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Abstract

The understanding of the behavioral aspects of a software system is an essential enabler for many software engineering
activities, such as adaptation. This involves collecting runtime data from the system so that it is possible to analyze
the collected data to guide actions upon the system. Consequently, software monitoring imposes practical challenges
because it is often done by intercepting the system execution and recording gathered information. Such monitoring
may degrade the performance and disrupt the system execution to unacceptable levels. In this paper, we introduce a
two-phase monitoring approach to support the monitoring step in adaptive systems. The first phase collects lightweight
coarse-grained information and identifies relevant parts of the software that should be monitored in detail based on
a provided domain-specific language. This language is informed by a systematic literature review. The second phase
collects relevant and fine-grained information needed for deciding whether and how to adapt the managed system. Our
approach is implemented as a framework, called Tigris, that can be seamlessly integrated into existing software systems
to support monitoring-based activities. To validate our proposal, we instantiated Tigris to support an application-level
caching approach, which adapts caching decisions of a software system at runtime to improve its performance.
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1. Introduction

As modern software systems become increasingly large
and complex, effective analysis methods to understand the
dynamic behavior of a software system and act upon it
in a timely fashion are becoming essential to ensure soft-
ware quality. These analysis methods support fundamen-6

tal software engineering tasks such as the addition of fea-
tures, debugging, validation of quality requirements, per-
formance engineering, or optimization [1]. Fully dynamic
and online monitoring is the core of self-adaptive systems
(SAS), which are those capable of adapting their behav-
ior to keep satisfying their requirements in dynamic envi-12

ronments [2, 3, 4]. This typically involves collecting and
storing runtime data from software components and the
environment in such a way that the collected data can be
analyzed and used to guide adaptations in the system.

The system behavior is often recorded as execution
traces [5, 6, 7]. This requires system instrumentation with18

additional code instructions that collect and store informa-
tion from specific components of a system or its execution
environment. As a consequence, there are practical chal-
lenges that must be overcome. First, the overhead caused
by the collection of execution traces in the observed system
can become unacceptable, mainly for time-sensitive sys-24

tems. Second, the result of system monitoring is a large
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set of traces, which frequently requires huge amounts of
storage space. These problems have been tackled on a case-
by-case basis, e.g., by limiting the tracing only to high-
level events [8, 9] or a predefined set of executions [5, 10].
However, the former may be not enough depending on the30

purpose of monitoring, while the latter may not be known
at design time or may require frequent revisions of the
parts to be monitored. Consequently, fully monitoring the
software system becomes the only viable alternative.

To provide a solution that can be reused across differ-
ent systems and application domains, we propose a two-36

phase monitoring approach for filtering and sampling ex-
ecution traces at runtime. In its first phase, a lightweight
and coarse-grained monitoring is performed to identify rel-
evant parts of the software execution. As relevance is
essentially a domain-specific concept, this process is in-
formed by the goal of monitoring in the form of high-level42

relevance criteria expressed in a proposed domain-specific
language, called TigrisDSL. In practice, the criteria are
translated into software metrics, which are collected and
analyzed at runtime to guide an in-depth and fine-grained
monitoring in the second phase of the approach. Both
relevance criteria and software metrics are derived from a48

systematic literature review.
Our approach is implemented as a framework, named

Tigris, which seamlessly integrates the proposed solution
to existing software systems to support monitoring-based
activities. Consequently, our approach and framework can
be used as a monitoring component to effectively monitor a54
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software system and provide information for different pur-
poses, e.g. to identify security vulnerabilities [6], model
inconsistencies [11] or performance bugs [12, 4]. To vali-
date our proposal, we instantiate Tigris as the monitoring
component of an approach that improves the performance
of applications using caching. Our evaluation shows that60

our proposal can maintain the effectiveness of the caching
approach while reducing the monitoring overhead.

This paper is an extension of previous work [13]. Com-
pared to the original paper, it contains the following new
contributions.

• The foundational study from which we derived our66

relevance criteria was extended to include studies
published in 2019.

• Our foundational study includes now the analysis of
three additional aspects (scalability, generality and
adaptivity) associated with monitoring-based approach-
es.72

• Our preliminary version of the domain-specific lan-
guage is now formalized as the TigrisDSL, which al-
lows the creation of monitoring filters by means of
high-level relevance criteria.

• The two-phase monitoring approach, as well as its
implementation as a framework, called Tigris, are78

explained in further detail and illustrated with a run-
ning example.

• The evaluation of the Tigris framework has been ex-
tended with new research questions, exploring the
adaptivity of the approach to variations in the work-
load mix, and different trade-offs between monitor-84

ing overhead and the reliability of the traces.

The remainder of the paper is organized as follows.
Next, we discuss challenges and existing approaches in the
context of software monitoring. In Section 3, we present
a foundational study and its results, which includes the
derivation of a domain-specific language, named Tigris-90

DSL. Our proposed two-phase monitoring approach is in-
troduced in Section 4, and we give details of its implemen-
tation as a framework in Section 5, An empirical evalua-
tion of our approach is presented in Section 6. Finally, we
conclude in Section 7.

2. Challenges on Monitoring and Related Work96

Runtime monitoring has been used for many purposes,
from runtime verification to software self-adaptation [14,
15, 16, 17]. We next further discuss the two major prob-
lems that must be addressed by adding monitoring at run-
time and approaches proposed to address them.

2.1. Reduction of the Monitoring Overhead102

A typical solution to reduce the monitoring overhead
is to consider a sample of execution traces. The key ad-
vantage is the bounded overhead, which linearly decreases
with the reduction of the sampling period and size. The
most popular and straightforward sampling strategy is ran-
dom or systematic sampling [18, 19]. However, this also108

results in a lower number of collected traces, which may be
an inadequate representation of the population of traces.
To address this, there are approaches that focus on sam-
pling particular executed code locations and those that
adjust the sampling rate.

Dynamic Monitoring Region. There are approaches [20,114

21, 22, 23, 24] that monitor particular program regions or
paths as the sampling strategy. However, this leads to a
reduced coverage and possibly an unrepresentative sam-
ple [25]. Thomas et al. [26] investigated several schemes
for using markers to optimize linear sampling by reduc-
ing the sampling rate without increasing the original over-120

head, while Fischmeister and Ba [27] built a system model
and consider three theorems to determine the sampling
period in different scenarios. Fei and Midkiff [22], in turn,
proposed a framework that avoids already monitored ex-
ecutions. This is based on the observation that the re-
peated execution of a (region of a) program with the same126

context tends to produce the same outcome. The use of
these sampling or filtering schemes makes them suitable
for monitoring-based activities that can tolerate some de-
gree of data loss [28].

Dynamic Monitoring Rate. The monitoring overhead can
be reduced by adjusting the sampling rate to the current132

system load. This leads to an adaptive sampling, which
was proposed by Hauswirth and Chilimbi [29]. The pro-
posed sampling rate is inversely proportional to the fre-
quency of the execution, ensuring the spatial coverage but
not the temporal coverage of all program executions. This
may, however, not be well suited to capture symptoms138

that are not uniformly distributed throughout the execu-
tion. Two approaches, in contrast, adjust not only the
sampling rate but also its scope. Daoud et al. [30] pro-
posed a dynamic tracing approach based on conditions and
thresholds, while Fei and Midkiff [22] proposed a runtime
monitoring approach that balances the system load and144

the monitoring coverage. The latter serves for the spe-
cific purpose of identifying program regions where bugs
are likely to occur.

2.2. Management of the Size of Execution Traces

The second problem associated with monitoring execu-
tion data is the amount of data generated to be stored and150

mined. In the face of large sets of traces, there is a need
for huge storage space and analysis time, which may hin-
der opportunities for the timely detection of time-sensitive
problems. Moreover, only a small subset of traces may be
significant and enough for the analysis [31, 25, 10].
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In this sense, sampling-based filtering approaches have156

been proposed to cope with the size of execution traces
by selecting a subset of traces based on event type, time,
description, or even the priority or importance [25, 32].
Consequently, only the traces that match a particular pat-
tern are selected [33, 34, 35, 36, 37, 25], such as being
of a certain program region [22, 24]. Although these ap-162

proaches manage the size problem, it is not always trivial
to specify monitoring patterns and triggers to obtain traces
of interest. Furthermore, these specifications are usually
fixed, which limits the flexibility and adaptability of the
monitoring and couples the tracing strategy with the anal-
ysis, resulting in a possibly hidden relevant behavior that168

remains undetected [8].

2.3. Discussion

Runtime monitoring often leads to an overhead in the
observed program, being mostly used within program anal-
ysis tools and having limited practical use to change or
adapt program behavior at runtime [9]. In the latter case,174

the monitoring is often limited to logging high-level events.
Detailed measurements, e.g. method-level tracing, tend to
be avoided because their overhead can disrupt execution.
This limits the information available for analysis when
finding and solving issues at the code level [8].

Filtering and sampling has been demonstrated as a180

practical solution to reduce both the monitoring and trace
size issues. However, the majority of the existing solutions
are conceived to be used in a post-mortem manner, which
does not consider the monitoring overhead. In addition,
low-overhead runtime monitoring strategies serve for spe-
cific purposes and, consequently, are not generalizable.186

Although there are generic frameworks [38, 39] to ana-
lyze, comprehend and visualize execution traces, they fo-
cus on debugging, visualization and comprehension of the
software system behavior, demanding manual analysis to
investigate and solve issues. In addition, these approaches
require the manual tuning of several parameters, e.g. [32]192

and [40], which consist of approaches that demand the def-
inition of custom filtering behavior patterns in execution
traces through several parameters and configuration files.
Finding the adequate parameters can be a difficult task,
and effective only for specific sets of traces (even within a
single system).198

Thus, there is a need for monitoring techniques that (1)
make an adequate trade-off between the monitoring over-
head, by not compromising the system operation and still
collecting relevant execution traces; and (2) can be used for
different purposes, such as detecting failure points or per-
formance issues. We take a step towards this by proposing204

a generic solution for collecting relevant execution traces
according to the goal of monitoring and analysis. It uses
specified high-level relevance criteria, introduced next.

3. Relevance Criteria

A complete set of execution traces captures the execu-
tion of every operation of a software system. However, not210

every trace is equally relevant given a particular goal when
monitoring the system, because only a subset of the traces
contains the information needed to diagnose a target sys-
tem symptom. These traces may be concentrated in parts
of the code with specific characteristics. For example, if
the goal of the monitoring is runtime verification [31, 7],216

methods that handle many exceptions or include type cast-
ings may be the primary source of relevant traces, as such
methods are error-prone. Alternatively, if the purpose of
monitoring is performance optimization, methods that are
more frequently invoked might be those to be tracked [41].
The relevance of an execution trace for analysis depends222

on the purpose of the analysis, i.e. the monitoring goal.
A sample of collected execution traces is said relevant if
the portions of the source code being monitored satisfy a
set of relevance criteria. A relevance criterion is defined as
follows.

Definition 3.1. Relevance Criterion. A relevance crite-228

rion is the specification of a property of system events (e.g.
the execution of a method or a function) that characterizes
the types of events that are more likely to be useful than
others, according to a particular monitoring goal.

To identify the relevance criteria associated with each
monitoring goal, we surveyed monitoring-based approaches234

from the literature, identifying their goals as well as adopted
criteria and metrics to analyze execution traces to under-
stand the system behavior. Next, we first describe the
method used to select and analyze research work in this
context and then present obtained results. Founded on
them, we introduce the TigrisDSL, which is a domain-240

specific language (DSL) to specify relevance criteria.

3.1. Method

We surveyed full papers published in the Computer
Science conferences presented in Table 1. These confer-
ences have on their scope of interest research related to
the analysis of execution traces for profiling, adaptation246

or code understanding. We selected the two most highly
ranked conferences in software engineering (ICSE and ES-
EC/FSE), and five other conferences where system moni-
toring is a core concern due to its importance to the soft-
ware adaptation area (ICAC, SASO, and SEAMS) and
code analysis and understanding (OOPSLA and ICPC).252

We focused only on conferences to pursue face-paced pub-
lications considering that they have faster review and pub-
lication processes than journals. Moreover, papers pub-
lished in journals are often extensions of conference papers.
In addition, we also covered journal-first publications of
relevant journals in the area, as these papers can be pre-258

sented at selected conferences. We restricted our search
to the past six years (2014–2019). To filter relevant pa-
pers, we searched the databases where the proceedings of
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these conferences were published using the following query
string.

(runtime OR dynamic) AND (monitor OR instru-
ment OR record OR track OR profile) AND (trace
OR execution)

As result, we obtained 147 papers, from which 64—264

based on the title and abstract—fit the criterion of includ-
ing a monitoring-based approach. They were analyzed ac-
cording to four dimensions:

1. identification of the monitoring goal, the criteria adopted
to analyze execution traces and the used metrics;

2. assessment of the generality of the monitoring ap-270

proach in terms of its use for different application
domains and purposes;

3. examination of scalability aspects, such as the over-
head and size of traces; and

4. inspection of the adaptability of the monitoring ap-
proach, that is, the runtime changes in the monitor-276

ing strategy to address a particular issue, such as the
reliability of collected traces or overhead reduction.

To guide the analysis of the selected papers, we used
pre-specified questions, presented in Table 2, which served
as a checklist while analyzing the papers. The analysis
was performed manually by reading the selected papers282

and answering the questions. Table 3 provides examples
of such analytical processes and illustrates how we reached
the results of our study1.

The combined analysis of the four dimensions based on
information gathered from the selected papers provided us
with the foundation needed to elaborate a solution that288

can effectively support the development of monitoring-
based approaches. The results are presented as follows.

3.2. Analysis and Results

3.2.1. Goals, criteria, and metrics

Based on the analysis of our selected papers, we identi-
fied the criteria presented in Table 4. This table also shows294

the number of papers in which each criterion appears. As
can be seen, the frequency of an execution event is the
most adopted criterion to classify relevant traces, followed
by maintainability.

Although the order in this table may give evidence of
the importance of the criteria, note that each criterion has300

a different purpose. Consequently, the number of occur-
rences is also associated with the most common goals of
monitoring. We thus, in addition to the identification of
criteria, investigated the goal of monitoring in the selected
papers. The identified goals are clustered into five groups,

1The detailed analysis of each paper is available at http://www.

inf.ufrgs.br/prosoft/resources/2020/jss-effective-tracing

as presented in Table 5. For each group, we show exam-306

ples of specific goals that appeared in the papers. We also
highlight the most used criteria for each goal. To assess
whether execution events match the relevance criteria of a
specific goal, various metrics are used to make an objec-
tive evaluation. Cells of Table 5 indicate the most relevant
metrics associated with each pair of goal and criterion that312

appeared in our surveyed literature.

3.2.2. Generality

All the surveyed approaches have been proposed for a
specific goal, such as identifying performance bottlenecks
or bugs. Despite their sheer number and heterogeneity, 49
papers (76.5%) are limited to specific purposes, individual318

systems, particular architectural styles, or technologies,
which couples the monitoring phase of these approaches
to the analysis they perform (i.e. the goal of monitor-
ing). These solutions are limited in terms of reuse be-
cause they are developed in an ad-hoc manner and require
re-engineering work in order to adapt applications to ob-324

taining tracing features.
From the surveyed approaches, 15 papers (23.5%) are

flexible in terms of configuration. It means that they can
be customized in terms of constraints, rules, and proper-
ties of the approach to better fit the user-specific needs.
This flexibility is achieved by offering lower-level inter-330

faces, functions, and probes that can be manually imple-
mented and customized by users, such as in [45, 46, 47].
However, only 5 papers (7.8%) increase the generality of
monitoring by providing higher-level support so that users
can achieve a domain-specific specification of the goal of
monitoring, which is automatically implemented by the336

monitoring proposal. This is offered in the form of an-
notations, parameterization or domain-specific languages,
e.g. in [48, 49, 50].

In addition to analyzing whether the monitoring can
be customized, we also inspected if it relies on the partic-
ularities of specific technologies, programming languages,342

or execution environments. From the 64 papers, only 17
(26.5%) are technology-independent. The remaining 47
surveyed approaches (73.5%) rely on traces and events
with properties and format tight to specific programming
languages such as JavaScript [51] or Java [52]. The same
applies to approaches focused on software platforms such348

as Android [43] and Linux [53]. In these scenarios, traces
are usually collected by instrumenting or profiling the exe-
cution platforms at a lower-level, and thus the monitoring
approach becomes dependent on the platform specificities.

This means that most of the existing solutions that
rely on monitoring are application-specific, i.e. while they354

carefully collect selected data at runtime for a particular
purpose, the principles used to monitor data are not gen-
eralizable. However, the rationale behind the criteria used
to filter traces is shared by the approaches.
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Table 1: Conferences from where papers from the past six years (2014–2019) were obtained and analyzed.

Acronym Conference

ESEC/FSE Joint European Software Engineering Conference and Symposium on the Foundations of Software En-
gineering

ICSE International Conference on Software Engineering
OOPSLA Conference on Object-Oriented Programming Systems, Languages, and Applications
ICAC International Conference on Autonomic Computing
SASO International Conference on Self-Adaptive and Self-Organizing Systems
SEAMS International Symposium on Software Engineering for Adaptive and Self-Managing Systems
ICPC International Conference on Program Comprehension

Table 2: Analysis Approach. Questions used in the analysis of
monitoring-based approaches.

#Q Question

1 What is monitored?
2 What are the metrics used?
3 What are the criteria related to the metrics?
4 What is the goal of monitoring?
5 How are traces collected?
6 What is the granularity of the collected traces?
7 What is the amount of the collected traces?
8 How were the traces generated for evaluation?
9 Is the monitoring automatically integrated?
10 Is the monitoring adaptive? What is the goal of

adaptation?
11 How is adaptation achieved? What is the adap-

tation trigger?
12 Is there monitoring overhead? How is the over-

head dealt with?
13 Is representativeness considered when collecting

traces?
14 How is representativeness ensured?
15 Is relevance considered when collecting traces?
16 How is relevance ensured?
17 How specific is the monitoring approach in terms

of technology or domain/purpose?

3.2.3. Scalability

Monitoring and collecting information from a managed360

system impact on its performance. From all approaches,
31 papers (48.5%) explicitly mention that their solution
implies an overhead to the observed system, such as in [54,
55, 56, 57, 58, 59]. The overhead implied may vary accord-
ing to the amount of information required to the analysis
and the monitoring technique used to collect the execu-366

tion traces. For example, Su et al. [44] report an over-
head of 10× compared to running a Java-based application
without the profiling technique used to detect functional
clones, which relies on collecting detailed inputs and out-
puts of function calls. A different monitoring technique
adopted by Hu et al. [60], which relies on collecting oc-372

currences of operational system calls based on a Linux

kernel (low-level) extension, reports an overhead of less
than 1%. The remaining 33 surveyed approaches (51.5%),
e.g. [61, 62, 63, 64, 65, 66], do not even mention the im-
pact of monitoring and gathering data from the managed
system. This could raise questions of their practical feasi-378

bility because even in cases where a small amount of data
is collected during system monitoring, like execution time
and identification of the event [60, 67], there is an impact
on the memory consumption and processing time of the
system.

Sampling and filtering have been demonstrated as the384

most used solution to reduce the trace size and enable
faster trace analysis, adopted by 26 approaches (40.5%).
However, the reduction of the amount of traces may lead to
an unrepresentative sample and, consequently, inadequate
to achieve the goal of monitoring. None of the surveyed
approaches ensured the representativeness of the sample390

collected.
In terms of overhead evaluation, only 16 papers (25%)

assessed the extent of the overhead. The reported over-
head varies from negligible (0.8%–5%) [45, 68, 43, 69, 70,
60, 71] to high impact (such as +16% or 41.7× the original
execution) [54, 72, 55, 73, 51, 56, 57, 58, 44], which compro-396

mises the practical feasibility of the approach in real-time
scenarios. These high impact approaches are typically not
supposed to be used at runtime because they demand de-
tailed monitoring of the system and are usually focused
on testing scenarios, possibly with production workloads.
The results can be manually analyzed and applied by de-402

velopers at design time to benefit the system in future
executions.

Towards addressing the observed monitoring overhead,
16 of the approaches (25%) explored alternatives to reduce
the impact of the monitoring activity. From these, six [73,
56, 52, 74, 58, 75] apply specific tuning and optimization408

in the proposed algorithms to reduce the overhead, which
is not possible to generalize to other approaches. For ex-
ample, Madsen et al. [56], who focused on providing de-
velopers with detailed information about crashes at exe-
cution time, iteratively increase the instrumentation level
on regions of code in which crashes are detected. In addi-414

tion, Huang et al. [52], which monitors thread-related op-
erations in Java-based applications, do not collect global
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Table 3: Analysis Approach. Example of how information from the selected papers were collected by answering the questions specified in
Table 2.

Sample Quote from Selected Papers Gathered Information #Q

[42]: The proposed monitoring module gathers CPU utilization for all the back-
end tiers of the applications (Web, Spark and Cassandra) on the con-
tainer level, CPU utilization of the host VMs, as well as response time and
throughput from the entire system.

Target of monitoring 1

[12]: [...] uses state of the art CPU time profiling to identify the set of initial
memoization candidates. We record, for each executed method m, the time
tm spent in m (including time spent in callees) and the number cm of calls.
Furthermore, we also measure the total execution time tprgm of the program.

Metrics 2

[43]: Based on the profiling data, DiagDroid detects performance issues
and analyzes their causes. A report can finally be generated with an aim to
direct the debugging process.

Goal of monitoring 4

[44]: There are several factors that can contribute to the runtime overhead of
HitoshiIO [...] The most dominant factor for execution time in our experiments
was the clone identification time: application analysis was relative quick (order of
seconds), and the input-output recorder added only a roughly 10x overhead

Scalability 12

Table 4: Relevance Criteria. List of relevance criteria identified in
our searched literature, with their description. The number of oc-
currences (#) in the analyzed papers is also detailed.

Criterion Description #

Frequency Amount of times that an
event occurs during a period
of time

30

Maintainability Complexity of the operations
associated with an event

20

Expensiveness Consumption of computa-
tional resources associated
with an event

16

Changeability Analysis of divergences
among the result of multiple
occurrences of a same event

14

Error-proneness Likelihood of an event to
cause errors when they occur

13

Usage pattern Characteristics of an event
that tracks or deals with user
requests

12

State variation Amount of changes in the sys-
tem state caused by an event

9

Concurrency Amount of execution threads
that are executed in parallel
and share resources

8

Latency The delay of the occurrence of
an event

8

traces but instead focus on the events of each thread sep-
arately. The remaining ten approaches [54, 68, 55, 51, 53,
76, 45, 70, 12, 77] make use of generic solutions such as
sampling (simple systematic or random) and static analy-420

sis to filter out locations and avoid collecting the so-called
useless traces.

The granularity level of the monitoring may play an
important role in the overhead. In this regard, 40 of the
surveyed approaches (62.5%) rely on monitoring function
or method calls, which implies a considerable overhead426

given the high number of traces and the detailed informa-
tion usually collected from method calls such as the input
parameters and return. In 36 approaches (56%), the trace
collection is performed based on low-level profiling and in-
strumentation, according to the programming language in
which the approach is implemented such as based on Low432

Level Virtual Machine2 (LLVM) [53, 78] for C++ appli-
cations, Jalangi framework3 [51, 73] for Javascript-based
applications, or ASM-based4 instrumentation [12, 57, 41,
44] for Java applications. In addition, eight approaches
(12.5%) either demand manual implementation of the trac-
ing collection code [49, 48, 79, 80, 81] or provide ways of438

generating the implementation automatically [70, 75, 47].
However, code-level changes imply maintenance issues and
increase the complexity of the software system base code.

For practical reasons, sometimes the monitoring is lim-
ited to high-level events [61, 82, 42, 6, 83, 84, 85]. Exam-
ples of this type of event are requests to a web server [61] or444

occurrences of failures in software components [85]. This is
the case of 15 of the surveyed approaches (23.5%) that rely
on system or module-level monitoring. However, this may
reduce the power of the analysis, given the lower amount
of collected information.

2https://llvm.org/
3https://jacksongl.github.io/files/demo/jalangiff/index.

html
4https://asm.ow2.io/

6

https://llvm.org/
https://jacksongl.github.io/files/demo/jalangiff/index.html
https://jacksongl.github.io/files/demo/jalangiff/index.html
https://asm.ow2.io/


Table 5: Goals, Relevance Criteria and Metrics. Association between groups of goals and relevance criteria, along with examples of goals
and metrics used by the surveyed approaches. Cells in gray highlight the three most relevant criteria of each goal. The given examples are
non-exhaustive.
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3.2.4. Adaptability450

The way that the monitoring is performed can change
at runtime, either to focus on relevant traces or to reduce
the overhead. Examples of changes are the metrics being
collected, sampling configurations, or target locations ori-
ented by a domain-specific analysis and occurrence of an
event of interest. These are forms of adaptive monitoring.456

Only seven of all surveyed approaches (11%) employ
adaptive mechanisms to improve the monitoring efficiency [55,
51, 56, 74, 12, 86, 87]. In all cases, the adaptation is trig-
gered based on a set of specific constraints or hard-coded
rules and are thus not flexible to be modified. For example,
Bronik et al. [55] increase the reliability of collected data462

by dynamically placing probes in component connections
according to fault detection. As its goal is fault localiza-
tion, it changes the trace rate to have more information
about which components are more susceptible to faults. It
triggers the adaptation based on rules such as if a problem
has been diagnosed in a component, probes are deployed468

to obtain a more accurate diagnosis.
Another example is the evaluation of the health of a

managed resource [51]. Because the instances in a dis-
tributed system can come and go dynamically, when a
new component appears or leaves the system, the moni-
toring component is capable of reflecting changes in the474

topology and keeping the reliability of the collected data.
Adaptation is also used to dynamically reduce the level of
the overhead. Barna et al. [86], e.g., adapt the sampling
technique to focus on specific code locations depending on
the computational resources available for monitoring.

In addition, all the proposed adaptations are focused480

on controlling the monitoring overhead [86, 56, 74], or in-
creasing the trace reliability for a specific purpose [55, 51,
87, 12]. All of them are limited to changing configurations
based on pre-defined setups or ad hoc assumptions, with-
out considering the trade-off involved in the process. An
example of such an assumption is that the performance486

overhead is reduced by merely reducing the target loca-
tions [86], which may not be valid if the majority of the
system executions are concentrated on the filtered loca-
tions. Thus, generic adaptation goals, such as ensuring
the representativeness of the collected traces or dynami-
cally managing the monitoring overhead, are not addressed492

by any of the surveyed approaches.

3.2.5. Discussion

Although runtime monitoring approaches have been
employed to different goals and purposes, there are still
limitations in terms of generality, scalability, and adapt-
ability that should be addressed in order to achieve an498

effective monitoring approach. Thus, there is a need for a
monitoring technique that:

1. can be applied generically and flexibly for different
types of software systems and purposes, such as de-
tecting and dealing with performance issues or en-

ergy bottlenecks, considering different levels of mon-504

itoring granularity;

2. can deal with the trade-off between the impact caused
by the monitoring and its effectiveness in terms of
data representativeness, relevance and location cov-
erage; and

3. is able to respond to changing requirements and con-510

straints in the monitoring component in order to
maintain the monitoring effectiveness.

In addition, the development of reusable monitoring
approaches that abstract and encapsulate monitoring func-
tionality would reduce both the effort to develop new sys-
tems implementing these strategies as well as the prob-516

ability of bugs in newly implemented solutions. More-
over, it would promote software reuse across different goals
and domains. Based on the findings of our survey of
monitoring-based approaches, we derived TigrisDSL, a do-
main-specific language (DSL) designed to provide users
with a standardized and comprehensive way to specify522

monitoring goals in terms of metrics and relevance criteria.
TigrisDSL is founded on the relevance criteria presented in
Tables 4 and 5 and is the basis of our monitoring solution
(introduced in Section 4).

3.3. TigrisDSL: a Generic Way to Specify Relevance Cri-
teria528

TigrisDSL allows users to write monitoring filters by
means of high-level relevance criteria. These relevance fil-
ters can be used to guide monitoring components to collect
a set of relevant traces that are analyzed to achieve the goal
of monitoring. It can be incorporated into any monitoring
approach to specify monitoring requirements.534

The Backus–Naur Form (BNF) grammar of TigrisDSL
is presented in Listing 1. TigrisDSL is based on the re-
cursive definition of a filter, which can be composed
of multiple definitions (filterdef). Filter definitions are
the main structure to allow users to inform which group
of data from the relevance criteria should be considered540

(modifier) and the relevance criteria from the set of pre-
defined criteria (criterion). It is important to highlight
that these pre-defined criteria are based on our systematic
literature review. Nevertheless, future versions of our DSL
can include extended criteria or modifiers if those derived
from our systematic analysis are considered not enough for546

the specifications of filters.
The semantics of the modifier should be specified by

an approach employing our DSL. For example, frequent
can be events that are executed in a frequency above the
average, while most frequent can be the top 5% of the
most frequent execution events (e.g. invoked methods or552

called functions).

8



Listing 1: TigrisDSL Syntax Grammar. Presentation of the BNF
grammar of the TigrisDSL language.

〈filter〉 ::= 〈filterdef 〉 | ( 〈filter〉 ) | 〈filter〉 〈operator〉
〈filter〉

〈filterdef 〉 ::= 〈modifier〉 〈criterion〉 | 〈criterion〉

〈operator〉 ::= ∪ | ∩ | \

〈modifier〉 ::= more | less | most | least

〈criterion〉 ::= frequent | maintainable | expensive |
changeable | error-prone | usage-pattern | state-
variation | concurrent | latent

In addition, filters can be combined to form a com-
plex filter using operators, which are based on basic set

operations, namely union, intersection, and subtraction.
With these operations, it is possible to specify how the558

data from different groups of the relevance criteria can be
combined to identify and filter a set of relevant events.
To illustrate, we give examples of expressions written in
TigrisDSL as follows.

• least frequent, which indicates that in terms of
frequency, only the least frequent events of the sys-564

tem execution should be traced.

• more frequent ∪ most expensive, which indicates
that the monitoring should be focused on methods
that are more frequent or most expensive, consider-
ing all the system events.

• most changeable ∩ (most concurrent ∪ more570

error-prone), which indicates that only the most
changeable events, which also have higher levels of
concurrency or tend to cause errors, should be
traced.

Depending on the semantics of modifiers, increasingly
complex expressions can be specified as needed. Examples576

are presented as follows.

• less changeable ∩ more frequent ∩ (more

usage-pattern ∪ (more expensive ∩ less

usage-pattern))

• (least changeable ∪ most changeable) ∩
more frequent ∩ (most usage-pattern \ less582

expensive)

In order to demonstrate how relevance criteria can be
used to abstract the desired behavior and filter execution
traces for a specific purpose, we take a monitoring-based
approach as an example [12]. This approach was identified

in our literature survey. Della Toffola et al. [12] proposed588

a method to identify memoization opportunities based on
profiling method executions of applications. During this
analysis, all the method calls are filtered by processing
three specifications, which are presented in the first column
of Table 6. These specifications are informal and presented
in a non-standardized way. The other two columns of this594

table show with which relevance criterion each specifica-
tion is associated and a filter that represents it. The filters
shown in the third column of Table 6 are less ambiguous
and more concise than natural language. In addition, they
are a generic and explicit way to express what sort of mon-
itoring events of interest.600

It is important to highlight that the proposed lan-
guage TigrisDSL is generic and abstract in the sense that
it does not define the semantics of criteria such as fre-
quency or expensiveness, as well as the meaning of more
or less error-prone when comparing execution traces. Es-
sentially, TigrisDSL captures the most representative con-606

cerns about the monitoring observed in the analyzed pa-
pers (criteria) and provides a syntactic construction to ex-
press a comparison among elements within a criterion in
quality or degree (modifiers), along with a way to cor-
relate and operate on top of different criteria to create
relevance filters (operators). The filter expressions made612

using TigrisDSL can be used as input of any monitoring
approach. To use TigrisDSL to create event filters, it is
necessary to employ a mechanism that can interpret and
translate these criteria, modifiers, and operators into quan-
titative and comparable metrics. We, in particular, pro-
pose a two-phase monitoring approach, which is guided618

by user-made specifications using TigrisDSL and provides
semantics to the language criteria, modifiers and opera-
tors. Our proposal is a step towards achieving an effective
monitoring approach and provides a way to define and
customize monitoring components.

4. A Two-Phase Approach for Collecting Execu-624

tion Traces

As discussed, monitoring all execution traces in detail
comes at the cost of extensive and detailed instrumenta-
tion, which causes a high overhead in software applica-
tions [88]. Moreover, there are situations when it is infea-
sible to select software locations or executions that should630

be monitored a priori in detail (i.e. design-time), or such
locations frequently change overtime. It thus becomes nec-
essary to rely on an automated and adaptive process that
can identify such executions of interest (e.g. the most fre-
quent or more error-prone executions) with reduced per-
formance overhead. Available monitoring approaches in636

this direction lack generality and fail in enabling software
reuse across different domains with varying goals.

To address this, we propose a two-phase monitoring ap-
proach for collecting execution traces, which is a generic
and customizable solution for monitoring. As presented in
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Table 6: Relevance Filter Examples. Example of a monitoring-based approaches specified in TigrisDSL.

Specification made by Della Toffola et al. [12] Relevance TigrisDSL-based
Criterion Filter

The program spends a non-negligible amount of time to process a method. Expensiveness more expensive

The program repeatedly provides equivalent inputs to a method, and this
method repeatedly produces the same outputs for these inputs.

Changeability ∩ least changeable

The number of times that a result can be reused over the total number of
cache lookups is at least 50%.

Frequency ∩ more frequent

Fine-grained
Monitoring

Execution 
Traces

TigrisDSL-based 
Specification of Relevance

Criteria and Metrics

Measurement

Metrics

Sampling

Coarse-grained
Monitoring

Figure 1: Overview of the Two-phase Monitoring Approach. It shows
the input provided in the first phase (Coarse-grained Monitoring)
and the resulting output of the second phase (Fine-grained Monitor-
ing).

Figure 1, our approach is driven by user definitions sup-642

ported by the proposed TigrisDSL, and thus provides se-
mantics to all the terms of the TigrisDSL, such as criteria,
modifiers, and operators. The first monitoring phase (de-
scribed in Section 4.2) is coarse grained, focused on com-
puting low-overhead metrics of event executions according
to the specification of relevance criteria. The second phase648

(detailed in Section 4.3) takes as input the data collected in
the coarse-grained phase. It processes the computed met-
rics from the previous phase and dynamically identifies the
relevant events that are assumed to generate traces that
are relevant for a given goal. These traces are collected in
detail by a monitoring process that relies on a sampling654

strategy to control the overhead of monitoring. Before
detailing the phases of our monitoring approach, we next
present a running example that is used throughout this
section to illustrate details on how the proposed approach
works.

4.1. Running Example: Application-level Caching660

Previous work [4] proposed an automated caching ap-
proach, which chooses and manages cacheable content ac-
cording to the Cacheability Pattern [89]. It targets the
caching of method-level content. The automatically se-
lected cache configuration is based on observations made

by monitoring web applications at runtime, that is, a mon-666

itored application workload. This approach was conceived
and implemented in the form of a caching framework,
named APLCache, which seamlessly integrates the pro-
posed solution to web applications.

One of the limitations of APLCache is that the over-
head of the data tracking activity may significantly impact672

the application execution because it is necessary to moni-
tor method inputs and outputs to make caching decisions.
This was addressed by disabling the monitoring in situa-
tions when it is not possible to keep an acceptable over-
head. Thus, the caching approach may lack information
and provide outdated decisions.678

We use APLCache as a running example to explain the
details of our proposed approach in the following sections.
Thus, the target type of event execution, in this case, are
methods. APLCache is also used as a baseline for our
evaluation, where we investigate the benefits of the two-
phase monitoring to APLCache in terms of the overhead684

and relevance of the provided execution traces. Details
about the evaluation are presented in Section 6.

4.2. Coarse-grained Monitoring

In its first phase, our proposed approach monitors the
application in a way that it is possible to capture data
that enables the identification of relevant traces with low690

overhead. First, it is necessary to instantiate the solution
by providing domain-specific information in terms of rele-
vance criteria and metrics. Based on such information, the
coarse-grained phase can collect data to identify the most
relevant subset of events of the application. We next de-
tail the manual input required by the coarse-grained phase696

and how it is used to monitor events.
The coarse-grained phase of the proposed monitoring

approach relies on two inputs from the user: (a) the def-
inition of high-level relevance filters using the TigrisDSL
language; and (b) the selection of metrics to be used as
a quantitative measurement of each relevance criterion re-702

ferred in filters. To provide such information, users are
provided with the guidance derived from our systematic
literature review. Based on the user’s goal, a set of suitable
criteria from those presented in Table 4 must be selected
to be used in relevance filters, and corresponding metrics
should be indicated. The metrics presented in Table 5 are708
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the most frequently used metrics in the literature, and can
be used to represent the desired relevance criteria.

Considering that our running example is focused on
identifying suitable method calls for caching, according
to Table 5, its goal of monitoring is related to efficiency.
Thus, the relevance criteria to achieve this goal should in-714

clude the most popular criteria of this goal group, which
are frequency and expensiveness. In addition, to find caching
opportunities, method calls that always provide the same
output given a specific input are well-suited for caching
due to reuse opportunity [4, 90]. Thus, changeability is
also a criterion considered. As result, we specify the fol-720

lowing relevance criteria.

(more frequent ∪ most expensive) ∩ least

changeable

The TigrisDSL specification presented above contains
different modifiers and operators. We are interested in fil-
tering the more frequent method calls, i.e. the subset of
method calls that ranks higher according to a specified
metric for frequency, because caching methods that are726

frequently executed usually leads to performance improve-
ments [90]. In addition to the frequent method calls, we
select the most expensive method calls, as caching a result
that takes more time to be processed would lead to major
performance benefits. However, managing cache consis-
tency is a major challenge in the area [90]. Thus, we only732

include method calls that are the least changeable because
it would allow us to use a simple consistency strategy, such
as an expiration time, and reduce the chances of caching
stale content for longer periods. The detailed semantics of
the modifiers (more, most, and least) and operators (∪ and
∩), as defined by our proposed approach, are presented in738

Section 4.3.
For each criterion presented in the TigrisDSL specifi-

cation, it is necessary to use of a quantitative metric so
that the approach is able to track and give an objective
interpretation to the criteria. As mentioned, this metric
can be any of the metrics presented in Table 5, primar-744

ily those that match the selected criteria and the intended
goal of monitoring. By taking into account the goal of our
running example, possible metrics for frequency, expen-
siveness and changeability are, respectively, the absolute
number of times a method occurs, the average time taken
to execute a method and the absolute number of times750

that each pair of input and output of method occurs.
With a quantitative way of measuring the relevance

criteria, the coarse-grained phase starts collecting these
metrics from events at runtime. The coarse-grained mon-
itoring results in a summary of the application in terms
of statistics about all the event executions of the system.756

Collected metrics about the execution events are main-
tained in memory. Consequently, these estimations of the
metrics are computationally cheaper than the metrics and
do not demand recording individual traces.

Relevant Events

A

BExpensiveness

Frequency Normality 
Test

A

Metrics
Grouping Classification

B
∪

A B
\

Data Collection

Fine-grained Monitoring

true

false

Figure 2: Fine-grained Monitoring Steps. Illustration of the three
steps that comprise the fine-grained monitoring: Grouping, Classifi-
cation and Data Collection.

These metrics are used as a reference to assess how ex-
pensive, frequent, and changeable methods are. For exam-762

ple, considering the computation pattern (changeability),
methods with higher standard deviation are less change-
able than others because it might indicate that there are
equal outputs that are (much) more frequent than others,
causing the standard deviation to be high. In our run-
ning example, by monitoring events in a coarse-grained768

manner, our approach gives as result the information pre-
sented in Table 7, where a single metric value represents
each relevance criterion for each method.

4.3. Fine-grained Monitoring

By having a summary of the application in terms of
statistics about all the event executions of the system and774

the relevance criteria, it is possible to identify relevant
events that should be monitored at runtime in the fine-
grained phase. In this phase, our approach uses the data
collected in the previous phase to determine which parts
of the monitored software system are relevant to the goal
of monitoring and thus should be inspected in detail. Fig-780

ure 2 presents an overview of the steps performed during
the fine-grained monitoring. The identification of relevant
parts happens periodically and consists of processing the
calculated metrics to group the values collected in parti-
tions (Grouping step) and using such partitions and rel-
evance filters to classify which types of event executions786

are relevant (Classification step). This process generates
or updates a list of relevant types of event, which are mon-
itored at a fine-grained level (Data Collection step).

Grouping. The relevance filters specified using TigrisDSL
refer to types of events that satisfy a set of criteria, with
each criterion possibly having a modifier (least, less, more792

and most). A criterion with a modifier is used to indicate
if events of interest are those that have an associated met-
ric value that is very low, low, average, high, or very high.
This way of referring to execution events and their metric
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Table 7: Running Example Collected Metrics. Example of metrics collected and maintained for each method in the coarse-grained phase.
Cells in gray highlight the more frequent, most expensive and least changeable according to the Grouping step.

Method Frequency Expensiveness Changeability

ClinicService.findOwner(args) 12 (less) 180 (least) 6 (more)
ClinicService.updateOwner(args) 2 (least) 500 (most) 0 (most)
VisitController.newVisit(args) 50 (frequent) 250 (more) 12 (changeable)
ClinicService.findVets() 200 (most) 300 (expensive) 200 (least)
OwnerRepository.findAll() 100 (more) 200 (less) 90 (less)

values is subjective, and the Grouping step uses the distri-
bution (average and spread) of the values of each metric798

to give an objective meaning.
First, to understand how metric values are distributed,

we apply a normality test to the data set (the set of col-
lected metrics for each event execution) to verify whether
the observed values of a criterion follow a normal distribu-
tion. This process can be performed based on different sta-804

tistical tests. We adopt the non-parametric statistical test
Kolmogorov-Smirnov (p > 0.05), which is widely used and
performs better with large sample sizes—generally the case
when dealing with execution traces. If the Kolmogorov-
Smirnov significance value is higher than the alpha value
(0.05), then the data follows a normal distribution.810

Based on the shape of the distribution, we have two
different strategies to classify data into five partitions. In
the case of a normal distribution, we group the data based
on K standard deviations below or above the mean to cre-
ate five groups of data. In case the data do not follow
a normal distribution, we apply the quantiles strategy by816

calculating the Q1, Q2, and Q3 of the sample to obtain
three groups of data: the lower quarter (below Q1), the
interquartile range (between Q1 and Q3) and the upper
quarter (above Q3). Then, we calculate the median of the
upper and lower quarter and split each of them accord-
ing to that value, leading to five groups of data. These822

strategies to group values are presented in Figure 3.
In our running example, we must group methods to

identify those that are more frequent, most expensive,
and least changeable. The normality test has shown
that all distributions are not normal (this is expected as
our running example considers a small set of methods).828

Then, using quantiles to classify the data, we obtain the
groups presented in Table 7. In this table, we also highlight
the group of interest.

Classification. The Grouping step evaluates each criterion
individually and creates groups of events. The Classifica-
tion step relies on these groups to evaluate the filters spec-834

ified in TigrisDSL. This is done by evaluating the provided
filter expressions that contain set operations (union, inter-
section, and subtraction). The filter specified in our run-
ning example is (more frequent ∪ most expensive) ∩
least changeable. Considering the groups presented in
Table 7, the only method that is relevant considering our840

goal is ClinicService.findVets(), which satisfies the in-

formed filter. This is the method that should be monitored
in detail, in the last step of this phase.

Data Collection. The list of relevant types of event is up-
dated periodically by the previous steps. It is used in the
Data Collection step to perform in-depth monitoring of846

the relevant event types, obtaining details of their execu-
tion, such as returned objects and parameters provided
as input. Although filtering a subset of relevant methods
reduces the overhead of monitoring, it may still impact
the application performance if the traffic is concentrated
in those methods supposed to be relevant. Thus, in addi-852

tion to filtering, traces are collected according to a spec-
ified sampling rate, which bounds the cost of monitoring.
Consequently, our proposal allows the user to achieve an
efficient trade-off between sample representativeness and
monitoring overhead. Considering our running example
and a sampling rate of 50%, the method calls that are858

traced are those highlighted in Table 8, that is, 50% of the
calls to the ClinicService.findVets() method.

5. Tigris Framework

The conceptual approach described above provides a
generic means for monitoring software systems and can be
instantiated to particular technologies. However, to pro-864

vide concrete support to this activity and evaluate our ap-
proach, it has been implemented as a framework, namely
Tigris5, using particular technologies. Tigris is implemented
in Java and thus can be instantiated and integrated into
monitoring-based approaches to leverage the monitoring
results of Java-based approaches and applications. This870

choice is due to our previous programming experience and
available tools that were adopted as part of our imple-
mentation. To collect data during the coarse-grained and
fine-grained monitoring phases, we intercept method ex-
ecutions with AspectJ6, which allows Tigris to acquire
lightweight and dynamic software metrics without chang-876

ing the base code. Metrics available in the framework are
the most frequently used metrics in the literature, listed
in Table 9.

5http://prosoft.inf.ufrgs.br/git/Repository/Tree/

d32a32bf-1a9e-45e1-8117-b4d2adf3c106
6https://eclipse.org/aspectj/
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(b) Grouping based on Quantiles

Figure 3: Frequency Groups. Using the frequency relevance criteria as example, the charts presents the semantics given for the different
modifiers of TigrisDSL. The semantics considers the splitting of the data into groups and the normality of the data.

Table 8: Sample Execution of an Application. Cells in gray highlight
the occurrences (#Occ.) of a specific method call in the application
execution sequence (#Seq.) that would be traced at a sampling rate
of 50%.

#Seq. Method Call #Occ.

1 VisitController.newVisit(”X”) 1
2 OwnerRepository.findAll() 1
3 ClinicService.findVets() 1
4 ClinicService.findVets() 2
5 ClinicService.findVets() 3
6 ClinicService.updateOwner(”X”) 1
7 OwnerRepository.findAll() 2
8 ClinicService.findVets() 4
9 VisitController.newVisit(”X”) 2
10 ClinicService.updateOwner(”X”) 2
11 ClinicService.findVets() 5
12 ClinicService.findVets() 6
13 ClinicService.findVets() 7
14 ClinicService.updateOwner(”X”) 3
15 ClinicService.findVets() 8
16 OwnerRepository.findAll() 3
... ... ...
n− 1 ClinicService.findVets() n− 1
n ClinicService.findVets() n

The metrics used to assess relevance criteria might be
costly to be collected, because they may require “heavy”
information to be calculated, such as parameter and re-882

turn values of event executions. However, as the first
phase monitors all system events, this monitoring is coarse
grained and collects lightweight versions of the metrics to
avoid disrupting the application execution. Therefore, al-
though these metrics have some impact on the applica-
tion execution, it is much lower than collecting fine-grained888

(and heavy) information and recording execution traces.

The coarse-grained monitoring phase is thus limited to
the computation of estimations of the metrics—listed in
the third column of Table 9—which are kept as a single
in-memory number, continuously updated whenever a new
event is intercepted at runtime. For example, for execu-894

tion time and invocation frequency, the estimations are
the mean execution time and the absolute number of all
the calls of a method, respectively. This is opposed to the
complete distribution of these metrics with traces giving
information such as which inputs lead to high execution
times.900

Computation pattern, in turn, consists of the analysis
of common computations of a method, that is, the identifi-
cation of frequent pairs of inputs and output of a method.
This is expensive to be computed as it requires tracing and
comparing each method call accompanied by the parame-
ter values and the method return value. Because the goal906

of this metric is to identify repeated computations and the
output of a method is usually highly dependent on its in-
put, our estimation relies on observing the return values
of different calls of a method in terms of allocation size
in memory and then computing the standard deviation of
these values. Thus, for example, if the standard deviation912

is low, it means that most of the returns of the method
calls are the same, thus less changing.

For estimations that would demand to store the list of
observed values such as those based on standard deviation
and average, to keep a single in-memory number updated
on-the-fly, we compute mean and standard deviation based918

on online and incremental algorithms [91]. The TigrisDSL
specification, as well as metrics to be used while assess-
ing execution events can be configured through property
files and annotations. An example of such configuration is
presented in Listing 2.

The sampling rate can be controlled and adjusted at924

runtime (using a function provided by our implementa-
tion), varying from 0% (no monitoring) to 100% (complete
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Table 9: Tigris Framework Metrics. List of names and descriptions provided by the Tigris framework, together with how these metrics are
estimated.

Metric Description Estimation

Concurrency Level the number of times a method is executed
concurrently

mean number of active threads during all
calls of the method

Computation Pattern the number of times that each pair of input
and output of method occurs

standard deviation of the return size of all
calls of a method

Energy Consumption the amount of energy demanded by a method mean estimate of energy consumption of all
calls of the method

Error level the number of times the execution of a
method thrown exceptions

absolute number of exceptions raised by all
calls of the method

Execution Time the time taken to execute a method mean execution time of all calls of the
method

Inter-Arrival Time the time taken between executions of a
method

mean time between each call of a method and
the next

Invocation Frequency the number of times a method occurs absolute number of calls of a method
Memory Consumption the amount of memory demanded by a

method
mean estimate memory consumption of all
calls of the method

User Behavior the number of times a method is shared
among different users

absolute number of user sessions that lead to
calls of a method

Listing 2: Tigris annotation-based configuration example.

1 @TigrisConfiguration(

2 logRepository = RepositoryType.MEMORY,

3 staticMetricFile = "petclinic.csv",

4 samplingPercentage = 0.5,

5 analysisFixedDelay = 120)

6 @TigrisCriteria(

7 criteria = "more frequent U more expensive",

8 granularity = GranularityType.METHOD,

9 frequencyMetric = Metrics.INVOCATION_FREQUENCY,

10 expensivenessMetric = Metrics.EXECUTION_TIME,

11 changeabilityMetric = Metrics.COMPUTATION_PATTERN)

12 @ComponentScan(allowed =

"org.springframework.samples.petclinic.*",

13 denied =

"org.springframework.samples.petclinic.model.*")

14 public class Configuration {...}

monitoring of selected methods). This function can be
used to adapt the sampling according to the overhead tol-
erance and monitoring coverage requirement. In addition,
the amount of time in which the framework should keep930

collecting lightweight metrics (first monitoring phase) of
the event executions until triggering the process to select
methods to monitor in detail (second monitoring phase)
can be controlled and adjusted at runtime through an in-
put parameter.

New criteria and metrics can be included by extend-936

ing and implementing interfaces provided by the frame-
work. The same interfaces are used to customize and de-
fine how metrics should be calculated. In addition to the
usage of TigrisDSL filters to identify relevant event exe-
cutions based on the goal of monitoring, Tigris also of-
fers customizations. For example, it is possible to set up942

the framework to focus on specific monitoring locations,
which can improve the set of events to be evaluated as rel-
evant as well as exclude events that must not be monitored,
thus reducing the time overhead for tracking them. Tigris
also supports loading output metrics from Understand7,
to evaluate criteria that are based on static metrics.948

Next, we describe our evaluation procedure and then
discuss the obtained results.

6. Evaluation: Adaptive Monitoring for APLCache

In order to evaluate our proposed solution for mon-
itoring, we perform an empirical evaluation by instan-
tiating Tigris as monitoring support for APLCache, the954

application-level caching approach that was used to illus-
trate the phases of our framework.

6.1. Study Settings

APLCache [4] is used to monitor web applications to
identify cacheable methods with the goal of improving ap-
plication performance. The monitoring of APLCache cap-960

tures execution traces of each method call with its input
parameters and return. Monitoring the application has
a performance cost, so we aim with Tigris to reduce the
monitoring cost without compromising its effectiveness of
identifying cacheable methods. Therefore, the original ver-
sion of APLCache is used as a baseline.966

Our evaluation aims to answer three research ques-
tions, presented in Table 10. In this table, we also de-
tail the metrics used to answer each research question.

7https://scitools.com/
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In RQ1, we assess how Tigris reduces the cost of moni-
toring. However, as the application performance is influ-
enced not only by the monitoring but also by the identi-972

fied cacheable spots that are discovered based on the col-
lected traces, we also compare the performance of our tar-
get web applications using APLCache with full monitoring
and with Tigris. In RQ2, we compare the effectiveness of
the cacheable spots identified using the traces collected us-
ing the two alternatives under evaluation. Improved effec-978

tiveness to identify cacheable methods is desirable. Nev-
ertheless, our ultimate goal is to monitor the application
with lower costs, without compromising the results of the
analysis, that is, we aim to collect a subset of execution
traces that would lead to the same results as if we had
collected the complete set of traces. Thus, we also assess984

the effectiveness (precision and recall) of APLCache with
Tigris using as ground-truth the cacheable spots identified
by APLCache with full monitoring. Finally, in RQ3 we as-
sess how Tigris copes with workload variations over time
in terms of changes in the relevance evaluation performed
by its first phase (coarse-grained monitoring) and, conse-990

quently, in the selection of execution traces to be collected
in detail by its second phase (fine-grained monitoring).

To assess both versions of APLCache, we must select
target web applications, simulation parameters, and work-
loads. To avoid bias, we follow the design choices of the
study previously performed to evaluate the original ver-996

sion of APLCache [4]. In the study, we use three tar-
get open-source web applications8, presented in Table 11,
which summarizes the general characteristics of each tar-
get system. We also keep the same APLCache parameters,
such as cache provider and eviction policy.

For all the RQs we consider performance test suites in1002

the form of workload simulations. The simulation starts
with five simultaneous users continuously navigating through
the application based on a navigation pattern that falls
into a specific distribution (transition table). Then, at ev-
ery second, we randomly add or remove a number of users
(from 1 to 10) from the simulation until all the users make1008

the total of 60k requests to the application. We adopt a
minimum number of 5 simultaneous users to keep a mini-
mum of concurrency in the workload, and a maximum of
20 to avoid disruptions in the response times due to strug-
gles from the web server. To stimulate changes in the
workload, we created three variations of navigation pat-1014

terns for each application, and whenever a user is added
to the simulation, we randomly decide which of the three
workload variations the new user should follow. To keep a
fresh selection of execution traces collected in detail by the
second phase (fine-grained monitoring), the processing of
lightweight metrics is triggered every two minutes during1020

the simulation.
To increase the reliability of the results, we create the

8Available at http://www.cloudscale-project.eu/, https:

//github.com/SpringSource/spring-petclinic/ and http://www.

shopizer.com/.

workload with the above settings once and execute the
exactly same sequence of requests and user variations per
second ten times. To evaluate how changes in the workload
may impact in our proposal, the simulation is segmented1026

in three monitoring cycles of 20k requests, we collect and
inspect from the simulation the subset of methods selected
by the first phase of Tigris as well as the cacheable oppor-
tunities found by APLCache. Thus, for all the metrics
in the results we report mean and standard deviations of
these multiple executions. For all the simulations, we use1032

two machines located within the same network, one ma-
chine (16G RAM, Intel i7 2GHz) for the Tomcat9 web
server and MySQL10 database, and one machine (16G
RAM, Intel i5 2.4GHz) to handle the performance test
suite with JMeter11.

To configure Tigris, we must specify relevance filters1038

in TigrisDSL. We used as a basis the Cacheability Pat-
tern [89], which indicates a set of criteria for deciding
whether a method should be cached. We assess two al-
ternative filters in our study, presented in Table 12. The
Restricted Filter leads to a subset of methods selected by
the Expanded Filter to be monitored in the second phase1044

of our framework. The specified relevance filters indicate
that four relevance criteria are considered and, for each of
them, we must indicate the metric estimations to be used.
We selected the metrics Invocation Frequency, Computa-
tion Pattern, User Behavior and Execution Time, for the
criteria Frequency, Changeability, Usage pattern and Ex-1050

pensiveness, respectively. The Tigris second phase also
receives as parameter a sampling rate. We selected six
sampling rates (ranging from 1% to 100%) to understand
how the number of collected traces can impact in the anal-
ysis of the traces.

6.2. Results1056

We next present and analyze the results obtained by
running the simulations with each of our three target ap-
plications and collecting the specified metrics.

6.2.1. RQ1. What performance gain does Tigris provide?

Our first results consist of assessing how much Tigris
reduces the cost of monitoring, considering its ability to1062

filter and reduce the scope of monitoring. For that, we
compare the performance of each application using Tigris
(restricted and expanded filters) to the baselines with full
monitoring and no monitoring. The information collected
with full monitoring leads to the ground-truth decisions
made based on execution traces, while no monitoring pro-1068

vides a baseline of the application performance without
any overhead. This analysis allows us to assess how far our
decisions are from the ground truth and the performance
costs associated with them. To compare the application

9http://tomcat.apache.org/
10https://www.mysql.com/
11http://jmeter.apache.org/
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Table 10: Research Questions and Metrics. List of the research questions of our evaluation and the metrics used to answer each of them.

Research Question Metric

RQ1. What performance gain does
Tigris provide?

M1-1. Throughput (average number of requests handled per second) of the
target applications with monitoring (and no caching)
M1-2. Throughput of the target applications using APLCache

RQ2. What is the effectiveness
achieved with execution traces col-
lected by Tigris?

M2-1. Number of identified caching opportunities
M2-2. Hit ratio
M2-3. Number of hits
M2-4. Precision
M2-5. Recall
M2-6. F-measure

RQ3. How does Tigris cope with
workload variations over time?

M3-1. Difference in the number methods selected by the first phase of the
approach (coarse-grained monitoring) through multiple monitoring cycles in
sequence

Table 11: Target Systems. List of the target web applications used
in our evaluation, together with their application domain and size.
Size is detailed by the number of lines of code (LOC) and the number
of files.

Project Domain LOC # Files

Cloud Store File Synchronization 7.6 K 98
Pet Clinic Sample application 6.3 K 72
Shopizer e-Commerce 111.3 K 946

Table 12: Relevance Filter Specification. Specification of the two
filters used in our evaluation, namely Restricted Filter and Expanded
Filter.

Name TigrisDSL-based Specification

Restricted
Filter

less changeable ∩ more frequent

∩ (more usage-pattern ∪ (more

expensive ∩ less usage-pattern))

Expanded
Filter

(less changeable ∪ changeable)

∩ (more frequent ∪ frequent)

∩ ((more usage-pattern ∪
usage-pattern) ∪ (more expensive

∪ expensive))

performance under these different monitoring configura-
tions, we use throughput, which is measured by calculat-1074

ing the average number of requests handled per second
throughout the simulation. Thus, high throughput (i.e.
close to the throughput achieved with no monitoring) in-
dicates an effective monitoring configuration, as more re-
quests can be processed within the same period of time.

The results are presented in Figure 4. In each chart, we1080

present the throughput of executing the application with
no and full monitoring, which serve as references. We also
detail the cost of running the application only with the
Tigris first phase activated. All these are presented as
horizontal lines because they do not vary in terms of the

sampling rate. The throughput of running Tigris with the1086

two considered filters is presented with its varying results
according to the sampling rate.

As expected, monitoring an application causes an over-
head, even with Tigris. Considering the different applica-
tions and varying evaluated configurations, we observed
that the minimum overhead was obtained with the re-1092

stricted filter and 1% sampling rate for Shopizer (Fig-
ure 4c). This configuration achieves a throughput of 15.91
req/s vs. 16.47 req/s obtained with no monitoring, result-
ing in 3.42% of performance impact. The maximum ob-
served overhead came from the combination of expanded
filter and 100% sampling rate for Shopizer (Figure 4c),1098

which led to a throughput of 12.39 req/s—24.7% lower
than the baseline with no monitoring (16.47 req/s). In
brief, Tigris resulted in a performance penalty ranging
from 3.4% to 24.7%, compared to the baseline without
monitoring.

However, the framework largely reduces the cost of full1104

monitoring. The overhead of this configuration ranges
from 22.6% (its throughput is 40.09 req/s for Petclinic
as seen in Figure 4b, vs. 51.81 req/s of the baseline) to
29.9% (its throughput is 11.53 req/s for Shopizer as seen
in Figure 4c, vs. 16.47 req/s of the baseline).

Assessing solely the cost of the Tigris, we observe that1110

the overhead is caused mostly by its second phase, in which
methods are fine-grained monitored. The maximum over-
head of the coarse-grained monitoring (first-phase) was
3.3%, because Cloud Store achieved 24.32 req/s when com-
pared to the baseline without monitoring of 25.16 req/s.

The performance overhead of the second phase varies1116

according to the results of the first phase and the sampling
rate in which it collects traces. The overhead decreases
when the sampling rate decreases because fewer execu-
tions are traced. For example, when collecting 1% of the
traces with the restricted filter, the overhead is marginal
for all three applications, ranging from 3.4% to 3.8% when1122

comparing to the baseline with no monitoring in Figure 4,
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Figure 4: RQ1: Throughput by Sampling Rate. Performance of
each application executed with and without APLCache using varying
monitoring configuration.

being similar to the coarse-grained phase only. Collecting
traces with the expanded filter at a 100% sampling rate,
i.e. no sampling is performed, largely increases the over-
head to the application performance, ranging from 18.0%
to 24.7%, when comparing to the baseline with no moni-1128

toring in Figure 4.

To compare the overall performance of APLCache with
full monitoring and with Tigris, we also assess the through-
put. However, the overall performance is not only affected
by the monitoring but also by the opportunities cached
based on the analysis of collected traces. Obtained re-1134

sults are presented in Table 13 (column Throughput) and
Figure 4. We observe that the throughput achieved by
APLCache when supported by Tigris is higher than us-
ing full monitoring, with both filters and any sampling
rate. Tigris improves the throughput of all the three tar-
get applications with gains ranging from 4.4% to 27.4%, in1140

comparison to APLCache with full monitoring. Because
Tigris can filter a subset of relevant methods and conse-
quently monitor fewer methods in detail, the overhead of
monitoring tends to decrease.

In Pet Clinic (Figure 4b), the overall performance typ-
ically increases as the sampling rate decreases. Never-1146

theless, this does not always hold. With fewer execution
traces (lower sampling rate), the identification of cacheable
opportunities is less consistent with the actual behavior
of the application, thus reducing the gains of caching the
application. This can be seen in the other two applica-
tions. The overall performance of CloudStore (Figure 4a)1152

increases up to 5% sampling rate for the restricted filter
and 10% sampling rate for the expanded filter, and then
it decays. The overall performance of the Shopizer appli-
cation (Figure 4c), in turn, tends only to decrease as the
sampling rate decreases. In most cases, the restricted fil-
ter achieves worse results than the expanded filter. This1158

means that, although the restricted filter leads to fewer
methods to be monitored in the second monitoring phase,
the set of fine-grained monitored methods causes the iden-
tification of caching opportunities that provide lower in-
creases in the performance. That is, the balance between
the cost of monitoring and the gain of caching is higher1164

with the expanded filter than with the restricted filter.

RQ1: Findings. The impact of full monitoring ap-
plications is high, causing performance impacts rang-
ing from 22.6% to 29.9% when compared to the base-
line of no monitoring. Tigris, with varying configura-
tions, implies a lower impact to the application perfor-
mance, with values ranging between 2.9% and 24.7%,
when compared to the baseline of no monitoring. The
overhead of Tigris is mostly caused by fine-grained
monitoring, which can be reduced by decreasing the
sampling rate. With respect to overall performance
with enabled caching, it provides improvements rang-
ing from 4.4% to 27.4% in relation to monitoring all
method calls with APLCache. The relevance filter
and sampling rate provide a configuration space that
allows the approach to achieve the best trade-off be-
tween the cost of monitoring and the quality of the
analysis of execution traces.
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Table 13: Simulation Results. Results of executing each application with full monitoring, restricted filter and expanded filter. Reported
metrics (average of all the ten executions) for the different sampling rates (Sample) are throughput, hit ratio (HR), number of hits (Hits),
number of cacheable opportunities (Cacheability), precision (Pr.), recall, and F-Measure (F1). Throughput and Cacheability are shown
in absolute and relative (percentage change in comparison with full monitoring) terms. Cacheability, precision, recall and F-Measure are
presented as the average of all three monitoring cycles.

Monitoring Sample Throughput HR Hits Cacheability Pr. Recall F1

C
lo

u
d

S
to

re

Full Monitoring 25.6 0.96 45,877 7.67

Restricted Filter

100% 27.5 +7.3% 0.96 30,252 3.67 -52.2% 1.0 0.47±0.04 0.64±0.03
50% 27.9 +9.0% 0.95 27,036 2.67 -65.2% 1.0 0.34±0.05 0.51±0.05
25% 29.1 +13.7% 0.97 25,924 2.33 -69.6% 1.0 0.30±0.06 0.46±0.07
10% 31.4 +22.4% 0.98 26,100 2.33 -69.6% 1.0 0.30±0.06 0.46±0.07
5% 32.7 +27.4% 0.97 25,532 2.33 -69.6% 1.0 0.30±0.06 0.46±0.07
1% 29.0 +13.2% 0.98 17,208 1 -87.0% 1.0 0.13±0.01 0.23±0.01

Expanded Filter

100% 29.5 +15.1% 0.96 42,144 6.33 -17.4% 1.0 0.83±0.14 0.90±0.08
50% 30.0 +17.0% 0.94 41,668 6.33 -30.4% 1.0 0.70±0.18 0.81±0.13
25% 31.1 +21.3% 0.98 36,060 4 -47.8% 1.0 0.52±0.04 0.68±0.03
10% 31.8 +24.0% 0.94 33,384 3.67 -52.2% 1.0 0.48±0.09 0.64±0.09
5% 30.5 +19.1% 0.96 25,524 2.33 -69.6% 1.0 0.30±0.10 0.46±0.11
1% 28.81 +12.2% 0.95 20,328 1.33 -82.6% 1.0 0.17±0.09 0.29±0.12

P
e
tc

li
n

ic

Full Monitoring 54.17 0.94 52,860 4

Restricted Filter

100% 58.5 +8.0% 0.94 41,040 2.33 -41.7% 1.0 0.58±0.14 0.73±0.11
50% 60.3 +11.4% 0.94 41,404 2.33 -41.7% 1.0 0.58±0.14 0.73±0.11
25% 60.9 +12.5% 0.94 38,076 2 -50.0% 1.0 0.50±0.00 0.66±0.00
10% 63.6 +17.5% 0.94 38,488 2 -50.0% 1.0 0.50±0.00 0.66±0.00
5% 64.5 +19.2% 0.94 38,980 2 -50.0% 1.0 0.50±0.00 0.66±0.00
1% 63.3 +16.8% 0.94 26,224 1 -75.0% 1.0 0.25±0.00 0.40±0.00

Expanded Filter

100% 62.9 +16.1% 0.94 52,616 4 0.0% 1.0 1.00±0.00 1.00±0.00
50% 63.9 +17.9% 0.94 52,772 4 0.0% 1.0 1.00±0.00 1.00±0.00
25% 64.4 +18.9% 0.94 49,032 3.67 -8.3% 1.0 0.91±0.14 0.95±0.08
10% 64.9 +19.9% 0.94 46,900 3 -25.0% 1.0 0.75±0.00 0.85±0.00
5% 65.1 +20.3% 0.94 46,652 3 -25.0% 1.0 0.75±0.00 0.85±0.00
1% 65.7 +21.3% 0.94 45,824 3 -25.0% 1.0 0.75±0.00 0.85±0.00

S
h

o
p

iz
e
r

Full Monitoring 17.30 0.92 691,352 24.33

Restricted Filter

100% 20.0 +15.9% 0.92 419,656 16.33 -32.9% 1.0 0.66±0.03 0.80±0.02
50% 19.8 +14.6% 0.93 257,012 13.33 -45.2% 1.0 0.54±0.01 0.70±0.01
25% 20.1 +16.4% 0.92 182,520 10 -59.0% 1.0 0.40±0.03 0.58±0.03
10% 19.1 +10.6% 0.94 71,460 6 -75.3% 1.0 0.24±0.01 0.39±0.02
5% 18.8 +8.7% 0.93 35,892 4 -83.6% 1.0 0.16±0.02 0.27±0.03
1% 18.0 +4.4% 0.91 17,998 1 -95.9% 1.0 0.04±0.00 0.07±0.01

Expanded Filter

100% 21.1 +22.2% 0.91 513,960 17.67 -27.4% 1.0 0.74±0.17 0.84±0.11
50% 20.7 +20.0% 0.91 350,072 14.33 -41.1% 1.0 0.60±0.14 0.74±0.11
25% 20.3 +17.8% 0.92 184,232 10.33 -57.5% 1.0 0.43±0.10 0.60±0.10
10% 19.3 +11.7% 0.91 68,660 6 -75.3% 1.0 0.25±0.06 0.40±0.08
5% 18.9 +9.7% 0.91 32,818 3.33 -86.3% 1.0 0.14±0.03 0.24±0.05
1% 18.6 +7.8% 0.93 18,412 1 -95.9% 1.0 0.04±0.00 0.08±0.01

6.2.2. RQ2. What is the effectiveness achieved with exe-
cution traces collected by Tigris?

The previous research question has shown that the per-
formance gains depend on which methods are cached. This
decision is made by APLCache, which analyzes the col-1170

lected execution traces. Therefore, we now evaluate the

cached opportunities identified with each monitoring con-
figuration. We assess the number of cached opportunities,
the hit ratio, and the number of hits. These are presented
in Table 13 (columns Cacheability, HR and Hits, respec-
tively).1176

Although the number of selected methods to be cached
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Figure 5: RQ2: Recall by Sampling Rate. Recall obtained for each
combination of filter (Restricted Filter and Expanded Filter) and
sampling rate.

using Tigris is smaller in comparison to APLCache mon-
itoring, we observe that this number changes according
to the filtering and sampling configuration. For all appli-
cations, restricting the filter and decreasing the sampling
rate may significantly reduce the number of caching oppor-1182

tunities. The amount of information collected is reduced,

and thus the accuracy of APLCache may be compromised.
None of the combinations of filters and sampling rates

can identify all the opportunities initially identified by the
original APLCache. However, the throughput is still im-
proved due to the filtered monitoring guided by the coarse-1188

grained phase of our approach. The absolute number of
hits varies according to the number of cacheable opportu-
nities. The lower number of hits follows reduced cacheable
opportunities. The hit ratio remains almost the same
along with all the simulations, and small variations are
due to the variations in cacheable opportunities found at1194

different monitoring cycles.
We also analyze the effectiveness achieved with each

set of execution traces obtained using Tigris with the dif-
ferent filters and sampling rates. Although improving the
overall performance is important, our key goal is to record
the traces that are actually those needed for the analysis1200

made by APLCache. Consequently, we consider as ground-
truth the set of caching opportunities identified with full
monitoring and compare it to the sets obtained with the
various Tigris configurations. We measure this using typ-
ical classification performance metrics, namely precision,
recall and f-measure. Results are presented in Table 131206

(columns Pr., Recall and F1, respectively).
As can be seen, the precision—for both filters and sam-

pling rates—is 1.00, that is, there are no false positives.
This means that the subset of methods to be monitored
in the second phase allows APLCache to identify caching
opportunities correctly. These results, however, do not1212

hold for recall. The recall decreases when the filter is
more restricted and the sampling rate is lower. Filters
can cause relevant methods (those that should be identi-
fied as a cacheable opportunity) to be not monitored in the
second phase. Consequently, they are not traced and con-
sidered for caching. The low sampling rate, in turn, can1218

lead to samples that are not representative of the popula-
tion of the method calls. The variation of recall across the
different Tigris configurations can be seen in Figure 5. It
shows that the filter has a larger effect on recall than the
sampling rate.

The restricted filter, for CloudStore and PetClinic, is1224

the main cause for a low recall. It can be seen that even
with sampling rates higher than 5%, the recall remains
quite similar or even the same. For Shopizer, although
the recall with 100% is not high (0.66), it decreases as the
sampling rate decreases. Both the filter and the sampling
rate, therefore, affect the recall. Although the expanded1230

filter leads to false negatives, it achieves high recall, up to
1.00 (i.e. all the cacheable opportunities were found). In-
creasing the sampling rate improves the recall for all appli-
cations, as more information is provided for APLCache to
analyze. For CloudStore and PetClinic, the highest recall
can be achieved even with sampling rates lower than 100%.1236

Shopizer potentially has results different from the other ap-
plications because it is larger and thus has a broader range
of methods. In addition, the margin of error of the recall,
observed in the different monitoring cycles, demonstrated
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to be high for the expanded filter. It demonstrates how
the workload variations can impact the number of meth-1242

ods selected for fine-grained monitoring and the number
of cacheable opportunities found at each monitoring cycle
by APLCache.

RQ2: Findings. The relevance filter and sampling
rate of Tigris can reduce the number of identified
caching opportunities and, consequently, the number
of hits. The hit ratio, however, remains almost the
same (0.91–0.98). Therefore, lower performance gains
are obtained due to less cached opportunities. Tigris
leads to no false positives considering APLCache and
the target applications, thus achieving a precision of
1.00. However, recall can decrease due to the used rel-
evance filter and low sampling rates, being larger the
effect of the filter.

6.2.3. RQ3. How does Tigris cope with workload varia-
tions over time?1248

To evaluate how changes in the workload impact the
methods selected by the first phase of the proposed ap-
proach, we inspected the subset of methods selected by
the first phase of Tigris at the end of each monitoring
cycle. Obtained results are presented in Table 14. We
first observe that the number of selected methods for fine-1254

grained monitoring changed on every cycle for all the ap-
plications. These changes were expected since the rele-
vance criteria are domain-neutral, and the metrics used to
analyze them do not rely on pre-defined thresholds or as-
sumptions regarding the workload. As a consequence, the
selected methods are based on the application’s emerging1260

behavior. In addition, the results show that bigger applica-
tions (i.e. with more methods and navigation paths) such
as CloudStore and Shopizer, tend to have significant dif-
ferences among monitoring cycles. As Petclinic has fewer
navigation paths to be executed, the workload variations
do not affect much the relevance-based selection. Still,1266

all Petclinic monitoring cycles resulted in changes in the
selection. This demonstrates the ability of our approach
to adapt to workload variations. For all the applications,
the restricted filter results in less relevant methods being
selected for detailed monitoring than the expanded filter.

RQ3: Findings. Because the proposed relevance
criteria and metrics are domain-neutral and do not
rely on pre-defined thresholds or assumptions, Tigris
can adapt to different workloads, identifying relevant
methods according to the application’s emerging be-
havior.

1272

6.3. Threats to Validity

We now analyze the threats to the validity of our em-
pirical evaluation. First, the performance impact of mon-
itoring highly depends on workloads. Although we do not

Table 14: Simulation Results. Results in terms of changes in the
relevance evaluation and selected methods to monitor for each appli-
cation with restricted and expanded filters. After each monitoring
cycle a snapshot of the coarse-grained selection is taken, reporting
the amount of selected methods in that cycle (Selected), the over-
all difference from the last cycle (Difference), including the specific
amount of additions and exclusions.

Monitoring Cycle Selected Difference

C
lo

u
d

S
to

re Restricted Filter
1 8
2 14 +6 (+8/-2)
3 13 -1 (0/-1)

Expanded Filter
1 36
2 24 -12 (+0/-12)
3 20 -4 (+1/-5)

P
e
tc

li
n

ic Restricted Filter
1 4
2 5 +1 (+2/-1)
3 4 -1 (+1/-2)

Expanded Filter
1 14
2 13 -1 (+0/-1)
3 12 -1 (+0/-1)

S
h

o
p

iz
e
r Restricted Filter

1 33
2 45 +12 (+13/-1)
3 38 -7 (+2/-9)

Expanded Filter
1 76
2 55 -21 (+6/-27)
3 62 +7 (+11/-4)

make any assumptions regarding the workload and rely on
the randomness added to the tests, the workload used in1278

the experiments may not be representative enough to be
generalized. Nevertheless, our approach does not depend
on a particular workload and can find relevant traces with
any pre-specified workload, which may evolve in real-world
scenarios. Therefore, even if the workload changes sub-
stantially and initial relevant methods are no longer use-1284

ful, our approach can adapt itself, automatically discard-
ing outdated monitoring configurations and discovering a
new set of relevant execution traces.

Second, our evaluation is limited to one goal of moni-
toring (i.e. application efficiency in terms of performance)
and only one monitoring-based approach (i.e. a caching1290

technique). Therefore, the results may not be generaliz-
able. To address this threat, we selected three open-source
target applications, with different sizes and domains, im-
plemented by different developers. In addition, we pro-
vide a wide variety of the tunable parameters for adaptive
monitoring (i.e. the relevance filter and sampling rate) and1296

compare the results against a baseline. We acknowledge
that all of the threats mentioned above may require several
evaluations concerning multiple systems of different sizes,
users, traces, workloads, and other environmental condi-
tions that should be addressed as part of future work.
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6.4. Limitations1302

Providing a solution for effective execution tracing re-
quires dealing with many challenges other than those ad-
dressed in this paper, such as overhead management, sam-
pling gaps, and defining appropriate criteria, metrics and
sampling rate to achieve the goal of monitoring. Con-
sequently, although our approach makes substantial ad-1308

vances towards software monitoring, there are challenges
that remain open. These correspond to limitations of our
work, which are discussed as follows.

Both filtering and sampling techniques, which are the
basis of our approach, are prone to introducing gaps in
the output trace. Although filtering is based on the goal1314

of monitoring, given as input of the approach, the sampling
strategy follows a sampling rate, leading to uncertainty in
the monitoring result in terms of representativeness. To
quantify such uncertainty, a possible approach is learning
statistical models of the monitored traces and use them
to fill in sampling-induced gaps and then to compute the1320

probability that the property of interest is satisfied or vi-
olated [11].

In addition, choosing a sampling rate is not an easy
task and depends on the representativeness needed and
also the supported overhead. A low sampling rate may
give a lousy precision, and a high sampling rate may gen-1326

erate a considerable amount of useless data and overhead.
In addition, for some large-scale distributed systems, 1% of
tracing data might be quite demanding for analyzing and
decision making and might still provide a large overhead
for the system. To deal with this situation, we can adopt
an adaptive sampling, which dynamically adjusts the sam-1332

pling rate by observing the impact of sampling rates on the
overall computational resource usage.

The coarse-grained monitoring demands to instrument
all method calls, and thus a minimal but additional over-
head is incurred due to this per-instruction instrumenta-
tion before the filtering and sampling decision making. To1338

reduce even more the overhead of the approach, we can
also apply a dynamic sampling strategy into the coarse-
grained monitoring.

Although the framework supports the use of already
implemented estimations of metrics, which were identi-
fied and conceived based on the investigation of existing1344

monitoring-based approaches, our approach does not cover
the challenge of deciding which estimate or criteria are ap-
propriate to specific goals of monitoring. In fact, tunable
parameters for adaptive monitoring (in terms of relevance
criteria and sampling rate) create a configuration space
and as a result expose a secondary problem of finding ap-1350

propriate values for such configuration options. Thus it
is not in the scope of this paper. However, the results of
our foundational study includes a list of relevance criteria,
an occurrence-based association between groups of goals
and relevance criteria, and examples of goals and metrics
used by the surveyed approaches. This information pro-1356

vides support to specify or at least reduce the configuration

space created by our approach. In addition, although the
available criteria, goals, and metric estimations achieved
good results in our experiment, they may not fit well in all
the domains and workloads. To solve this problem, Tigris
was designed to be extensible and flexible, providing in-1362

terfaces that can be used to customize and change how
metrics are calculated.

Regarding the classification of data into groups, we do
not deal with possible outliers that may appear due to
the transient behavior of the application, such as an in-
crease in the execution time of a method given the high1368

level of concurrency. It can be addressed in the future
with enhanced statistical analysis and filtering of outliers.
In addition, some tests for normality may be not sensitive
enough given the sample size and the property of the data.
Ideally, testing for normality should be executed and inter-
preted alongside histograms, QQ-plots, and skewness and1374

kurtosis values. To solve this problem, the framework can
be evolved in such a way that small parts of the monitor-
ing phases could be customized by users, such as how to
classify data.

The coarse-grained monitoring data is stored in mem-
ory, and despite its low memory usage, it may reach an1380

imposed limit if kept forever. In our evaluation, this was
not an issue. However, this can be configured in the form
of a time frame and added as an additional parameter of
the framework. We also need to understand how we could
combine sliding windows of monitoring to avoid losing his-
torical information.1386

Although the framework is adaptive as it can vary the
selected list of relevant methods according to the applica-
tion’s emerging behavior, it is necessary to specify when
this adaptation should be triggered. In our evaluation, it
uses a two-minute interval. However, choosing the most
appropriate interval to update the list of relevant methods1392

involves a trade-off between collecting enough lightweight
information about the application behavior to reach good
decisions and changing the list fast enough to keep it in
sync with the application behavior and collect more rele-
vant traces. To solve this problem, future work can provide
an adaptive triggering strategy, which detects significant1398

variations in the workload characteristics or degradation
in the quality of traces being collected, according to the
goal of monitoring.

7. Conclusion

Monitoring is a crucial step to support software engi-
neering tasks, such as software adaptation. However, de-1404

veloping effective monitoring tools demands a significant
effort, considering the existing challenges such as the moni-
toring overhead, which can impact the performance of the
system. In this paper, we presented a systematic litera-
ture review that allowed us to identify relevance criteria
and metrics that can be used for monitoring applications.1410

We also analyzed existing monitoring-based approaches in
terms of generality, scalability, and adaptability. Most of
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the existing solutions are application-specific, with princi-
ples to monitor data that are not generalizable. For scaling
monitoring, typical approaches sample or filter collected
traces or limit the monitoring to high-level events. Adap-1416

tations in existing solutions are focused on controlling the
monitoring overhead or increasing the trace reliability for
a specific purpose.

Based on the results of the literature review, we de-
rived a domain-specific language (DSL), named Tigris-
DSL, which allows the creation of monitoring filters by1422

means of high-level relevance criteria. These relevance fil-
ters can be used to guide monitoring components to col-
lect a set of relevant traces that are analyzed to achieve
the goal of monitoring. This DSL was incorporated into
a proposed two-phase approach for low-impact monitoring
of execution traces. The approach is domain-neutral and1428

can be instantiated to collect relevant traces for different
domains and purposes.

The first phase of our approach is based on obtaining
lightweight metrics from the system’s execution. Then,
from time to time, it evaluates the collected metrics ac-
cording to a set of relevance criteria specified in Tigris-1434

DSL. The second phase filters and samples executions that
are relevant to the goal of monitoring, thus achieving a
reduced monitoring overhead. We implemented the pro-
posed approach as a Java-based framework, called Tigris,
and instantiated it as the monitoring component of an ex-
isting monitoring-based approach, which identifies caching1440

opportunities at runtime by analyzing method calls. The
results show that, while full monitoring applications causes
an overhead of 22.6%–29.9%, Tigris reduces this overhead
to 2.9%–24.7%. Considering the overall application perfor-
mance, Tigris can improve it up to 27.4%. In comparison
to the cacheable opportunities identified with full monitor-1446

ing, Tigris manages to achieve a precision of 1.0. However,
recall largely varies in terms of the filter and sampling rate
adopted. Lastly, given the proposed relevance criteria and
that metrics are domain-neutral, Tigris can adapt to dif-
ferent workloads, identifying relevant methods according
to the application’s behavior.1452

Tigris was conceived and implemented in a flexible and
extensible way, paving the way to cover more unaddressed
monitoring challenges in the future. Although the frame-
work provides a Java implementation of our approach, our
two-phase monitoring proposal is generic and can be im-
plemented on any programming language. Future work in-1458

volves addressing the framework limitations and enhancing
it with adaptive capabilities, such as taking the effective-
ness of monitoring as feedback to adjust the framework
parameters, such as increasing the sampling rate or ex-
panding the set of filtered methods. In addition, we in-
tend to investigate techniques to adapt the sampling rate1464

according to the system’s load that ensures a representa-
tive sample with an acceptable performance impact.
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G. Xu, J. Klein, FraudDroid: Automated ad fraud detec-1902

tion for android apps, in: ESEC/FSE 2018 - Proceedings
of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations
of Software Engineering, Association for Computing Machin-
ery, Inc, New York, New York, USA, 2018, pp. 257–268.
doi:10.1145/3236024.3236045. arXiv:1709.01213.1908

[85] X. Zhou, X. Peng, T. Xie, J. Sun, C. Ji, D. Liu, Q. Xiang,
C. He, Latent error prediction and fault localization for mi-
croservice applications by learning from system trace logs, in:
ESEC/FSE 2019 - Proceedings of the 2019 27th ACM Joint
Meeting European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, Associa-1914

tion for Computing Machinery, Inc, New York, New York, USA,
2019, pp. 683–694. doi:10.1145/3338906.3338961.

[86] C. Barna, H. Ghanbari, M. Litoiu, M. Shtern, Hogna: A Plat-
form for Self-Adaptive Applications in Cloud Environments, in:
Proceedings - 10th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems, SEAMS 2015,1920

Institute of Electrical and Electronics Engineers Inc., Firenze,
Italy, 2015, pp. 83–87. doi:10.1109/SEAMS.2015.26.

[87] P. Casanova, D. Garlan, B. Schmerl, R. Abreu, Diagnosing
unobserved components in self-adaptive systems, in: 9th In-
ternational Symposium on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS 2014 - Proceedings, Asso-1926

ciation for Computing Machinery, New York, New York, USA,
2014, pp. 75–84. doi:10.1145/2593929.2593946.

[88] J. Mertz, I. Nunes, Understanding Application-Level Caching
in Web Applications, ACM Computing Surveys 50 (2017) 1–34.

[89] J. Mertz, I. Nunes, A Qualitative Study of Application-Level
Caching, IEEE Transactions on Software Engineering 43 (2017)1932

798–816.
[90] J. Mertz, I. Nunes, L. Della Toffola, M. Selakovic, M. Pradel,

Satisfying increasing performance requirements with caching at
the application level, IEEE Software (2020).

[91] D. E. Knuth, The Art of Computer Programming, Volume 2
(3rd Ed.): Seminumerical Algorithms, Addison-Wesley Long-1938

man Publishing Co., Inc., USA, 1997.

25

http://dx.doi.org/10.1109/ICSE.2017.29
http://dx.doi.org/10.1109/ICSE.2017.29
http://dx.doi.org/10.1109/ICSE.2017.29
http://dx.doi.org/10.1145/2568225.2568307
http://dx.doi.org/10.1145/2884781.2884784
http://dx.doi.org/10.1145/2884781.2884784
http://dx.doi.org/10.1145/2884781.2884784
http://dx.doi.org/10.1145/3106237.3106282
http://dx.doi.org/10.1145/3106237.3106282
http://dx.doi.org/10.1145/3106237.3106282
http://dx.doi.org/10.1145/2786805.2786860
http://dx.doi.org/10.1145/2983990.2984040
http://dx.doi.org/10.1145/2568225.2568259
http://dx.doi.org/10.1109/ICAC.2016.54
http://dx.doi.org/10.1145/2983990.2984031
http://dx.doi.org/10.1109/ICSE.2015.27
http://dx.doi.org/10.1145/2950290.2950357
http://dx.doi.org/10.1145/2950290.2950321
http://dx.doi.org/10.1109/SASO.2015.19
http://dx.doi.org/10.1109/ICAC.2017.15
http://dx.doi.org/10.1145/3236024.3236045
http://arxiv.org/abs/1709.01213
http://dx.doi.org/10.1145/3338906.3338961
http://dx.doi.org/10.1109/SEAMS.2015.26
http://dx.doi.org/10.1145/2593929.2593946

	1 Introduction
	2 Challenges on Monitoring and Related Work
	2.1 Reduction of the Monitoring Overhead
	2.2 Management of the Size of Execution Traces
	2.3 Discussion

	3 Relevance Criteria
	3.1 Method
	3.2 Analysis and Results
	3.2.1 Goals, criteria, and metrics
	3.2.2 Generality
	3.2.3 Scalability
	3.2.4 Adaptability
	3.2.5 Discussion

	3.3 TigrisDSL: a Generic Way to Specify Relevance Criteria

	4 A Two-Phase Approach for Collecting Execution Traces
	4.1 Running Example: Application-level Caching
	4.2 Coarse-grained Monitoring
	4.3 Fine-grained Monitoring

	5 Tigris Framework
	6 Evaluation: Adaptive Monitoring for APLCache
	6.1 Study Settings
	6.2 Results
	6.2.1 RQ1. What performance gain does Tigris provide?
	6.2.2 RQ2. What is the effectiveness achieved with execution traces collected by Tigris?
	6.2.3 RQ3. How does Tigris cope with workload variations over time?

	6.3 Threats to Validity
	6.4 Limitations

	7 Conclusion

