pull requests using GitHub’s
GraphQL API. This resulted in over 10 million comments
covering a period of more than 10 years (ranging from 17
December 2009 to 15 February 2020). These comments
were made by more than 837K distinct contributors, corre-
sponding to more than 3.5 million issues and pull requests.
The extracted comments also include the textual description
of each considered PR. While the GitHub API does not con-
sider PR descriptions as comments, we do, since the GitHub
web interface does not visually distinguish them from other
comments.

Since our goal is to distinguish between bots and hu-
man contributors based on their comments, we require a
sufficiently large number of comments for each commenter.
Hence, we decided to exclude commenters who made fewer
than 10 comments based on a threshold we identified in a
previous study [32]. At this stage of the process, the dataset
contains 6,307,489 comments belonging to 79,342 contrib-
utors, spanning 42,492 repositories.

Since this is too much data to process manually, we ex-
tracted a subset covering 5,082 commenters. This subset
was composed of 4,644 randomly selected commenters to
which we manually added 438 extra commenters that are
more likely to correspond to bots based on previous stud-
ies [32, 71] (52 cases), or because they contained a specific
substring in their GitHub account name (386 cases). The
substrings we considered were “bot”, “ci”, “cla”’, “auto”,
“logic”, “code”, “io” and “assist”. By doing so, we increased
the likelihood of having a sufficient number of bots in the
dataset.

The resulting subset contains 5,082 commenters and
covers 3,975 repositories, 186,991 issues and pull requests,
and contains 301,557 comments. Table 1 summarizes the
main characteristics of the considered datasets.

5Version 1.6 on http://doi.org/10.5281/zenodo. 3626071
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Table 1
Summary of the dataset characteristics.
raw dataset number
GitHub repositories 136,529
< from # distinct owners 84,983
issues 1,588,363
pull requests (PR) 1,951,705
issue and PR comments 10,874,611
< from # distinct commenters 873,489
selected subset
GitHub repositories 3,975
& from # distinct owners 3,425
issues 50,241
pull requests (PR) 136,750
issue and PR comments 301,557
< from # distinct commenters 5,082

3.3. Data labelling and rating process

The next step to create a ground truth dataset is to man-
ually identify bots and humans. To ease this process, we
developed a web application through which the list of com-
ments of each commenter was presented to at least two raters
(among the four authors of this paper). Comments were dis-
played by batches of 20, starting with the most recent com-
ments first, and the rater had an option to display more com-
ments if needed. The account name of the commenter was
not revealed to avoid bias, as the goal was to classify com-
menters based on their comments only. The rater could se-
lect whether the commenter is considered as a “Bot” or a
“Human”. In case a rater was uncertain whether the com-
menter was a bot of a human being, a third option could be
selected: “I don’t know”. Furthermore, the rater was asked
to select a difficulty level among “Very easy”, “Easy”, “Dif-
ficult” and “Very difficult” for his decision.

Fig. 1 shows a screenshot of the rating application in ac-
tion. For the specific example being shown, raters could eas-
ily decide that the commenter is a bot based on the content
and repetitiveness of all visible comments.

In total, 5,082 commenters were rated, ending up with
exactly 5,000 commenters after having filtered out 82 com-
menters during the following process. The rating process
was performed in two steps to come with an optimal inter-
rater agreement, relying on Landis agreement levels [45].
The rating process is summarized in Fig. 2. Each com-
menter was initially rated by two distinct raters. All cases
that were agreed either as bot or human were included in the
ground-truth dataset. In order to assess the reliability of the
ground-truth dataset, we computed the inter-rater reliability
(IRR) [11] between each pair of ratings based on Cohen’s
kappa k [55]. The results are presented in Table 2.

The first step of the rating process ended up with 472
bots and 4,364 humans, with a “substantial” agreement (k =
0.84) between raters. At the end of this step, there were
246 cases because they were either not agreed (177 cases) or
agreed as “I don’t know” (69 cases). Additionally, 91 cases

Table 2
Summary of two-step rating process.

first second

step step
commenters agreed as bot 472 527
< from # repositories 457 505
commenters agreed as human 4,364 4,473
< from # repositories 3,425 3,515
proportion of bots 9.8% 10.5%
commenters agreed as “l don't know" 69
commenters without agreement 177 4
commenters agreed as “mixed” - 78
K agreement score 0.84 0.96

evaluated as “difficult” or “very difficult”, leading to a total
of 268 cases for the second step.

In a second step, we involved a third rater for the cases
that were identified as “difficult” or “very difficult” during
the first step. We then discussed all together all cases for
which an agreement could not be achieved, or the cases
where the third rater disagreed with one of the two former
ones. During these discussions, we sometimes relied on ad-
ditional information (e.g., we looked at the GitHub account
of the commenter, at time intervals between comments, the
overall activity of the account, etc.) to come to a decision.

The large majority of cases we discussed were resolved
on the basis of an unanimous decision between raters, lead-
ing to an “almost perfect” inter-rater reliability (x = 0.96).
At the end of the second step, only 82 cases were left out
of the ground-truth dataset, either because no agreement
could be reached (4 cases), or because we agreed on the
“mixed” nature of these commenters. These “mixed” com-
menters correspond to human commenters that relied on au-
tomatic tools to generate comments, therefore “mixing” the
behaviour of a human and a bot at the same time.

For example, some of these accounts rely on an auto-
mated tool to facilitate code review by sending PRs to Re-
viewer, a code review tool for GitHub. Other examples in-
clude the use of tools such as StyleCI to improve code style,
or semantic-release to automatically determine the next ver-
sion number of a release, generate release notes and publish
a package. We will discuss these “mixed” commenters in
more details in Section 7.

This left us with 5,000 commenters, of which 527 (i.e.,
10.5%) are bots. Table 3 summarizes the characteristics of
final ground-truth dataset. Since we believe such a ground-
truth dataset is valuable for the research community (e.g., to
have a list of known bots, to study their characteristics or to
train other models), we share it publicly on http://doi.org/
10.5281/zenodo.4000388. This dataset contains the name of
the repository, the name of the commenter and whether it is
a bot or a human. Due to GDPR regulations and in order to
protect GitHub users’ privacy, we do not provide additional
information (e.g., their comments).
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Figure 1: Anonymised screenshot of the rating application in action.

Table 3

Summary characteristics of final ground truth dataset.
number of... bot human total
commenters 527 4,473 5,000
repositories with at least 1 commenter 505 3,515 3,909
comments 28,287 268,504 296,791
issues with at least 1 commenter 2,749 46,959 49,623
PRs with at least 1 commenter 16,937 118,896 134,208

4. Feature selection

In this section, we explain the features that will be used
by the classification model to distinguish bots from human
commenters. These features include the number of comment
patterns, the number of (empty) comments, and the number
of comments within each pattern. The following subsections
explain these features and the rationale behind their selec-
tion.

Select an account

Rate (by 1st rater) Rate (by 2nd rater)

Rate (3rd rater)

[difficult case]

4.1. Text distance between comments

Based on the assumption that bots perform more repet-
itive and automated tasks, we hypothesise that bot com-
menters exhibit more repetitive comments than human com-
menters. Consequently, we expect comments belonging to a
bot to exhibit more similarity than comments belonging to
a human commenter. In order to measure the similarity be-
tween comments of each commenter, both in terms of con-
tent and structure, we rely on text distance metrics that are
commonly used for this purpose in natural language process-
ing. The two metrics we consider are the Jaccard [40] and

[disagreement]

[disagreement]

Discussion

[exclude account]

[include account]

[agreement]

@

[agreement]

Figure 2: Workflow of the rating process.
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Levenshtein [50] distances. The first one aims to quantify
the similarity of two texts based on its content, and the sec-
ond one captures the structural difference by counting single
character edits.

More precisely, the Jaccard distance J(C,, C,) measures
the distance between two texts C; and C, by comparing the
number of distinct common words in C; and C, with the
total number of distinct words in C; and C,. If words(C)
denotes the set of words in C, then J(Cy, C,) is computed
as:

| words(Cy) N words(C,) |
| words(Cy) U words(C,) |

J(C,C)=1-

The second distance we consider is the Levenshtein edit
distance lev(Cy, C,) that measures the difference between
two character sequences C; and C, by counting the mini-
mum number of single-character edits (insertion, deletion,
or substitution) required to convert C; into C,. We rely on
its normalized version, computed as:

leU(Cl, Cz)

L£LC,C)H)= ————
(TN TeA)

To support our assumption that comments made by a bot
have higher similarity than comments made by a human, we
computed for each commenter in the ground truth dataset
the Jaccard and Levenshtein distances between all pairs of
comments belonging to that commenter. In order to com-
pute the Jaccard distance, we first needed to split comments
into words, a process also known as tokenization. To do so,
we relied on spaCy, an “industrial-strength natural language
processing library”® that notably offers a fast but robust to-
kenization algorithm, among others.

1.00 A

A Bot

0.75 A

0.25 A

mean Levenshtein
distance
o
w
o
)

0.00 A

0.0 0.2 0.4 0.6 0.8 1.0
mean Jaccard distance

Figure 3: Mean Levenshtein and Jaccard distances between
pairs of comments, per commenter.

Fig. 3 shows the mean Levenshtein and Jaccard distances
for each commenter, distinguishing between bots (blue trian-
gles) and humans (orange triangles). We observe that many
humans are grouped in the top right part of the figure, i.e.,
they have high mean values for both distances. On the other
hand, most bots have lower values for their mean distances.
For instance, 91.6% of all bots have mean Jaccard and Lev-
enshtein distances below 0.75. For comparison, only 7.2%
of all human commenters exhibit mean Jaccard and Leven-
shtein distances below 0.75.

6https ://spacy.io

Despite this, there is still a lot of overlap between bots
and humans in Fig. 3, indicating that the mean distances are
not enough to properly distinguish between bots from hu-
mans. By manually inspecting the comments belonging to
bots having high mean distances, we found that their com-
ments usually form sets of similar comments. Even if the
distance between comments in a set (i.e., intra-set distance)
is low, the distance between comments belonging to differ-
ent sets (i.e., inter-set distance) is high. As a consequence,
the overall mean distances between all comments tends to re-
main high, rivalling the distances observed for most human
commenters.

We found many of these cases. One example is the bot
that was identified in Fig. 1. We observe that it has two dif-
ferent sets of similar comments. The first set consists of com-
ments of the form “You did it @...! Thank you for signing
the ... Contribution License Agreement. We will have a look
at your contribution!”. The second set consists of comments
of the form “Hi @..., many thanks for your contribution! In
order for us to evaluate and accept your PR, we ask that you
[sign a contribution license agreement] ...It’s all electronic
and will take just minutes.”. The mean distance between
pairs of all 20 comments belonging to the first set (i.e., intra-
set distance) is very low (0.06 and 0.08 for Levenshtein and
Jaccard distance respectively) and even lower (0.04 and 0.05
respectively) for the second set of 27 comments. However,
the intra-set distance (i.e., the distance obtained by compar-
ing comments from the first pattern with comments for the
second pattern) is much much higher (0.70 and 0.81 for Lev-
enshtein and Jaccard distance respectively). Consequently,
the overall mean distances between all pairs of comments are
0.37 for Levenshtein and 0.43 for Jaccard distance. These
distances are usually observed for human commenters, not
for bots.

4.2. Repetitive comment patterns

Since high mean distances between comments of a com-
menter could correspond to either a human or, in many cases,
to a bot having sets of similar comments, we cannot exclu-
sively rely on these mean distances to distinguish between
bots and humans. However, we observed that bots tend to
have sets of many similar comments (i.e., they follow com-
ment patterns), while we found that most comments from
humans are unique and only a few of them seem to follow a
pattern (e.g., “Thank you!”, “LGTM”” or “+1"°%).

Based on this observation, we expect bots to have a lower
number of comment patterns than humans. In order to cap-
ture these comment patterns, we rely on a clustering algo-
rithm. Clustering aims to group items into sets (‘“‘clusters”),
in such a way that items belonging to the same cluster are
more similar than items belonging to different clusters.

We selected DBSCAN (Density Based Spatial Cluster-
ing of Applications with Noise) [25], a well-known density-
based clustering algorithm that notably has the ability (i) to

7Shorthand for “Looks Good To Me”, a common way among GitHub
users to agree with what is proposed in a pull request.

8This is another common way of expressing agreement with what was
proposed in the previous comment or in the issue or PR description.
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generate clusters of unequal size (i.e., we can have patterns
with unequal numbers of comments), (ii) to generate a sin-
gle cluster if needed (e.g., a commenter whose comments
are all the same), and (iii) to generate single item clusters
(e.g., a commenter whose comments are all very different).
Additionally, DBSCAN permits not to specify the number of
clusters in advance, fitting our use case wherein we do not
know the number of patterns of each commenter in advance.
Since we aim to capture both the structural and content
distance between comments, we rely on a combination of the
Levenshtein and Jaccard distance, defined as follows:

E(Cl, Cz) + J(Cl, Cz)

D(cy,cy) = >

100
g A Bot
(V]
%E 75 Human
oo
5% 501
)
Q 25 1
€
3
< o- T T = I’ - T — T

20 40 60 80 100

number of comments

Figure 4: Number of comment patterns (clusters) and number
of considered comments per commenter.

For each commenter, we computed D(c;, ¢;) for each pair
(c;,c j) of comments. The resulting distance matrix, one per
commenter, is then passed to DBSCAN to group the com-
ments based on their similarity. Fig. 4 reports on the num-
ber of patterns (i.e., clusters), distinguishing between bot and
human commenters. Since the number of patterns could de-
pend on the number of comments, we report on the number
of patterns relative to the number of considered comments.

Compared to Fig. 3 we can observe a much clearer sep-
aration between bots and humans based on the number of
comment patterns and the number of comments, although it
is not perfect. We observe that most humans are along the
diagonal line which indicates that the number of patterns is
close to the number of comments, and that almost all bots
are along the horizontal axis. This means that the number of
comment patterns for bots remains stable, and low, regard-
less of the number of comments they made. This confirms
our assumption that bots have a limited set of comment pat-
terns, contrarily to humans that seems to make much more
varied comments.

4.3. Inequality between comments in patterns
Although we expected human comments to be mostly
non-repetitive (i.e., each comment corresponds to a different
pattern), we found instances in which a human commenter
had a non-negligible number of repetitive comments (e.g.,
“Thank you!”, “LGTM” or “+1”) alongside other messages.
This leads to having human commenters whose number of
comment patterns is much lower than the number of com-
ments, which is exactly the assumption we had for bots due

to their repetitive comments. However, we found that those
human commenters correspond to cases having at the same
time a few patterns with many comments and many pat-
terns with a few (mostly single) comments. On the other
hand, bots exhibit single comment patterns less often. For
instance, among the 2,431 patterns corresponding to bots,
50% are composed of a single comment, while this propor-
tion is much higher (95.9%) for the 230,711 patterns we have
for humans.

This observation lead us to consider the inequality in the
number of comments in each pattern as a supplementary fea-
ture to distinguish between bots and humans. The Gini co-
efficient [19] provides a way to quantify the inequality (i.e.,
the distribution) of the number of comments for each pattern.
A value of 0 expresses perfect equality (i.e., each comment
pattern consists of the same number of comments). A value
of 1 expresses maximal inequality among values (i.e., a few
patterns capture many comments, and the remaining com-
ments are spread into many single-comment patterns).

Let us consider the example of a specific human com-
menter in our dataset. This human made 73 comments be-
longing to 12 patterns. 9 of these patterns have exactly one
comment. The other ones correspond to “LGTM” (37 com-
ments), “##Fixes{ Number}” (22 comments) and “Igtm” (5
comments). As a result, the Gini coefficient for this com-
menter is very low 0.04, since most patterns (9 out 12) have
the same number of comments. Let us compare this to a
bot in our dataset with a similar number of comments (61)
and comment patterns (10). The number of comments in
each pattern is more unequally distributed, ranging from 1
to 49 comments per pattern, a consequence of much more
repetitive messages. As a result, its Gini coefficient is much
higher, namely 0.52.

1.0

0.8 A ¢
0.6 1

0.4 A

Gini coefficient

0.2 1

0.0 - .
bot human

Figure 5: Distribution of Gini coefficient for bot and human
commenters.

Fig. 5 shows the distribution of the Gini coefficient for
all bots and humans in our dataset, by means of boxen
plots [38]. We observe that humans exhibit a lower in-
equality than bots with respect to the spread of comments
within patterns. We statistically compared these distribu-
tions using a Mann-Whitney-U test [54]. The null hypoth-
esis, stating that the two distributions are the same was re-
jected (p < 0.001), indicating a statistically significant dif-
ference between the two distributions. The effect size turned
out to be large (Cliff’s delta |d| = 0.58) [12, 62]. This con-
firms that humans tend to have a lower inequality than bots,
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a consequence of many of their patterns containing a single
comment. Therefore, the Gini coefficient can help in distin-
guishing between bots and humans.

4.4. Number of comments and empty comments

In addition to the number of patterns and the unequal
distribution of comments within patterns, we also consider
the number of comments made by each commenter as a fea-
ture for our model. This feature makes it possible to distin-
guish between commenters having a similar number of pat-
terns. Indeed, consider for example two commenters having
exactly 10 patterns. Assume they have respectively 10 and
100 comments. The first commenter is likely to be a human
(since it has 10 patterns each containing exactly one com-
ment, i.e., all comments are different), while the second one
is more likely to be a bot.

We also consider the number of empty comments as a
feature for our model. Indeed, during the rating process we
found that a non-negligible proportion (6.5%) of the con-
sidered comments were empty. The presence of such com-
ments in the dataset may seem strange. Even if the GitHub
user interface does not allow empty comments in a discus-
sion, it does not prevent comments to be composed of white
characters. Moreover, the GitHub user interface allows the
creation of pull requests whose description is empty. Since
this description is the very first comment of a pull request, it
explains why we found empty comments in the dataset.

Interestingly, we found that empty comments are mostly
created by human commenters and not by bots. For in-
stance, only 7% of all bots generated at least one such com-
ment, whereas this proportion reaches 41.2% for human
commenters. This should not come as a surprise, since one
could expect bots mainly to generate informative comments
and, by definition, empty comments are uninformative. Con-
sequently, we decided to consider the number of empty com-
ments as a feature of our classification model.

In summary, based on the analysis in this section we de-
cided to use four distinct features for commenters to train the
classification model: (i) the number of comment patterns;
(ii) the inequality between comments in patterns; (iii) the
total number of comments for the commenter; and (iv) the
number of empty comments.

5. Classification model

All the scripts and data used to carry out the experiments
in this section are available in a replication package on:
https://github.com/mehdigolzadeh/IdentifyBots_ReplicationPackage

5.1. Classifier selection

A wide variety of algorithms can be used to construct
a classification model. In this section we compare differ-
ent classification algorithms to determine which one is the
most appropriate to distinguish between bot and human com-
menters. Among the classifiers having the ability to perform
binary classification, we consider decision trees (DT) [64],
random forest (RF) [8, 27], support vector machines (SVM)

Split data

: Parameters

Cross validation : Training data : Test data

: Best parameters Retrain model Final evaluation

Figure 6: Standard workflow for grid-search cross-validation

[36], logistic regression (LR) [10], and k-nearest neighbours
(kNN) [2]. Since the performance of these classifiers could
depend on the input parameters, we follow a standard work-
flow of hyper-parameter tuning using a grid-search cross-
validation process [73] (see Fig. 6). To do so, we rely on
scikit-learn [58], a well-known machine learning library for
Python.

We first divided the ground-truth dataset into two dis-
joint sets: a training set containing 60% of the data that will
be used in a grid-search cross-validation process to deter-
mine the best input parameters and the best classifier, and a
test set composed of the remaining 40% that will be used to
evaluate the performance of the selected classifier and pa-
rameters on new data. Since we have many more humans
than bots in our datasets, we relied on a stratified train-test
split method to create these two sets with the same ratio of
bots and humans.

Selecting an appropriate model with the best possible
parameters requires hyper-parameter tuning. Based on the
supported parameters of each classifier, we implemented a
grid-search process based on a limited set of values for each
parameter. For example, DT and RF were evaluated by set-
ting the split criterion to Gini and entropy, among others.
Doing so resulted in 91 different classifiers. To address the
class imbalance problem [37] and avoid affecting the per-
formance of the classifiers [35], we rely on a cost-sensitive
learning approach [21]. Practically, this means we set the
class weight parameter in scikit-learn to balanced for each
supported classifier.

We then trained and evaluated the performance of all
classifiers using a 10-fold cross-validation process. This ap-
proach splits the dataset into 10 subsets of equal size, and
for each fold a model is trained using 9 subsets and is eval-
uated on the remaining one. The overall performance of the
model is averaged from the performance of these 10 models.
To ensure that the created subsets preserve the same propor-
tion of bots and humans as in the complete training set, we
relied on a stratified shuffle split to create them.

The performance of the resulting models is measured us-
ing the classical metrics of precision P, recall R and F1-
score. We use these metrics for the population of each class
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Table 4
Definitions of precision, recall and F1-score.
population ‘ precision P recall R F1-score
bots B TP TP 2xP(B)XR(B)
TE+FP TPAEN L PBRERE)
humans H —_— X PCH)XR(H)
TN+FN TN+FP P(H)+R(H)
BUH ‘ P(B)X|BI+P(H)XIH|  R(B)X|Bl+R(H)X|H]| 2xPXR
|B|+|H| |B|+|H| P+R

Table 5

Precision, recall and F1-score of the best classifiers per family of classifiers (in descending

order of Fl-score).

bots humans overall
classifier | P(B) R(B) | P(H) R(H) | P(BUH) R(BUH) FI1(BUH)
RF | 0.932 0.916 | 0.990 0.992 0.984 0.984 0.984
kNN | 0.943 0.853 | 0.983 0.994 0.978 0.979 0.978
SVM | 0.876 0.925 | 0.991 0.984 0.979 0.978 0.978
DT | 0.882 0.884 | 0.986 0.985 0.975 0.974 0.974
LR | 0.839 0.931 | 0.992 0.978 0.975 0.973 0.974
ZeroR - 0.000 | 0.893 1.000 0.798 0.893 0.843
(i.e., for bots B and humans H). For the entire population  Taple 6
we computed the weighted version of these metrics to take Evaluation of the classification model using the test set.
into account the class imbalance. We aim to achieve an as classified  classified P R F1
high F1-score as possible. Since our goal is to identify bots, as bot  as human
we also strive to keep bot recall R(B) high enough, given
that the population of bots is significantly smaller than the Bot ‘ TP: 192 FN:19 =~ 094 091 092
. -, . Human FP:13 TN:1776 0.99 0.99 0.99
population of humans, and that it is much easier and faster
to recover from humans misclassified as bots than the oppo- weighted avg | 098 098 0.98

site. All these metrics are summarized in Table 4, and are
defined in terms of the number of true positives TP (the num-
ber of bots that are correctly classified as such by the model),
true negatives TN (the number of humans that are correctly
classified as such by the model), false positives FP (humans
that are wrongly classified as bots), and false negatives FN
(bots that are wrongly classified as humans).

Following the grid-search cross-validation process de-
scribed above, we trained and obtained 91 classifiers. For
each of them, we computed the resulting bot, human and
overall precision, recall and F1-score. Table 5 reports on
these metrics, in descending F1-score order. To ease read-
ability, rather than reporting on all 91 classifiers, we selected
for each classifier category (e.g., DT, RF, ...) the instance
whose parameters resulted in the highest F'1-score. We also
compared the precision, recall and F1-score of these clas-
sifiers against a baseline classifier, ZeroR. ZeroR is a very
simple classifier that has no predictive power: it ignores the
features and always predicts the majority class (i.e., “human”
in our case). We observe that all classifiers exhibit a high
overall performance (in terms of precision, recall and F1)
and surpass ZeroR by a wide margin.

The overall scores for R, P and F1 of all classifiers are
consistently higher than the ZeroR baseline, and range be-
tween 0.974 and 0.984. Even though the best SVM and LR
classifiers have higher bot recall R(B) than the best RF clas-

sifier (0.925 and 0.931 compared to 0.916, respectively), the
overall R, P and F'1 scores are highest for the RF classifier.
We therefore decided to use the best RF classifier, which was
obtained with the entropy split criterion, 10 estimators (i.e.,
trees) and a maximum depth of 10 for these trees.

5.2. Evaluation

In this subsection, we aim to evaluate the actual perfor-
mance of that model on data that were not used to train the
model, i.e., on new data contained in the test set. Following
the workflow presented in Fig. 6, we start by constructing a
new classification model instance based on the selected RF
classifier, its parameters, and the training set containing 60%
of the ground-truth dataset.

We evaluate and report the accuracy of the model based
on the test set, corresponding to the remaining 40% of the
ground-truth dataset. This test set includes 2,000 com-
menters, of which 1,789 are humans and 211 are bots. The
evaluation results are reported in Table 6.

We see that most bots and humans are correctly classified
by the model. For instance, only 19 out of 211 bots were mis-
classified as humans (FN), and only 13 out of 1789 humans
were misclassified as bots (FP). The overall F1-score is very
high (0.98), a consequence of the high precision (0.98) and
high recall (0.98) of the model. Thanks to the fact that we
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Figure 7: Fl-score of the model when applied on commenters,
grouped by their number of non-empty comments. The colour
indicates the number of commenters in each bin.

have taken into account class imbalance during the training
phase, these high scores can also be observed individually
for each class, even if the precision and recall for bots is
slightly lower than for humans. These results confirm what
we already observed in previous section, that is, the model
is effective in identifying bots and humans.

Scrutinising all 19 misclassified bots (FN) we found that
ten of them were already problematic during the first step of
the manual rating process, where they were rated as either
“Human” or “I don’t know” by one of the raters. More-
over, the final decision to classify them as bots during the
discussion session among raters was based on additional in-
formation that is not available in the comments themselves,
explaining why the model is not able to classify them cor-
rectly.

The model also misclassified 13 humans. The fact that
the model misclassified these humans as bots is not surpris-
ing given that, during the first step of the rating process, 10
out of 13 cases were manually rated as difficult or very dif-
ficult, 2 cases as “I don’t know” by both raters and one case
was even rated as a bot by one of the raters. Section 7 pro-
vides a detailed analysis of these misclassified commenters.

Since the model relies on features computed on com-
ments to distinguish bots from humans, it is worthwhile to
consider and measure the impact of the number of consid-
ered comments on the performance of the model. In partic-
ular, we aim to identify the minimal number of non-empty
comments required to reliably classify bots and humans. To
this end, we evaluated our model and computed the F1-score
for commenters in the test set, grouped by their number of
non-empty comments.

Fig. 7 shows the resulting F1-scores of the model
grouped by bins based on the number of non-empty com-
ments. The colour of a bin indicates how many commenters
there are in that bin. The bins with 10 to 24 and 30 to 34 non-
empty comments have the highest number of commenters,
while bins between 85 to 94 have the lowest number of com-
menters. The F1-score increases from 0.87 (bin 0-4) and
becomes stable around 0.96 to 1.00 after 10 non-empty com-
ments are reached (from bin 10-14). This suggests that hav-
ing at least 10 non-empty comments is enough to achieve
good performance with the model.

Inputs BoDeGHa Output
e : ~ e ~ N
GitHub
repository
{@} @ Pre-trained
GitHub classifier -
APl key \L [:> #
()
[ o 1 L ] /D Bot prediction
GitHub Extract {:}g:ﬂ
accounts PR and issue \D [=)
comments o JSON
=5 Extracting —
P [z] { features J
t /
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Figure 8: The BoDeGHa architecture.

Figure 9: List of command-line arguments for BoDeGHa 1.0.1.

6. The BoDeGHa bot detector tool

Since the classifier we trained to identify bots presents
very good performance, we implemented it as part of a tool.
The tool is called BoDeGHa (Bot Detector for GitHub ac-
tivity), is developed for Python 3.7 and is easily instal-
lable through pip, the official package manager for Python.’
BoDeGHa can be used by any researcher or practitioner to
classify accounts of a given GitHub repository either as bot
or as human based on their issue and PR comments.

In its simplest form, BoDeGHa accepts the name of a
GitHub repository and a GitHub API key. BoDeGHa com-
putes its output in three steps, summarized in Fig. 8. The first
step consists of downloading all comments from the speci-
fied repository thanks to GitHub’s GraphQL API. This step
results in a list of commenters and their corresponding com-
ments. The second step consists of computing the number of
comments, empty comments, comment pattern and inequal-
ity between number of comments within patterns (i.e., the
features of the classification model). The third step simply
applies the pre-trained model on these examples, and outputs
the prediction made by the model.

BoDeGHa supports several additional parameters. The
minimum and maximum number of comments to download
and to consider can be specified, as well as the start date from
which to consider comments. It is also possible to provide a
list of specific accounts for the tool to consider. To ease its
reuse by other tools, it is also possible to export the results
either as comma-separated values or JSON. The command-
line interface of BoDeGHa is summarized in Fig. 9.

Fig. 10 presents the output of BoDeGHa for a ran-
domly chosen GitHub repository. The output shows, for
each GitHub account (first column), the number of extracted

9Using pip install git+https://github.com/mehdigolzadeh/BoDeGHa
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Figure 10: Example of running BoDeGHa.

comments (second column), the number of empty comments
(third column), the number of computed comment patterns
(fourth column), and the inequality among them (fifth col-
umn). The last column provides the predicted class of each
account. This example shows that three commenters are
identified as bots, and all remaining commenters as humans.

7. Discussion

The evaluation of the classifier revealed several com-
menters that the model was not able to properly classify. We
specifically look at the commenters that have been misclassi-
fied by the model. During the evaluation of the model on the
test set, we found 19 bots and 13 humans that were misclas-
sified. In order to have a more complete categorisation of
misclassified commenters, we also applied the model on the
training set and obtained 4 additional bots and 12 additional
humans that are misclassified.

Starting with the 24 (19+5) bots, we found that in most
cases they correspond to bots that use, convert or copy text
that was initially produced by humans. Even if these bots
perform repetitive tasks (i.e., copy information) and even if
some of these bots use templates to transfer or copy com-
ments that are recognizable to the human eye (e.g., “Jira is-
sue originally created by user {username}: {content of the
issue}”), it is difficult for an automated algorithm to detect
such cases.

Copy from humans (9 bots): We found some instances of
bots whose comments were generated based on content
made by humans (e.g., taskcat-ci, trax-robot). Since our
model solely relies on features derived from comments, bot
comments originating from human messages increase the
likelihood of an incorrect classification. Among these cases,
we found several bots that transfer data (including issues,
PRs and their associated comments) to GitHub from issue
trackers, code review support tools, email etc. For example,
neos-bot transfers all issues from a Jira issue tracker, such-

abot duplicates comments and issues from another system
to GitHub, and wallabag-bot migration from email content
to GitHub.

Insufficient comments (9 bots): We found 9 bots (e.g.,
devtools-bot and egg-bot) that were wrongly identified as
humans due to the lack of a sufficient number of non-empty
comments. Since our model relies on comment contents,
bots with too few non-empty comments may lead to incor-
rect predictions even if these comments have similar com-
ment patterns. We do not see any direct way to overcome
this, since bots are expected to provide relevant information
about what they are doing, and as such, one can expect their
comments to be informative and non-empty.

Diverse comments (6 bots): We found 6 cases of bots that
are used for the purpose of reporting, logging, or proposing
code changes. The variation of comments in these bots in-
creases the number of comment patterns, which prevents the
model from identifying these bots. The source of the com-
ment diversity comes from the reports they send for each
task. For example sentry-io creates an issue each time an er-
ror occurs in the software project, along with the details of
this error (e.g., stack trace). Another example is violinist-bot
that submits a PR to update outdated dependencies and to
report about the changes of this update. Despite these com-
ments starting with a similar sentence (e.g., “Sentry Issue:”
or “If you have a high test coverage index, and your tests for
this pull request are passing, it should be both safe and rec-
ommended to merge this update. Here is a list of changes
between the version you use, and the version this pull re-
quest updates to:”), they mainly consist of details related to
the submitted issue or PR (i.e., stack traces for sentry-io and
list of issues for violinist-bot) and are considered as different
comment patterns.

We also looked at the 17 (134+4) humans that were mis-
classified as bots, and created the following categories:'”

Repetitive comments (8 humans): We found 8 instances of
human commenters whose comments are mostly composed
of repetitive messages, such as thank you or LGTM and that
have nearly no other comments. Since repetitive messages
are usually indicative of the presence of a bot, the model
failed to correctly classify these commenters.

Insufficient comments (3 humans): We found 3 humans
with few comments, most of them being empty. Most of
these comments were created in the context of a pull request
whose title was already sufficiently informative. Since these
empty comments are grouped in a single comment pattern,
and since they form the large majority of the comments made
by these commenters, they were wrongly considered as be-
ing generated by a bot due to their repetitive nature. We also
found instances where the comment content is too short or
there are too few non-empty comments. This prompts our

10To comply with GDPR regulations, we cannot provide the account
names for these cases.
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algorithm to group them into a small number of patterns and
consequently provide wrong predictions.

Mostly unfilled issue templates (3 humans): It is not un-
usual in GitHub repositories to require commenters to follow
a comment template or a checklist when creating issues or
pull requests.'! We found 3 commenters whose comments
were mostly composed of unfilled or barely filled templates,
leading these comments to be considered as a single pattern,
and leading the model to misclassify them as bots. Relying
on an analysis of the content of such comments could pre-
vent them from being misclassified, by taking into account
the presence of such templates.

Others (3 humans): These cases do not fall into any of the
above categories, and we have found no specific reason to
explain their misclassification. Some of them have a small
number of comments, while others only have a few patterns
(e.g., due to the presence of similar long URLs in comments)
despite the fact that they do not seem to have duplicated or
similar comments.

Most commenters that were misclassified by the classifi-
cation model were also hard to recognize by the raters during
the process of creating the ground-truth dataset. In the test
set, about 84.6% (11 out of 13) of the humans that were mis-
classified as bots and about 63.1% (12 out of 19) of the bots
that were misclassified as humans were originally rated as “I
don’t know”, “difficult”, or “very difficult” by at least one of
the raters. In contrast, among the correctly classified com-
menters, a much lower percentage of bots (12.5%, 24 out of
192) and humans (9.5%, 169 out of 1772) were rated as such.

Furthermore, during the creation of the ground-truth
dataset, we encountered several examples of commenters
whose features and comments were reminiscent of both hu-
mans and bots. Such so-called “mixed” commenters are the
result of GitHub accounts belonging to humans allowing au-
tomatic tools to use their account for carrying out certain
specific tasks. Hence, the comments of such commenters
include both human-like and bot-like behaviour. We iden-
tified 78 such commenters out of 5,082 commenters (i.e.,
1.5%) during the rating phase and we consistently excluded
them from the ground-truth dataset since we could not de-
cide whether these commenters should be classified as bots
or humans.

Nevertheless, it is interesting to report how our model
behaves when exposed to these specific “mixed” cases. Out
of these 78 identified “mixed” commenters, 21 were classi-
fied as bots (26.9%) and 57 as a humans (73.1%). The fact
that the proportion of “mixed” commenters classified as bots
is higher than the one in the training set (10.3%) suggests that
their behaviour is perceived to be closer to that of a bot than
a human by the classification model.

The presence of mixed accounts as well as the categories
of bots that have been misclassified as humans suggests that
it is not easy to come up with a single definition for a bot.

1See https://docs.github.com/en/github/building-a-strong-communit
y/about-issue-and-pull-request-templates

Two persons could easily disagree on whether a given ac-
count is a bot or a human if they have a different interpreta-
tion of what it means to be bot. This calls for a more pre-
cise definition of bots. Erlenhov et al. [24] started doing so
based on qualitative interviews with developers. This en-
abled them to identify three distinct DevBot personas that
differ in terms of features like autonomy, chat interfaces, and
smartness. This more fine-grained classification of DevBots
and their characteristics paves the way for more sophisticated
classification models.

The approach presented in this paper is not the first one to
have been proposed in the literature to detect bots in social
coding platforms. Dey et al. [17] proposed three different
approaches for identifying bot accounts in GitHub projects,
mostly based on their commit messages. One of them con-
sists of checking for the presence of the string “bot” in the
account name of the committer. We partially relied on this
heuristic to add more potential bot candidates during our
data collection. However, solely relying on it to identify
bots is likely to lead to a large number of both false posi-
tives and false negatives. To confirm this, we applied their
approach on our ground-truth dataset. We found 169 hu-
mans out of 4,473 (3.8%) containing the string “bot” in their
account name, either at the end (46 cases) or in the mid-
dle (123 cases). Out of the 527 bots we have in the dataset,
394 of them (i.e., 74.7%) actually contained “bot” in their
account name, usually at the end of the name (378 cases).
Although this may seem high for such a simple heuristic, it
still implies that more than one out of four bots is missed
with this method, and about one out of 25 humans is mistak-
enly considered a bot. For comparison, around only one out
of 25 (3.8%) bots have been misclassified as humans by our
model, and around only one out of 100 humans (1.1%).

8. Threats to Validity

Based on the structure recommended by Wohlin et
al. [74] we discuss the threats that might call into question
the validity of our findings, their potential impact and how
we have tried to mitigate them.

Construct validity examines the relationship between the
theory behind the experiments performed and the observa-
tions found. This threat is mainly related to correctness of
the dataset used in the experiments. The results of our study
are strongly dependent on the correctness of the ground-truth
dataset. We are confident that the ground truth contains very
few errors, since we achieved an almost perfect agreement
(k = 0.96) based on an iterative rating process involving
all authors of this paper. One of the most likely threats is
the existence of “mixed” commenters in the dataset. Such
commenters are difficult to classify, even by human raters,
since they combine both bot-like and human-like behaviour.
Mixed commenters constitutes a very small proportion of
our dataset (78 cases, corresponding to 1.5% of all consid-
ered accounts). We excluded all these cases from the dataset
since we could not agree on them. However, it is possible
that the dataset still contains such cases that were not iden-
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tified by the raters. Given the very low ratio of such mixed
accounts, it is however unlikely to affect our findings.

Internal validity concerns choices and parameters of the
experimental setup that could affect the results of the ob-
servations. Given that our classification method is fully
based on features computed from comments, we required
each commenter included in the dataset to have contributed
at least 10 (possible empty) comments. This threshold is
based on previous experiences and findings [32]. As such,
we cannot claim that our model applies on commenters who
made fewer than 10 comments. Similarly, we considered at
most 100 comments for each commenter but, as explained in
Section 5.2, this upper limit on the number of comments is
unlikely to have biased our results, since we already achieved
high F1-score starting from 10 non-empty comments.

Conclusion validity concerns whether the conclusions
derived from the analysis are reasonable. Our conclusions
are based on the evaluation and application of the classifica-
tion model on the test set. Given that we properly followed a
standard grid-search cross-validation method to identify the
best classifier, and that we evaluated the model on the test
set (i.e., examples that have not been used to train or select
the classifier), the results we obtained and conclusions we
reached are unlikely to be affected.

External validity concerns the degree to which the con-
clusions we derived are generalisable outside the scope of
this study. The main threat to external validity is related
to the construction of the ground-truth dataset. To avoid
any potential bias, we randomly selected a large collec-
tion of GitHub repositories related to software develop-
ment and corresponding to actual packages being officially
distributed, following the guidelines of Kalliamvakou et
al. [42]. While this dataset can be regarded as representa-
tive of bots contributing to GitHub repositories through PR
and issue comments, we do not make any claim about its
generalisability to other activities (e.g., commit messages)
or other social coding platforms (e.g., BitBucket or GitLab).
Nevertheless, the underlying approach could be made appli-
cable to such activities or platforms.

9. Future work

As future work, we intend to use our classification model
in socio-technical empirical analyses of collaborative soft-
ware development, by studying the effect of the presence of
bots on various development-related activities, such as the
productivity and quality of handling issues, bugs and pull
requests, code reviewing, intra- and inter-repository collab-
oration, developer onboarding, and so on.

With the emergence of more advanced AI, machine
learning and natural language processing techniques, we can
expect future bots to behave more and more like humans.
These new technological advances may make our classifi-
cation model less capable of distinguishing bots from hu-
mans. An example of such technique is Generative Pre-
trained Transformer 3 (GPT-3), an autoregressive language
model developed by OpenAl and integrating 175 billion pa-

rameters. GPT-3 generates text of sufficiently high quality
that it is difficult to distinguish them from that written by
humans [9]. To cope with this, we will explore more ad-
vanced machine learning methods that could take into ac-
count the semantics of the comments. In particular, we will
consider techniques relying on natural language processing
and deep neural networks to develop classification models
that are more resilient to human-like bots, as well as “mixed
accounts” corresponding to bots that copy, transfer or trans-
late human comments.

In this study, we provided a binary definition of com-
menters being either bots or humans. The aforementioned
study by Erlenhov et al. [24] revealed that a more fine-
grained definition would be needed, and they came up with
three DevBot personas based on their autonomy, chat inter-
face, and smartness. Such a more fine-grained classifica-
tion could be used to refine our ground-truth dataset, and to
provide more advanced classification models, possibly even
computing the probability that an account belongs to each of
the considered personas.

Because of the growing use of bots during collaborative
development activities [22], we can expect to see a prolifer-
ation of bots to automate software development in GitHub
repositories. For instance, GitHub introduced in Novem-
ber 2019 GitHub Actions'?, a feature providing automated
workflows for repository maintainers. These actions, fully
integrated with GitHub, allow the automation of tasks based
on a various set of triggers (e.g., commits, pull request, is-
sue, comments, etc.). Since they are easily shareable from
one repository to another one (through the GitHub Market-
place), we expect their use to become more widespread, even
in smaller repositories and, as a result, to see more “bots”
and their comments in GitHub repositories. However, tasks
triggered through GitHub actions are automatically labelled
as such by the GitHub API, eliminating the need to create
a model to identify these “bots”. Recently, GitHub action
variants of many well-known bots (e.g., Coveralls, Code-
cov, Snyk) have been published to the GitHub Marketplace,
and these actions are rapidly increasing in popularity. Con-
sequently, we expect their GitHub action variant to replace
progressively the bots currently being used in GitHub repos-
itories.

We aim to extend our study, including the ground truth
dataset, classification model and tool to accommodate other
social coding platforms such as GitLab and BitBucket. This
will generalise our approach, and allow us to study to which
extent the selected platform affects the way in which bots
are being used as part of the development process. We also
aim to evaluate our model on other types of activities (e.g.,
git commit messages). This will allow us to understand to
what extent our model can be used to identify bots based on
commit activities.

12https ://github.com/features/actions
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10. Conclusion

In this paper, we proposed a novel approach to distin-
guish between bots and humans in collaborative software de-
velopment repositories on GitHub, based on the comments
they made in issues and PRs.

Our first contribution is the creation of a ground-
truth containing 5,000 GitHub accounts including 527 bots
(10.5%), based on a manual rating process with very high
inter-rater agreement (x = 0.96).

Using this ground-truth dataset, we developed a classi-
fication model to identify bots based on four features: the
total number of comments of a commenter; its number of
non-empty comments; its number of comment patterns; and
the inequality between the numbers of comments in each pat-
tern. The chosen features align with behavioural differences
we observed between bots and humans. Indeed, we found
that most human commenters tend to have diverse sets of
comments with little repetition, while bots tend to frequently
use a limited set of comment patterns.

Following a standard grid-search 10-fold cross valida-
tion process, we evaluated and compared five families of
classifiers (random forest, k-nearest neighbours, decision
trees, logistic regression and support vector machines) on a
training set including 60% of all data. We performed hyper-
parameter tuning to select the best parameters of each clas-
sifier family based on their precision, recall and F1-score.
We selected the random forest classifier since it achieved the
highest F1-score (98.4%).

We evaluated the selected classifier on new data, and
found that it achieves high precision and recall. Based on
a manual assessment and categorisation of bots and humans
that were misclassified, we identified why the classification
model had difficulties with detecting them, and we provided
suggestions for further improvements to the classification
model.

We implemented the classification model into a Python
command-line tool, called BoDeGHa. This open source tool
is made freely available to practitioners and researchers to
allow them to analyse GitHub repositories and to identify
which accounts correspond to bots and which correspond to
humans.
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