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Abstract

In this paper, we investigate the effect of TDD, as compared to a non-TDD

approach, as well as its retainment (or retention) over a time span of (about) six

months. To pursue these objectives, we conducted a (quantitative) longitudinal

cohort study with 30 novice developers (i.e., third-year undergraduate students

in Computer Science). We observed that TDD affects neither the external

quality of software products nor developers’ productivity. However, we observed

that the participants applying TDD produced significantly more tests, with a

higher fault-detection capability, than those using a non-TDD approach. As for

the retainment of TDD, we found that TDD is retained by novice developers

for at least six months.
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1. Introduction

Test-Driven Development (TDD) [1, 2] is a cyclic development approach

where unit tests drive the incremental development of small pieces of function-
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ality [3]. Each development cycle starts with the writing of unit tests for an

unimplemented piece of functionality. A cycle ends when unit tests pass as well5

as the existing regression test suite. An important role in the process under-

lying TDD is played by refactoring. It allows a TDD practitioner to improve

the internal structure of the code, as well as its design, while preserving the

external behavior of the code thanks to the safety net the existing regression

test suite provides [2]. The end of a cycle allows a TDD practitioner to tackle a10

new piece of functionality, not yet implemented, so starting a new development

cycle [1, 2]. Advocates of TDD recommend ending a development cycle in few

minutes (five or ten minutes [4]) and keeping the rhythm as uniform as possible

over time [1, 3]. The order with which unit tests interpose within the process un-

derlying TDD—i.e., the writing of a test precedes the one of the corresponding15

production code—is known as test-first sequencing (or test-first dynamic) [5].

It is worth noting that test-first sequencing refers to just one central aspect of

TDD [6]. That is, it does not capture the full nature of TDD [5]. Other central

aspects that characterize the development process underlying TDD are: granu-

larity, uniformity, and refactoring effort [5]. Granularity refers to the duration20

of the development cycles, while uniformity reflects how constant their duration

is over time [5]. Finally, refactoring effort captures how much refactoring a TDD

practitioner performs.

It is claimed that TDD leads to higher-quality software products in terms

of both external (i.e., functional) and internal quality, while increasing devel-25

opers’ productivity [1]. These claimed benefits have encouraged some software

companies to adopt TDD, while others are considering its adoption [7]. TDD

has been assessed from a quantitative point of view (e.g., Fucci et al. [8], Er-

dogmus et al. [9]) and according to a qualitative perspective (e.g., Romano et

al. [10], Scanniello et al. [11]). A number of primary studies, like experiments30

or case studies, have been conducted on TDD [8, 9, 12, 13, 14]. Their results,

gathered and combined in a number of secondary studies [6, 15, 16, 17, 18, 19],

do not fully support the claimed benefits of TDD (i.e., while some primary

studies have shown that TDD allows improving quality of software products
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and/or developers’ productivity, other primary studies have not). Some re-35

searchers have conjectured that long-term observations are needed to see the

claimed benefits of TDD and/or to better understand this development ap-

proach; therefore, they have recommended taking a longitudinal approach when

investigating TDD [16, 18, 20, 21]—i.e., studying TDD over a time span. Nev-

ertheless, only Latorre [22], Borle et al. [23], Beller et al. [24], and Marchenko40

et al. [25] have taken a longitudinal approach.

Longitudinal studies1 employ continuous or repeated measures to follow par-

ticular individuals over a time span of weeks, months, or even years [26]. In this

paper, we present a study on TDD that takes a longitudinal approach. In partic-

ular, we conducted a longitudinal cohort study in which our cohort consisted of45

30 novice developers of homogeneous experience who attended the same train-

ing regarding agile software development, including TDD. The design of our

study allowed us to have a term of comparison between TDD and a non-TDD

approach, defined as the approach that developers would normally follow (e.g.,

iterative test-last, big-bang testing, or no testing at all—but not TDD), with50

respect to external quality, developers’ productivity, number of tests written,

and fault-detection capability of tests written. Moreover, thanks to our cohort,

we collected separate measurements of the same constructs (i.e., external qual-

ity, developers’ productivity, number of tests written, fault-detection capability

of tests written, test-first sequencing, granularity, uniformity, and refactoring55

effort) (about) six months apart with the goal of understanding how well TDD

can be applied over time, giving an indication of its retainment (or retention).2

While we did not find any improvement, due to TDD, in the external quality

of software products and developers’ productivity, we observed that TDD allows

creating larger test suites with a higher fault-detection capability. Moreover, our60

1There are three major types of longitudinal studies: (i) repeated cross-sectional studies;

(ii) prospective studies (including cohort studies); and (iii) retrospective studies [26].
2TDD retainment concerns the capability of a developer to apply this development ap-

proach after she did not apply it for a certain time span.
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results indicate that novice developers retain TDD for at least six months (i.e.,

the time span from when novice developers learned and applied TDD for the

first time to when they applied TDD again).

This paper extends the one by Fucci et al. [27] as follows:

• Since Fucci et al. had found that TDD leads developers to write more tests,65

we studied whether writing more tests implies that the fault-detection

capability of those tests is actually better. This was to strengthen the

conclusions from Fucci et al.’s study. It is worth mentioning that we

studied both effect and retainment of TDD with respect to fault-detection

capability of written tests.70

• We investigated the retainment of TDD with respect to four aspects that

characterize the process underlying TDD: test-first sequencing, granular-

ity, uniformity, and refactoring effort.

• We extended the inferential statistics by applying a second statistical

model. This allowed us to mitigate, as much as possible, threats to the75

conclusion validity of the results shown in Fucci et al.’s paper.

Paper structure. In Section 2, we outline work related to ours. We present

our study in Section 3. The obtained results are presented and discussed in

Section 4 and Section 5, respectively. Final remarks conclude the paper.

2. Related Work80

The effect of TDD on several outcomes—including functional quality and

productivity, which are of interest for this study—has been the topic of sev-

eral empirical studies, summarized in Systematic Literature Reviews (SLRs)

and meta-analyses [15, 17, 18, 19]. The SLR by Turhan et al. [17] includes 32

primary studies (e.g., controlled experiments and case studies) published from85

2000 to 2009. The gathered evidence shows a moderate effect in favor of TDD
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Table 1: Summary of secondary studies on TDD.

Study Conclusion for quality Conclusion for productivity Inconsistencies in the study categories

Turhan et al. [17] Improvement Inconclusive Quality:

- Among controlled experiments

- Among studies with high rigor

Productivity:

- Among pilot studies

- Controlled experiments vs. industrial case studies

- Among studies with high rigor

Bissi et al. [15] Improvement Inconclusive Productivity:

Academic vs. industrial setting

Rafique and Misic [19] Improvement Inconclusive Quality:

Waterfall vs. iterative test-last

Productivity:

- Waterfall vs. iterative test-last

- Academic vs. industrial

Munir et al. [18] Improvement or no difference Degradation or no difference Quality:

- Low vs. high rigor

- Low vs. high relevant

Productivity:

- Low vs. high rigor

- Low vs. high relevant

on functional quality while the evidence about productivity is inconclusive.3

Bissi et al. [15] conducted an SLR that includes 27 primary studies published

between 1999 and 2014. The results show an improvement of functional quality

due to TDD while, as for productivity, the results are inconclusive. Rafique and90

Misic [19] conducted a meta-analysis of 25 controlled experiments published be-

tween 2000 and 2011. The authors observed a small effect in favor of TDD on

functional quality while the results on productivity are inconclusive. Finally,

Munir et al. [18] in their SLR classifies 41 primary studies published from 2000

to 2011 into four categories based on high/low rigor and high/low relevance.95

They found that in each category different conclusions could be drawn for both

functional quality and productivity. This implies that, when looking at these

studies as a unique set, the results are inconclusive. A summary of the outcomes

from the above-mentioned studies is reported in Table 1. We can suppose that

the inconclusive results about the claimed benefits of TDD depend on the par-100

ticipants in the studies and their set-up [6]. For example, most studies have

3It means that the results do not lead to a firm conclusion.
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focused on only the test-first aspect. In addition, TDD has too many cogs and

these cogs highly interact with each other [6]. There are also so many potential

variation points in the context of the studies, as well as in the personality fac-

tors of the participants. We deem these points deserved to be studied in more105

detail, along with the study of theorizing what might be barriers and supporting

factors to the application of TDD. To that end, Munir et al. [18] suggested that

more long-term studies are needed to better understand TDD.

An example of long-term investigation is the one by Marchenko et al. [25].

The authors conducted a three-year-long case study about the use of TDD at110

Nokia-Siemens Network. They observed and interviewed eight participants (one

Scrum master, one product owner, and six developers) and then ran qualitative

data analyses. The participants perceived TDD as important for the improve-

ment of their code from a structural and functional perspective. Moreover,

productivity increased due to the team’s improved confidence with the code-115

base. The results show that TDD was not suitable for bug fixing, especially

when bugs are difficult to reproduce (e.g., when a specific environment setup

is needed) or for quick experimentation due to the extra effort required for

testing. The authors also reported some concerns regarding the lack of a solid

architecture when applying TDD.120

Beller et al. [24] executed a long-term study covering 594 open-source projects

over the course of 2.5 years. They found that only 16 developers use TDD more

than 20% of the time when making changes to their source code. Moreover,

TDD was used in only 12% of the projects claiming to do so, and for the ma-

jority by experienced developers.125

Borle et al. [23] conducted a retrospective analysis of (Java) projects, hosted

on GitHub, that adopted TDD to some extent. The authors built sets of TDD

projects that differed from one another based on the extent to which TDD was

adopted within these projects. The sets of TDD projects were then compared

with control sets to determine whether TDD had a significant impact on the130

following characteristics: average commit velocity, number of bug-fixing com-

mits, number of issues, usage of continuous integration, and number of pull
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requests. The results did not suggest any significant impact of TDD on the

above-mentioned characteristics.

Latorre [22] studied the capability of 30 professional developers of different135

seniority levels (junior, intermediate, and expert) to develop a complex software

system by using TDD. The study targeted the learnability of TDD since the

participants did not know that technique before participating in the study. The

longitudinal one-month study started after giving the developers, proficient in

Java and unit testing, a tutorial on TDD. After only a short practice session, the140

participants were able to correctly apply TDD (e.g., following the prescribed

steps). They followed the TDD cycle between 80% and 90% of the time, but

initially, their performance depended on experience. The seniors needed only

few iterations, whereas intermediates and juniors needed more time to reach a

high level of conformance to TDD. Experience had an impact on performance—145

when using TDD, only the experts were able to be as productive as they were

when applying a traditional development methodology (measured during the

initial development of the system). According to the junior participants, refac-

toring and design decision hindered their performance. Finally, experience did

not have an impact on long-term functional quality. The results show that all150

participants delivered functionally correct software regardless of their seniority.

Latorre [22] also provides initial evidence on the retainment of TDD. Six months

after the study investigating the learnability of TDD, three developers, among

those who had previously participated in that study, were asked to implement

some new functionality. The results from this preliminary investigation suggest155

that developers retain TDD in terms of developers’ performance and confor-

mance to TDD.

Although the above-mentioned studies [22, 23, 24, 25] have taken a longi-

tudinal approach when studying TDD, none of them has mainly focused, as

our longitudinal cohort study, on the retainment of TDD—although Latorre’s160

study [22] provides initial evidence on the retainment of TDD, the main goal of

this study was the learnability of TDD.
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3. Empirical Study

The goal of a longitudinal study is to investigate “how certain conditions

change over time” [28]. Therefore, the data collection happens over a time span165

and can require the researchers to be co-located with the case and context in

which the phenomenon of interest takes place. In the context of software engi-

neering, longitudinal studies are often associated with the case study methodol-

ogy. In other cases, longitudinal studies are employed to observe the impact of

a potentially disrupting event, such as the introduction of a new development170

practice. This scenario is similar to interrupted time series in quasi-experimental

designs [29] in which, due to the lack of experimental manipulation, a specific

event is used to identify the experimental groups. A third kind of longitudinal

study in software engineering retrospectively covers an extended time span by

analyzing archival data. Given the availability of a large amount of versioned175

and timestamped data, longitudinal archival studies are usually performed in

conjunction with software repositories mining studies.

In medicine, longitudinal studies are sometimes realized in the form of cohort

studies. A cohort is a sample of participants (e.g., who undergo a treatment)

sharing a specific characteristic of interest (e.g., age). The cohort is tested in180

some occasions over time to, for example, check for a drug side-effect before

releasing it to the market [29].

In our longitudinal study, the participants were third-year undergraduate

students in Computer Science, who were asked to take part in four experi-

mental sessions over a six-month time span. In any experimental session, each185

participant had to perform a development task by following either TDD or

a non-TDD approach. Before the first experimental session, all participants

had practiced unit testing, iterative test-last development, and big-bang testing

thanks to training sessions.

In the first experimental session—held in the first period,4 P1 (i.e., on190

4A period is the time during which a treatment is applied [30].
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November 16th, 2016)—, the participants had to use a non-TDD approach (e.g.,

iterative test-last, big-bang testing, or no testing at all) to perform the devel-

opment tasks. The participants learned and practiced TDD between the first

experimental session and the second one—held in the second period, P2 (i.e.,

on December 7th, 2016). That is to say, no one in the first experimental session195

knew TDD. Later, all participants used TDD to perform the development tasks

in the second experimental session.

After (about) six months (over two subsequent semesters of the same aca-

demic year, 2016-2017), we asked the participants to take part in the third and

fourth experimental sessions—held, respectively, in the third and fourth peri-200

ods, P3 (i.e., on May 3rd, 2017) and P4 (i.e., on May 4th, 2017). In particular,

in the third experimental session, all participants followed a non-TDD approach

when performing the development tasks. As for the fourth experimental session,

the participants followed TDD to perform the development tasks. We refer to

the non-TDD approach we used to have a term of comparison as Your Way205

(YW, from here onwards).

In the following of this section, we report the planning and execution of our

study, which we briefly summarized above, by taking into account the template

by Jedlitschka et al. [31]. To plan and execute our study, we followed the

recommendations by Juristo and Moreno [32], and Wohlin et al. [33].210

3.1. Research Questions

We investigated the following Research Questions (RQs):

RQ1. Are there differences between TDD and YW in terms of (i) external qual-

ity of the implemented solutions, (ii) developers’ productivity, (iii) num-

ber of tests written, and (iv) fault-detection capability of tests written?215

Aim. With RQ1 we wanted to contrast TDD and YW in terms of the

constructs mentioned above. We considered external quality of the imple-

mented solutions and developers’ productivity because TDD is claimed to

improve external quality of the implemented solutions and increase devel-

opers’ productivity [1]. We focused on the number of tests because past220
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research has shown that TDD results in more tests [9]. However, having

a test suite with more tests could not imply an increased fault-detection

capability of that suite; therefore, we also studied the fault-detection ca-

pability of tests written. We did not consider the four dimensions that

characterize the development process underlying TDD (i.e., test-first se-225

quencing, granularity, uniformity, and refactoring effort) because these

dimensions do not characterize YW. It is worth recalling that the study

on the fault-detection capability of tests written is a new contribution with

respect to Fucci et al.’s study [8].

RQ2. Is the capability of novice developers to apply TDD affected when they230

did not use this development approach for a certain time span with re-

spect to (i) external quality of the implemented solutions, (ii) developers’

productivity, (iii) number of tests written, (iv) fault-detection capability

of tests written, (v) test-first sequencing, (vi) granularity, (vii) uniformity,

and (viii) refactoring effort?235

Aim. RQ2 was defined to study the retainment of TDD, with respect to

different constructs, by taking advantage of the longitudinal approach be-

hind our study. The results from this RQ can be used to draw conclusions

about the TDD retainment over a six-month time span, not to evaluate the

evolution of the TDD technique over time. The reasons behind the study240

of external quality of the implemented solutions, developers’ productivity,

number of tests written, and fault-detection capability of tests written are

the same as RQ1. We also considered test-first sequencing, granularity,

uniformity, and refactoring effort because these are the four dimensions

that characterize the development process underlying TDD [5]. It is worth245

recalling that the study of these four dimensions, together with the one on

the fault-detection capability of tests written, is a new contribution with

respect to Fucci et al.’s study [8].
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3.2. Experimental Units

The participants were third-year undergraduate students in Computer Sci-250

ence at the University of Bari (Italy). We sampled them by convenience among

the students who attended the Integration and Testing course (first semester of

the academic year 2016/2017). The program of this course included the follow-

ing topics: unit testing, integration testing, SOLID principles, refactoring, big-

bang testing, iterative test-last development, and TDD. During the course, the255

students participated in both face-to-face lessons and laboratory sessions. The

students practiced unit testing, big-bang testing, iterative test-last development,

and TDD through laboratory sessions and some homework was assigned too.

Java was the programming language of the course, while JUnit and Eclipse were

the testing framework and the Integrated Development Environment (IDE), re-260

spectively. Among the 53 students of the Integration and Testing course, 39

decided to take part in the study. The first two experimental sessions of our

study were held during the Integration and Testing course.

Some students of the Integration and Testing course then attended the Soft-

ware Quality course (second semester of the academic year 2016/2017). The265

program of this course included the following topics: software quality (i.e.,

internal, external, and in-use); ISO standards for software quality; software

quality assessment, monitoring, and improvement; supporting tools for quality

management (e.g., SonarQube); and process control. The students enrolled in

the Software Quality course were 45, 30 of them took part in the third and270

fourth experimental sessions. These 30 students had previously attended (and

passed) the Integration and Testing course and had participated in the first two

experimental sessions. This is to say that the intersection of the students who

attended both courses (i.e., Integration and Testing and then Software Quality)

and participated in the study (i.e., in any of the fourth experimental sessions)275

was equal to 30—two females and 28 males.

Before participating in the study, the students did not have a notion of TDD

since their university curricula did not include courses on TDD. The participants

had passed the exams of the following courses: Procedural Programming, Object-
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Figure 1: Barplots on the participants’ experience with Java programming related to (a) their

peers and (b) in general. The data about the participants’ experience were gathered at the

beginning of the study—i.e., before the training sessions.

Oriented Programming, Software Engineering, and Databases. Thanks to these280

courses, the participants had gained experience in C and Java programming.

As shown in Figure 1a, most of the participants rated their experience as equal

to or somewhat higher than that of their peers. Only four participants believed

to be somewhat less expert than their peers. Figure 1b shows how the partic-

ipants generally rated their experience with Java programming. Most of them285

stated to be neither experienced nor inexperienced. Only three participants

judged themselves as inexperienced with Java programming. Summing up, the

participants’ characteristics can be considered homogeneous.

To encourage the students to participate in the study, we informed them

12



that they would be rewarded with a bonus in the final mark of the Integration290

and Testing course. The students also knew that their participation would

not affect their final mark (except for the bonus mentioned just before) and

that the gathered data would be used only for research purposes. It is worth

mentioning that the students could not be paid for their participation in the

study because this is forbidden in Italy (while rewarding them with a bonus295

in their final mark is allowed). Participation was voluntary in the sense that

the students were not coerced to participate. All these choices were made to

have motivated participants even if we were conscious that it could represent a

threat to the internal validity of the results (see Section 5.3.1). We also informed

the students that the collected data would have been treated confidentially and300

shared anonymously.

3.3. Experimental Materials

The experimental objects were four code katas (i.e., programming exercises

used to practice a programming language or a development approach like TDD).

A description of these code katas follows:305

• Bowling Score Keeper (BSK). The goal of this kata is to develop an

API for calculating the score of a bowling game made up of ten frames

(plus potential bonus throws). The API allows: adding frames and bonus

throws to a bowling game; identifying if a frame is a spare or a strike;

and computing the score of a single frame as well as the score of a bowl-310

ing game.

• Mars Rover API (MRA). This kata aims to develop an API for mov-

ing a rover on a planet. The planet is represented as a grid of cells,

which can contain obstacles that the rover cannot go through. The rover

moves thanks to a string made up of basic commands (i.e., moving for-315

ward/backward and turning left/right). When the rover encounters an

obstacle, it records that obstacle.
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• SpreadSHeet (SSH). The goal of this kata is to develop an API for a

basic spreadsheet. This API allows setting the content of a spreadsheet’s

cell and evaluating its content. A cell can contain strings, integers, refer-320

ences to other cells, and formulas (e.g., string concatenations or arithmetic

operations among integers).

• Game Of Life (GOL). This kata aims to develop an API for Conway’s

game of life. This game takes place on a square grid of cells. Each cell has

two possible states: alive or dead. The state of a cell evolves according325

to four rules. The API allows: initializing the grid; and determining the

next state of a cell as well as the next state of the grid.

For each code kata (or experimental object, from here onwards), the experi-

mental material included a template project for the Eclipse IDE, which con-

tained stubs of the expected API signatures and an example JUnit test class.330

The code katas could be broken down into several features to implement; how-

ever, the description of the code katas was coarser-grained. That is, each code

kata was presented as a whole without explicitly identifying the features to be

implemented—in contrast to a finer-grained description of code katas in which

the features to be implemented are described separately, thus they are explicitly335

identified (e.g., each feature is numbered) [34]. To assess the features the par-

ticipants implemented, the experimental material also included acceptance test

suites. In particular, there was an acceptance test suite for each feature being

implemented. The participants were not provided with these acceptance test

suites because their purpose was the assessment of the implemented features.340

That is, the acceptance test suites were used to quantify the external quality of

the solutions implemented by the participants as well as their productivity (see

Section 3.6).

Our decision to adopt code katas is because their use is common in empirical

studies on TDD [5, 7, 8, 9, 34, 35]. Furthermore, this allowed us to use existing345

experimental materials (e.g., from the studies by Fucci et al. [8] and Dieste

et al. [35]). BSK and MRA have been also used as experimental objects in
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several empirical studies [5, 7, 8, 34, 35]. As for SSH and GOL, we created the

experimental materials (i.e., description of code katas, template projects, and

acceptance test suites).350

To gather some information on the participants (e.g., gender, self-reported

experience with Java programming, etc.), we defined an on-line pre-questionnaire

we shared with the participants through Google Forms. We also created on-line

post-questionnaires (by using Google Forms) to gather feedback after the par-

ticipants had dealt with the code katas.355

3.4. Tasks

The participants were asked to carry out four development tasks (in four

experimental sessions), one for each experimental object. To this end, each par-

ticipant received the features to be implemented and the template project of a

code kata, thus he/she implemented the features by filling the provided template360

project. No graphical user interface was required to implement the features.

3.5. Independent Variables

To carry out a development task, the participants were asked to follow ei-

ther TDD or YW (i.e., the approach they preferred, excluding TDD). Therefore,

Approach is the main independent variable (or also main or manipulated fac-365

tor) of our study. This variable is nominal and assumes two possible values:

TDD and YW. Since we collected data over time, we had a second main inde-

pendent variable named Period. It is a nominal variable that represents the

period during which each treatment (i.e., TDD or YW) was applied. Therefore,

this variable can assume the following values: P1, P2, P3, and P4. It is worth370

recalling that P1 and P3 correspond to the application of YW, while P2 and P4

correspond to that of TDD.

3.6. Dependent Variables

To quantify external quality of the implemented solutions, developers pro-

ductivity, number of tests written, we used the following dependent variables:375
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QLTY, PROD, and TEST. We chose these dependent variables because they

have been used in other empirical studies on TDD [5, 7, 8, 9].

The variable QLTY measures the external quality of the solution to a code

kata a participant implemented. This variable is defined as follows (e.g., Fucci

et al. [8]):380

QLTY =

∑#TF
i=1 QLTYi

#TF
∗ 100 (1)

where #TF is the number of features a participant tackled, while QLTYi is the

external quality of the i-th feature. A feature was tackled if at least one assert

in the acceptance test suite (for that feature) passed. #TF is formally defined

as follows:

#TF =

n∑
i=1

{
1 #ASSERTi(PASS) > 0

0 otherwise
(2)

As for QLTYi, it is computed as the number of asserts passed for the i-th feature385

divided by the total number of asserts for that feature:

QLTYi =
#ASSERTi(PASS)

#ASSERTi(ALL)
(3)

QLTY assumes values between 0 and 100. A value close to 0 means that the

quality of the implemented solution is low, while a value close to 100 indicates

high quality of the implemented solution.

As for the variable PROD, it measures the productivity of a participant when390

carrying out the development task. PROD is defined as follows (e.g., Tosun et

al. [7]):

PROD =
#ASSERT (PASS)

#ASSERT (ALL)
∗ 100 (4)

where #ASSERT(PASS) is the number of asserts passed in the acceptance test

suites, while #ASSERT(ALL) is the total number of asserts in the acceptance

test suites. PROD assumes values between 0 and 100, where a value close to 0395

means low productivity, while a value close to 100 means high productivity.

The variable TEST quantifies the number of unit tests a participant wrote.

It is defined as the number of asserts in the test suite written by a participant

when tackling the development task (e.g., Fucci et al. [8]). TEST assumes

(integer) values between 0 and ∞. A high value is desirable.400

16



Table 2: Description of the mutation operators.

Mutation operator Description

AOR (Arithmetic Operator Replacement) Replaces an arithmetic operator (e.g., +) with another one (e.g., −)

LOR (Logical Operator Replacement) Replaces a logical operator (e.g., &) with another one (e.g., |)

COR (Conditional Operator Replacement) Replaces a conditional operator (e.g., &&) with another one (e.g., ||)

ROR (Relational Operator Replacement) Replaces a relational operator (e.g., >) with another one (e.g., >=)

ORU (Operator Replacement Unary) Replaces a unary operator (e.g., ++) with another one (e.g., −−)

LVR (Literal Value Replacement) Replaces a literal value (e.g., 0) with a default value (e.g., 1)

STD (STatement Deletion) Deletes a single statement (e.g., a return statement)

To quantify fault-detection capability of tests written, we leveraged mutation

testing [36]. Given a program, mutation testing consists of automatically seed-

ing artificial faults (i.e., mutation faults) to generate mutants, each of which

represents a faulty version of that program. Later, the test suite of the pro-

gram is run against the mutants to determine the extent to which the test suite405

is capable of killing the generated mutants (i.e., detecting the corresponding

mutation faults). For each solution implemented by a participant, we seeded

mutation faults into his/her production code (i.e., we did not seed any fault in

the test code) so generating mutants. To this end, we used the Major mutation

framework [37]. We opted for this framework because it is robust [38], pub-410

licly available [37], and has been adopted in previous work (e.g., Papadakis et

al. [38], Just et al. [39]). We applied the following mutation operators5 to gen-

erate mutants: AOR, LOR, COR, ROR, ORU, LVR, and STD. A description

of these operators is available in Table 2. This set of mutation operators is the

same as Papadakis et al. [38] used in their empirical investigation on the rela-415

tionship between mutation and real faults. We ran the test suite the participant

had written against the generated mutants so computing the MUTation score

(MUT), namely the dependent variable we used to estimate fault-detection ca-

pability of tests written. MUT is computed as follows (e.g., Jorgensen [36]):

5They alter a program by systematically applying a rule (e.g., they replace the + arithmetic

operator with the − one).
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420

MUT =
#MUTANTS(KILLED)

#MUTANTS(ALL)
∗ 100 (5)

where #MUTANTS(KILLED) is the number of mutants the test suite killed,

while #MUTANTS(ALL) is the total number of generated mutants. MUT

assumes values in the interval [0,100]. The greater the MUT value, the better it

is. In particular, it has been proven that MUT values close to 100 imply a higher

fault-detection capability as compared with MUT values close to 0 [38]. This is425

why we leveraged mutation testing to estimate the fault-detection capability of

written tests.

Besides the above-mentioned constructs, we investigated four constructs

dealing with the development process underlying TDD, namely: test-first se-

quencing, granularity, uniformity, and refactoring effort. To quantify these con-430

structs, we broke down the development process of participants applying TDD

into small cycles as done by Fucci et al. [5]. A cycle consists of a sequence

of elementary actions and ends with a successful regression testing (i.e., the

regression test suite does not highlight regressions). Thanks to the heuristics

devised by Kou et al. [40], it is possible to determine the type of each cycle435

(e.g., test-first or refactoring). In Table 3, we report the heuristics we exploited

to determine the type of the cycles when the participants applied TDD. The

considered heuristics are implemented in the Besouro tool [41].

The test-first sequencing construct indicates the prevalence of test-first se-

quencing within development processes underlying TDD. We quantified this440

construct by means of the SEQ dependent variable, which is defined as fol-

lows [5]:

SEQ =
#CY CLES(TEST -FIRST )

#CY CLES(ALL)
∗ 100 (6)

where #CYCLES(TEST-FIRST) is the number of cycles classified as test-first

by applying the heuristics in Table 3 when a participant followed TDD. #CY-

CLES(ALL) is, instead, the total number of cycles for that participant. The445

SEQ variable assumes values between 0 and 100. The higher the value for this

variable, the higher the amount of test-first cycles, when a participant applied
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Table 3: Heuristics implemented in Besouro [41] to determine the type of cycles (the descrip-

tion of these heuristics is taken from Kou et al.’ paper [40]).

Cycle type Sequence of actions

Test-first Test creation → Test compilation error → Code editing →Test failure → Code editing → Test pass

Test creation → Test compilation error → Code editing → Test pass

Test creation → Code editing → Test failure → Code editing → Test pass

Test creation → Code editing → Test pass

Refactoring Test editing (file size changes ± 100 bytes) → Test pass

Code editing (number of methods, or statements decrease) → Test pass

Test editing AND Code editing → Test pass

Test addition Test creation → Test pass

Test creation → Test failure → Test editing → Test pass

Production Code editing (number of methods unchanged, statements increase) → Test pass

Code editing (number of methods increase, statements increase) → Test pass

Code editing (size increases) → Test pass

Test-last Code editing → Test creation → Test editing → Test pass

Code editing → Test creation → Test editing → Test failure → Code editing → Test pass

Unknown None of the above → Test pass

TDD, is.

Granularity refers to the extent to which the development process underlying

TDD is fine-grained (or coarse-grained). To estimate this construct, we used the450

GRA dependent variable. It is computed as the median duration (expressed in

minutes) of the development cycles a participant carried out [5]. This variable

ranges between 0 and ∞. A low GRA value indicates that a participant mostly

carried out short cycles—i.e., his/her development process was fine-grained. On

the other hand, a high GRA value indicates that a participant tended to carry455

out long cycles—i.e., his/her development process was coarse-grained. The use

of median to compute GRA, rather than mean, allows reducing the impact

of outliers [5].

Uniformity indicates how uniform the development process underlying TDD

is. This construct is quantified by means of the UNI variable, which is computed460

as the Median Absolute Deviation (MAD) of the cycle duration. This variable

ranges between 0 and∞. The lower the UNI value, the more uniform the cycles

carried out by a participant are. A UNI value equal to 0 means that the cycles
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had mostly the same duration. The use of MAD to compute GRA, rather than

standard deviation, allows reducing the sensitivity to outliers [5].465

Refactoring effort indicates the prevalence of refactoring within the devel-

opment process underlying TDD. We used the variable REF to estimate the

refactoring effort construct. It is computed as follows [5]:

REF =
#CY CLES(REFACTORING)

#CY CLES(ALL)
∗ 100 (7)

where #CYCLES(REFACTORING) is the number of cycles classified as refac-

toring (by using the heuristics in Table 3) when a participant followed TDD.470

The REF variable assumes values between 0 and 100. The higher the value

for this variable, the higher the refactoring effort of a participant, when he/she

applied TDD, is.

Since test-first sequencing, granularity, uniformity, and refactoring effort

characterize the development process underlying TDD, we took into account475

these constructs only when the participants applied the TDD approach (i.e.,

within periods P2 and P4).

3.7. Hypotheses

We formulated and investigated the following parameterized null hypotheses:

HN1X. There is no statistically significant effect of Approach with respect to480

X (i.e., QLTY, PROD, TEST, or MUT).

HN2X. There is no statistically significant effect of Period with respect to X

(i.e., QLTY, PROD, TEST, MUT, SEQ, GRA, UNI, or REF).

The alternative hypotheses were two-tailed (i.e., whatever the independent vari-

able was, we did not consider the direction of its effect). We defined HN1X to485

study RQ1, while HN2X to study RQ2.

3.8. Study Design

In Table 4, we summarize the design of our cohort study. We randomly split

the participants into two groups, G1 and G2, each of which had 15 participants.
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Table 4: Summary of the study design.

Period

P1 (16/11/2016) P2 (07/12/2016) P3 (03/05/2017) P4 (04/05/2017)

Group G1 YW, BSK TDD, GOL YW, SSH TDD, MRA

G2 YW, MRA TDD, SSH YW, GOL TDD, BSK

Whatever the group was, the participants experimented each treatment (i.e.,490

TDD or YW) twice. In particular, both groups experimented: (i) YW in the

first period (i.e., P1); (ii) TDD in the second period (i.e., P2); (iii) YW in third

period (i.e., P3); and (iv) TDD in the last period (i.e., P4). Accordingly, the

design of our study is repeated measures (or within-subjects). In each period,

the participants in G1 and G2 dealt with different experimental objects. For495

example, in P1, the participants in G1 dealt first with BSK, while those in G2

dealt first with MRA. At the end of the study, the participants had tackled each

experimental object only once. We used two experimental groups, rather than

only one, to control for the effect of the experimental objects.

3.9. Procedure500

The Integration and Testing course—i.e., the course in which the exper-

imental sessions corresponding to P1 and P2 took place—started in October

2016. A mentioned before, we gathered some demographic information on the

participant through an on-line pre-questionnaire at the beginning of that course.

The first experimental session (corresponding to the period P1) took place on505

November 16th, 2016. In particular, we administered the participants with the

YW treatment. Between the beginning of the course and P1, the participants

had never dealt with TDD. On the other hand, they had knowledge of unit

testing, iterative test-last development, and big-bang testing. This is because

the participants had taken part in two training sessions and carried out some510

homework. It is easy to grasp that the first experimental session was introduced

to have a baseline when the participants were not knowledgeable on TDD yet.

The first application of the TDD treatment took place on December 7th,

2016 (i.e., P2). The participant learned TDD between P1 and P2. They had
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taken part in three training sessions on TDD and had completed some homework515

by using this development practice. Given the previous considerations, we can

exclude that some knowledge of TDD had affected the application of the YW

treatment in P1.

The participants applied the YW treatment again on May 3rd, 2017 (i.e.,

P3), while the second application of the TDD treatment happened on May 4th,520

2017 (i.e., P4). Periods P3 and P4 took place in the Software Quality course.

From P2 to P3 passed about six months—over this span of time, the participants

followed the same university curricula courses. In P3, we informed the students

not to use TDD, in order to avoid affecting the results in an undesirable way.

Although we asked the participants not to use TDD, they knew TDD. Therefore,525

we cannot exclude that some knowledge of TDD had affected the YW treatment

in P3. On the other hand, we assessed the retainment of TDD by asking the

participants to use TDD (once again) in P4.

The execution of our study as additional teaching activities of the Integration

and Testing and Software Quality courses somewhat imposed the time span we530

considered in that study. This is to say that a larger time span could not

represent a feasible alternative in our case since the Software Quality course

represented the only alternative to catch the largest number of students who

had previously attended the Integration and Testing course. Moreover, the

considered time span allowed us to counteract the following problems that are535

typical in longitudinal cohort studies: participants sometimes drop out, while

others could lose the motivation to participate. It is worth recalling that the

considered time span of about six months to study the retainment of TDD

is similar to the one by Latorre [22] (i.e., the only study that has somehow

investigated the retainment of TDD, see Section 2).540

The development tasks were executed, under controlled conditions, in a lab-

oratory at the University of Bari. In each period, the participants in G1 and G2

were assigned to the PCs in the laboratory—this laboratory was also used for

the training sessions. When assigning the participants to the PCs, we alternated

a participant in G1 with a participant in G2 to avoid that participants dealing545
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with the same experimental object were close to one another. Such an arrange-

ment aimed to avoid interactions among the participants. We also monitored

them during the execution of the tasks. Each experimental session lasted three

hour and a half.

The PCs in the laboratory were all equipped with the same hardware and550

software. On these PCs, we had installed Eclipse with the Besouro plugin [41].

Each participant received the description of code kata to be implemented, while,

on the PC, he/she found the template project (for Eclipse) corresponding to

that code kata. To carry out the development tasks, the participants had to use

Java, JUnit, and Eclipse. At the beginning of a task, the participants launched555

Besouro within Eclipse, which started gathering data on their development pro-

cess. These data allowed us to determine the type of development process of

the participants who applied the TDD approach. At the end of each task, the

participants uploaded their implemented solutions on GitHub and then filled

out a post-questionnaire to gather feedback on the executed task.560

3.10. Analysis Procedure

We analyzed the gathered data according to the following procedure:

1. Descriptive Statistics and Exploratory Analyses. We computed de-

scriptive statistics (i.e., mean, median, and standard deviation), to sum-

marize the distributions of the dependent variable values. To graphically565

summarize these distributions, we also used boxplots.

2. Inferential Statistics. We used the Linear Mixed Model (LMM) anal-

ysis method to test the defined null hypotheses. Such a method is appro-

priate for the analysis of data from longitudinal studies [42]. LMMs are

an extension of linear models containing both fixed and random effects.570

As for HN1X, we built, for the dependent variable X (e.g., QLTY), the

following LMM:

LMM1X = X ∼ Approach+Group+Approach : Group+(1|Participant)

(8)
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where Approach (i.e., the main independent variable), Group—it as-

sumes G1 or G2 as a value—, and their interaction (i.e., Approach:Group)

are the fixed effects. LMM1X also includes a random effect, namely Par-575

ticipant—it identifies each participant (e.g., 01 is the first participant).

Modeling the participants with a random effect is customary in software

engineering experiments [30]. When building LMM1X, we took into ac-

count Group because, according to the study design, it also represents

the sequence (i.e., the order in which the treatments are applied in com-580

bination with the experimental objects). The sequence effect should be

analyzed in repeated-measures designs (like ours) [30]. If LMM1X revealed

a statistically significant effect of Approach, we could reject HN1X. The

use of LMM1X is new with respect to the paper by Fucci et al. [27].

To test HN2X, we built a second LMM that included Period (instead of585

Approach):

LMM2X = X ∼ Period+Group+Period : Group+(1|Participant) (9)

LMMs have two assumptions that must be met: (i) the model residuals

must be normally distributed; and (ii) their mean must be zero [30]. In

case LMM assumptions are not met, transforming the dependent variable

values is an option (e.g., log-transformation) [30]. To check the normal-590

ity of the residuals, we used the Shapiro-Wilk test (Shapiro test, from

here onwards) [43].

Whatever the test of statistical significance was, we set the α value at

0.05—i.e., we accepted a probability of 5% of committing a Type-I error

(this is customary in software engineering experiments).595

4. Results

In the following of this section, we first present the results from the descrip-

tive statistics and exploratory analyses and then we provide results from the

inferential statistics.

24



4.1. Descriptive Statistics and Exploratory Analyses600

In Table 5, we report, for each dependent variable, mean, median, and Stan-

dard Deviation (SD) grouped by Period and Approach.

4.1.1. QLTY—External Quality of Implemented Solutions

In Figure 2, we report the boxplots for the QLTY variable grouped by Period

or Approach. The (overall) results summarized in Figure 2, along with those605

summarized in Table 5, do not suggest differences in the QLTY values between

TDD and YW (e.g., on average, QLTY is equal to 60.81 for TDD, while it is

equal to 61.22 for YW). This trend is confirmed when comparing P4 (TDD)

with P1 (YW), as well as P2 (TDD) with P3 (YW),—i.e., same experimental

objects but different treatment. For instance, in P4 and P1, the mean values610

for QLTY are similar (58.53 vs. 59.39), although the participants applied either

TDD or YW while tackling the same experimental objects. The comparison

between P2 and P3 leads to a similar observation.

By looking at the boxplots in Figure 2, we can notice that there are no

remarkable differences in the QLTY values when passing from one period to615

another one. In particular, if we compare the boxplots for P1 and P3—i.e.,

same YW treatment but different experimental objects—, we can notice that

they overlap and the median level in P1 is higher than that in P3 (76.76 vs. 71.28

as shown in Table 5). As for the periods P2 and P4—i.e., same TDD treatment

but different experimental objects—, the boxplots in Figure 2 overlap and the620

median level is higher in P4 (69.72 vs. 74.76). That is, it seems that, when the

experimental objects are BSK and MRA (i.e., in P1 and P4), the medians are

higher. Therefore, the observed slight differences between P1 and P3, as well as

between P2 and P4, seem to be due to the experimental objects. Summing up,

there is no evidence that TDD is not retained with respect to QLTY.625

4.1.2. PROD—Developers’ Productivity

In Figure 2, we report the boxplots for the PROD variable grouped by Period

or Approach. Overall, it seems there is a slight difference in the PROD values
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Table 5: Descriptive statistics for each dependent variable grouped by Period and Approach.

Variable Statistic Period (Approach) Approach

P1 (YW) P2 (TDD) P3 (YW) P4 (TDD) YW TDD

QLTY Mean 59.39 63.1 63.05 58.53 61.22 60.81

Median 76.76 69.72 71.28 74.76 72.97 71.99

SD 37.85 31.98 30.73 34.58 34.23 33.11

PROD Mean 34.11 32.47 30.99 37.96 32.55 35.22

Median 27.52 29.06 27.9 42.85 27.9 34.88

SD 32.18 29.03 28.97 29.19 30.4 29

TEST Mean 4.93 7.83 7.93 10.1 6.43 8.96

Median 4 6.5 5 8.5 5 7

SD 4.05 5.52 7.51 7.24 6.17 6.48

MUT Mean 31.98 32.07 31.99 48.52 31.99 40.29

Median 24.1 37.32 35.43 48.5 34.25 40.91

SD 30.97 20.78 23.65 25.18 27.32 24.34

SEQ Mean - 27.91 - 22.3 - 25.1

Median - 19.21 - 19.09 - 19.09

SD - 25.73 - 20.27 - 23.1

GRA Mean - 10.29 - 4.68 - 7.49

Median - 4.26 - 2.5 - 3.03

SD - 16.33 - 6.47 - 12.62

UNI Mean - 5.76 - 2.82 - 4.29

Median - 3.22 - 1.74 - 2.33

SD - 6.5 - 4 - 5.54

REF Mean - 22.89 - 23.69 - 23.29

Median - 18.61 - 25.36 - 21.98

SD - 17.4 - 14.22 - 15.73
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Figure 2: Boxplots for QLTY (i.e., external quality of implemented solutions) grouped by

Period and Approach.

between TDD and YW (see Table 5 and Figure 3). This difference in favor of

TDD; for instance, the mean PROD value for TDD is equal to 35.22, while that630

for YW is equal to 32.55. By comparing pairs of periods in which the same

experimental objects are used (but different treatments are applied), we can

notice that the PROD values in P4 (TDD) are better than those in P1 (YW);

e.g., the median values are equal to 42.85 and 27.52 in P4 and P1, respectively.

Namely, it seems that the participants who applied TDD on BSK and MRA635

achieved PROD values better than the participants who applied YW on the

same experimental objects. When comparing P2 (TDD) and P3 (YW)—the

experimental objects were GOL and SSH—, it seems that there is no difference in

the PROD values. For instance, the boxplots for P2 and P3 are very similar (see

Figure 3).640

By observing the boxplots for PROD in Figure 3, we can notice that there is

not a huge difference in the PROD values among the periods. Indeed, when com-

paring P2 with P4—same TDD treatment but different experimental object—,

we can observe that the boxplots overlap, although the median level for P4 is
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Figure 3: Boxplots for PROD (i.e., developers’ productivity) grouped by Period and Ap-

proach.

higher than that for P2 (42.85 vs. 29.06). Such an improvement in the PROD645

values, when passing from P2 to P4, might indicate a retainment of TDD. As

for the comparison between P1 and P3—same YW treatment but different ex-

perimental object—, the boxplot for P1 is very similar to that for P3.

4.1.3. TEST—Number of Tests Written

The boxplots for TEST are shown in Figure 4. By observing the boxplots650

grouped by Approach, it seems that the participants who followed TDD wrote

more tests. For instance, the participants achieved, on average, TEST values

equal to 8.96 and 6.43 when following TDD and YW, respectively (see Ta-

ble 5). If we consider only P1 and P4—same experimental object but different

treatment—, we can observe a clear improvement in the TEST values in P4;655

e.g., the mean values are 4.93 and 10.1, respectively. Namely, the participants

who applied TDD in P4 seem to achieve higher TEST values than those who ap-

plied YW in P1 on the same experimental objects. Interestingly, the comparison

between P2 (TDD) and P3 (YW) does not highlight a remarkable difference.

Namely, it seems that the distributions of the TEST values for P2 (TDD) and660
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Figure 4: Boxplots for TEST (i.e., number of tests written) grouped by Period and Approach.

P3 (YW) are quite similar (e.g., the mean values are equal to 7.83 and 7.93,

respectively), despite the application of either TDD (in P2) or YW (in P3) on

the same experimental objects.

The boxplots in Figure 4 seem to suggest differences in the TEST values

among the periods. In particular, if we compare the YW treatments in P1 and665

P3, we can notice that the boxplot for P3 is higher than that for P1. The

descriptive statistics reported in Table 5 confirm that the TEST values are

better in P3 than in P1—e.g., the mean is equal to 7.93 for P3 and 4.93 for P1.

This difference might be due to the knowledge the participants had in P3 on

TDD. On the other hand, when comparing the TDD treatments in P2 and P4,670

the boxplots suggest a less pronounced difference in the TEST values. Indeed,

the boxplots for P2 and P4 overlap, even though the median level for P4 is

higher than that for P2 (8.5 vs. 6.5). Summing up, the results suggest that

TDD can be retained with respect to TEST.

4.1.4. MUT—Fault-detection Capability of Tests Written675

The boxplots for MUT are shown in Figure 5. By looking at the boxplots

arranged by approach, we can notice that the boxplot for TDD is higher and
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Figure 5: Boxplots for MUT (i.e., fault-detection capability of tests written) grouped by

Period and Approach.

shorter than that for YW. Such a difference can be also observed by looking at

Table 5. For example, the mean values of MUT are 31.99 and 40.29 for YW

and TDD, respectively. If we compare only P1 and P4—same experimental680

object but different treatment—, we can observe a clear improvement in the

MUT values in P4; e.g., the mean values are 31.98 and 48.52, respectively. As

for the comparison between P2 and P3—same experimental object but different

treatment—, the two distributions look similar; e.g., the boxplots depicted in

Figure 5 overlap. The descriptive statistics in Table 5 neither highlight large685

differences in the MUT values between P2 and P3 (e.g., the mean values are

32.07 and 31.99, respectively). Summing up, it seems that the differences in the

MUT values reflect those in the TEST values. The results from the inferential

statistics could strengthen such a conclusion.

As Figure 5 shows, there are differences in the MUT values among the peri-690

ods. If we consider only P1 and P3—the periods in which YW was applied—,

the distributions of the MUT values look different. In particular, the boxplots

for P1 and P3 overlap, but the latter is shorter and the median level is noticeably

higher (24.1 vs. 35.43, see Table 5). However, the mean values for P1 and P3
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are almost identical (31.98 vs. 31.99). That is to say that there is a high varia-695

tion in the MUT values in P1 that reduces in P3—after the participants knew

TDD. As for the comparison between the periods P2 and P4—those concerning

TDD—, we can observe two different distributions in Figure 5. In particular,

the distribution for P4 is noticeably higher than that for P2. That is, we can

notice a clear improvement in P4 as far as the MUT values are concerned. The700

descriptive statistics in Table 5 remark this improvement (e.g., the mean value

passes from 32.07 in P2 to 48.52 in P4). Summing up, it seems that TDD is

retained with respect to MUT.

4.1.5. SEQ—Test-first Sequencing

In Figure 6a, we graphically summarize the distributions of the SEQ values705

for P2 and P4—i.e., the two periods in which the participants applied TDD. By

looking at this figure, we can observe that the boxplots for P2 and P4 overlap

but the latter is shorter—i.e., there is less variation in the SEQ values in the

second application of TDD (as also confirmed by the SD values, 25.73 vs. 20.27,

reported in Table 5). Moreover, the median levels for P2 and P4 are very similar710

(19.21 vs. 19.09), even though, on average, the SEQ values for P2 are higher

than those for P4 (27.91 vs. 22.3). Summing up, it seems that there is no huge

difference in the application of TDD between P2 and P4 with respect to the

SEQ so suggesting a retainment of TDD.

4.1.6. GRA—Granularity715

The boxplots for GRA are depicted in Figure 6b. They seem to indicate a

difference in the GRA values between P2 and P4. In particular, the boxplot for

P4 is shorter and lower than that for P2—a lower GRA value is desirable (see

Section 3.6). The descriptive statistics confirm this outcome; e.g., the mean

GRA values are equal to 4.68 and 10.29 for P4 and P2, respectively. That is,720

it seems that the participants retained TDD when passing from P2 to P4 and

due to the TDD retainment there is an improvement in the GRA values in the

last period.
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Figure 6: Boxplots for (a) SEQ (i.e., test-first sequencing), (b) GRA (i.e., granularity), (c)

UNI (i.e., uniformity), and (d) REF (i.e., refactoring effort) grouped by Period (only P2

and P4).
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4.1.7. UNI—Uniformity

The distributions for UNI depicted in Figure 6c look different. In particular,725

the boxplot for P2 is higher and larger than the one for P4. The descriptive

statistics in Table 5 seem to also highlight differences in the UNI values; e.g.,

the mean values are equal to 5.76 and 2.82 for P2 and P4, respectively. In other

words, it seems that the participants achieved better UNI values in P4—a lower

UNI value is desirable (see Section 3.6)—and such an outcome could be due to730

a TDD retainment.

4.1.8. REF—Refactoring Effort

Regarding the distributions for REF, summarized in Figure 6d, we can ob-

serve that the distribution for P2 is quite similar to that for P4. Indeed, the

boxplots for P2 and P4 overlap, and the median level is higher in P4 (18.61 vs.735

25.36). However, the REF values are, on average, similar: 22.89 in P2 and 23.69

in P4. Again, it seems the participants retained TDD with respect to REF.

4.2. Inferential Statistics

In Table 6, we report the p-values from the LMM analysis methods. We

highlight the effects that are statistically significant with the asterisk symbol.740

4.2.1. QLTY—External Quality of Implemented Solutions

The assumption of normality was not met for LMM1QLTY since the Shapiro

test returned a p-value equal to 0.0003. To meet this assumption, we had to

use a (second) power transformation. After the data transformation, both as-

sumptions were met—the residuals were normally distributed according to the745

Shapiro test (p-value=0.285) and their mean was equal to zero. As shown in

Table 6, the effect of Approach is not statistically significant (p-value=0.8097).

Therefore, we cannot reject HN1QLTY. This outcome seems to suggest that

developing according to the TDD approach does not influence the external

quality of software products. LMM1QLTY also indicates a statistically signif-750

icant interaction between Group and Approach, which is due to the effect of
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Table 6: Results (i.e., p-values) from the inferential statistics. Note that LMM2X is built

only for SEQ, GRA, UNI, and REF.

Variable LMM1X LMM2X

Approach Group Approach:Group Period Group Period:Group

QLTY 0.8097 0.4432 <0.0001∗ 0.8837 0.6108 <0.0001∗

PROD 0.4967 0.8225 <0.0001∗ 0.7973 0.8225 <0.0001∗

TEST 0.0005∗ 0.0617 0.7706 0.0002∗ 0.0617 0.4632

MUT 0.0454∗ 0.734 0.0025∗ 0.0017∗ 0.734 <0.0001∗

SEQ - - - 0.4707 0.9864 0.5752

GRA - - - 0.1992 0.2123 0.0581

UNI - - - 0.021∗ 0.4406 0.2211

REF - - - 0.8581 0.5084 0.9611

∗ Statistically significant effect.

the experimental objects (e.g., regardless of the treatment, the distributions

for BSK are higher than those for GOL). As for the effect of Group, it is not

statistically significant.

As for LMM2QLTY, the assumptions were both met. The residuals of the755

built LMM were normally distributed (the Shapiro test returned a p-value equal

to 0.1166) and their mean was equal to zero. The LMM analysis method does

not allow us to reject HN2QLTY because the p-value for Period is 0.8837 (see

Table 6), namely the effect of Period is not statistically significant. This means

that there is neither a deterioration nor an improvement in the observed time760

span for the QLTY variable. Again, there is a statistically significant interaction

(i.e., Period:Group), which is due to the effect of the experimental objects. We

can therefore conclude that TDD can be retained in terms of external quality

of software products.

4.2.2. PROD—Developers’ Productivity765

The assumption of normality was not met for LMM1PROD since the Shapiro

test returned a p-value equal to 0.0035. To meet this assumption, we needed

a data transformation (square-root transformation, in particular). After trans-
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forming the data, the LMM assumptions were both satisfied—the residuals were

normally distributed according to the Shapiro test (p-value=0.2069) and their770

mean was equal to zero. As shown in Table 6, we cannot reject HN1PROD

since the effect of Approach for LMM1PROD is not statistically significant (p-

value=0.4967). This seems to suggest that developers who follow either the

TDD or YW approach exhibit a similar productivity. LMM1PROD also includes

a statistically significant effect, namely the one of Group:Approach. Again, this775

is due to the effect of the experimental objects. Finally, there is no statistically

significant effect of Group.

Also for LMM2PROD, the assumption of normality was not met—the Shapiro

test returned a p-value equal to 0.0143. Again, we needed a square-root trans-

formation to meet this assumption. After transforming the data, the LMM as-780

sumptions were both met—the residuals were normally distributed according to

the Shapiro test (p-value=0.0524) and their mean was equal to zero. As Table 6

suggests, we cannot reject HN2PROD because the effect of Period for LMM2PROD

is not statistically significant (p-value=0.7973). This outcome indicates that the

participants can retain TDD as far as their productivity is concerned. Finally,785

there is a statistically significant interaction (i.e., Period:Group) due to the

effect of the experimental objects.

4.2.3. TEST—Number of Tests Written

Since the residuals of LMM1TEST were not normally distributed (the p-value

the Shapiro test returned was <0.0001), we performed a log-transformation for790

TEST. Thanks to this transformation, the assumptions of LMM1TEST were

both met: the residuals followed a normal distribution (the p-value returned by

the Shapiro test was 0.0562) and their mean was equal to zero. As reported

in Table 6, LMM1TEST only includes a statistically significant effect, namely

that of Approach (p-value=0.0005). Therefore, we can reject HN1TEST and795

conclude that TDD significantly and positively affects the number of tests the

participants wrote.

Also for LMM2TEST, we needed a data transformation—the residuals for
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LMM2TEST were not normally distributed (the p-value the Shapiro test re-

turned was <0.0001). Therefore, we applied a log transformation, which allowed800

us to meet both LMM assumptions. In particular, the Shapiro test returned a

p-value equal to 0.0797, suggesting that the residuals followed a normal distribu-

tion. The mean of the residuals was equal to zero. Table 6 shows a statistically

significant effect of Period (p-value=0.0002). Therefore, we can reject HN2TEST

and conclude that Period significantly affects the number of tests the partici-805

pants wrote. By looking at the boxplots in Figure 4, we can notice that this

statistically significant effect is not due to a deterioration of TDD over time—

the worst distribution of the TEST values can be observed in P1 while the best

distribution can be observed in P4. We can therefore conclude that developers

following TDD retain the ability to write unit tests.810

4.3. MUT—Fault-detection Capability of Tests Written

The LMM assumptions were both satisfied for LMM1MUT—the Shapiro test

returned a p-value equal to 0.247 and the mean of the residuals was equal to

zero. LMM1MUT allows us to reject HN1MUT because the p-value of Approach

is equal to 0.0454. That is, there is a statistically significant effect of Approach,815

in favor of TDD, on the fault-detection capability of the written tests. We

can therefore conclude that TDD practitioners tend to write more tests than

non-TDD ones and, moreover, the fault-detection capability of these tests is

significantly better. As for the p-value (0.0025) of Approach:Group, it sug-

gests that the fault-detection capability of the written tests can depend on the820

development task at hand.

The residuals of LMM2MUT were normally distributed (the Shapiro test re-

turned a p-value equal to 0.5289) and their mean was equal to zero. LMM2MUT

includes two statistically significant effects: one for Period (p-value=0.0017) and

one for Period:Group (p-value<0.0001). The p-value of Period allows rejecting825

HN2MUT, so recognizing that Period significantly affects the fault-detection ca-

pability of the written tests. Moreover, we can observe an improvement of the

MUT values in P4 with respect to any other period (e.g., see Figure 5). There-
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fore, we can conclude that developers can retain their ability to write tests in

terms of both number of written tests and fault-detection capability of these830

tests. Again, the fault-detection capability of the written tests seems to depend

on the development task at hand.

4.3.1. SEQ—Test-first Sequencing

The assumption of normality was not satisfied for LMM2SEQ (the Shapiro

test returned a p-value equal to 0.0005). To satisfy both LMM assumptions, we835

square-transformed the SEQ variable. After this data transformation, the resid-

uals were normally distributed according to the Shapiro test (p-value=0.3846)

and their mean was equal to zero. By looking at the p-values in Table 6, we can

notice that LMM2SEQ does not include a statistically significant effect for Pe-

riod (p-value=0.4707). This outcome suggests that developers can retain TDD840

with respect to the test-first sequencing. As for the other p-values, they indi-

cate a statistically significant effect for neither Group nor Period:Group. The

p-value for Period:Group seems to indicate that developers’ ability to follow the

test-first dynamic is not affected by the development task (i.e., the experimental

object).845

4.3.2. GRA—Granularity

To met the assumptions of LMM2GRA, we had to apply a log-transformation.

This is because the Shapiro test indicated a violation of the normality assump-

tion of the residuals (p-value<0.0001). Thanks to the log-transformation, we

satisfied the assumption of normality of the residuals (the p-value returned by850

the Shapiro test was 0.0568) as well as that concerning their mean. As shown

in Table 6, the effect of Period for LMM2GRA is not statistically significant (p-

value=0.1992) although the boxplots in Figure 6b highlighted an improvement

in P4 (with respect to P2). On average, the granularity of the development

cycles was 4.26 and 2.5 minutes. These outcomes suggest that developers can855

retain their ability to follow short cycles when applying the TDD approach. The

p-values for Group and Period:Group did not highlight any statistically signif-
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icant difference. Similarly to the test-first sequencing characteristic, it seems

that the granularity of development cycles is not affected by the tasks.

4.3.3. UNI—Uniformity860

We applied a log-transformation to meet the assumptions of LMM2UNI. This

is because the residuals were not normally distributed according to the Shapiro

test (p-value<0.0001). By applying the log-transformation we met both LMM

assumptions (in particular, the Shapiro test returned a p-value equal to 0.065).

The p-values in Table 6 indicate a statistically significant effect of Period (p-865

value=0.021). The distributions of the UNI values (e.g., see Figure 6c) suggest

that, in P4, the development cycles of the participants who applied TDD were

more uniform as compared to P2. This is to say that developers can retain the

TDD characteristic of carrying out uniform development cycles. Finally, there

is a statistically significant effect for neither Group nor Period:Group—i.e., it870

seems that the tasks do not influence the uniformity of development cycles.

4.3.4. REF—Refactoring Effort

We did not need any data transformation for LMM2REF because the assump-

tions were both met. In particular, the residuals followed a normal distribution

(the Shapiro test returned a p-value equal to 0.1134) and their mean was equal875

to zero. The results, shown in Table 6, do not highlight any statistically signif-

icant effect. Concluding, it seems that the refactoring effort is retained when

practicing TDD. Again, the tasks seem not to influence the refactoring effort.

5. Discussion

In this section, we first answer the RQs to delineate the main findings of880

our cohort study. We then discuss these findings and present their practical

implications. Finally, we discuss the threats that might have affected the validity

of these findings.
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5.1. Answering Research Questions

As for the comparison between TDD and YW, we observed differences in885

favor of the former when considering the amount of written tests (i.e., TEST).

Such a difference is also present when considering the fault-detection capability

of the tests written (i.e., MUT). No other differences emerged. Accordingly, we

can answer RQ1 as follows.

While TDD does not increase (or decrease) the external quality

of software products and developers’ productivity, it leads de-

velopers to create larger test suites with a higher fault-detection

capability.

We observed no deterioration, during the considered time span, in the ex-890

ternal quality of the solutions our participants implemented (i.e., QLTY), their

productivity (i.e., PROD), and number of tests they wrote (i.e., TEST). Fur-

thermore, the way in which the participants followed the process underlying

TDD (i.e., in terms of SEQ, GRA, UNI, and REF) did not deteriorate over

time. On the other hand, we observed a significant improvement in the num-895

ber of tests, which led to a better fault-detection capability of these tests (i.e.,

MUT). The uniformity of the cycles enhanced with time as well. On the basis

of these results, we can answer RQ2 as follows.

Developers retain TDD at least for six months. In particular,

while the external quality of software products and developers’

productivity are neither deteriorated nor improved over that

time span, the amount of written test increases as well as their

fault-detection capability. Moreover, the way in which develop-

ers follow TDD remains constant in the considered time span,

except for the uniformity of the process underlying TDD, which

is more uniform over time.

This outcome is perhaps not overly surprising, but evidence needs to be obtained

through empirical studies to move from opinions and common sense to facts [44,900
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45], as well as to have a first understanding of TDD retainment on several

constructs.

5.2. Overall Discussion and Future Research

As compared to developers who follow a non-TDD approach, we observe

that developers practicing TDD, write more unit tests that have a better fault-905

detection capability as well. This finding is in line with that by Erdogmus et

al. [9] so bringing further evidence that TDD has a positive effect on the number

of written tests. Therefore, this finding goes in the direction of increasing the

body of knowledge on the effect of TDD.

Having more unit tests, with a higher fault-detection capability, should en-910

courage software companies that value unit testing (e.g., to create regression

test suites for continuous integration) to adopt TDD. Possible benefits deriving

from having many tests with high fault-detection capability could be early fault

detection and facilitated comprehension of unfamiliar source code (e.g., it has

been shown that developers dealing with an unfamiliar codebase look for exam-915

ples of input/output values to better understand that codebase [46]—unit tests

contain such a kind of examples).

Our results do not highlight any improvement due to TDD with respect

to the external quality of software products and developers’ productivity, so

contributing to the null results in the TDD research (e.g., Fucci et al. [8], Fucci et920

al. [47]). However, unlike previous studies, we observe that TDD has no effect

even when the same individuals are tested again several months later, under

similar conditions. Time did not reduce novice developers’ performance when

TDD was applied, hinting at the fact that they soon regained familiarity with

this technique, similarly to what Latorre reported for the junior developers925

involved in his study [22]. Although carrying out longitudinal studies is difficult

in software engineering (e.g., controlling for maturation or keeping motivated

the participants), we put forward the idea that we might not be looking long

enough (rather than hard enough) for the claimed benefits of TDD to become

apparent. As a starting point towards this direction, we recommend empirical930
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studies in academia capable of following students’ careers over several years and

thus achieving a good amount of control (e.g., based on grades). We advise this

kind of investigation very risky and difficult to conduct. However, our study

seems to justify future research on this matter.

We show that developers retain TDD, for at least, a time span of six months.935

This finding is in line with the preliminary empirical evidence gathered by La-

torre [22] on the retainment of TDD—where he observed that, in a six-month

time span, three developers retained TDD in terms of developers’ performance

and conformance to TDD. Based on the current empirical evidence on TDD,

we can deduce that the investment in training new TDD practitioners is not940

squandered—it is preserved at least for a time span of six months. Further-

more, previous work has also shown that developers can correctly apply TDD

after a short practical session only [22]. Accordingly, we can postulate that the

investment in training new TDD practitioners is reasonable. The question that

now arises is how long such an investment is preserved, i.e., how long develop-945

ers retain TDD. To answer this question, further longitudinal cohort studies are

needed. Our study has, therefore, the merit to increase the body of knowledge

on the retainment of TDD as well as to delineate new possible investigations

on how long developers retain TDD. Among the investigated constructs, we

observed that the retainment of TDD is particularly noticeable in the amount950

of tests written since it increased after the participants had known and prac-

ticed TDD. This seems to suggest that TDD raises developers’ awareness about

the importance of writing unit tests; furthermore, these tests exhibit a higher

fault-detection capability. Therefore, we advise instructors to teach TDD when

training new unit testers.955

We observe neither a deterioration nor an improvement over time in the

external quality of software products and developers’ productivity. A possible

cause for this finding is that, with the only exception of the uniformity of the

process underlying TDD, the way in which the participants followed TDD (i.e.,

test-first sequencing, granularity, and refactoring effort) remained constant in960

the considered time span. Past work has shown that (external) quality and pro-
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ductivity improvements are primarily positively associated with the granularity

and uniformity of the process underlying TDD [5]. Therefore, it is possible that

observing a significant difference in the uniformity of the process underlying

TDD is not enough to show alone a significant difference in the external quality965

of software products and developers’ productivity.

Finally, to bring further evidence on both effect and retainment of TDD, we

foster replications of our study. To this end, we made available on the web our

laboratory package:

• https://doi.org/10.6084/m9.figshare.14102063.v1.970

5.3. Threats to Validity

To determine the threats that could affect the validity of our study, as well

as its results, we followed the guidelines by Wohlin et al. [33]. Despite our effort

to lessen or avoid as many threats as possible, some of them are unavoidable.

This is because reducing or avoiding a kind of threat (e.g., internal validity) may975

intensify or introduce another kind of threat (e.g., external validity) [33]. Since

we conducted the first cohort study investigating the theory of TDD retainment,

we preferred to reduce threats to internal validity (i.e., make sure that the

cause-effect relationships were correctly identified), rather than being in favor

of external validity.980

5.3.1. Threats to Internal Validity

This kind of threat concerns internal factors of our study that could have

affected the results.

• Selection. The participants in our study were volunteers. This might

threaten the validity of the results because volunteers might be more mo-985

tivated than the overall population [33].

• Diffusion or treatments imitations. To prevent that participants

exchanged information during the development tasks, at least two re-

searchers monitored them. Moreover, the participants were assigned to
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each workstation in the laboratory alternating the experimental objects.990

We also prevented the diffusion of experimental materials by gathering

them at the end of each task and asking the participants not to talk with

their classmates about the tasks they had implemented. Despite our effort

to lessen this threat, we cannot exclude its presence, e.g., some participates

might have exchanged information about the tasks outside the laboratory.995

• Resentful demoralization. Some participants might not perform as

well as they generally would since they might have received a less desirable

treatment (or tasks). If this threat had existed in our study, it would have

equally affected TDD and YW.

• Maturation. The control over participants was checked by making sure1000

that the students attended the same courses between the first observation

and the last one. This might affect the obtained results. Moreover, it

seems that four participants did not launch Besouro at the beginning of

the TDD sessions. To have all data paired, we did not take into account

these participants in the analyses of SEQ, GRA, UNI, and REF. If the1005

participants had launched Besouro, the results might have changed.

• History. The time interval between the first and second applications

of YW was slightly greater than the time interval between the first and

second applications of TDD. This might affect the obtained results.

5.3.2. Threats to Construct Validity1010

They concern the relationship between theory and observation.

• Mono-method bias. We used a single measure for each investigated

construct. This might affect the validity of the results if there was a

measurement bias. To mitigate this threat, we used well-known mea-

sures [5, 7, 8, 9].1015

• Hypotheses guessing. Participants in an empirical study might guess

the study goals and then behave according to their guesses. Although
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we did not disclose our study goals to the participants (i.e., we did not

tell them that they were involved in an empirical study, nor how it was

planned and how assignments were distributed among participants), some-1020

one might have guessed the goals and changed their behavior accordingly.

• Evaluation apprehension. Some people are afraid of being evaluated.

To mitigate this threat, we informed the participants that they would not

be evaluated on the basis of their performance in the study.

• Restricted generalizability across constructs. We found that TDD1025

positively affects the number of tests written and that there is a retainment

of TDD on the investigated constructs. However, we cannot exclude that

TDD has some side effects that our study was not able to reveal, as well

as that TDD is not retained for non-investigated constructs. To deal with

this threat, we selected the dependent variables according to industrial1030

needs [48] as well as our previous experiences [5, 8, 16].

5.3.3. Threats to Conclusion Validity

This kind of threat concerns the relationship between dependent and inde-

pendent variables.

• Reliability of treatment implementation. Some participants might1035

have followed the TDD approach more strictly than others. This could

threaten the validity of the obtained results. Moreover, some participants

might have followed the TDD approach when they were asked to use the

YW approach (i.e., in P3) or vice-versa (i.e., in P2 and P4). To miti-

gate this threat, we reminded the participants several times to follow the1040

treatment they were assigned to. Another threat concern the time span

considered in our study (e.g., a longer time span could negatively affect

the TDD retainment). Given that there is no guideline on the time-span

duration and a previous study has considered a six-month time span [22],

we believed that a time span of about six months sufficed to (preliminary)1045

study the TDD retainment even though we advise future research on the
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effect of longer time spans on the TDD retainment. However, a larger time

span would introduce some problems to counteract: participants could

drop out (shrinking the sample size and decreasing the amount of data

collected), while others could simply lose the motivation to participate.1050

• Random heterogeneity of participants. There is always heterogene-

ity in a study group [33]. To lessen this threat, our study group consisted of

students with similar backgrounds—i.e., students taking the same courses

in the same university with similar development experience. We collected

the general information of the sample through a questionnaire before as-1055

signing students to the groups.

• Reliability of measures. To measure sequencing, granularity, unifor-

mity, and refactoring effort, we exploited the Besouro plugin. Its use

might threaten the validity of our results. However, Besouro represents

the state-of-the-art tool for capturing the cycles when applying the TDD1060

approach [5, 10, 16, 49].

5.3.4. Threats to External Validity

External validity threats concern the ability to generalize the results.

• Interaction of selection and treatment. The participants of our co-

hort study were students and this might affect the generalizability of find-1065

ings with respect to software professionals. However, the used develop-

ment tasks did not require a high level of professional programming expe-

rience. Therefore, we believe that involving students in our study could be

considered appropriate, as suggested in the literature [50, 51]. Moreover,

the use of students as participants bring also a number of advantages like1070

having a homogeneous group of participants, having an opportunity of ob-

taining preliminary empirical evidence, etc. [50]. In this respect, thanks

to the use of students as participants, we could bring some evidence on

the TDD retainment through a longitudinal cohort study. The gathered
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evidence seems to justify field studies with professionals. This might rep-1075

resent a possible direction for future work.

• Interaction of setting and treatment. The used code katas might not

be representative of real-world development tasks. However, code katas

are widely utilized to assess TDD [5, 7, 8, 9] because they allow having

a better control over the participants. For example, such code katas are1080

conceived to be completed in an experimental session of approximately

three hours.

6. Conclusion

In this paper, we present the results from a (quantitative) longitudinal cohort

study with 30 novice developers to investigate the effect of TDD, as compared1085

to a non-TDD approach, as well as the retainment of TDD over a time span of

(about) six months.

As for the comparison of TDD with a non-TDD approach, we show that

TDD has no effect on external quality of software products and developers’

productivity. However, we observed that the participants practicing TDD wrote1090

significantly more unit tests, with a better fault-detection capability, than those

practicing a non-TDD approach. These results should foster software companies

that value unit testing to have teams of developers that know TDD.

The results from our study also suggest that developers retain TDD at least

for a six-month time span. This empirical evidence on the retainment of TDD,1095

together with past preliminary empirical evidence, allows us to conclude that

the investment to train TDD developers is guaranteed at least for a six-month

time span.
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