
Android Code Smells:

From Introduction to Refactoring

Sarra Habchia,1,∗, Naouel Mohab,1, Romain Rouvoyc,1

aUniversity Of Luxembourg
bUniversité du Québec À Montréal

cUniversity of Lille

Abstract

Object-oriented code smells are well-known concepts in software engineering
that refer to bad design and development practices commonly observed in
software systems. With the emergence of mobile apps, new classes of code
smells have been identified by the research community as mobile-specific
code smells. These code smells are presented as symptoms of important
performance issues or bottlenecks. Despite the multiple empirical studies
about these new code smells, their diffuseness and evolution along change
histories remains unclear.

We present in this article a large-scale empirical study that inspects the
introduction, evolution, and removal of Android code smells. This study re-
lies on data extracted from 324 apps, a manual analysis of 561 smell-removing
commits, and discussions with 25 Android developers. Our findings reveal
that the high diffuseness of mobile-specific code smells is not a result of re-
leasing pressure. We also found that the removal of these code smells is
generally a side effect of maintenance activities as developers do not refactor
smell instances even when they are aware of them.

1. Introduction

Mobile apps have established themselves as mainstream software systems
deployed at scale. Over the last few years, they successfully invaded the

∗Corresponding author
Email addresses: sarra.habchi@uni.lu (Sarra Habchi), moha.naouel@uqam.ca

(Naouel Moha), romain.rouvoy@inria.fr (Romain Rouvoy)

Preprint submitted to Elsevier October 15, 2020

ar
X

iv
:2

01
0.

07
12

1v
1

 [
cs

.S
E

]
 1

4
O

ct
 2

02
0

software market and retained the interest of end-users. While mobile apps
generally rely on the same software development basics as classical software
systems, they also manifest some particularities as they run on embedded
devices with key performance constraints. This specificity sets the bar high
for mobile apps in the sense that they are expected to remain fluid and
efficient while continuously performing complex tasks. As a consequence,
development practices that do not satisfy these requirements were qualified
as code smells. In particular, the study of Reimann et al. [39] proposed a
catalogue of Android-specific code smells that violate performance guidelines.
These code smells originate from the good and bad practices presented in
the official documentation or by developers reporting their experience on
blogs. For example, the code smell No Low Memory Resolver describes
non-compliance with the official recommendation of implementing memory
resolvers inside activities.

The research community extended this catalogue and studied different
aspects of mobile-specific code smells. The performance impact of these
code smells was inspected in multiple studies [3, 20, 37], showing that they
can hinder app performance and increase energy consumption. Research
works also proposed automated solutions for detecting mobile code smells,
like Paprika and aDoctor [21, 36]. On the empirical side, our previous
studies assessed the key role played by developers in the accrual of mobile
code smells [13, 15] and quantified their survival in the change history. This
allowed us to build an initial understanding of what are mobile code smells
and how do they hinder app quality. However, as research remains young in
this field, we still lack knowledge about various aspects of code smells:

Lack of extent analysis. Studies proposing code smell detection tools
quantified code smell instances in Android and iOS apps [14, 21, 36]. How-
ever, none of these studies analysed and compared the diffuseness of code
smells of different types. This comparison is important to distinguish the
most common code smells and prioritize their detection and refactoring in
future studies. Diffuseness analysis is also important to precisely assess code
smell prevalence. In particular, a code smell may seem very frequent only
because its host entity is very common in source code. Diffuseness analysis
alleviates this by measuring precisely how frequent is the code smell consid-
ering its occurrence chances and its host entity.

Lack of release analysis. Some studies [15, 17] leveraged the change
history of mobile apps to better understand code smells. Specifically, our

2

previous work [17] evaluated the impact of releases on code smell survival.
However, this study did not assess the impact of releases on the introduction
and removal of code smells. Releases are usually considered as a factor that
favours code smells and technical debt in general, since they push develop-
ers to code rapidly and meet deadlines regardless of quality constraints [43].
Besides, mobile apps are known for having more frequent releases and up-
dates [31], which may contribute to the prevalence of mobile code smells.
Considering these potential factors, it is important to analyse the impact of
releases on the presence of mobile code smells.

Lack of qualitative analysis. In a previous work [13], we interviewed
developers to understand their usage of linters to anticipate performance
bottlenecks in mobile apps. This study gave insights about the adequacy of
static analysers as a solution for mobile code smells. Nonetheless, other facets
of these code smells still require qualitative investigation. In particular, we
lack knowledge about how do developers remove mobile code smells from the
source code. This knowledge is important to:

• Assess developers’ awareness of mobile code smells;
• Check whether developers refactor these code smells intentionally or

not;
• Learn removal techniques from developers and aliment future studies

about code smell refactoring.

In this article, we address these lacks by answering the following research
questions:

• RQ 1: How frequent and diffuse are mobile code smell introductions?
• RQ 2: How do releases impact introductions and removals of mobile

code smells?
• RQ 3: How do developers remove mobile code smells?
• RQ 4: Do developers refactor mobile code smells?

To answer these questions, we build on the artifacts of our previous
works [15, 17] to perform an empirical study where we leverage both quan-
titative and qualitative analyses to inspect introductions and removals of 8
types of Android code smells. Specifically, we analyse the evolution of 180k
code smell instances to answer RQ1 and RQ2. Then, we manually ex-
plore 561 code smell removals to answer RQ3 and finally we interview 25
smell-removing developers to answer RQ4. The results of this study show
that:

3

1. Regarding frequency and diffuseness, there is an important discrep-
ancy between code smell types. No Low Memory Resolver and Leak-
ing Inner Class are the most diffuse by affecting more than 80 % of the
activities and inner classes, respectively.

2. Releases do not have an impact on the introductions and removals of
code smells in open-source Android apps.

3. 79% of code smell instances are removed through the change history.
However, these removals are mostly caused by large source code re-
movals that do not mention refactoring. Also, only 19% of developers
who authored these removals confirmed that their actions were inten-
tional refactoring.

4. Developers who are aware of Android code smells do not necessarily
refactor them. The code smell Init OnDraw was recognized by 64% of
the participants, but only 12% of them refactored it.

5. Developers who intentionally refactor code smells affirm that their ac-
tions were driven and assisted by built-in code analysis tools.

6. Developers who did not refactor Android code smells doubted their
performance impact and the usefulness of their refactoring. Some de-
velopers also preferred to handle performance issues when they arise
instead of anticipating them.

This study provides a comprehensible replication package [16], which in-
cludes the used tools and data analysis scripts, the extracted data, and the
results of the qualitative analysis.

The remainder of this article is organized as follows. Section 2 explains
the study design, while Section 3 reports on the results. Section 4 interprets
and discusses these results, and Section 5 exposes the threats to validity.
Finally, Section 6 analyses related works, and Section 7 concludes with our
main findings.

2. Study Design

To perform this study, we relied on the artifacts that we built in our
previous works about mobile code smells. In particular, we leveraged the
dataset of code smell history [15, 17] to collect the necessary data for this
study. Then, we followed different approaches to analyse this data and answer
our research questions.

4

2.1. Dataset

In previous works, we created a dataset containing the history of mobile-
specific code smells. This dataset was built by running Sniffer [18] on a
set of Android apps and tracking 8 mobile code smells. For self-containment
purposes, we present in this section (i) Sniffer, (ii) the 8 code smells, and
(iii) the contents of this dataset.

2.1.1. Sniffer

Sniffer is an open-source [18] toolkit that tracks the full history of
Android-specific code smells. It tackles many issues raised by the Git min-
ing community by tracking branches and detecting renaming [24]. Sniffer
builds the code smell history by following a three-step process. First, from
the repository of the app understudy, it extracts the commits and other
necessary metadata like branches, releases, and commit authors. In the sec-
ond step, it analyses the source code of each commit separately to detect
code smell instances. Finally, based on the code smell instances and the
repository metadata, it tracks the history of each smell and records it in the
output database.

The performance of Sniffer was manually validated using 384 com-
mits randomly sampled from open-source Android apps. This validation
showed that it can detect code smell introductions with F1-score of 0.97 and
code smell removals with a score of 0.96.

2.1.2. code smells

The dataset covers all the 8 types of Android-specific code smells that are
detectable by Sniffer. These code smells are performance-oriented and they
originate from the catalogues of Reimann et al. [39] and Hecht et al. [19, 21].
Unlike other Android code smells, these 8 smells are objective—i.e., they
either exist in the code or not, and cannot be introduced or removed grad-
ually. Hence, their introduction and removal can be attributed to specific
commits without confusion. Table 1 presents these code smells with a high-
light on source code entities in which they can appear. We also mention the
performance resource impacted by each code smell.

Leaking Inner Class (LIC): in Android, anonymous and non-static
inner classes hold a reference of the containing class. This can prevent the
garbage collector from freeing the memory space of the outer class even
when it is not used anymore, and thus causing memory leaks [1, 39].

5

Entity: Inner class.

Impact: Memory.

Member Ignoring Method (MIM): this smell occurs when a method
that is not a constructor and does not access non-static attributes is
not static. As the invocation of static methods is 15%–20% faster than
dynamic invocations, the framework recommends making these methods
static [21].

Entity: Method.

Impact: CPU.

No Low Memory Resolver (NLMR): this code smell occurs when an
Activity does not implement the method onLowMemory(). This method
is called by the operating system when running low on memory in order
to free allocated and unused memory spaces. If it is not implemented, the
operating system may kill the process [39].

Entity: Activity.

Impact: Memory.

Hashmap Usage (HMU): the usage of HashMap is inadvisable when
managing small sets in Android. Using HashMaps entails the auto-boxing
process where primitive types are converted into generic objects. The
issue is that generic objects are much larger than primitive types, 16 and
4 bytes, respectively. Therefore, the framework recommends using the
SparseArray data structure that is more memory-efficient [1, 39].

Entity: Method.

Impact: Memory.

UI Overdraw (UIO): a UI Overdraw is a situation where a pixel of the
screen is drawn many times in the same frame. This happens when the UI
design consists of unneeded overlapping layers, e.g., hidden backgrounds.
To avoid such situations, the canvas.quickreject() API should be used
to define the view boundaries that are drawable [1, 39].

Entity: View.

Impact: GPU.

6

Unsupported Hardware Acceleration (UHA): in Android, most
of the drawing operations are executed in the GPU. Rare drawing
operations that are executed in the CPU, e.g., drawPath method in
android.graphics.Canvas, should be avoided to reduce CPU load [19,
34].

Entity: Method.

Impact: CPU.

Init OnDraw (IOD): a.k.a. DrawAllocation, this occurs when alloca-
tions are made inside onDraw() routines. The onDraw() methods are
responsible for drawing Views and they are invoked 60 times per second.
Therefore, allocations (init) should be avoided inside them in order to
avoid memory churn [1].

Entity: View.

Impact: Memory.

Unsuited LRU Cache Size (UCS): in Android, a cache can be used to
store frequently used objects with the Least Recently Used (LRU) API. The
code smell occurs when the LRU is initialized without checking the avail-
able memory via the getMemoryClass() method. The available memory
may vary considerably according to the device so it is necessary to adapt
the cache size to the available memory [19, 30].

Entity: Method.

Impact: Memory.

Table 1: Studied code smells.

2.1.3. Content

Running Sniffer on a set of 324 open-source Android apps resulted in
a dataset with the history of all code smell instances that appeared in these
apps. Table 2 summarizes the contents of this dataset.

Table 2: Content of the dataset.

Apps Commits Files Smell Instances Developers Releases Branches

324 255, 798 1, 455, 617 180, 013 5, 104 11, 118 21, 210

7

2.2. Data Analysis

In this subsection, we describe our approach for analysing the collected
data to answer our research questions. Table 3 reports on the list of metrics
that we defined for this purpose.

Table 3: Study metrics.

Metric Description

co
d
e
sm

e
ll

ty
p
e

#introductions The number of instances introduced in the
dataset.

%affected-apps The percentage of apps affected by the code smell.

%diffuseness The diffuseness of the code smell instances in the
source code of an app.

#removals The number of instances removed in the dataset.

%removals The percentage of instances removed—i.e.,
#removals

#introductions .

#code-removed The number of instances removed with source code
removal.

%code-removed The percentage of instances removed with source
code removal—i.e., #code−removed

#removals .

C
o
m
m
it

#commit-introductions The number of code smell instances introduced by
the commit.

#commit-removals The number of code smell instances removed by
the commit.

distance-to-release The distance between the commit and the next
release in terms of number of commits.

time-to-release The distance between the commit and the next
release in terms of number of days.

As shown in Table 1, every code smell type affects a specific entity of the
source code. Therefore, to compute the metric %diffuseness, we only focused
on these entities. For instance, the code smell Init OnDraw affects only the
entity View, thus we compute the percentage of views affected. This allows
us to focus on the relevant parts of the source code and have a precise vision
about the code smell diffuseness. For each app a, the diffuseness of a type of

8

code smells t that affects an entity e is defined by:

%diffuseness(a, t) =
#affected-entities(a, t)

#available-entities(a, e)

For instance, the diffuseness of the code smell No Low Memory Resolver
(NLMR) in an app a is:

%diffuseness(a,NLMR) =
#NLMR-instances(a)

#activities(a)

Where #NLMR-instances(a) is the number of No Low Memory Resolver in-
stances in the app a and #activities(a) is the number of activities in a.

For the metrics #code-removed and %code-removed, we tracked the source
code modifications that led to code smell removals. In particular, we counted
all code smell removals where the host entity was also removed. For example,
when an instance of the code smell No Low Memory Resolver is removed,
the removal can be counted as #code-removed only if the host Activity has
also been removed in the same commit.

2.2.1. RQ1: How frequent and diffuse are mobile code smell introductions?

To inspect the prevalence of code smells, we computed—for each code smell
type—the metrics: #introductions and %affected-apps. These metrics allow
us to compare the prevalence of different code smell types. Then, to obtain
a precise assessment of this prevalence, we also used the metric: %diffuse-
ness. We computed the diffuseness of each code smell type in every app of
our dataset. Finally, we plotted the distribution to show how diffuse are
code smells compared to their host entities.

2.2.2. RQ 2: How do releases impact introductions and removals of mobile
code smells?

This research question focuses on the impact of releases on code smell
evolution. To ensure the relevance of this investigation, we paid careful
attention to the suitability of the studied apps for a release inspection. In
particular, we manually checked the timeline of each app to verify that it
publishes releases through all the change history. We excluded apps that
did not use releases at all, and apps that used them only at some stage.
For instance, the Chanu app [35] only started using releases in the last 100
commits, while the first 1, 337 commits do not have any releases. Hence,

9

this app is, to a large extent, release-free and thus irrelevant for this research
question. Out of the 324 studied apps, we found 156 that used releases
during all the change history. The list of these apps can be found in our
study artifacts [16]. It is also worth noting that as Android apps are known
for continuous delivery and releasing [2, 31], we considered in this analysis
both minor and major releases. This allows us to perform a fine-grained
study with more releases to analyse.

We used this set of 156 apps to evaluate the impact of releases on code smell
introductions and removals. First, we visualized for each project the evolu-
tion of source code and code smells along with releases. We also plotted the
evolution of code smell diffuseness for all studied apps. This visualization
provides insights into the impact of releases and the evolution patterns of
code smells.

To accurately measure the impact of releases, we analysed the efefct of
approaching releases on the numbers of introductions and removals performed
in commits. Therefore, we used the metrics distance-to-release and time-to-
release.

Distance to release. We aimed to evaluate the relationship between the dis-
tance to release and the numbers of code smells introduced and removed
per commit. For this purpose, we assessed the correlation between the
distance-to-release and both #commit-introductions and #commit-removals us-
ing Spearman’s rank coefficient. Spearman is a non-parametric measure that
assesses how well the relationship between two variables can be described
using a monotonic function. This measure is adequate for our analysis as
it does not require the normality of the variables and does not assess the
linearity.

Time to release. Using the metric time-to-release, we extracted three commit
sets:

• Commits authored 1 day before a release,
• Commits authored 1 week before a release,
• Commits authored 1 month before a release.

Then, we compared the #commit-introductions and #commit-removals in
the three sets using Mann-Whitney U and Cliff’s δ. We used the two-tailed
Mann-Whitney U test [42] with a 99 % confidence level, to check if the dis-
tributions of introductions and removals are identical in the three sets. To
quantify the effect size of the presumed difference between the sets, we used

10

Cliff’s δ [40]. Cliff is a non-parametric effect size measure, which is reported
to be more robust and reliable than Cohen’s d [4]. Moreover, it is suit-
able for ordinal data and it makes no assumptions of a particular distribu-
tion [40]. For interpretation, we followed the common guidelines: negligi-
ble (N) for |d| < 0.10, small (S) for 0.10 ≤ |d| < 0.33, medium (M) for
0.33 ≤ |d| < 0.474, and large (L) for |d| ≥ 0.474 [11].

2.2.3. RQ 3: How do developers remove mobile code smells?

Quantitative analysis. First, we computed for each code smell type the met-
rics: #removals and %removals. Then, to gain insights about the actions
that lead to code smell removals, we computed: #code-removed and %code-
removed. The metric %code-removed reports the percentage of code smell
instances that were removed with source code removal. This metric pro-
vides us a first idea about code smell removal techniques. To push further
and identify the fine-grained actions that removed code smells, we opted for
qualitative analysis.

Qualitative Analysis. The objective of our analysis is to understand how
code smells are removed. To achieve this, we manually analysed a sample
of code smell removals. We used a stratified sample to make sure to con-
sider a statistically significant sample for each code smell. In particular,
we randomly selected a set of 561 code smell removals from our dataset.
This represents a 95 % statistically significant stratified sample with a 10 %
confidence interval of the 143, 995 removals detected in our dataset. The
stratum of the sample is represented by the 8 studied code smells. This sam-
ple includes commits from After sampling, we analysed every smell-removing
commit to inspect two aspects:

• Commit action: The source code modification that led to the removal
of the code smell instance. In this aspect, every code smell type has
different theoretical ways to remove it. We inspect the commits to
identify the actions used in practice for concretely removing code smells
from the codebase;

• Commit message: We checked the messages looking for any men-
tion of code smell removal. In this regard, we were aware that devel-
opers could refer to the smell without explicitly mentioning its name.
Therefore, we thoroughly read the commit messages to look for implicit
mentions of the code smell removal.

11

2.2.4. RQ4: Do developers refactor mobile code smells?

The objective of this question is to verify if the code smell removals
detected in the change history are actual refactoring operations. For this
purpose, we randomly selected a set of 340 smell-removing developers—i.e.,
developers who performed code smell removals in our dataset. Then, we sent
them emails to ask about the removed code smells. In particular, we pre-
sented the concerned code smell with the definition and code snippet that
illustrates it. Then, we asked them the following questions:

1. Were you aware of this code smell?
2. Did you refactor this code smell intentionally?

The objective of the first question is to capture the developer’s knowledge
and awareness of the code smell. The second question allows us to check
if the code smell removals authored by the developer are intended refactor-
ings. Depending on the outcome of the second question, we asked one of the
following questions:

3. Why did you refactor this code smell?
4. Why did not you refactor this code smell?

These open-questions allow developers to express their thoughts about mobile
code smells and explain their choices about refactoring.

We received answers from 25 developers, which represents a response rate
of 7, 35%. This rate is expectedly low as we ask developers about multiple
code smell instances that impose them some deeper investment to recall and
understand. The participants answered about all studied code smells, except
Unsupported Hardware Acceleration and Unsuited LRU Cache Size. None of
the responding developers was involved with these two code smells, which
were indeed rare in our dataset. While most of the respondents only an-
swered by text, two developers showed an interest in the topic and we were
able to perform online interviews with them. The interviews initially fol-
lowed the same textual questions, but depending on developers’ answers, we
asked additional questions. Consequently, we were able to get more detailed
answers, especially for the two open-questions.

We transcribed the interview recordings into text using a denaturalism
approach, which allows us to focus on informational content while still keep-
ing a “full and faithful transcription”. Together, the interviews and the
answers to our open questions formed material for qualitative inspection.

12

To analyse this material, we followed the analytical strategy of Schmidt et
al. [41], which is well adapted for open questions. In this analysis, we relied
on the two semantic categories:

• The reasons why developers refactor code smells;
• The reasons why developers do not refactor code smells;

To encode our material, we read the developers’ answers and we tried to
identify passages that relate to these categories. Based on these passages,
we formulated new sub-categories. In our case, a sub-category represents
a new reason for refactoring or not the code smell. To avoid redundancy,
these sub-categories will later be presented when we report the results of this
research question.

3. Study Results

This section reports on the results of our study. It is worth noting that,
to facilitate the replication of this study, all the results presented here are
included in our companion artifacts [16].

3.1. RQ1: How frequent are code smell introductions?

Table 5 reports on the number of code smells introduced and the percent-
age of apps affected.

Table 5: Numbers of code smell introductions.

Code smell LIC MIM NLMR HMU UIO UHA IOD UCS All

#introductions 98,751 72,228 4,198 3,944 514 267 93 18 180,013

%affected-apps 96 85 99 60 36 20 15 2 99

The table shows that, in the 324 analysed apps, 180, 013 code smell in-
stances were introduced. This number reflects the widespread of code smells
in Android apps. Nonetheless, not all code smells are frequently intro-
duced. Indeed, the table shows a significant disparity between the dif-
ferent code smell types. The code smells Leaking Inner Class and Mem-
ber Ignoring Method were introduced more than 70, 000 times, while Un-
suited LRU Cache Size and Init OnDraw were only introduced less than
100 times. These results highlight two interesting observations:

13

• The most frequently introduced code smells, Leaking Inner Class and
Member Ignoring Method, are both about source code entities that
should be static for performance optimization;

• The UI-related code smells (UI Overdraw, Unsupported Hardware Ac-
celeration, and Init OnDraw) are among the least frequently introduced
code smells.

Regarding affected apps, Table 5 shows that 99% of apps had at least one
code smell introduction in their change history, which again highlights the
widespread of the phenomenon. The table also shows that the disparity in
introduction frequency is reflected in the percentage of affected apps as fre-
quent code smells tend to affect more apps. However, we observe that having
more instances does not always imply affecting more apps. In particular, No
Low Memory Resolver is much less present than Leaking Inner Class and
Member Ignoring Method, 4, 198 vs. 98, 751 and 72, 228, respectively. Yet, it
affected more apps, 99 % vs. 96 % and 85 %.

To obtain a clear vision about these disparities, we reported in Fig-
ure 1 the diffuseness of code smells within their host entities in the studied
apps. The figure shows that No Low Memory Resolver is the most diffuse
code smell. At least 50 % of the dataset apps had this code smell in all their
activities, median = 100%. Leaking Inner Class is also very diffuse. In most
of the apps, it affected more than 80 % of inner classes. Code smells that are
hosted by views are less diffuse. On average, 15 % of the views are affected by
UI Overdraw. As for Init OnDraw, generally, it only affected less than 10 %
of the views. Finally, code smells hosted by methods are the least diffuse.
Member Ignoring Method, HashMap Usage, Unsupported Hardware Acceler-
ation, and Unsuited LRU Cache Size are present in less than 3 % of the
methods. This low diffuseness is not surprising as the number of methods is
very high.

These results show that some frequent code smells, like Member Ignoring
Method, are not diffuse, they only impact a small proportion of their poten-
tial host entities. Yet, code smells that seem less frequent, like UI Overdraw
and Init OnDraw, are more diffuse and affect a bigger proportion of entities.

Android code smells are not introduced and diffused equally.
No Low Memory Resolver and Leaking Inner Class are the
most diffuse, in average they impact more than 80 % of the
activities and inner classes, respectively.

14

Figure 1: Distribution of code smell %diffuseness in studied apps.

3.2. RQ2: How do releases impact introductions and removals of mobile
code smells?

In this section, we report on the results of our release analysis on the 156
apps that used releases regularly. For each app, we generated code smell evo-
lution curves that can be found in our artifacts [16]. Figure 2a shows an ex-
ample of these curves that depicts the evolution of the number of code smells
and classes in the Seafile client app. The figure highlights the releases to show
the changes in code smell numbers when approaching releases. From our
manual examination of all the evolution curves, we did not observe any ten-
dency of code smell increase or decline immediately before or after releases.
Generally, the number of code smells evolves with an important growth at
the first stages of feature development. Then, this growth stabilizes as the
projects enter the maintenance phase. Naturally, this pattern is not followed
by all the analysed projects as in many cases some components or modules
are removed, which results in a drop in the project size and the number of
code smells. Figure 2b presents an example of these cases that were observed
in the Syncthing app. Regardless of the growth pattern, we observe that the
number of code smells follows the project size in terms of number of classes.
These observations align with Lehman’s laws of continuing growth and de-
clining quality where the increase in code smells is an indicator of declining
quality.

To isolate the impact of project size, we also generated evolution curves for

15

(a) Seafile (b) Syncthing

(c) Subsonic (d) Andstatus

(e) KISS (f) 4pdaClient

Figure 2: The evolution of code smells in different Android apps.

16

code smell diffuseness. Figures 2c-2f show examples of curves generated for
four Android apps. From our inspection of these curves, we did not observe
any impact of releases on code smell diffuseness. Sometimes, we notice abrupt
drops or peaks in code smell diffuseness but these events are not explicitly
related to releases. We also notice that the diffuseness evolution did not follow
one simple pattern, like the raw number of code smells. However, based on
general trends, we observed that three patterns were emerging frequently:
consistent rise, consistent decline, and stability.

Figure 2c shows an example of consistent rise in code smell diffuseness
observed in the Subsonic project. We can see how the project started with
0.4 code smells per class and rose consistently to reach 0.8 code smells per
class after 3600 commits. The opposite pattern is observed in Figure 2d
where code smell diffuseness declines over the lifetime of the AndStatus app.
At the early stages of this project, the diffuseness was around 0.65 smells
per class and it declined progressively and ended up around 0.4 smells per
class. The KISS app, depicted in Figure 2c, shows an example of stable
code smell diffuseness. Despite some abrupt peaks and drops in the initial
commits, code smell diffuseness always ranged between 0.35 and 0.45 all
along 2800 commits. Some apps did not fall under any of these patterns and
their code smell evolution had random changes along the project lifetime.
For instance, the 4pdaClient app, had a hill-shaped evolution curve as shown
in Figure 2f. Indeed, the diffuseness evolved constantly in the first 200
commits, then started decreasing to go back to the same initial diffuseness.

Beyond this manual analysis, we assessed the impact of releases using the
metrics distance-to-release and time-to-release.

3.2.1. Distance to release
Figure 3 presents two scatter plots that show the relationship between

the distance from releasing and the number of code smell introductions and
removals per commit. The first thing that leaps to the eye is the similarity
between the two plots. Code smell introductions and removals are similarly
distributed regarding the distance from releasing. We do not notice any time
window where the code smell introductions and removals are negatively cor-
related. We also do not visually observe any correlation between the distance
from release and code smell introductions and removals. Indeed, the Spear-
man’s rank correlation coefficients confirm the absence of such correlations.

Spearman(distance-to-release,#commit-introductions)

{
ρ = 0.04

p-value < 0.05

17

Figure 3: The number of code smell introductions and removals per commit in the last
100 commits before release.

Spearman(distance-to-release,#commit-removals)

{
ρ = 0.01

p-value < 0.05

The results show that for both correlations, the p-value is below the thresh-
old. Hence, we can consider the computed coefficients as statistically significant.
As these correlation coefficients are negligible, we can conclude that there is no
monotonic relationship between the distance from releasing and the numbers of
introductions and removals per commit.

3.2.2. Time to release
After analysing the impact of the distance to release, we investigate the impact

of the time to release on code smell introductions and removals.
Figure 4 shows the density function of code smell introductions and removals

in different timings. First, we observe that code smell introductions and removals
are distributed similarly. For each timing, the density function of code smell
introductions and removals are analogous.

As for the comparison between code smell introductions performed at different
times, we observe that commits performed one day before releasing have a higher
probability to only have one code smell introduction. Commits performed one

18

Figure 4: The density function of code smell introductions and removals one day, one
week, and one month before releasing.

week or one month before release tend also to have around one code smell intro-
duction, but they also have chances to introduce more code smells. This means
that commits authored one day before the release do not necessarily have more
code smell introductions.

Code smell removals follow the same distribution for every timing. Thus, we
can infer that time to release has no visible impact on code smell introductions
and removals.

To confirm this observation, we compare in Table 6 the code smell introductions
performed one day, one week, and one month before the release.

Table 6: Compare #commit-introductions in commits authored one day, one week, and one
month before releasing.

LIC MIM NLMR HMU UIO IOD UHA UCS All

Day p > 0.01 p > 0.01 p > 0.01 p > 0.01 p > 0.01 p > 0.01 p > 0.01 − p > 0.01

Week 0.01(N) 0.05(N) 0.08(N) 0.20(S) 0.18(S) 0.10(S) − − 0.00(N)

Day p > 0.01 p > 0.01 p > 0.01 p > 0.01 − − − − p > 0.01

Month 0.02(N) 0.04(N) 0.08(N) 0.02(N) − − − − 0.01(N)

Week p > 0.01 p > 0.01 p > 0.01 p > 0.01 − − − − p > 0.01

Month 0.04(N) 0.00(N) 0.00(N) 0.04(N) − − − − 0.01(N)

19

The table results show that for all code smells, there is no significant difference
between code smell introductions occurring on different dates before the release
(p − value > 0.01). The effect size values confirm the results, all the quantified
differences are small or negligible.

Similarly, Table 7 compares code smell removals in commits authored one day,
one week, and one month before the release. The results are similar to the ones ob-
served for code smell introductions. The differences between different commits sets
are insignificant (p-value > 0.01) and effect sizes are small or negligible regardless
of the code smell type.

These observations suggest that there is no difference between the introduction
and removal tendencies in commits authored just before release and those written
days or weeks before. It is worth noting that for UI Overdraw, Init OnDraw,
Unsupported Hardware Acceleration, and Unsuited LRU Cache Size, the number of
instances was in some cases insufficient for performing the statistical tests. Hence,
our results are not applicable to these code smells.

Table 7: Compare #commit-removals in commits authored one day, one week, and one
month before releasing.

LIC MIM NLMR HMU UIO IOD UHA UCS All

Day p > 0.01 p > 0.01 p > 0.01 p > 0.01 p > 0.01 p > 0.01 p > 0.01 − p > 0.01

Week 0.05(N) 0.03(N) 0.02(N) 0.05(N) 0.29(S) − − − 0.01(N)

Day p > 0.01 p > 0.01 p > 0.01 p > 0.01 − − − − p > 0.01

Month 0.02(N) 0.07(N) 0.30(S) 0.01(N) − − − − 0.03(N)

Week p > 0.01 p > 0.01 p > 0.01 p > 0.01 − − − − p > 0.01

Month 0.02(N) 0.04(N) 0.30(S) 0.04(N) − − − − 0.01(N)

Releases do not have an impact on the introductions and removals
of Android code smells.

3.3. RQ3: How do developers remove mobile code smells?

3.3.1. Quantitative Analysis
Table 8 reports on the number and percentage of removals. The table shows

that on average 79% of code smell instances are removed. Looking at every
code smell type separately, the removal rate varies between 35 % and 93 %. Mem-
ber Ignoring Method is the most removed code smell with 93 % of its instances were
removed along with the change history. On the other hand, Unsupported Hard-
ware Acceleration is the least removed code smell with only 35 % of its instances
removed. The other code smells have a coherent removal percentage; they all had
from 60% to 70% of their instances removed.

20

Table 8: Number and percentage of code smell removals.

Code smell LIC MIM NLMR HMU UIO IOD UHA UCS All

#removals 70,654 67,777 2,526 2,509 305 147 66 11 143,995

%removals 71 93 60 63 59 35 70 61 79

#code-removed 67,169 13,809 1,625 1,824 273 123 33 8 84,864

%code-removed 95 20 64 73 90 84 50 73 59

The table also reports the number and percentage of code smell instances
removed within source code removal—i.e., code-removed. The table shows that
overall 59 % of code smell removals are a result of removing source code. For all
code smell types, except Member Ignoring Method, more than 50% of code smell
removals are accompanied with the removal of their host entities. Member Ignoring
Method is the only code smell that is rarely removed with source code removals—
%code-removed=20 %.

Overall, 79% of code smell instances are removed through the change
history. Except for Member Ignoring Method, most of code smells
are removed because of source code removal.

3.3.2. Qualitative Analysis
Table 9 summarizes the results of our manual analysis of 561 smell-removing

commits. For each code smell type, the table presents the number of analysed
instances, a breakdown of the actions used to remove it, and the percentage of
messages mentioning its removal. The following subsections report on these results
in details. For some code smells, the removal actions were similar, thus we report
them together. Also, for the sake of clarification, we remind for each code smell
all actions that can be performed to remove it before reporting the actions found
in the analysed sample.

Code smell: Leaking Inner Class (LIC).
Possible removals:

• Make the inner class static;
• Remove the inner class.

Commit actions: We found that in 98 % of the cases, LIC instances are removed
because inner classes are removed with other parts of the code. For instance, a
commit from the Seadroid app that fixes bugs also removes unused code that con-
tained a non-static inner class [10]. Hence, the commit has removed a LIC instance
as a side effect of the bug fixing. This finding explains the high percentage of code-
removed found for LIC in the quantitative analysis (95 %).

21

Table 9: Results of manual analysis.

Code smell #Instances Commit actions Message

LIC 96
Remove inner-class (98%)

Make inner-class static (2%)
0%

MIM 96
Add method body (85%)
Remove Method (15%)

0%

NLMR 93
Remove Activity (65%)

Transform Activity (35%)
0%

HMU 74
Remove Method (70%)

Remove statements (30%)
0%

UIO 74
Remove Method (88%)

Remove statements (11%)
Add clipRect() (1%)

0%

IOD 40
Remove Method (55%)

Remove statements (45%)
15%

UHA 59
Remove Method (85%)

Remove statements (15%)
0%

UCS 11
Remove Method (91%)

Remove statements (9%)
0%

22

We only found one case of LIC removal that was not caused by source code dele-
tion. It was a commit that refactored a feature and made an inner class private
and static, thus removing a code smell instance [7]. As this commit made diverse
other modifications, we could not affirm that the action was an intended code smell
refactoring.
Commit message: We did not find any explicit or implicit mention of LIC in
the messages of smell-removing commits. Moreover, the messages did not refer
specifically to the removed inner classes. Even the unique commit that removed a
LIC instance with a modification did not mention anything about the matter in
its message [7].

Code smell: Member Ignoring Method (MIM).
Possible removals:

• Make the affected method static;
• Add method body, i.e., introduce code that accesses non-static attributes to

the affected method;
• Remove the affected method.

Commit actions: We found that only 15 % of MIM removals are due to the
deletion of the host methods. In most of cases, MIM was rather removed with the
introduction of source code. Specifically, when empty methods are developed—
with instructions added inside—they do not correspond to the MIM definition
anymore, and thus code smell instances are removed. Also, other instances are
removed from full methods with the introduction of new instructions that access
non-static attributes and methods. Finally, we did not find any case of MIM
removal that was performed by only making the method static.
Commit message: We did not find any commit message that referred to the
removal of MIM instances.

Code smell: No Low Memory Resolver (NLMR).
Possible removals:

• Add the method onLowMemory() to the activity;
• Remove the affected activity.

Commit actions: We found that 65 % of NLMR instances are removed with
source code deletion. This deletion is caused by large modifications in the code
base, like major migrations and the addition of new features. For instance, a
commit from the Silence app refactored the whole app to start using Fragment

components [8]. One consequence of these modifications is the deletion of the
SecureSMS activity, which used to be an instance of NLMR.
As for the remaining 35 % instances, the removal was due to the conversion of
host activities into other components. For example, a commit from the K-9 app
converts an activity that was an instance of NLMR into a fragment [9]. As the

23

code smell NLMR is about activities, the class as fragment does not correspond to
the definition anymore and thus the code smell instance is removed. Other than
these two actions, we did not find any other ways of removing NLMR instances.
In particular, we did not find any case where the method onLowMemory() is added
to refactor the code smell.
Commit message: We did not find any commit message that mentioned the
removal of NLMR instances. We found one message that mentions that the commit
performs memory improvement in two classes [6]. Nonetheless, these improvements
were not related to the NLMR code smell.

Code smells: HashMap Usage (HMU), Unsupported Hardware Acceleration (UHA)
& Init OnDraw (IOD).
Possible removals:

• Remove the statements that introduced them;
• Remove their host entities.

Commit actions: In the manual analysis of these code smells, we inspected
whether the removal was due to the deletion of large code chunks or only the
removal of the specific statements that caused the instance. We found that the
instances of HMU and UHA are usually removed with the deletion of their host
methods, 70% and 85% respectively. As for IOD, there are equally instances re-
moved with big code deletions as instances removed with only statement removals.
Looking for potential intended refactorings, we carefully examined the cases where
instances are removed at a low granularity level—i.e., statements. In all HMU and
UHA instances, we did not find a code smell removal that could represent an in-
tended refactoring. All the instances are removed as a side effect of modifications
inside methods that do not specifically target the code smell statement. However,
we found that that 22% of IOD instances are removed with precise modifications
that sound like proper refactoring. Indeed, there are 9 IOD instances that specif-
ically removed the init statement or extracted it out of the onDraw() method.
Another element that incite us to describe these modifications as intended is that
they removed the linter warning suppression of DrawAllocation. This shows that
the developers were aware of removing a code smell instance.
Commit message: Out of the 9 potential proper refactorings of IOD, we found
6 commit messages that mentioned the code smell removal. This confirms that the
operations are intended refactorings. As for HMU and UHA, none of the analysed
messages mentioned their removal.

Code smells: UI Overdraw (UIO) & Unsuited LRU Cache Size (UCS).
Possible removals:

• Add method calls:
– clipRect() or quickReject() for UIO ;

24

Figure 5: Answers about code smell awareness and refactoring.

– getMemoryClass() for UCS ;
• Remove the code smell statements;
• Remove the host methods.

Commit actions: We found that most of UIO and UCS instances are removed
with other parts of the source code, 88% and 91% respectively. The remainder
instances were removed with modifications inside methods that implied the dele-
tion of code smell statements. The only exception was one UIO instance, which
was removed with the introduction of a call to the method clipRect(). This
modification was the only case that sounded like a proper refactoring.
Commit message: None of the analysed messages mentioned the code smells
UIO and UCS.

Android code smells are usually removed with large source code
removing commits that do not mention refactoring. In our dataset,
Init OnDraw and UI Overdraw are the only code smells that were
subject to apparent refactoring and only Init OnDraw was men-
tioned in commit messages.

3.4. RQ4: Do developers refactor mobile-specific code smells?

Figure 5 shows the answers collected for our two first questions. We observe
that on average mobile code smells were recognized by 43% of the participants.
Leaking Inner Class, Init OnDraw, and HashMap Usage are the most acknowledged
code smells. More than 56% of the participants were aware of them. UI Overdraw

25

was acknowledged by 48% of participants, whereas Member Ignoring Method and
No Low memory Resolver were recognized by only 36% of the participants.

When it comes to refactoring, we notice a drop by approximately 50% from
developers that already recognized code smells. Indeed, on average, only 19% of
the participants affirmed that they refactored mobile code smells. Also, Leaking
Inner Class and HashMap Usage, which were recognized by more than 50% of the
participants, were only refactored by 32% and 28% of them. The same drop is
observed for Member Ignoring Method and UI Overdraw, which were refactored
by only 20% of the participants. Interestingly, No Low Memory Resolver and
Init OnDraw were rarely refactored, 4% and 12% respectively. This proportion is
particularly low considering that Init OnDraw was acknowledged by 64% of the
participants.

Another observation is the large proportion of uncertain respondents for the
refactoring questions—i.e., developers responding with maybe. Indeed, this pro-
portion ranged between 4% and 8% for the awareness question, whereas it ranged
between 8% and 28% for the refactoring question. This is reasonable as the partic-
ipants may not remember for sure if they have already refactored this code smell
or not, thus the uncertain answer.

On average, 43% of the participants recognized mobile code smells
but only 19% of them confirmed their refactoring. Developers who
are aware of Android code smells do not necessarily refactor them.
Init OnDraw was recognized by 64% of the participants and only
refactored by 12% of them.

For the open-questions, we present the answers following the semantic sub-categories
that we identified.

3.4.1. Reasons why developers refactor mobile code smells
Code analysis tools. Three participants claimed that they refactor code smells
because they are reported by code analysis tools. One participant affirmed refac-
toring all critical code smells that are detected by Android Lint. “I trust the
default configuration of the linter, so if something is flagged as critical, I will stop
the build to fix it”. Another participant emphasized the impact of using such
tools, “IDEs and their built-in code analysis tools provide good warnings on these
problems, which encourage people to fix them, even if they are unaware of them”.
According to another participant, the help given by these tools goes beyond refac-
toring code smells, “the tools provide context and explanation that sharpen the
programmers’ perception in the future to avoid such problems beforehand. This
kind of nudging should not be underestimated”.

26

Personal practices. Two developers considered code smell refactoring as a good
development practice that they adopt. The first participant said that she refactors
code smells regularly, “I always try to improve the code source of projects that I
work on. If I notice an issue, I fix it”. The second participant described refactoring
code smells as a part of the routine that she follows while getting into an existing
code base, “for me it is a practice to dig into foreign code and while doing so, fixing
smells along the way, as I gain understanding of the code base”. This developer
explained that these smells are easy to refactor as they do not change from an app
to another, “they do not relate to the app specifically, they are common knowledge”.

Freedom. One participant affirmed that she was able to perform refactoring oper-
ations only because she was the main maintainer of an open-source project with
no external stakeholders. “I have full control over releases. I do not have external
pressure, so I can invest time in keeping the source code at the quality level that
satisfies me”. Interestingly, this developer explicitly claims that this same freedom
was not available in industrial projects that she contributed to as part of her job.

Developers who refactored Android code smells are motivated and
assisted by built-in code analysis tools and their personal commit-
ment to code quality.

3.4.2. Reasons why developers do not refactor mobile code smells
The impact is not significant. Five participants judged that the impact of mobile
code smells is not big enough to care about them. In particular, one developer
claimed that “the performance difference is really tiny or non-existent in the end”.
The same developer also claimed that most of these code smells are automatically
mitigated by the runtime, “ART can perform this kind of optimizations”. Another
developer explained how the architecture of mobile apps makes these code smells
less concerning, “well designed apps have most of the logic implemented in the
backend and unless it’s a game, the UI is not updated very often. Therefore, most
of these performance issues are usually no issue at all”. A similar argument was
constructed by another developer who believed that performance issues arise from
the connection to the backend instead of the frontend code smells, “network la-
tency typically dominates in mobile app responsiveness”. Other participants gave
specific examples about code smells that seemed impotent for them. One devel-
oper downplayed the impact of HashMap Usage, claiming that “using SparseArray
collections is better for memory usage but it is less important on modern devices
than it was ten years ago”. No Low Memory Resolver was also considered irrele-
vant by one participant who described different approaches to free memory using
the activity life-cycle callbacks, e.g., onPause() and onResume(). This participant

27

also added that this code smell is not commonly acknowledged by developers, “I
have been part of the Android community since the very beginning, 2010, and I do
not recall hearing about this code smell at all”.

Not a performance problem. Three participants expressed their doubts about the
relationship between mobile code smells and performance. For instance, one devel-
oper considered that Member Ignoring Method is a “code usability” issue but not
a performance one. Another developer estimated that these code smells are “not
directly related to performance” giving as example No Low Memory Resolver and
Leaking Inner Class. Another developer believed that these issues should be qual-
ified as “code quality, completeness, correctness, resource usage issues” instead of
performance.

Refactoring would not help. Two developers judged that the refactoring of code
smells is useless by giving as example No Low Memory Resolver. Specifically,
one developer considered that receiving No Low Memory warnings is a sign of bad
memory management by the app, and responding to the system warning would
not fix the issue. She explained: “if that point is reached it probably means you
have a memory leak or another problem with the way your app manages memory
and clearing some cache to prevent an out of memory crash is just a temporary
band-aid before the app eventually crashes anyway”. Another participant went
further by considering that refactoring No Low Memory Resolver could even lead
to the introduction of new bugs. She believes that “handling low memory seem
more likely to do harm than good as implementations are likely to be buggy and of
little benefit compared to letting the app be killed”.

Performance issues are better handled reactively. Two participants considered that
developers should not worry about these code smells because performance issues
should not be handled proactively. The first participant stated: “gut feelings
about performance issues are usually wrong”. Thus, she advises against trusting
these feelings or instincts, “never try to optimize before a profiling has shown
where exactly the problem in your application is”. The other participant gave
a similar advice and recommended relying on reactive tools like profilers to deal
with performance issues when they arise, “instead of worrying about details I advise
Android developers to worry more about UX and if the app performance slows just
use the profiler to locate the bottlenecks and fix that”.

Prioritization. Two participants mentioned that refactoring mobile code smells
is not a high priority. One developer referenced the perpetual trade-off between
quality improvement and new features, “I always have a panoply of ideas for im-
proving my codebase but I learned to prioritize features that directly benefit the

28

client”. The developer also described different criteria that she considers while
initiating a refactoring, “I evaluate considering the source code quality in the long
term. If the refactoring does not help in terms of maintenance and performance,
I will not perform it”.

The practice is justifiable. One participant judged that some practices that were
labeled as code smells were justifiable. She claimed that the use of HashMaps is
a good and necessary practice because the alternative data structure makes code
maintenance worse. She explained this by stating that “using Android framework
SparseArray classes in a component prevents it from being tested in JVM unit
tests”.

Developers that did not refactor Android code smells doubt their
performance impact and the usefulness of their refactoring. Some
developers also prefer to handle performance issues when they arise
instead of anticipating them.

4. Discussion and Implications

Releases. The results of RQ2 show that the pressure of releases do not have an
impact on code smell introductions and removals. This suggests that code smells
are not introduced as a result of releasing pressure. Moreover, when asked about
the reasons for not refactoring code smells, developers did not blame releases. One
developer mentioned prioritization, but this did not include releases and rather
explained how different quality aspects and outcomes are prioritized. These re-
sults may challenge the common beliefs about releases and their relationship with
technical debt in general [43]. However, it is noteworthy that our results are based
on open-source projects, which can be different from their industrial counterparts.
This point was raised by the participant who praised the freedom and control that
she had in her open-source project and who was aware that such circumstances
are rare in industrial projects. Hence, we encourage future studies to:

• Evaluate the impact of releases on mobile code smells in industrial projects
and ecosystems.

Awareness of code smells. Previous studies suggested that the accrual of mobile
code smells and the indifference of developers toward it are signs of unaware-
ness [15, 17]. However, the inputs collected from developers in RQ4 challenge
this hypothesis. Our participants claimed to recognize many Android code smells,
but they had other reasons to neglect them. In particular, some developers were
reluctant to code smell refactoring because they assumed that it would lead to

29

further issues. To remove this obstacle, we encourage researchers and toolmakers
to:

• Build tools that propose automated refactoring of mobile code smells.

Static analysis tools. We observed that code smells that are detected by Android
Lint—i.e., Leaking Inner Class, Init OnDraw, HashMap Usage, and UI Overdraw—
are the most recognized by developers [1]. Developers who performed refactoring
also explained that their actions were motivated and assisted by built-in code
analysis tools. Also, the only apparent refactorings identified in RQ3 was for Init
OnDraw and UI Overdraw, which are detected by Android Lint. Some of these
refactorings explicitly deleted Android Lint suppressions, which shows that devel-
opers considered the linter warnings and responded with an intended refactoring.
Theses findings confirm that static analysers can help in raising awareness about
code smells and refactoring them. Hence, we encourage researchers and toolmakers
to:

• Build and integrate static analysers with more code smell coverage.

Removal and refactoring. The quantitative and qualitative findings of RQ3 show
that code smells are mainly removed with source code deletion. Even for Member
Ignoring Method instances, which are removed with source code introduction, we
found that they are removed because the empty and primitive methods are devel-
oped with new statements. While we cannot judge the intentions of a source code
modification, most of the analysed commits did not reveal signs of intended refac-
toring and did not mention the code smell. On top of that, the answers collected
in RQ4 indicate that only a minority of smell-removing developers did perform
a refactoring. Hence, we can suggest that most of code smell removals are a side
effect of other maintenance activities and are not intentional refactorings. This
implies that:

• We cannot rely on code smell removals to learn refactoring techniques. Fu-
ture studies that intend to learn from the change history to build automated
refactoring tools cannot rely on the removals of these code smells as learning
examples.

Controversial code smells. According to RQ4, No Low Memory Resolver is the
least acknowledged and refactored code smell, 36% and 4% respectively. This
code smell was disapproved by many developers who explained that the absence
of a resolver does not systematically result in memory issues and its presence is
not always useful. This disapproval can explain why this code smell affected 99%
of the studied apps and was the most diffuse of our 8 code smells. Questions were

30

also raised about other code smells, like UI code smells, which were downplayed,
and HashMap Usage, which was described as justifiable and irrelevant in modern
devices. Following these questions, we invite future research works to:

• Reassess the relevance of these code smells and check the accuracy of their
definitions.

Manage performance reactively. Developers explained that instead of worrying
about code smells, they prefer handling performance bottlenecks when they arise.
This reactive approach was already observed and discussed in previous studies
about mobile apps [13, 27], yet the research contributions in this area remain rare.
Specifically, many static analysers were provided to detect performance issues in
mobile apps [14, 22, 36] and, to the best of our knowledge, no profiler was provided
to help in managing bottlenecks when they appear. For this reason, we encourage
future works to:

• Build profilers that can help developers in spotting performance bottlenecks
and identifying their root causes.

Relationship between code smells and performance bottlenecks. Previous studies
showed that mobile developers look after performance and take bottlenecks seri-
ously [27], yet when asked about code smells developers seem less preoccupied. In
particular, our participants doubted the impact of code smells and questioned their
association with performance. This shows that some developers do not perceive
a causal relationship between code smells and performance bottlenecks. Indeed,
the existence of such a relationship remains theoretical. Previous studies relied on
repeated execution scenarios to demonstrate the impact of Android code smells
on performance [3, 20, 37], but they did not associate them with bottlenecks.
Therefore, we encourage future studies to:

• Study the relationship between mobile code smells and performance bottle-
necks.

5. Threats to Validity

General threats. The main threat to our internal validity could be an imprecise
detection of code smell introductions and removals. This imprecision is relevant
in situations where code smells are introduced and removed gradually, or when
the change history is not accurately tracked. However, this study only considered
objective code smells that can be introduced or removed in a single commit. As for
history tracking, we relied on Sniffer, which tracks branches and renamings and
accurately detects code smell introductions and removals (F1-score = {0.97, 0.96}).

31

As for external validity, the main threat is the representativeness of our results.
We used a dataset of 324 open-source Android apps with 255k commits and 180k
code smell instances. It would have been preferable to consider also closed-source
apps to build a more diverse dataset. However, we did not have access to any
proprietary software that can serve this study. We encourage future studies to
consider other datasets of open-source apps to extend this study [5, 25]. We also
encourage the inclusion of apps of different sizes as the frequency of mobile code
smells follows the codebase size. Another possible threat to external validity is that
our study only concerns 8 Android-specific code smells. Without further investi-
gation, these results should not be generalised to other code smells or development
frameworks. We, therefore, encourage future studies to replicate our work on other
datasets and with different code smells and mobile platforms.

RQ2. A possible threat to internal validity is the selection of releases and projects.
We avoided this threat by selecting apps that had releases all along with their
change history. This measure ensures the accuracy of the metrics distance-to-
release and time-to-release. Furthermore, our results about the impact of releases on
code smells are limited to open-source apps. Apps developed as part of industrial
projects can be subject to more external requirements and releasing pressure. We
encourage future works to extend our work by inspecting the impact of releases in
different settings.

RQ3. One possible threat to the internal validity of our results could be the
accuracy of our manual analysis. We tried to alleviate this threat by relying on
objective criteria like the actions performed by the commit and the content of
its message. We also did not judge the intentions of developers and counted on
their answers in RQ4 to assess the proportion of real refactoring. Another threat
could be the generalisability of the results of our qualitative analysis. We used
a randomly selected set of 561 smell-removing commits. This represents a 95 %
statistically significant stratified sample with a 10 % confidence interval of the
143, 995 removals detected in our dataset. To support the credibility of our study,
we also provide this set with our study artifacts.

RQ4. The results of our user study can be threatened by the sampling bias. We
sent our questions to a set of 340 smell-removing developers because our objective
was to check if their removals were actual refactoring operations. Without further
investigation, the observed proportions of awareness and refactoring cannot be
generalised to all mobile developers. Furthermore, the answers collected in this
study may be subject to acquiescence and desirability biases. Participants may
be inclined to answer with “yes” to agree with us or seem more aware of software
quality issues. We minimized these biases by keeping the answers anonymous

32

and avoiding the implication that some answers are “right” or “wrong”. We also
allowed participants to express their points of view through the open-questions.

6. Related Works

In this section, we report on the literature related to code smells in mobile
apps and their analysis in the change history.

6.1. Mobile Code Smells

The first reference to mobile-specific code smells was when Reimann et al. [39]
proposed a catalogue of 30 quality smells dedicated to Android. These code smells
originate from the good and bad practices presented online in Android documenta-
tion. They cover various aspects like implementations, user interfaces, or database
usages and they are reported to harm properties, such as efficiency, user experience,
or security. Many research works built on this catalogue and proposed approaches
and tools for detecting code smells in mobile apps [14, 22, 23, 36]. In particu-
lar, Hecht et al. [21] proposed Paprika, a tooled approach that detects OO and
Android smells in Android apps. Paprika models Android apps as a large archi-
tectural graph and queries it to detect code smells. Palomba et al. [36] proposed
another tool, called aDoctor, able to identify 15 Android-specific code smells
from the catalogue of Reimann et al. Habchi et al. [14] proposed an extension of
Paprika that detects iOS-specific code smells. Lately, Gupta et al. [12] used 3 ma-
chine learning algorithms to generate rules that detect four Android code smells.
In their experiments, the JRip algorithm achieved the best results by generating
rules capable of detecting smells with a 90% overall precision.

To cope with mobile code smells, researchers also proposed refactoring solu-
tions. Yu et al. [26] proposed Asynchronizer, a tool that extracts long-running
operations into AsyncTasks, and AsyncDroid, a tool that transforms improperly-
used AsyncTasks into Android IntentService. Morales et al. [33] proposed
EARMO, an energy-aware refactoring approach for mobile apps. They identi-
fied the energy cost of 8 OO and mobile antipatterns. Based on the cost, EARMO
generates refactoring sequences automatically.

6.2. Empirical Studies on Mobile Code Smells

Most empirical studies focused on assessing the performance impact of mobile
code smells on app performance [3, 20, 32, 37]. Hecht et al. [20] conducted an em-
pirical study about the individual and combined impact of 3 Android smells. They
measured the performance of 2 apps with and without smells using the following
metrics: frame time, number of delayed frames, memory usage, and number of
garbage collection calls. The measurements showed that refactoring the Member

33

Ignoring Method smell improves the frames metrics by 12.4 %. Carette et al. [3]
studied the same code smells, but focused on the energy impact. They analysed
5 open-source Android apps and observed that in one of them the refactoring of
the 3 code smells reduced the global energy consumption by 4, 83%. The study of
Morales et al. [33] also showed by analysing 20 open-source apps that refactoring
antipatterns can decrease significantly energy consumption of mobile apps. No-
tably, Palomba et al. [37] showed that methods that represent a co-occurrence of
Internal Setter, Leaking Thread, Member Ignoring Method, and Slow Loop, con-
sume 87 times more energy than other smelly methods.

Beyond the performance impact, empirical studies compared the distribution
of code smells in mobile apps and desktop systems. Specifically, Mannan et al. [28]
compared the presence of OO code smells in Android apps and desktop applica-
tions. They did not observe major differences between these two types of applica-
tions in terms of density of code smells. However, they found that the distribution
of OO code smells in Android is more diversified than for desktop applications.
Further, Habchi et al. [14] analysed 279 iOS apps and 1, 500 Android apps to com-
pare the presence of OO and mobile-specific smells in the two platforms. They
observed semantic similarities between the code smells exhibited by the two plat-
forms. On top of that, they found that Android apps tend to have more OO and
mobile-specific code smells.

While these studies helped in understanding the distribution and impact of
mobile-specific code smells, they did not provide any qualitative insights about the
topic. Indeed, the only study that leveraged qualitative analysis is the one from
Habchi et al. [13], which investigated the perception of performance bad practices
by Android developers. This study reported that developers may lack interest
and awareness about Android code smells. Moreover, the study showed that some
developers challenge the relevance and impact of code smells in practice. Our
work complements this study as it relies on another information source—removal
instances—to understand the phenomenon of code smells in practice. Besides, our
work also provides quantitative insights into how these code smells are introduced
and removed in practice.

6.3. Code smells in the Change History

The evolution of code smells through the change history has been addressed by
various studies in the OO context. Tufano et al. [45] addressed questions similar
to our study. They, analysed the change history of 200 open-source projects to un-
derstand when and why code smells are introduced and for how long they survive.
They observed that most of code smells instances are introduced when files are
created and not due to evolution process. They also found that new features and
enhancement activities are responsible for most smell introductions, and newcom-

34

ers are not necessarily more prone to introducing new smells. Interestingly, this
study also investigated the rationales of code smell removal, showing that only
9 % of code smells are removed with specific refactoring operations. Our study
yields similar results as it shows that even though 79 % of code smell instances are
removed through the change history, only 19 % of code smell removers described
their actions as intentional refactoring.

Peters et al. [38] conducted a case study on 7 open-source systems to investigate
the lifespan of code smells and the refactoring behaviour of developers. They found
that, on average, code smell instances have a lifespan of approximately 50 % of the
examined revisions. Moreover, they noticed that, usually, one or two developers
refactor more than the others, however, the difference is not large. Finally, they
observed that the main refactoring rationales are cleaning up dead or obsolete
code, dedicated refactoring, and maintenance activities.

Tufano et al. [44] analysed the change history of 152 open source projects to
inspect the evolution of test smells and their relationship with code smells. Their
results showed that, similarly to OO code smells, test smells are introduced when
tests are created and they have a high survivability. Their results also suggest the
existence of relationship between test smells and code smells of the code under
test.

In the context of mobile apps, we have already leveraged the change history
to study code smells in previous works [15, 17]. The first work studied developer
contributions showing that the ownership of code smells is spread across develop-
ers regardless of their seniority and experience. As for the second one, it studied
code smell survival and showed that while in terms of time Android code smells
can remain in the codebase for years before being removed, it only takes 34 ef-
fective commits to remove 75 % of them. These results suggested that developers
lack interest in code smells and most of their actions toward them are acciden-
tal. Result-wise, our study complements these findings as it shows the reasons
behind developers’ inaction toward code smells. Novelty-wise, our study relies on
the artifacts of these works to address new topics:

• Removal fashions: This study inspects the actions that lead to code smell
removals;

• Refactoring: In this study, we discuss with developers to (i) check if they
intentionally refactor code smells and to (ii) identify the motivations behind
their actions;

• Releases and diffuseness: Our previous work evaluated the impact of releases
on code smell survival [17]. In this work, we go further and assess the impact
of releases on code smell introductions and removals. On top of that, we
provide insights about the evolution of code smells and their diffuseness.

Another relevant study for our work was conducted by Mazuera-Rozo et al. [29]

35

who manually analysed 500 commits that fixed performance bugs in Android and
iOS apps. This analysis allowed them to build a taxonomy of performance bugs
and confirm that GUI lagging, energy leak, and memory bloat are the most com-
mon performance bugs in mobile apps. The study also analysed the survival of
performance bugs showing that on average they remain for at least 90 days, which
surpasses the average lifetime of other bug types.

7. Conclusion

We presented in this article a large-scale empirical study that leverages quanti-
tative and qualitative analyses to improve our understanding of mobile code smells.
The main findings of this study are:

• Diffuseness: Android code smells are not introduced and diffused equally.
No Low Memory Resolver and Leaking Inner Class are the most diffuse by
affecting 90 % of activities and inner classes.

• Releasing pressure: Releases do not have an impact on the frequency of
code smell introductions and removals in open-source Android apps;

• Removal: 79 % of code smell instances are removed through the change
history. However, these removals are mostly caused by large source code
removals that do not mention refactoring. Also, only 19 % of developers
who authored these removals confirmed that their actions were intentional
refactorings;

• Awareness: Developers who are aware of Android code smells do not nec-
essarily refactor them. The code smell Init OnDraw was recognized by 64 %
of the participants, but only 12 % of them refactored it;

• Refactoring: Developers who refactored Android code smells were moti-
vated and assisted by built-in code analysis tools and their commitment to
code quality. On the other hand, developers that did not refactor Android
code smells doubted their performance impact and the usefulness of their
refactoring. Some developers also preferred to handle performance issues
when they arise instead of anticipating them.

These findings have notable implications on future research agenda:
• We encourage future works to evaluate the impact of releases on mobile

code smells in industrial projects and ecosystems. This need arises from
the remarks of developers about the contrast between the freedom that they
have while developing open-source apps and the pressure that they undergo
in industrial projects;

• Future studies that intend to learn from the change history to build au-
tomated refactoring tools cannot rely on code smell removals as learning
examples;

36

• To address the questions and doubts raised by developers, we need to re-
assess the relevance of Android code smells and check the accuracy of their
definitions;

• We intend to study the relationship between mobile code smells and perfor-
mance bottlenecks to understand and assess their impact on performance.

Besides, based on our findings, we encourage tool makers to:
• Build profilers that can help developers in spotting performance bottlenecks

and identifying their root causes rapidly;
• Build and integrate static analysers with more code smell coverage. This is

beneficial as we observed the impact of such tools on developer awareness
and actions;

• Build tools that propose automated refactoring of mobile code smells. Such
tools are crucial for developers who are reluctant toward refactoring by fear
of introducing further issues.

This study also provides a comprehensive replication package [16], which includes
the tools, datasets, and results.

References

[1] Android, 2017. Android lint checks. https://sites.google.com/a/

android.com/tools/tips/lint-checks. [Online; accessed August-2017].

[2] Android, 2019. Android versioning. https://developer.android.com/

studio/publish/versioning. [Online; accessed January-2019].

[3] Carette, A., Younes, M.A.A., Hecht, G., Moha, N., Rouvoy, R., 2017. Investi-
gating the energy impact of android smells, in: Software Analysis, Evolution
and Reengineering (SANER), 2017 IEEE 24th International Conference on,
IEEE. pp. 115–126.

[4] Cohen, J., 1992. A power primer. Psychological bulletin 112, 155.

[5] Geiger, F.X., Malavolta, I., Pascarella, L., Palomba, F., Di Nucci, D., Bac-
chelli, A., 2018. A graph-based dataset of commit history of real-world an-
droid apps, in: Proceedings of the 15th International Conference on Mining
Software Repositories, ACM. pp. 30–33.

[6] GitHub, 2009. Mention memory improvement. https://github.com/

k9mail/k-9/commit/909f677f912ed1a01b4ef39f2bd7e6b068d1f19e. [On-
line; accessed January-2019].

37

https://sites.google.com/a/android.com/tools/tips/lint-checks
https://sites.google.com/a/android.com/tools/tips/lint-checks
https://developer.android.com/studio/publish/versioning
https://developer.android.com/studio/publish/versioning
https://github.com/k9mail/k-9/commit/909f677f912ed1a01b4ef39f2bd7e6b068d1f19e
https://github.com/k9mail/k-9/commit/909f677f912ed1a01b4ef39f2bd7e6b068d1f19e

[7] GitHub, 2010. Fix lic. https://github.com/connectbot/connectbot/

commit/32bc0edb89e708b873533de94d3e58d5099cc3ba. [Online; accessed
January-2019].

[8] GitHub, 2012a. Remove nlmr. https://github.com/SilenceIM/Silence/

commit/3d9475676f80a3dbd1b29f83c59e2c132fb135b5. [Online; accessed
January-2019].

[9] GitHub, 2012b. Remove nlmr with modifications. https://github.com/

k9mail/k-9/commit/bbcc4988ba52ca5e8212a73444913d35c23cebc4. [On-
line; accessed January-2019].

[10] GitHub, 2013. Remove lic. https://github.com/haiwen/seadroid/

commit/74112f7acba3511a650e113aa3483dcd215af88f. [Online; accessed
January-2019].

[11] Grissom, R.J., Kim, J.J., 2005. Effect sizes for research: A broad practical
approach. Lawrence Erlbaum Associates Publishers.

[12] Gupta, A., Suri, B., Bhat, V., 2019. Android smells detection using ml al-
gorithms with static code metrics, in: International Conference on Recent
Developments in Science, Engineering and Technology, Springer. pp. 64–79.

[13] Habchi, S., Blanc, X., Rouvoy, R., 2018. On adopting linters to deal with per-
formance concerns in android apps, in: Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering, ACM, New
York, NY, USA. pp. 6–16. URL: http://doi.acm.org/10.1145/3238147.
3238197, doi:10.1145/3238147.3238197.

[14] Habchi, S., Hecht, G., Rouvoy, R., Moha, N., 2017. Code smells in ios apps:
How do they compare to android?, in: Proceedings of the 4th International
Conference on Mobile Software Engineering and Systems, IEEE Press. pp.
110–121.

[15] Habchi, S., Moha, N., Rouvoy, R., 2019a. The rise of android code smells:
Who is to blame?, in: Proceedings of the 16th International Conference on
Mining Software Repositories, IEEE Press, Piscataway, NJ, USA. pp. 445–
456. URL: https://doi.org/10.1109/MSR.2019.00071, doi:10.1109/MSR.
2019.00071.

[16] Habchi, S., Moha, N., Rouvoy, R., 2019b. Study artifacts. https://

figshare.com/s/790170a87dd81b184b0a. [Online; accessed June-2019].

38

https://github.com/connectbot/connectbot/commit/32bc0edb89e708b873533de94d3e58d5099cc3ba
https://github.com/connectbot/connectbot/commit/32bc0edb89e708b873533de94d3e58d5099cc3ba
https://github.com/SilenceIM/Silence/commit/3d9475676f80a3dbd1b29f83c59e2c132fb135b5
https://github.com/SilenceIM/Silence/commit/3d9475676f80a3dbd1b29f83c59e2c132fb135b5
https://github.com/k9mail/k-9/commit/bbcc4988ba52ca5e8212a73444913d35c23cebc4
https://github.com/k9mail/k-9/commit/bbcc4988ba52ca5e8212a73444913d35c23cebc4
https://github.com/haiwen/seadroid/commit/74112f7acba3511a650e113aa3483dcd215af88f
https://github.com/haiwen/seadroid/commit/74112f7acba3511a650e113aa3483dcd215af88f
http://doi.acm.org/10.1145/3238147.3238197
http://doi.acm.org/10.1145/3238147.3238197
http://dx.doi.org/10.1145/3238147.3238197
https://doi.org/10.1109/MSR.2019.00071
http://dx.doi.org/10.1109/MSR.2019.00071
http://dx.doi.org/10.1109/MSR.2019.00071
https://figshare.com/s/790170a87dd81b184b0a
https://figshare.com/s/790170a87dd81b184b0a

[17] Habchi, S., Rouvoy, R., Moha, N., 2019c. On the survival of android code
smells in the wild, in: Proceedings of the 6th International Conference on
Mobile Software Engineering and Systems, IEEE Press, Piscataway, NJ, USA.
pp. 87–98. URL: http://dl.acm.org/citation.cfm?id=3340730.3340749.

[18] Habchi, S., Veuiller, A., 2019. Sniffer source code. https://github.com/

HabchiSarra/Sniffer/. [Online; accessed March-2019].

[19] Hecht, G., 2017. Détection et analyse de l’impact des défauts de code dans
les applications mobiles. Ph.D. thesis. Université du Québec à Montréal,
Université de Lille, INRIA.

[20] Hecht, G., Moha, N., Rouvoy, R., 2016. An empirical study of the performance
impacts of android code smells, in: Proceedings of the International Workshop
on Mobile Software Engineering and Systems, ACM. pp. 59–69.

[21] Hecht, G., Omar, B., Rouvoy, R., Moha, N., Duchien, L., 2015a. Tracking
the software quality of android applications along their evolution, in: 30th
IEEE/ACM International Conference on Automated Software Engineering,
IEEE. p. 12.

[22] Hecht, G., Rouvoy, R., Moha, N., Duchien, L., 2015b. Detecting Antipatterns
in Android Apps. Research Report RR-8693. INRIA Lille ; INRIA. URL:
https://hal.inria.fr/hal-01122754.

[23] Kessentini, M., Ouni, A., 2017. Detecting android smells using multi-objective
genetic programming, in: Proceedings of the 4th International Conference on
Mobile Software Engineering and Systems, IEEE Press. pp. 122–132.

[24] Kovalenko, V., Palomba, F., Bacchelli, A., 2018. Mining file histories: should
we consider branches?, in: Proceedings of the 33rd ACM/IEEE International
Conference on Automated Software Engineering. ACM, pp. 202–213.

[25] Krutz, D.E., Mirakhorli, M., Malachowsky, S.A., Ruiz, A., Peterson, J., Fil-
ipski, A., Smith, J., 2015. A dataset of open-source android applications, in:
Proceedings of the 12th Working Conference on Mining Software Repositories,
IEEE Press. pp. 522–525.

[26] Lin, Y., Dig, D., 2015. Refactorings for android asynchronous programming,
in: Automated Software Engineering (ASE), 2015 30th IEEE/ACM Interna-
tional Conference on, IEEE. pp. 836–841.

39

http://dl.acm.org/citation.cfm?id=3340730.3340749
https://github.com/HabchiSarra/Sniffer/
https://github.com/HabchiSarra/Sniffer/
https://hal.inria.fr/hal-01122754

[27] Linares-Vasquez, M., Vendome, C., Luo, Q., Poshyvanyk, D., 2015. How
developers detect and fix performance bottlenecks in android apps, in: 2015
IEEE international conference on software maintenance and evolution (IC-
SME), IEEE. pp. 352–361.

[28] Mannan, U.A., Ahmed, I., Almurshed, R.A.M., Dig, D., Jensen, C., 2016.
Understanding code smells in android applications, in: Proceedings of the
International Workshop on Mobile Software Engineering and Systems, ACM.
pp. 225–234.

[29] Mazuera-Rozo, A., Trubiani, C., Linares-Vásquez, M., Bavota, G., 2020. In-
vestigating types and survivability of performance bugs in mobile apps. Em-
pirical Software Engineering , 1–43.

[30] McAnlis, C., 2015. The magic of lru cache (100 days of google dev). https:

//youtu.be/R5ON3iwx78M. [Online; accessed January-2019].

[31] McIlroy, S., Ali, N., Hassan, A.E., 2016. Fresh apps: an empirical study of
frequently-updated mobile apps in the google play store. Empirical Software
Engineering 21, 1346–1370.

[32] Morales, R., Saborido, R., Khomh, F., Chicano, F., Antoniol, G., 2016. Anti-
patterns and the energy efficiency of android applications. arXiv preprint
arXiv:1610.05711 .

[33] Morales, R., Saborido, R., Khomh, F., Chicano, F., Antoniol, G., 2017.
Earmo: An energy-aware refactoring approach for mobile apps. IEEE Trans-
actions on Software Engineering .

[34] Ni-Lewis, I., 2015. Custom views and performance (100 days of google dev).
https://youtu.be/zK2i7ivzK7M. [Online; accessed January-2019].

[35] Nittner, G., 2016. Chanu - 4chan android app. https://github.com/

grzegorznittner/chanu. [Online; accessed January-2019].

[36] Palomba, F., Di Nucci, D., Panichella, A., Zaidman, A., De Lucia, A., 2017.
Lightweight detection of android-specific code smells: The adoctor project,
in: Software Analysis, Evolution and Reengineering (SANER), 2017 IEEE
24th International Conference on, IEEE. pp. 487–491.

[37] Palomba, F., Di Nucci, D., Panichella, A., Zaidman, A., De Lucia, A., 2019.
On the impact of code smells on the energy consumption of mobile applica-
tions. Information and Software Technology 105, 43–55.

40

https://youtu.be/R5ON3iwx78M
https://youtu.be/R5ON3iwx78M
https://youtu.be/zK2i7ivzK7M
https://github.com/grzegorznittner/chanu
https://github.com/grzegorznittner/chanu

[38] Peters, R., Zaidman, A., 2012. Evaluating the lifespan of code smells us-
ing software repository mining, in: Software Maintenance and Reengineering
(CSMR), 2012 16th European Conference on, IEEE. pp. 411–416.

[39] Reimann, J., Brylski, M., Aßmann, U., 2014. A tool-supported quality smell
catalogue for android developers. Softwaretechnik-Trends 34. URL: http:
//dblp.uni-trier.de/db/journals/stt/stt34.html#ReimannBA14.

[40] Romano, J., Kromrey, J.D., Coraggio, J., Skowronek, J., 2006. Appropriate
statistics for ordinal level data: Should we really be using t-test and cohen’sd
for evaluating group differences on the nsse and other surveys, in: annual
meeting of the Florida Association of Institutional Research, pp. 1–33.

[41] Schmidt, C., 2004. The analysis of semi-structured interviews. A companion
to qualitative research , 253–258.

[42] Sheskin, D.J., 2003. Handbook of parametric and nonparametric statistical
procedures. crc Press.

[43] Tom, E., Aurum, A., Vidgen, R., 2013. An exploration of technical debt.
Journal of Systems and Software 86, 1498–1516.

[44] Tufano, M., Palomba, F., Bavota, G., Di Penta, M., Oliveto, R., De Lucia,
A., Poshyvanyk, D., 2016. An empirical investigation into the nature of test
smells, in: Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, pp. 4–15.

[45] Tufano, M., Palomba, F., Oliveto, R., Penta, M.D., Lucia, A.D., Poshyvanyk,
D., 2017. When and why your code starts to smell bad (and whether the
smells go away). IEEE Transactions on Software Engineering PP. doi:10.
1109/TSE.2017.2653105.

41

http://dblp.uni-trier.de/db/journals/stt/stt34.html#ReimannBA14
http://dblp.uni-trier.de/db/journals/stt/stt34.html#ReimannBA14
http://dx.doi.org/10.1109/TSE.2017.2653105
http://dx.doi.org/10.1109/TSE.2017.2653105

	1 Introduction
	2 Study Design
	2.1 Dataset
	2.1.1 Sniffer
	2.1.2 code smells
	2.1.3 Content

	2.2 Data Analysis
	2.2.1 RQ1: How frequent and diffuse are mobile code smell introductions?
	2.2.2 RQ2: How do releases impact introductions and removals of mobile code smells?
	2.2.3 RQ3: How do developers remove mobile code smells?
	2.2.4 RQ4: Do developers refactor mobile code smells?

	3 Study Results
	3.1 RQ1: How frequent are code smell introductions?
	3.2 RQ2: How do releases impact introductions and removals of mobile code smells?
	3.2.1 Distance to release
	3.2.2 Time to release

	3.3 RQ3: How do developers remove mobile code smells?
	3.3.1 Quantitative Analysis
	3.3.2 Qualitative Analysis

	3.4 RQ4: Do developers refactor mobile-specific code smells?
	3.4.1 Reasons why developers refactor mobile code smells
	3.4.2 Reasons why developers do not refactor mobile code smells

	4 Discussion and Implications
	5 Threats to Validity
	6 Related Works
	6.1 Mobile Code Smells
	6.2 Empirical Studies on Mobile Code Smells
	6.3 Code smells in the Change History

	7 Conclusion

