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Abstract 

Previous studies indicate that error-proneness risks can be isolated into risk containers created from architectural designs, 
to help detect and mitigate such risks early on. Like error-proneness, change propagation may lead to higher 
implementation and maintenance costs. We used automated tools to analyse four software development projects using 
three risk container types, each type based on a different architectural perspective. A strong and significant correlation 
between design change propagation and implementation co-change was observed for all three container types. We found 
that Design Rule Containers (DRCs), based on class diagrams, are the most effective for isolating change propagation 
because they have the least amount of container overlap, highest levels of internal coupling, highest co-change probability 
between classes that share containers, and the most change sets isolated in containers. Developers from two projects were 
able to justify why design dependencies had resulted in the top five DRCs being predicted to isolate the most change 
propagation. This and the previous error-proneness research suggests DRCs are an effective technique to detect and 
contain code maintainability risks at the design stage. These results provide some evidence that class diagrams are more 
useful than use case sequence diagrams for analysing maintainability risks in designs.  
 
 
Keywords: software architecture; change propagation; maintainability; risk; technical debt  

1. Introduction 

Unmanaged risks have been identified as a common factor in software projects that failed in terms of 
budget and schedule (Charette, 2005). Our aim is to help practitioners identify and mitigate maintainability 
risks early in the life-cycle, to increase the chances of project success. This is important because 
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“maintainability and development costs are in exponential relationship with each other” (Bakota et al., 2012, 
p. 1).  

Our approach digests an architecture into smaller chunks of elements, termed risk containers, which can be 
ranked by relative risk indicators and easily reasoned about. Ranking enables allocation of resources to areas 
of greatest risk, while a container’s scope shows the potential risk impact. Bouwers et al. (2010) explain that 
smaller architectural chunks can be easily understood. Their view is supported by our experimental results 
(Leigh et al., 2019): participants find it easier to locate cyclic dependencies in smaller risk containers than in 
the overall architecture diagram. 

The technical insight gleaned from the containers and their risk indicators support impact assessment and 
better inform risk management (e.g. re-design, implementation mitigations, or risk acceptance). Managers 
could track risk containers in project risk registers to better manage quality, schedule and cost compromises 
with technical teams, and avoid unnecessary technical debt whilst driving project progress forward. 

Our previous work (Leigh et al., 2017) compared Design Rule Containers to Use Case Containers and 
Resource Containers. Design Rule Containers are based on Design Rule Spaces (Xiao et al., 2014) populated 
from UML class diagrams (Figure 1). Resource Containers are seeded with resource (database, service, file) 
encapsulation classes with dependent classes recursively added (Figure 2). Use Case Containers have classes 
in the sequence diagram of a use case (Figure 3). 

 
 

Figure 1 Design Rule Container Example 

Figure 2 Resource Container Example 
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Risk containers created from designs enable projects using upfront design to isolate error-proneness risks 
before they become a problem. This is advantageous because errors found during design are less expensive to 
correct than errors found during testing (Akingbehin, 2005). Forming containers from design diagrams allows 
programming language independence.   

We selected these container types because they represent different and commonly used approaches to 
decomposing software systems from different architectural perspectives. They allow us to evaluate container 
types, perspectives, and diagrams that are helpful for risk analysis.  

Our previous work (Leigh et al, 2016, 2017) was limited to one maintainability risk, namely error-
proneness, which gave no insights about the generalizability of risk container types. This paper addresses that 
limitation with the following research question: 

 
Can implementation change propagation risks be isolated within risk containers created from a design 

time architectural description? 
 
Curtis et al. (2012) define technical debt as “the cost of fixing quality problems in production code that the 

organization knows must be eliminated to control costs or avoid operational problems”. Areas of excessive 
change propagation could be classified as technical debt. Nugroho et al. (2011) explain that technical debt 
accrues compound interest. It is advantageous to address such technical debt as early as possible, which 
supports the need for approaches based on upfront designs. 

Similar to error-proneness, change propagation is relevant to all software development projects. Highly 
coupled classes are more likely to change together when software is developed and maintained due to the 
ripple effect (Lindvall et al., 2003). As stated by Bass et al. (2012), “reducing the strength of coupling between 
two modules A and B will decrease the expected cost of any modification that affects A”. Hassan and Holt 
(2004) add that “the dangers associated with not fully propagating changes have been noted and elaborated by 
many researchers” and cite Brooks (1995) as cautioning about the risk associated with developers losing grasp 
of a system as it evolves.  

Wolfe and Horowitz (2017) explain that attention towards a search field of objects is modulated by five 
factors because limits on visual processing make it impossible to recognize everything at once. This implies 
that the size and complexity of the search scene will influence how quickly an individual can locate objects of 

Figure 3 Use Case Container Example 
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interest contained within it. Therefore, if the time to complete a task is limited, as it is usually the case in 
software development, objects of interest are more likely to be missed in larger and more complex search 
fields. Thus, greater complexity in design structures will increase the chances of software developers 
misunderstanding and not fully appreciating all of the discrete program modifications needed to correctly 
propagate an intended change. We presented some evidence to support this view in Leigh et al. (2019): when 
asked to identify the impact of design changes, participants made no errors if changes spanned multiple 
simpler container diagrams, but some participants assessing the same change on a single more complex 
diagram made errors. There have been further participants since that publication, but it remains the case that 
just one single error was observed in cases where eight participants were asked to impact changes spanning 
multiple container diagrams. This compares to one error being observed when just four participants had to 
impact the same change on a single diagram. The lower error frequency observed for the container participants 
supports the views or Wolfe and Horowitz. 

 The risk associated with developer oversights, misunderstanding and unfamiliarity leading to changes not 
being fully propagated can result in two potential impacts: 1) required modifications could be missed during 
change cost estimation resulting in the effort to implement change requests being underestimated; and 2) hard 
to find bugs might be inadvertently introduced that increase maintenance costs when they have to be fixed. 
Thus, excessive change propagation is a risk because it has the potential to unexpectedly inflate the cost of 
maintaining highly coupled parts of a software system. Isolation of change propagation risks in containers 
would support better understanding and estimation of the scope of change and will allow the change to be 
implemented with less risk helping to reduce unexpected impacts on the budget and schedule. 

In this paper we make several contributions: (i) an evaluation of each risk container type’s ability to predict 
and isolate implementation change propagation; (ii) identification of the most change propagation isolating 
container type; (iii) and formally defined container level change propagation metrics. We extend our previous 
work with: (iv) analysis of additional projects; (v) more detailed descriptions of the container population 
algorithms; and (vi) a formal definition of our class isolation metrics. 

The rest of this paper is organized as follows. In Section 2 we present an account of related works including 
risk containers, change propagation, and isolating change propagation. In Section 3 we describe the method 
used in our work. In Section 4 we report our experimental results. Finally, in Section 5 we conclude the paper 
and discuss future work opportunities. 

2. Related Work 

In this section we review work on risk containers and change propagation within software architectures. 

2.1. Risk Container 

The notion of risk container was first proposed in (Leigh et al., 2016), when we evaluated Design Rule 
Spaces (DRSpaces) for isolating implementation error-proneness. DRSpaces (Xiao et al., 2014) are graphs 
based on modularizing design rules (key interfaces) that split an architecture into independent modules. A 
module refers to parts of the system that are decoupled from each other by design rules. For example, a 
module might be an abstraction and its implementations (inheritance hierarchy) because those classes 
modularize chunks of related functionality for use by the rest of the system. Related functionality is 
modularized into the inheritance hierarchy because all members of the inheritance hierarchy provide common 
methods (i.e., methods with the same interface) to the rest of the system, whether they have different 
implementations per hierarchy member, or whether members provide the implementation they inherit from a 
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super class. Therefore, from the perspective of classes outside of the inheritance hierarchy, the inheritance 
hierarchy constitutes a module of related functionality (common methods).  

Xiao et al. extracted DRSpaces from source code using Wong et al.’s (2009) Design Rule Hierarchy 
(DRH) algorithm, whereas Design Rule Containers (Leigh et al., 2016, 2017) were populated from Unified 
Modelling Language (UML) designs. These different approaches reflect different motivations. Xiao et al. 
provided architectural insights into error and change-proneness of source code (Xiao et al., 2014), and we 
determined whether implementation error-proneness risks can be identified in upfront designs (Leigh et al., 
2016, 2017).  

When we compared container types for their ability to predict and isolate error-proneness we found that 
Design Rule Containers share fewer classes and isolate more structural coupling than Resource and Use Case 
Containers. This observation, allied to a strong and significant correlation between container structural design 
coupling and container implementation error-proneness, suggests that Design Rule Containers are the most 
effective of the three types tested for isolating error-proneness (Leigh et al., 2017). 

According to Lehnert’s (2011) taxonomy for software architecture change impact analysis techniques, 
Design Rule Containers can be categorized as a global analysis of architecture model scope with an input 
(artefact) granularity of classes, and an output (results) granularity of sub-systems (modules). Use Case and 
Resource Containers do not fit neatly into Lehnert’s output classification scheme because the available 
input/output entity granularities are system, sub-system, component, interface, class, and method. 

2.2. Change Propagation 

Change propagation is an important factor in maintainability. Martin (1997) suggested the Stable 
Dependencies Principle (SDP): if A depends on B, A should be less stable (less resistant to change) than B in 
order to ease any necessary propagation of changes from B to A. Wermelinger et al. (2011) assessed eight 
years of Eclipse’s architectural evolution, observing that the SDP and other dependency-based principles were 
part of Eclipse’s success in sustaining continuous evolution. 

Bengtsson et al. (2004) based their Architecture Level Modifiability Analysis (ALMA) method on 
assessing architectures using a set of predefined change scenarios. The architecture that could be adapted to 
support the most change scenarios with minimal impact is deemed to be the most modifiable. ALMA relies on 
subjective interviews of the designers to gather the likely change scenarios and is limited because it can only 
deal with business change requirements that have already been identified. 

The approach in (Clarkson et al., 2004) is not specific to software design. It requires every pathway 
between all components to be determined using a component dependency graph. The pathways between two 
components are used to calculate the combined risk of change propagation. The initial probabilities for change 
propagating between two components are derived from observed data. This method conflicts with our goal of 
design-time risk assessment because data on observed co-change is not available prior to implementation. The 
use of metrics allows an architecture to be assessed for arbitrary changes as opposed to ALMA’s limited set of 
predicted change scenarios. 

Abdelmoez et al.’s (2005) method does not require data on observed co-changes. Instead of calculating the 
change propagation probability from component dependencies, their method is based on the usage of public 
attributes and function parameters of class A by class B. This requires a higher fidelity diagram such as an 
object sequence diagram. In this case, change propagation is assessed to a higher fidelity than the cruder 
overall component level dependencies used in Clarkson et al. (2004). Shaik et al. (2006) reported that 
Abdelmoez et al.’s change propagation metric of is “helpful and effective in assessing the design quality of 
software architectures”. 
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Hassan and Holt (2004) tested four change propagation predicting heuristics on five systems. The four 
heuristics were based on: (i) the entities changed by the same developer, assuming that specific developers 
maintain specific areas of coupled code; (ii) co-change; (iii) call, use and dependency relations; and (iv) code 
structures defined in the same file. Average precision of the predicted versus the actual changes was always 
low. Recall was greater than 0.74 for all heuristics apart from (iii). Hassan and Holt concluded their “results 
cast doubt on the effectiveness of code structures such as call graphs as good indicators of change 
propagation” (p. 9) as used by Abdelmoez et al. 

Rostami et al. (2015) attempt to address these limitations by enhancing the architecture with additional 
context information and providing tooling to recommend the software units impacted by a change scenario. 
The context information can be drawn from various sources including source code files, technologies, build 
configuration, test cases, allocation context, deployment and personnel. The authors found that for most 
change scenarios tested, participants who used their tooling were able to identify change impacts more 
precisely than a control group and expert group who did not use their tool. Whilst the benefits of allying 
automation with a diverse range of contextual information are clear, many of the context sources are not 
available at the design stage. 

Mo et al. (2016) proposed the Decoupling Level (DL) metric to assess how decoupled architectural 
modules are from each other. Their work on DL extends the work with the DRH algorithm already discussed 
(Wong et al., 2009). The overall DL for an architecture is the sum of the DLs for each layer in the DRH. As 
specified, DL does not support our goal because its formula is based on source code files rather than design 
diagrams. DL also does not support our goal of ranking parts of an architecture w.r.t. change propagation risk. 
Although the DRH-level DL values could be used to rank layers, they could not be used to rank containers. 

2.3. Isolating Change Propagation 

Wong et al.’s (2009) motivation for the DRH algorithm was to separate modules of related classes in UML 
designs to maximise developer parallelism. For their proposition, changes should not propagate beyond the 
module boundaries. The authors observed lower levels of communication between developers working on 
different modules in the same layer than those working across layers of the DRH. Kazman et al. (2015) 
provided further evidence by using DRSpaces to identify that change-prone files are highly architecturally 
connected, i.e. classes with a high degree of coupling are more likely to change together. We found that 
Design Rule Containers have a higher degree of internal coupling and isolate more change sets than the other 
types of containers tested (Leigh et al., 2017).  

Whilst all this evidence is supportive, it does not directly test whether change propagation risks can be 
isolated into containers, which is the purpose of the work presented in this paper. If container-level change 
propagation metrics are effective, it would enable designs to be improved to increase developer parallelism 
and reduce the cost of implementation changes. In addition, it would provide evidence that the risk container 
technique (Leigh et al., 2016, 2017) is applicable to change propagation risks, as well as error-proneness risks. 
Moreover, it will identify the most effective type of risk container for change propagation. 

3. Method 

We describe our method to determine whether change propagation can be isolated into risk containers 
created from designs. Due to the ripple effect (Lindvall et al., 2003; Bass et al., 2012), we hypothesise that 
greater structural coupling between classes results in greater predicted change propagation probability 
between those classes (e.g. if the interface of an abstract method changes, all subclasses change). This should 
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result in greater observed co-change within containers. We consider direct structural coupling as opposed to 
indirect coupling via data.  

We used the same overall test construct as for error-proneness in Leigh et al. (2017). Firstly, we consider 
the degree of overlap (class sharing) between containers. If it is low, the containers are considered to be class 
isolating. Secondly, we determine whether container-level change propagation metrics predict implementation 
co-change. Containers of a given type (design rule, resource, use case) are considered risk predicting if 
container-level change propagation metrics calculated from the design correlate to implementation co-change. 
If the containers are risk predicting and class isolating, they must also be risk isolating because the classes in 
the container are inducing the risk, and they are not shared with other containers. Thirdly, we tested whether 
classes sharing containers are more likely to change together than classes that do not share containers, and 
which type of container isolated the most change sets, in order to corroborate whether containers isolate 
change propagation. Finally, we discussed the results with developers in order to establish whether the change 
propagation observed could be explained in terms of coupling problems, and determine whether the 
developers recognized the ranked containers as entities about which they could reason. 

3.1. Software used in the Study 

To perform a fair evaluation between the three container types, we considered projects with: (i) a structural 
graph indicating the design dependencies between classes (e.g. a class diagram) with at least five design rules; 
(ii) at least five clearly defined resource encapsulation classes; (iii) a mapping between at least five use cases 
and the classes designed to fulfil them (e.g. use case sequence diagrams); (iv) a change history of at least 100 
revisions; and (v) correspondence between the classes and relationships documented in the design and those 
found in the implementation. We hypothesize that the change propagation probability calculated from a 
design should correlate to change propagation during its implementation (co-change). In order to test this 
hypothesis, we used Spearman's (1904) rank correlation coefficient, which is a statistical measurement of the 
association between two variables. The value of five was selected for criteria (i-iii) because five is the 
minimum sample size needed to achieve a significance level of 0.05 using a two-tailed test based on the 
critical values of the Spearman’s rank correlation coefficient (Zar, 1984, Table B.19). 

Further to the base criteria (i-v), it was also important to consider: (vi) industry projects to support the goal 
of helping practitioners; (vii) projects from multiple sources to ensure that results are not skewed by specific 
team practices; (viii) at least one project where we were able to interview developers to check they agreed that 
the change propagation predicted was grounded in coupling problems; and some generalizability criteria (ix) 
projects of different size; (x) projects including different software functionality; and (xi) projects implemented 
in different programming languages. 

Figure 4 Design Rule Container Population A=Aggregation, C=Composition, 
D=Dependency, G=Generalisation 
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In our study we used four projects, as follows. We used two industrial projects from a software 
development company. The first project contains UML class and sequence diagrams of an Application 
Programming Interface (API) implemented in Java to enable clients to integrate with a database in an 
enterprise solution. This project was used in our previous error-proneness research (Leigh et al., 2016, 2017), 
in which developers were asked to identify which Design Rule Containers were most likely to contain error-
prone classes. They identified container A_4 as being difficult to implement and maintain. Figure 4 represents 
A_4 as a Design Structure Matrix with four relationship types: Aggregation, Composition, Dependency, and 
Generalisation. 

The developer explained “there seem to be too many subclasses to maintain and they are very 
complicated”. The former part of the explanation alludes to the problem being rooted in change propagation, 
i.e. the subclasses are changed together during maintenance. We would expect our method to predict a 
relatively high risk of change propagation isolated in container A_4 when compared to other API Design Rule 
Containers. 

The second project (Server) represents the server-side modules of a data management application. Its 
design was described as a series of PL/SQL package dependency specifications (dependency graph), and use 
case descriptions identifying the packages supporting each use case. We assumed PL/SQL packages are 
analogous to Java classes because both represent nodes when Java and PL/SQL code is transformed into a 
dependency graph for input into our method, i.e. both represent low level software units (graph nodes) that 
other graph nodes (other Java classes or PL/SQL packages) depend upon (indicated by graph edges). This 
enabled us to extract the package relationships needed to construct the containers for a system without a UML 
design. We also used the Server project in our work with error-proneness risks (Leigh et al., 2017).  

To obtain non-industry projects we searched the Lindholmen dataset (Hebig et al., 2016) of open source 
projects using UML. We selected the OpenBundestagsWahl (OBTW) (Lower et al., 2018) project on GitHub 
because its design includes classes that encapsulate data retrieved from comma-separated data file resources, 
enabling all three container types to be populated. The project analyses German election results. 

The fourth software project is ps2tsa, a companion application for the Planet Side™ computer game 
(http://www.planetside2.com, accessed 9th December 2018). It presents a map of the ensuing game play to 
help players make better tactical decisions. Ps2tsa was selected because it meets criteria (i-v) and we could 
speak with the student to confirm which classes encapsulated resources.  

Table 1 Software Projects Studied 

Name Source Design Implementation  

UML Classes Language Classes KLOC Revisions Coverage % 

API Industry Yes 188 Java 445 87.85 2179 42 

Server Industry No 31 PL/SQL 232 258.05 2202 13 

Ps2tsa Academia Yes 36 Java 43 3.78 1040 84 

OBTW Academia Yes 34 Java 66 12.50 105 52 

 
Table 1 summarises the key characteristics of each project. Coverage indicates what percentage of the Java 

classes or PL/SQL packages could be allocated to design time risk containers, i.e. how much of the potential 
implementation risk could have been analysed during design using each container type. Having 
correspondence between the design and implementation (criteria v) is essential to the integrity of the research. 
Correlation between change propagation predicted from the design and implementation co-change would not 
be expected without correspondence. The number of design classes shown in Table 1 indicates the subset of 
implementation classes that were traced back to the upfront design by name. It is to be expected that the 
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academic projects should have the highest coverage because they had undergone very little maintenance once 
the students had completed them. Inspection of the industry designs revealed that the designs had not been 
kept up to date during the maintenance phase. Despite this limitation, calculating Coverage (in Table 1) as the 
percentage of implementation classes found in the design, demonstrates that the research has the potential to 
investigate the change propagation risk for 13% (31 / 232 packages) of the Server project after seven years of 
maintenance and 2202 revisions, and for 42% (188 / 445 classes) of the API project after three years of 
maintenance and 2179 revisions. 

Coverage of the implementation by the risk containers was highest for Design Rule Containers in all 
projects, as shown in Table 2. Risk container coverage is important because it indicates how much of the 
implementation can be assessed for change propagation risk using our method. Only 42% of the API 
implementation classes were documented in the design. However, many classes deliberately have a 1:1 
interface to hide implementation details from users of the API. In these cases, the interface and its sole 
implementation are to all intents and purposes a single class and we assigned both the interface and its 
implementation to the appropriate risk container, even though only the interface is referenced in the design 
diagram. This is why API coverage is higher than 42% in Table 2 for Design Rule and Resource Containers. 

Table 2 Design container coverage of implementation after N revisions 

Name Number of Design Containers Implementation Coverage % 

DRCs RCs UCC DRCs RCs UCCs 

API 15 23 35 59.78 45.62 16.18 

Server 9 14 68 12.50 9.91 6.47 

Ps2tsa 11 7 10 79.07 34.88 32.56 

OBTW 9 8 12 46.97 43.94 25.76 

3.2. Container Definition 

For all projects we created three sets of containers: Design Rule Containers (DRCs), Use Case Containers 
(UCCs) and Resource Containers (RCs). All three types of containers are initially populated with roots: DRC 
roots are the classes that represent the design rule; UCC roots are all classes referred to by a use case diagram; 
and the RC root is the resource encapsulating class. For example, in Figure 1 the root of container A (a pattern 
design rule) is class c1, the roots of container B (an abstraction design rule) are classes c2, c3, and c4, and the 
roots of container C (composition design rule) are classes c3, c5, and c6. In Figure 2 the root of container A is 
class c5 and the root of container B is class c4. In Figure 3 classes c1, c2, c3, c4, and c5 are the roots of 
container A. 

Once populated with their roots, DRCs and RCs are then expanded according to algorithms shown in 
Figures 5 and 6, using the relationships between classes found in the design. Expansion ensures DRCs 
represent the whole ‘module’ and RCs represent all items dependent upon the resource. UCC containers are 
not expanded beyond their roots because it is assumed that the use case sequence diagram includes all classes 
needed to fulfil the use case. When working with our industry partner we confirmed with the developers, 
because we did not have the source code, that the classes we had identified as roots of Resource Containers 
were in fact resource encapsulating to help ensure a fair comparison with the other container types whose 
roots are more explicit in the design. 

DRCs were constructed using the method described in (Leigh et al., 2016, 2017). As explained by Xiao et 
al. (2014), design rule classes are the key interfaces that separate an architecture into independent modules. 
They stem from Baldwin and Clark’s design rules (2000). Our method supports three types of design rules: 
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abstractions, compositions and patterns. Figure 5 presents the population rules for DRCs (and our 
interpretation of DRSpaces) as an object-oriented pseudo code algorithm. Once DRCs have been initially 
populated with their roots based on patterns, abstractions or compositions (line 47 of the Figure 5 algorithm), 
they are expanded with direct aggregations and dependencies (lines 51–53). 

 

 
For an abstraction DRC (first rule of the algorithm), N is the Depth of the Inheritance Tree (Chidamber and 

Kemerer, 1994). In Figure 1, classes c2, c3, and c4 are roots of container B and are added by line 47 of the 
algorithm because they represent an inheritance tree. Once the roots (c2, c3, and c4) have been added the 

Figure 5 Design Rule Container Population Algorithm 
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container is then expanded with classes that the root members depend upon. Therefore, class c5 is also added 
by line 52 because it is a composition dependency of c3; c6 is not added because it is not coupled to the 
abstract class or its sub-classes. 

The second rule of the algorithm leads to the creation of Container C in Figure 1 because classes c3, c5, 
and c6 represent a composite structure. For a composition DRC, all members of a composite structure are 
added as the container roots, e.g. classes c3, c5, and c6 are added as the roots to container C by line 47 of the 
algorithm. Lines 51-53 add no further classes because the composition classes do not depend on any other 
classes. 

In Figure 1, the designer chose to base class c1 on the singleton design pattern and container A is an 
example of a pattern design rule (third rule of the algorithm). Therefore, the sole root class of container A is 
class c1 and is added by line 47 of the algorithm. If, for example, a model-view-controller pattern had been 
used instead, the model, view and controller classes would be the container’s root classes and be added by line 
47. The only other class added to A is c2 because it is the only direct dependency (or aggregation) to which 
the pattern classes are structurally coupled. Class c2 is added by line 53.  

Figure 6 expresses the Resource Container population rules as an object-oriented pseudo code algorithm. 
The basis for each container is a class that encapsulates an external resource such as a database table (e.g. a 
Data Access Object). In Figure 2, class c5 is the root of container A because it encapsulates resource X and is 
therefore added to the container by line 68. The container is expanded by recursively adding, up to N levels, 
those classes (c1 and c2) that depend on the encapsulation class (c5) by line 71 of the algorithm. Thus, N will 
be the maximum number of recursive dependencies from the resource encapsulating class.  

One Use Case Container was created for each use case that has a design artefact, such as an object 
sequence diagram, indicating which classes fulfil the use case. The sequence diagram in Figure 3 shows that 
classes c1, c,2, c3, c4 and c5 are all used to fulfil Use Case 1. All classes referenced by the use case (c1, c2, 
c3, c4 and c5) are considered roots and Use Case Containers are not expanded beyond those roots. As a 
consequence, Use Case Container A contains all the classes referred to by the use case sequence diagram. 

Figure 6 Resource Container Population Algorithm 
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Table 2 indicates how many containers of each type were created per software project using the population 
algorithms described in this section. They are the test containers. In order to have a baseline to compare the 
performance of test containers, we created control containers for each container type by randomly allocating 
the classes of the test containers to the same number of control containers. We considered using packages as 
the baseline but not all of the project designs were organized in packages. The mean number of classes per 
control container and the mean number of containers to which each class belongs was approximately the same 
as the test containers. The control containers are based on the mean values from ten sets of random 
assignments per container type. The control containers were used to determine whether using containers based 
on related classes is a better indicator of change propagation than random population. If correspondence is not 
present between the implementation classes and the design, the test and control containers should exhibit 
similar performance for isolating change propagation. 

3.3. Automated Container Analysis Tools 

We developed a suite of automated container analysis tools to populate and analyse risk containers from the 
design, to avoid human error threatening our evaluation, and to demonstrate that practitioners could easily 
apply our approach. The activity diagram shown in Figure 7 illustrates how the tools analyse designs. 
 

The automated process begins with extracting the underlying graph structure between the classes from the 
design. The ‘Extract design graph’ activity records each aggregation, composition, generalization, and 
dependency relationship found in the design. In parallel, the log command is used to determine all of the 
Git/Subversion log changes for the classes found in the design and save them into a change sets file. Next the 
process populates the risk containers by applying the algorithms described in section 3.2 to the extracted 
design graph saved in the relationships file. The roots of abstraction and composition Design Rule Containers 
are automatically identified from generalizations and compositions in the relationships file. The roots of 
pattern Design Rules and Resource Containers are manually identified and input into the automatic analysis 
tools as a parameter. The roots of Use Case Containers are automatically identified as all of the classes 
referenced by a use case in the design. Once the container roots have been determined, the relationship data is 
used to automatically expand all Design Rule and Resource Containers with additional classes based on the 
algorithms shown in Figures 5 (lines 51-53) and 6 (line 71). The containers created are stored in a file for each 
project. Once the container, change and relationship files have been populated, the tools automatically 

Figure 7 Automated Container Analysis Tools 
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calculate the metrics (Table 3) that help determine whether the different types of containers can be used to 
predict and isolate change propagation using upfront design diagrams. The metrics calculated are output in an 
HTML report. 

The industry designs were printed documents and the UML diagrams for OBTW and ps2tsa were binary 
image files. These caused the relationships to be manually extracted from each project. Use Case Containers 
were also manually populated because the designs were not machine-readable. The root classes of pattern 
Design Rule (e.g. class c1 in Figure 1) and Resource Containers (e.g. classes c4 and c5 in Figure 2) had to be 
manually identified because the designs did not indicate which classes represented the application of design 
patterns and which classes encapsulated resources. However, once the relationships had been manually 
extracted, the roots of abstraction and composition Design Rule Containers were automatically identified, and 
container expansion was performed automatically for all container types. Automatic identification of 
abstraction and composition Design Rules and automatic container expansion was achieved for all four 
projects. 

The relationship expansion approach demonstrates the feasibility for fully automating the method should a 
machine-readable UML model be available from which the relationships could be automatically extracted. 
Pattern based Design Rule Containers and Resource Containers would require designers to declare patterns 
and resource encapsulating classes in the design (e.g., using UML stereotypes). Furthermore, the process is 
agnostic w.r.t. the source of design relationships used to build the input dependency graph, e.g. whether it is 
machine readable UML, source code (like PL/SQL packages), or UML recovered from source code. This 
means that although our research interest focuses on design-time analysis, risk container analysis could be 
applied to any stage of the software development life-cycle whether an upfront design is available or not. 

3.4. Class Isolation Metrics (Container Overlap) 

We start by analyzing the degree of overlap between the different containers of each given type, 
determined by the Containers Per Class and Internal Coupling metrics.  

Containers Per Class is the mean number of containers to which each class is allocated. Its value for Figure 
1 is 1.5, because classes c1, c4 and c6 are in one container, and classes c2, c3 and c5 are in two containers. 
We also calculate the min, max, lower and upper quartile to check the distribution and ensure that the mean 
values are not misleading. 

Internal Coupling is the mean, over all containers, of the percentage of dependencies between two classes 
inside the same container. A container’s internal coupling is the ratio between the dependencies that are 
within the container and the total number of dependencies in which container’s classes are involved. A 
dependency only counts if the dependent class is within the container. In Figure 1, class c2 does not depend 
on classes c3 or c4 (it’s the other way around), so the internal coupling of container A is 100%: the one 
internal dependency is also the total dependencies of c1 and c2. In container B three of the four dependencies 
are internal, and in container C two of the three dependencies are internal.  So, the internal coupling for the 
‘system’ in Figure 1 is 81%, the mean of 100%, 75% and 67%. The min, max, lower and upper quartile are 
also calculated to confirm the mean. 

Container types that tend to have fewer containers per class and higher internal coupling are considered to 
be more class isolating (less overlapping). We next consider whether the different container types are change 
propagation (risk) predicting, by comparing container level design metrics to container level implementation 
metrics. 
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Table 3 Summary of Metrics and Functions Used 

Function Name Description 

𝑀 The set of all the member classes allocated to a specific risk container. 

𝐶 The set of all of the classes in a particular software system. 

𝑅 The set of all risk containers of a given type for a particular software system. 

𝑆 A set containing all the Subversion/Git change sets. 

𝑑𝑒𝑝(𝑐) Number of dependencies of class c. 

𝑑𝑒𝑝𝑖(𝑐) Number of dependencies of class c where the dependency is also a container member. 

𝑐𝑙𝑘(𝑐1, 𝑐2) The Clarkson change propagation probability between class c1 and class c2. 

𝑐𝑖𝑐(𝑐1) Set of other classes that class c1 shares containers with (containers in common). 

𝑛𝑐𝑖𝑐(𝑐1) Set of other classes that class c1 does not share containers with (no containers in common). 

𝑜𝑡ℎ(𝑟1, 𝑐1) The other classes that class c1 shares container r1 with (i.e. the other container members). 

𝑐ℎ𝑔(𝑐1) Number of change sets involving class c1. 

𝑐𝑜𝑐ℎ𝑔(𝑐1, 𝑐2) Number of change sets involving both class c1 and class c2. 

Purpose Metric Name Formula Description 

Class Isolation 
Metrics 
(Container 
Overlap) 

Containers per Class 
(CPC) 

1
|𝐶| 8 8 91	𝑖𝑓	𝑐	 ∈ 𝑟0	𝑖𝑓	𝑐	 ∉ 𝑟?

!	∈	$%	∈	&

 
Mean number of containers each class has been 
allocated to. This metric indicates the average 
amount of class sharing between containers. 

 Internal Coupling 
(IC) 

1
|𝑅| 8

∑ (𝑑𝑒𝑝𝑖(𝑐))'	∈	(

∑ (𝑑𝑒𝑝(𝑐))'	∈	((	∈	$

 
Mean container level coupling between two classes 
inside the same container. This metric indicates the 
degree of coupling isolated within containers. 

Change 
Propagation 
Correlation 
Metrics 

Change Propagation 
Design (CPD) 

8 𝑐𝑙𝑘(𝑐1, 𝑐2)
'),'+	∈	(	,...		')/'+

 Sum of the Clarkson et al. change propagation 
probability between each pair of classes in a 
container. 

 Change Propagation 
Implementation 
(CPI) 

8
𝑐𝑜𝑐ℎ𝑔(𝑐1, 𝑐2)
𝑐ℎ𝑔(𝑐1)

'),'+	∈	(	,...		')/'+

 Sum of co-change probability between each pair of 
classes in a container. 

Containers in 
Common Co-
change Metrics 

Containers in 
Common Co-change 
Probability (CCCP) 

∑ ∑ 𝑐𝑜𝑐ℎ𝑔(𝑐1, 𝑐2)
𝑐ℎ𝑔(𝑐1)'+	∈	'0'('))')	∈	&

∑ |𝑐𝑖𝑐(𝑐1)|')	∈	&
 

Mean co-change probability between classes that 
share one or more containers. 

 No Containers in 
Common Co-change 
Probability (NCCCP) 

∑ ∑ 𝑐𝑜𝑐ℎ𝑔(𝑐1, 𝑐2)
𝑐ℎ𝑔(𝑐1)'+	∈	3'0'('))')	∈	&

∑ |𝑛𝑐𝑖𝑐(𝑐1)|')	∈	&
 

Mean co-change probability between classes that 
do not share any containers 

Change Set 
Isolation Metrics 

Isolated Change Sets 
(ICS) 

|	{	𝑠 ∈ 𝑆	|	∃𝑟 ∈ 𝑅	𝑠	 ⊆ 	𝑟}	|
|𝑆|  Percentage of Subversion or Git change sets that 

are subsets of a risk container. 
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3.5. Change Propagation Correlation Metrics 

We applied the following Clarkson et al. (2004) formula to calculate a change propagation probability 
between every pair of classes a and b in a system. The risk of change propagating to b, starting at a, is 

 
𝑅(𝑏, 𝑎) = 1 −∏+1 − 𝜌(𝑏, 𝑢). 

 
with ρ(b,u) the risk of change propagating to b from the penultimate subsystem u in the chain from a to b. 

The product is taken over all possible dependency paths from a to b. Since our approach relies on design 
metrics, as opposed to implementation metrics, we have to provide a substitute for ρ. We use 0.5 as a 
hypothetical co-change probability between different classes because the non-zero implementation co-change, 
over all pairs of classes in the four software projects, has a mean of 0.46. It is more appropriate than a 
constant of 1 because the observed data suggests that coupled classes are not guaranteed to change together. It 
is also more appropriate than using the actual co-change value of 0.46, which cannot be determined from the 
design.  

Consider classes c3 and c6 in Figure 1. There is one dependency path: a change to c6 could require a 
change to c5, which in turn could require a change to c3. This means the Clarkson change propagation 
probability would be calculated as follows: 

 
1 − (1 − 𝜌(𝑐3, 𝑐5) × 𝜌(𝑐5, 𝑐6)) = 1 − (1 − 0.5 × 0.5) = 0.25 

 
If a direct relationship between classes c3 and c6 were added, the change propagation probability would 

be: 
 

1 − 7(1 − 𝜌(𝑐3, 𝑐5) × 𝜌(𝑐5, 𝑐6)) × +1 − 𝜌(𝑐3, 𝑐6).8 = 1 − +(1 − 0.25) × (1 − 0.5). = 0.875 
 
The Change Propagation of the Design (CPD) for a container is the sum of the change propagation 

probability over all pairs of distinct classes within the container (see Table 3). The CPD calculations for the 
classes in Figure 1 are shown in Table 4, as well as fictitious data for observed co-change probability. Note 
that ρ(a,a)=1 and that the Clarkson probability is calculated in both directions for each class pair due to 
relationship navigability. 

Table 4 Co-change Probability for Figure 1 

Change Propagation Design (CPD) Change Propagation Implementation (CPI) 

Class c1 c2 c3 c4 c5 c6 Class c1 c2 c3 c4 c5 C6 

c1 1.00 0.50 0.00 0.00 0.00 0.00 c1 1.00 0.56 0.11 0.11 0.11 0.11 

c2 0.00 1.00 0.00 0.00 0.00 0.00 c2 0.29 1.00 0.24 0.24 0.18 0.06 

c3 0.00 0.50 1.00 0.00 0.50 0.25 c3 0.09 0.36 1.00 0.27 0.18 0.09 

c4 0.00 0.50 0.00 1.00 0.00 0.03 c4 0.10 0.40 0.30 1.00 0.10 0.10 

c5 0.00 0.00 0.00 0.00 1.00 0.50 c5 0.11 0.33 0.22 0.11 1.00 0.22 

c6 0.00 0.00 0.00 0.03 0.03 1.00 c6 0.17 0.17 0.17 0.17 0.33 1.00 

 
The CPD value for container B is 1.5: the sum of the change propagation probabilities between the classes 

are as follows: class c2 and the other class members of B (c3, c4, c5) is 0+0+0=0; class c3 and the other class 



16 A. Leigh, M. Wermelinger, A.Zisman / TBC 

members of B is 1; class c4 and the other class members of B is 0.5; and class c5 and the other class members 
of B is 0, for a total CPD value of 0+1+0.5+0 = 1.5. 

The Change Propagation of the Implementation (CPI) of a container is the sum of the actual co-change 
probabilities between each pair of distinct classes in the container. A log of all change sets was extracted from 
the project Git/Subversion repositories and parsed to identify the number of times each class changed with 
each other class, to compute the observed co-change probability. For example, assuming the fictitious 
observed probabilities of Table 4, the CPI for the same container B is 2.88. 

Once the design and implementation change propagation values are calculated for each container, we use 
Spearman's rank correlation coefficient to test our hypothesis: change propagation probability calculated from 
the design should correlate to observed co-change in the implementation. 

3.6. Containers in Common Co-Change Metrics 

If containers isolate the risk of change propagation, we expect that a class should be more likely to be 
changed with a class with which it shares a container, than with one with which it does not. To test this 
hypothesis, we calculate Containers in Common Co-change Probability (CCCP) and No Containers in 
Common Co-change Probability (NCCCP) using the formulae shown in Table 3. We expect CCCP to be 
greater than NCCCP if a container type isolates the risk of change propagation. 

To demonstrate how CCCP is calculated, consider the example implementation co-change data shown in 
Table 4. Firstly, we would calculate the sum of co-change probabilities for each class and the other classes 
with which it shares one or more containers. Using class c2 shown in Figure 1 as an example, this would 
result in a value of 0.95 because class c2 shares containers with classes c1, c3, c4 and c5 and the respective 
co-change probabilities are: 0.29 + 0.24 + 0.24 + 0.18 = 0.95. This initial calculation is summed for all classes 
in the software studied which using the data in Table 4 would give an overall total of 4.59 because c1=0.56, 
c2=0.95, c3=0.90, c4=0.80, c5=0.88 and c6=0.50. The mean probability is the sum of co-change probabilities 
over the number of probabilities summed: 4.59 / 18 = 0.255. 

The number of probabilities is 1+4+4+3+4+2 = 18 because c1 shares a container with one other class, c2 
shares a container with four other classes, c3 shares a container with four other classes, c4 shares a container 
with three other classes, c5 shares a container with four other classes, and c6 shares a container with two other 
classes. 

NCCCP is calculated in the same way as CCCP but only probabilities between classes that do not share 
any containers are included. The NCCCP for the example data in Table 4 and the containers shown in Figure 
1 is 0.05. Mean and upper quartile values over each class are reported. The upper quartile is used to confirm 
the mean. 

Our final hypothesis is that the number of change sets that are isolated in containers ought to be greater for 
container types that are more isolating of implementation change propagation. To test this hypothesis, we 
calculate Isolated Change Sets, the percentage of Git/Subversion change sets that are a subset of a risk 
container. Container types with greater CCCP than NCCCP ought to also have greater Isolated Change Sets 
than other container types where the difference between CCCP and NCCCP is less. 

4. Results 

In this section we describe the results of determining whether any of the container types isolate the risk of 
change propagation. 

The most change propagation isolating container types should exhibit: (i) lower containers per class; (ii) 
higher percentage of internal coupling; (iii) a strong and significant correlation between internal change 
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propagation probability calculated from the design and internal implementation co-change; (iv) greater mean 
co-change between classes that share containers than between classes that do not share containers; and (v) 
higher percentage of change sets isolated into containers. 

We would not expect the control containers to exhibit these qualities because they are populated by 
random assignment and are not based on the coupling that is hypothesized to cause change propagation. 

4.1. Class Isolation Results (Container Overlap) 

Figure 8 shows that in all but one project, the CPC metric demonstrates that Design Rule Containers 
(DRCs) have the least amount of class sharing. In the ps2tsa project DRCs do not have the lowest CPC (1.65), 
but it is only marginally greater than the RC value (1.47). Similar levels of class sharing were observed in the 
respective control containers. This is to be expected because control containers were populated by allocating 
the same classes to the same number of containers as those in the test containers. 

Figure 9 shows that levels of internal coupling (IC) are greatest for DRCs all four projects. DRCs have the 
second highest mean IC for OBTW, where RCs have marginally higher mean. However, the median and 
overall distribution is higher for OBTW DRCs than RCs. In all projects the IC values for the test containers 
are greater than those for the corresponding control containers. This is also to be expected because the control 
containers were populated by random assignment of classes, while the test containers were based on coupling. 
The difference between test and control containers is greatest for DRCs in all projects. 

Figure 8 Containers per Class (x=mean marker) 
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In summary, in three projects DRCs have the least amount of class sharing and come marginally in second 
place in the fourth project. DRCs have the greatest levels of internal coupling in all four projects. Overall, 
DRCs can be considered the most class isolating container type for the projects used in the experiments. 

4.2. Change Propagation Correlation Results 

Table 5 lists Spearman’s rank correlations between container level change propagation probability 
predicted from the design (CPD) and calculated from the implementation (CPI). All projects show a strong 
and significant correlation (α<=0.010) for all test container types.  

Table 5 CPD and CPI Correlation 

  DRC UCC RC 

Project Containers ρ α Ρ α Ρ α 

API Test 0.95 0.001 0.85 0.001 0.97 0.001 

 Control 0.48 0.100 0.68 0.001 0.51 0.020 

Server Test 0.98 0.001 0.94 0.001 0.91 0.001 

 Control 0.12 >0.500 0.82 0.001 0.50 0.100 

Ps2tsa Test 0.98 0.001 1.00 0.001 0.94 0.010 

 Control 0.21 >0.500 0.39 0.500 0.53 0.500 

OBTW Test 0.95 0.001 0.92 0.001 1.00 0.001 

 Control 0.53 0.200 0.68 0.020 0.49 0.500 

Figure 9 Internal Coupling Percentage (x=mean marker) 
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All controls showed weaker correlations. These results suggest that CPD is an effective design time 
indicator of implementation change propagation (co-change) internal to the container for all container types. 
The UCC correlation results (for all projects) may contradict the suggestion of Hassan and Holt (2004): 
“results cast doubt on the effectiveness of code structures such as call graphs as good indicators of change 
propagation” (p. 9). That is because UCCs are populated with all of the classes found on the object sequence 
diagram, which represents a call graph for a given use case. 

We computed the predicted change probability (using Clarkson’s formula) and the observed co-change 
(using the repository’s log) for each class. The correlation between both is ρ=0.39 for API, ρ=0.37 for 
Server, ρ=0.40 for ps2tsa, and ρ=-0.12 for OBTW. We observe that the correlations are always lower than 
between CPD and CPI, which are the corresponding design and implementation change propagation metrics 
at container level. This suggests that risk containers are isolating areas of co-change due to design coupling. 

4.3. Containers in Common Co-change Results 

Table 6 shows the values observed for implementation co-change probability between classes that share 
containers (CCCP) and classes that do not share containers (NCCCP). A z test was conducted to determine the 
significance of the difference between CCCP and NCCCP. 

In all projects used in our evaluation, co-change is more likely between classes that share a Design Rule 
Container, than between classes that do not (α between 0.05 and 0.001). The same is only true for Use Case 
Containers in the API, ps2tsa and OBTW projects, and for Resource Containers in the API and ps2tsa 
projects. The probability of a class changing with a class with which it does not share a container is about the 
same for all container types in all projects. 

Table 6 Containers in Common Co-Change 

Project Container 
Type 

CCCP NCCCP Z Test 

Significance Mean Q75 Mean Q75 

API DRC 0.44 0.67 0.31 0.50 0.001 

 UCC 0.37 0.50 0.33 0.50 0.010 

 RC 0.34 0.50 0.32 0.50 0.001 

Server DRC 0.52 0.67 0.44 0.67 0.010 

 UCC 0.37 0.50 0.47 0.67 >0.100 

 RC 0.39 0.50 0.48 0.67 0.050 

Ps2tsa DRC 0.57 0.92 0.25 0.40 0.001 

 UCC 0.51 0.77 0.29 0.50 0.001 

 RC 0.53 0.71 0.30 0.50 0.001 

OBTW DRC 0.33 0.43 0.30 0.43 0.050 

 UCC 0.38 0.57 0.30 0.43 0.001 

 RC 0.31 0.43 0.32 0.44 >0.100 

 
In the control containers, the CCCP and NCCCP are approximately the same for all container types for all 

projects. The values observed are similar to those observed for classes that do not share containers in the test 
containers (NCCCP). This consistency between the controls and test containers is to be expected, due to the 
absence of architectural connections to carry the ripple effect (Lindvall et al., 2003, Bass et al., 2012). 
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The CCCP and NCCCP results provide further evidence that DRCs populated from design class diagrams 
isolate change propagation during the implementation. 

4.4. Change Sets 

Figure 10 shows the number of isolated change sets for the test Design Rule Containers are greater than 
those for the other container types in the OBTW project, but approximately equal highest in the other three 
projects. In all projects the change sets isolated into test Design Rule Containers are greater than their 
corresponding controls, albeit in the case of the Server project the difference is very small (API=-30%, 
Server=-1%, ps2tsa=-68% and OBTW=-15%). 

The low isolated change sets values for Use Case Containers, allied to the observation that in one project 
NCCCP was greater than CCCP for Use Case Containers, casts doubt over whether they are really isolating 
change propagation. A z-test confirmed that the Design Rule and Resource Container ICS values for the API 
and OBTW projects are significantly greater than for Use Case Containers (α=0.001). 

4.5. Developer Feedback 

Having identified Design Rule Containers as the most promising container type, we interviewed the API 
developer. Firstly, to determine if the developer recognized and could reason about the containers, i.e. 
whether they were meaningful entities to them. Secondly, to corroborate that the containers predicted to 
contain the most change propagation did contain coupling problems that would account for the high level of 
change propagation. The interview used a structured questionnaire. Prior to questioning the developer, Figure 
1 was explained to them. 

Table 7 Unranked Container List (1st Row Only) 

Container Basis Root Class(es) Other Members 

A_1 Abstraction NamedValue All sub-classes 

 

Figure 10 Number of Change Sets 
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The developer was allowed to refer to the un-ranked container summary shown in Table 7, as well as a full 
list of classes for each container.  

Initially the developer was asked to name the Design Rule Containers most likely to contain classes that 
will have to be frequently changed together to add functionality or fix bugs (picking their top five). Only once 
they had nominated their top five, were the top five containers ranked by the CPD metric revealed to the 
developer. The developer was then asked to explain why they thought the classes ranked in the top five by the 
CPD metric would have to be frequently changed together. Table 8 shows that of the top five containers 
predicted to isolate the most change propagation by the CPD metric, the developer agreed on four of them 
(albeit with a different ranking). 

Table 8 Riskiest Design Rule Containers 

DRC Metric Rank Developer Rank 

A_4 1 1 

A_2 2 3 

A_10 3 5 

A_1 4 6 

A_8 5 4 

 
Both the developer and CPD ranked A_4, which is illustrated in Figure 4, as the highest container. The 

developer had implicated A_4 as having excessive change propagation by stating: “there seem to be too many 
subclasses to maintain and they are very complicated”. They further explained that “complex concrete sub-
classes emerged from the diverse use cases the lists had to support. This caused conflicts between abstract 
class code and concrete sub-class code”. This response indicates the co-change in A_4 stems from the 
generalization relationships and, hence, is rooted in coupling between the container’s member classes.  

Their explanation for container A_2 to be highly ranked was: “lots of common code was duplicated in the 
different service classes. This was a deliberate development strategy to allow different developers to work 
independently”. The developer went on to explain that the duplicated code fulfilled its responsibility using 
other utility classes. This meant that all service classes were coupled to the utility classes, thus the container 
exhibits a high level of internal coupling. With the benefit of hindsight, the developer believes the A_2 could 
be simplified.  

Containers A_1 and A_10 have classes that represent table structures in the relational database the API can 
be used to access. Despite containers A_1 and A_10 each having classes related to a different set of tables, the 
developer provided the same justification for both containers. They explained that: “when I had to change the 
base class, I often also had to change the sub-classes. This was because the class structures directly reflect the 
underlying table structures”. Furthermore, they described three recurring change scenarios where a ripple 
effect between the container contents occurred: (i) “when a new common column was added to all tables, the 
abstract class and all sub-classes had to be changed”; (ii) “when new tables were introduced, or relationships 
refactored, all referencing sub-classes had to be changed”; (iii) “if there was a bug in low level table access 
routines it often propagated across the sub-classes by copy/paste. Hence, when found, all sub-classes had to 
be changed”. Design Rule Containers were more effective at isolating the risk associated with these change 
scenarios than Resource Containers, despite Resource Containers being based on tables. That is because these 
scenarios impacted many Resource Containers, as each one is based on a different table, whereas the risk was 
isolated into a single Design Rule Container. 

The developer explained that in A_8 “lots of common code was duplicated in sub-classes. To add new 
abstract functionality, all the concrete classes had to be changed”.  
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Mo et al. (2015) identified several common causes of error-proneness in the projects they analysed with 
DRSpaces, namely: unstable interfaces, implicit cross module dependencies, unhealthy inheritance, and cyclic 
dependencies. The API developer’s responses suggest that Design Rule Containers A_4, A_10, A_1 and A_8 
contain examples of unhealthy inheritance and other coupling relationships driving their relatively high levels 
of change propagation. The Change Propagation Design (CPD) metric captures such relationships and hence 
the agreement with the developer’s assessment. 

The exercise was repeated with the student who developed the ps2tsa project. Their top five Design Rule 
Containers were ranked in positions 2, 3, 4, 7 and 10 out of 11 by the CPD metric. Thus, agreement between 
the ps2tsa developer’s top five and CPD was less than that of the API developer (60% as opposed to 80%). 
When the risk containers ranked in the top five places by the CPD metric were revealed, the ps2tsa developer 
was able to justify why the predicted co-change is based on design dependencies. When asked to justify why 
they nominated a container ranked in 10th place, the developer explained they had nominated it because that 
container is based on a composition design rule. They had suspected composition dependencies may have 
been stronger than abstraction and pattern dependencies, a suspicion that is not supported by the co-change 
data in this case. 

The developer’s ability to recognize Design Rule Container contents and reason about the causes of 
coupling problems associated with them, suggests they are based on modularizing design rules as per the 
Design Rule Hierarchy algorithm, i.e. the developer was able to comprehend them as decoupled ‘technical’ 
modules. 

5. Validity and Discussion 

We focused on Messick’s (1987) consequential threats because the manual aspects of our method could be 
subject to misinterpretation, and generalizability threats because they undermine applicability to other 
software projects. 

5.1. Consequential 

Design Rule Containers aim to extend the work of Xiao et al. (2014) and Wong et al. (2009) and we could 
have misinterpreted the DRH algorithm or the DRSpaces based upon it.  The consistency of our change 
propagation results with Wong et al.’s underlying hypothesis suggests that we have interpreted Design Rule 
Hierarchy correctly. 

Manual identification of pattern design rules is prone to ad-hoc human error. The consequences of missing 
a pattern is that the design will not be as fully decomposed into risk containers as it could be. A similar threat 
exists for Resource Containers through failure to identify an external resource encapsulation class. Whilst this 
threatens the optimum use of the technique, change propagation would still be contained within a larger 
container, in the case where a container could be further decomposed. 

Manual extraction of design relationships is another threat that potentially affects all three container types 
tested. This threat was mitigated by manually transcribing the relationships documented in the designs on 
three separate occasions and comparing the relationship files produced. Any discrepancies between the three 
versions were investigated and transcription errors were corrected prior to analysis. This threat is further 
mitigated by the consistency of the results between the different software projects and the ability of API and 
ps2tsa developers to recognize the Design Rule Containers produced as independent ‘modules’. 

As Use Case Containers were manually populated, classes could have been omitted or added to particular 
container by mistake. We argue that owing to their simplicity, i.e. they are populated with all classes referred 
to by an object sequence diagram, the risk level is minimal and acceptable. Design Rule and Resource 
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Containers were expanded automatically using the relationships file and are, therefore, not subject to this 
threat. 

We have comprehensively unit tested the programs used to analyse the projects, with the Java JUnit testing 
framework. Whilst some bugs will undoubtedly still exist, we have taken reasonable precautions to find and 
fix bugs prior to analysing the results. 

5.2. Generalizability 

In order to apply Clarkson et al.’s (2004) method of calculating change propagation probability, we used a 
constant value of 0.5 in place of observed data. Whilst the correlation results in Table 5 suggest this was a 
reasonable value to use, we do not know whether it could be further optimized.  

We assumed that a PL/SQL package in the Server project is analogous to a Java class in the other projects. 
This is a reasonable assumption to make because PL/SQL packages and Java classes are both nodes in the 
underlying structural graph of the software. The consistency of the results over all four projects further 
supports that view.  

Not all software development projects will have the upfront designs our method requires. The emergence 
of agile methods may magnify this threat. However, Nord et al. (2014) explain that architecture is needed in 
large scale agile projects to avoid excessive redesign later. According to Bass et al. (2012), Boehm and Turner 
analysed 161 projects and found that the bigger the project, the more architecture risk assessment is needed to 
avoid rework. Our method is therefore more likely to be applicable to larger scale software development 
where the architecture risk assessment has produced upfront designs. Nord et al.’s “zipper model” that enables 
architecture and feature stories to proceed in parallel may provide a means to introduce upfront risk analysis 
using risk containers into agile projects without impeding agility.  

In terms of the UML class diagrams needed to construct Design Rule Containers, Petre (2013) found that 
seven of the eleven UML users did use upfront class diagrams. This suggests that Design Rule Containers are 
likely to be feasible for projects using UML. For projects not using UML, our analysis of the Server project 
shows that any dependency graph can be used. However, the threats of UML and design availability in agile 
projects are mitigated by having an analytical process that is agnostic of how the class dependency graph is 
obtained, as explained in section 3.3. 

According to Zhang and Tan’s study (2008), large Java systems have 314 to 12299 classes. Only the API 
project is in that range, but still well below the median (877). To counter this threat, we developed a Java 
parser to extract “design-like” relationships from source code that include: (i) dependencies on extended or 
implemented types; (ii) dependencies on non-static member variable types; (iii) public method parameter and 
return types upon which classes depend. These extraction rules provide a similar level of detail to the projects’ 
design diagrams.  

The parser extracted 2429 “design-like” relationships from ArgoUML which is a large Java project 
according to Zhang and Tan. We then automatically populated 73 abstraction Design Rule Containers based 
on the extracted relationships. The metrics for ArgoUML are: CPC=1.49, IC=74.85, ICS=29.73, CCCP=0.2 is 
greater than NCCCP=0.07, and Spearman’s rank correlation between CPD and CPI is strong (ρ=0.93) and 
significant (α=0.001). These results are consistent with those for the other projects.  

Whilst this is not a completely comparable test, because pattern and composition Design Rule Containers 
were not created, it provides early confidence that the method is fully automatable and scalable. It also 
suggests the approach has potential to work for any source of relationships (design or source code). 
Furthermore, automation based on any source of relationships would enable the approach to accommodate 
design drifting and decay (as observed in the API and Server projects) by applying risk container analysis 
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iteratively throughout all stages of the software development life-cycle. It also suggests the process could be 
applied to projects where an upfront design is not available, as is often the case in agile projects. 

6. Conclusion 

Our aim is to help practitioners identify and mitigate maintainability risks early in the software 
development life-cycle. This paper provides several new contributions: (i) an evaluation of the ability of 
design time risk containers for predicting and isolating implementation change propagation; (ii) identification 
of the most change propagation isolating container type; and (iii) formally defined container change 
propagation metrics. This paper also extends our previous work by providing: (iv) analysis of additional 
projects; (v) a more detailed description of the container population algorithms; and (vi) a formal definition of 
the class isolation metrics.  

The three container types tested were: 1) Design Rule Containers (DRCs) that group classes by 
modularising design rules; 2) Use Case Containers that group classes supporting use cases; and 3) Resource 
Containers that group classes dependent upon external resources such as database tables, files and services. 
Results from two industrial projects (API and Server) and two student dissertation projects (ps2tsa and 
OBTW) suggest that DRCs are more effective than the other container types because DRCs have: (i) the least 
amount of class sharing (container overlap), (ii) the highest levels of internal coupling, (iii) the highest 
probability of classes changing with other classes with which they share DRCs; (iv) the most change sets 
isolated in containers, and (v) a strong and significant correlation between design change propagation 
probability and implementation co-change. Crucially, the correlations between design change propagation and 
implementation co-change were much weaker for control containers based on random assignment of classes 
to containers than for the three test container types (Design Rule, Use Case and Resource). This suggests the 
observations in support of our conclusion (i-v) are due to design dependencies. In one project, the qualitative 
analysis of its lead developer agreed with the metrics in determining four of the five DRCs that isolate the 
most change propagation. In a second project the developer agreed with three out of five DRCs predicted to 
isolate the most change propagation. In both cases the developers were able to identify and justify why design 
dependencies had resulted in the top five DRCs being predicted to isolate the most change propagation. 

These results have three potential applications to practitioners. Firstly, developers assigned to work on 
different DRCs are less likely to make changes to shared classes than they would be if work were allocated 
based on the other container types. This supports Wong et al.’s (2009) original goal for the Design Rule 
Hierarchy algorithm upon which DRSpaces (Xiao et al., 2014) and DRCs (Leigh et al., 2016, 2017) are based. 
Secondly, the ability to rank containers according to relative levels of predicted internal change propagation, 
would allow practitioners to prioritize containers for redesign to reduce the cost of making changes during 
implementation. Thirdly, practitioners can factor container size into redesign estimates to help judge whether 
the likely risk impact warrants such mitigation, as well as increasing the likelihood of the redesign being 
implemented within budget. 

When considered in combination with our previous error-proneness research (Leigh et al., 2016, 2017), 
which showed container-level coupling to be a significant indicator of implementation error-proneness for 
DRCs in the API and Server projects, the new change propagation results presented in this paper suggest 
DRCs are the most useful container type for these maintainability risks overall. That suggests class diagrams 
are more helpful than use case sequence diagrams when assessing upfront designs for potential 
implementation maintainability risks.  

Opportunities for future work include analyzing if container-based risk assessment is generalizable for 
other risk categories such as security risks. We also plan to investigate if container-based risk assessment can 
be effective in agile software projects, using minimal design, to balance the benefits of discipline and agility. 
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