
A holistic approach for cross-platform software development
J. Z. Blancoa,b,∗, D. Lucrédioa

aJ. Z. Blanco and D. Lucrédio are with the Computing Department, Federal University of São Carlos, Rod. Washington Luís, Km 235, P.O. Box 676 -
13565-905, São Carlos - SP - Brazil.
bJ. Z. Blanco is with Federal Institute of São Paulo, Campus Piracicaba, Rua Diácono Jair de Oliveira, 1005, 13414-155, Piracicaba - SP - Brazil.

ART ICLE INFO

Keywords:
Cross-platform development
General-Purpose Language
Model-Driven Development
User studies

ABSTRACT

Cross-platform development solutions can help to make software available on different devices and
platforms. But these are normally restricted to preconfigured platforms and consider that each in-
dividual solution is equal or similar to each other. As a result, developers have to resort to native
development and build individual solutions, one for each device/platform, that cooperate to deliver
the desired global functionality. This article presents an approach that takes advantage of existing
solutions and have support for extending and including new platforms, and distributing functional-
ity across devices. The approach is based on a general-purpose language that raises the abstraction
level in order to keep the software free from platform details. Automatic transformations produce
executable code that can be properly divided and deployed separately into different platforms. The
proposed approach was evaluated in four ways. In the first evaluation, an existing cross-platform sys-
tem was recreated using the approach. The second and third evaluations was conducted with expert
and novice developers, who tested the approach in practice. The fourth evaluation introduced support
for cross-platform testing. Results have brought evidence supporting the following main contribu-
tions: use of a single environment, the ability to reuse similar concepts between platforms and the
potential to reduce costs.

1. Introduction
The great number and variety of computing devices,

such as smartphones, tablets and smartwatches, creates an
ever-growing demand for cross-platform software, that is,
a single software system that runs on multiple devices. In
this scenario, developers are challenged to handle device-
specific characteristics such as types and versions of operat-
ing systems, data storage capacity, available resources (GPS,
camera, etc.), screen size, and more [30]. Dealing with these
differences at a low abstraction level have a impact on pro-
ductivity, maintenance and quality, ultimately resulting in
cost increases and loss of focus on the business domain.

There are two additional complications to this scenario.
First, there is always the risk of having to support new plat-
forms in the near future. The industry has been investing in
the use of computing in various objects [12] and this real-
ity should be considered for software engineering. To keep
software competitive, in many cases it is important to run on
as many new platforms as possible, as soon as possible.

Second, in some cases, the software must have its func-
tionalities distributed between versions for different plat-
forms [18]. Not always the functions of one version for
a specific platform should be maintained in other versions.
For example, a mobile smartphone is more suitable for tak-
ing geotagged photographs, while a computer is preferred
for typing or viewing large pictures or maps. Functions dis-
tributed across system versions can better explore the capa-
bilities of each device.

The problem is not recent. In the recent past, when
∗Corresponding author

julianoblanco@ifsp.edu.br (J.Z. Blanco);
daniel.lucredio@ufscar.br (D. Lucrédio)

ORCID(s): 0000-0002-2530-6917 (J.Z. Blanco); 0000-0002-1360-4036
(D. Lucrédio)

smartphones started to appear, Java emerged as a promising
solution, in the form of the Java 2Micro Edition. In theory, a
software could be written in a single way (using J2ME) and
run everywhere, as long as there was a supporting virtual
machine. But even in the realm of mobile phones, which is
a very well defined context, different implementations were
provided by different vendors, causing software to crash un-
less extensively tested on dozens of devices [27]. Also, each
manufacturer started to add specific features, such as ded-
icated sensors or specific controls. Supporting all of these
variations in a single framework was very problematic, and
developers had to deal with these differences in the code, by
adding preprocessing directives or maintaining completely
different versions of the software at the same time [5]. Even-
tually, when devices became powerful enough, J2ME and
the promise of Java as a universal mobile language approach
was replaced by Android, a complete operating system [11].

Current web technologies such as HTML5 and Progres-
sive Web Apps1 can help to make software available in any
device with a web browser. It is possible to develop respon-
sive interfaces, suitable for different screen sizes, with offline
capabilities and background processing. These can make the
experience become closer to a native application, but there
are limitations. Accessing hardware features such as Blue-
tooth, Near-Field Communication, GPS and Camera is not
ideal [15]. There is also a limiting factor regarding local
storage in the browser2. Finally, there are devices such as
smartwatches, that have very limited hardware and do not
feature a fully functioning browser. In these cases, native
development is the only option.

There are solutions that help to reduce some of these
1developers.google.com/web/updates/2015/12/getting-started-pwa
2developers.google.com/web/fundamentals/instant-and-offline/web-

storage/offline-for-pwa

JZ Blanco and D Lucrédio: Preprint submitted to Elsevier Page 1 of 18

ar
X

iv
:2

10
4.

14
61

4v
1

 [
cs

.S
E

]
 2

9
A

pr
 2

02
1

A holistic approach for cross-platform software development

challenges. Hybrid development [11] and generative ap-
proaches [7] can help to unify the different software versions,
but they normally have poor support for a variety of current
and new platforms. Responsive web development [17] have
good potential to support different screen types but have lim-
itations regarding native hardware [15]. Service-oriented ar-
chitecture and cloud computing [21] may help by moving
parts of the system out of the devices and facilitate main-
tenance of each individual service, but device and platform-
specific functions still have to be developed to consume these
services. None of these solutions solve the essence of the
problem, which is the separate development for what should
be treated more like a single system. The developers still
have to work with multiple individual systems that work to-
gether and deal with the technical details inherent to each
platform. Also, when adopting a particular solution, the de-
veloper is normally restricted towhichever platforms are cur-
rently supported by the tool or approach.

In face of these challenges, this article presents an
approach where development and maintenance consider a
cross-platform system as a single software entity. There-
fore, the approach is considered holistic as it covers multiple
characteristics and seeks to uniformly solve the challenges
associated with cross-platform development. The developer
creates the software using a single set of models, using a
Generic Purpose Language (GPL) developed to support the
approach. The GPL is a programming language with some
high level constructs that allow different domain concepts
and functions to be specified completely and independently
from the platform(s) on which they will run. Through gener-
ators, code is automatically obtained for different platforms.

The approach is also holistic in the sense that it is not re-
stricted to a predefined set of supported platforms. Adding
new platforms is embedded in the approach through the same
GPL, with which platform models can be specified and code
be generated. Therefore, the approach can cover a wide
range of devices, both current and future ones. Further-
more, the approach allows existing platforms to be extended
or modified, to better suit the needs of a particular system.

Finally, the approach can be used to choose inwhich plat-
form each part or function will be deployed. This facilitates
the job of distributing functionality across devices, for ex-
ample deploying GPS and camera-dependent functions into
smartphones only, and larger reports and data sheets func-
tionality into a web application. This is a major difference
from many existing solutions, which normally create differ-
ent versions of the same software for different platforms.

To evaluate the approach, four studies were conducted.
A first study was conducted by the researchers, and consisted
in a proof-of-concept where an existing commercial cross-
platform system was recreated in the platform. A second
study involved five experts, who used the approach to cre-
ate software using the approach. To demonstrate the holis-
tic nature of the approach in supporting different and new
platforms, the studies involved deploying the software in the
web, Android and iOS, with different storage technologies
(HashMap and SQLite), different programming languages

(Java, C# and Swift), and even included a new device created
solely for this research: an augmented reality (AR) device
based on RaspBerry Pi3, with simple input/output capabili-
ties. The third study was similar to the second, but involved
four developers with low expertise in mobile development.
And the fourth study explored cross-platform unit testing.

The results show that the approach can be successfully
used to treat cross-platform development as a single software
entity. It also highlighted some contributions, the main be-
ing the possibility to use a single environment to create a
platform-independent representation of the software. The
results also demonstrated the ability to reuse similar con-
cepts between platforms. Ultimately, the approach has the
potential to reduce costs. The evaluations also pointed out
some limitations, the most important being the need for an
initial effort to properly create and prepare the platform de-
tails. This is important, as most developers have this support
already available in current tools. Also, in some cases it was
necessary to use the platforms’ native IDEs, thus breaking
the purpose of treating the software as a single entity in a
single environment. Another limitation is the need for ad-
ditional tests, to make sure the generated code is adequate
and can be trusted. The results also point out some imple-
mentation details that could be improved in the future. The
collected empirical evidence constitutes important contribu-
tions for continuing this research in the future until it is ready
to reach production-ready tools and environments.

The remainder of this paper is organized as follows. Sec-
tion 2 presents related work. Section 3 describes the cross-
platform development approach in details. Section 4 con-
tains the evaluation and Section 5 presents some concluding
remarks and future work.

2. Related Work
HAXE4 and KOTLIN5 are two examples of languages

that can be used to create platform-independent software
by generating code for different native languages, including
JavaScript, PHP, Pyhton, C++, Java, among others, offering
support for different platforms, including Windows, Linux,
MacOS, iOS and Android. The IBM RATIONAL RHAP-
SODY6 tool enables the development of embedded systems,
real-time systems and commercial software through a UML-
based visual modeling language or Systems Modeling Lan-
guage (SysML). GENEXUS7 is a business tool that uses the
MDD (Model Driven Development) concept [10] to visually
model complex systems and has a separate environment for
each platform, it also has a language for specifying business
rules as an assistance to visual modeling.

Model-Driven APPLAUSE8 [8] is an academic ap-
proach that provides a declarative DSL written in XText9

3https://www.raspberrypi.org/
4haxe.org
5kotlinlang.org
6www-03.ibm.com/software/products/en/ratirhapfami
7www.genexus.com/
8github.com/applause/applause
9www.eclipse.org/Xtext

JZ Blanco and D Lucrédio: Preprint submitted to Elsevier Page 2 of 18

A holistic approach for cross-platform software development

with templates for XTend code generation. But the focus
of modeling involves technical domain details rather than
conceptual elements, maintaining a low level of abstraction.
Miravet et al. [20] present another academic approach. The
difference between them is the use of XML as a modeling
language and the use of the device-independent mobile ap-
plication generation (DIMAG) to generate native code.

In the work of Inayatullah et al. [13], an MDA-based
framework (Model-Driven Architecture), provides UML
modeling to express the domain concepts, generating hy-
brid applications and RESTful Services in Asp.Net. AP-
PIAN10 and MENDIX11 are commercial frameworks that
support mobile application development and data interoper-
ability between applications. The difference between them is
that the latter also considers the web platform using Phone-
Gap12 as the basis. Interfaces are modeled visually and busi-
ness rules and behavior are defined at a high abstraction level
through custom tool editors, the result is executable code
generated. Following the business line, WEBRATIO13 [1]
is a model-driven development platform based on Interac-
tion Flow Modeling Language14 and with a high abstraction
level. WEBRATIO uses the Cordova15 API as a base and
considers the same platforms as MENDIX.

Some work uses MDD to address the development of a
single application version. Examples are JUSE4ANDROID
[25], MIMIC [9] and the research by Cimino andMarcelloni
[6], which focus exclusively on graphical user interface for
the Android platform. Behrens [2] presents an environment
for textual modeling through a DSL for iOS. Min et al. [19]
and Benouda et al. [3] use UML to model applications for
Windows Phone and generate native code in C#.

Many approaches try to focus only on Android and iOS,
which are currently dominating the market. This is the case
of academic approaches such as MD2 [16], Chen et al.’s [5],
Sabraoui et al.’s [24], AXIOM [14], Perchat, Desertot and
Lecomte’s [22], MOPPET [28], Taentzer and Vauper’s [26],
Dageförde et al.’s [8], Vaupel et al.’s [29], Rieger et al.’s
[23], and industry initiatives such as REACT NATIVE16,
NATIVESCRIPT17, Flutter18 and XAMARIN19.

The REACT NATIVE framework, developed by Face-
book, allows writing code through web technologies (XML,
CSS and JavaScript). Its contribution is the generation
of readable native code for both platforms (iOS and An-
droid), where it is possible to add new functionality di-
rectly in the generated source code. NATIVESCRIPT en-
ables the development of native applications using a sin-
gle language. In this case, the developer may choose be-

10www.appian.com/
11www.mendix.com
12phonegap.com/
13www.webratio.com
14www.ifml.org/
15cordova.apache.org/
16facebook.github.io/react-native
17www.nativescript.org
18flutter.dev
19www.xamarin.com

tween JavaScript, Angular20 or TypeScript21 and interface
customizations through CSS. The difference between RE-
ACT NATIVE and NATIVESCRIPT is that in REACT NA-
TIVE the code is transformed into native language, with the
possibility of extension by the developer. And in the second,
the code is delivered to devices in JavaScript and interpreted
natively through theVirtualMachine (VM) of each platform.

Flutter uses the Dart language to model and generate ex-
ecutable code and is considered an interpreted approach. A
compiler converts the code into native language that runs
on the device, along with an interface rendering engine. In
this way, Flutter does not use native elements for rendering
the interface, impairing its performance a little. XAMARIN
uses the C# language, and can obtain between 75% and 100%
of code reuse between platforms. The applications generated
by the tool are native, thanks to the access to the APIs of each
platform. However, despite the increase in productivity, the
tool does not increase the level of abstraction, keeping the
developer involved with technical details.

Chen et al. [5] propose a framework to convert user in-
terface (UI) source code from Android to iOS and from iOS
to Android. It uses a classification algorithm to identify the
components in one platform and then generates correspond-
ing elements in the other platform. Sabraoui et al. [24] use
MDD to develop the GUI platform independently. A DSL is
used to model the interface, programmed using a grammar
written in XText. This DSL can be viewed graphically, as
UML models, and through code generators the UI code for
the platforms is automatically created.

AXIOM [14] uses UML visual models combined with
Abstract Model Tree to represent domain interactions and
generic concepts through a Platform Independent Model.
Perchat, Desertot and Lecomte [22] propose a universal lan-
guage in which, through a compiler, it is possible to generate
native code, but the proposed language has a low abstraction
level. MOPPET [28] is a tool that uses a mixed approach, in-
volving the concepts of Software Product Lines and MDD,
defined by the authors as a product-line model-driven engi-
neering approach for native code generation. Case studies
have shown reduced effort and increased productivity.

Taentzer and Vauper [26] propose the textual model-
ing of native applications separated into three submodels:
graphical modeling (GUI), data modeling and application
behavior (business rules). The main contribution of this
work was the generation of native code taking into account
information about the context and offline operation.

Dageförde et al. [8] discuss ways to add the concept of
Software Product Lines (SPL) into theMD2 framework. The
main contribution of the work was the modularization of the
MD2 framework, according to the concepts of SPL, ensur-
ing greater versatility and reuse of modeling artifacts. In the
work of Vaupel et al. [29] an approach that uses visual mod-
els is presented and specific business rules can be expressed
in a textual language, for the generation of native codes (An-
doid and iOS). In Rieger et al.’s work [23], the elements for

20angular.io
21www.typescriptlang.org

JZ Blanco and D Lucrédio: Preprint submitted to Elsevier Page 3 of 18

A holistic approach for cross-platform software development

Related work C1 C2 C3 C4 C5 C6 C7
HAXE X X - - - X X
KOTLIN X X - - - X X
IBM X X - - - X X
GENEXUS X - - - - X X
APPLAUSE X X - - - X X
MIRAVET[20] X X - - - X X
INAYAT. [13] X X - - - X X
APPIAN X X - - - X X
MENDIX X X - - - X X
WEBRATIO[1] X X - - - X X
JUSE4[25] X - - - - X X
MIMIC[9] X - - - - X X
CIMINO[6] X - - - - X X
BEHRENS[2] X - - - - X X
MIN[19] X X - - - X X
BENOUDA[3] X - - - - X X
MD2[16] X X - - - X X
CHEN[5] X X - - - X X
SABRAOUI[24] X X - - - X X
AXIOM[14] X - - - - X X
PERCHAT[22] X X - - - X X
MOPPET[28] X - - - - X X
TAENTZER[26] X - - - - X X
DAGEFÖRDE[8] X X - - - X X
VAUPEL[29] X X - - - X X
RIEGER[23] X X - - - X X
REACTNATIVE X X - - - X X
NATIVESCRIPT X X - - - X X
FLUTTER X X - - X X X
XAMARIN X X - - - X X
THIS WORK X X X X X X X

Table 1
Brief comparison between related work and this one, in terms
of the identified contributions

accessibility on mobile devices are included in the frame-
work MD2, aiming to reduce costs in its implementation.

In summary, both academia and industry are successful
in delivering a single way to develop software for multiple
platforms, allowing the developer to reuse code across plat-
forms and domains more efficiently, helping to reduce de-
velopment and maintenance costs. But they have strong ties
with the supported platforms, not giving the developer the
choice to include new platforms or extend existing support
without considerable effort. They also normally consider
that all platforms will receive the same functions, not allow-
ing different devices to receive different functions. We for-
malize all these desired contributions as follows:

C1. High abstraction level modeling in a single environ-
ment. The software engineer should be able to specify
system concepts at an abstraction level that sits above
platform-specific details.

C2. Reuse of similar concepts between platforms through
modeling. Many concepts, such as persistent enti-
ties and functions, have to be repeatedly created, with
small differences, for each platform. The approach
must allow these to be reused in all platforms.

C3. Reduced system configuration costs. This includes

distributing functionality among platforms and switch-
ing the platforms being used in the system.

C4. Inclusion of new platforms with a small impact. The
ability to include new platforms into the system, even
if they were not initially supported.

C5. Extension of the approach through platform mod-
els. Existing platform support should be extensible to
better suit the needs of a particular system.

C6. Code reuse across domains. Cross-domain concepts
and functions should be specified in such a way that
they can be easily reused in any domain.

C7. Development and maintenance cost reduction. The
approach’s support for abstraction, reuse and code
generation should bring the potential to reduce costs
during the development life cycle.

Table 1 presents a simple comparison between existing
work and our proposed approach, in terms of these seven
contributions. The table is just a summary of the essence of
each solution. There may be specific ways to achieve these
contributions that were not accounted for because this is not
explicitly mentioned in the research paper or documentation.
All solutions deliver higher abstraction level development
(C1), cross-domain reuse (C6) and cost reduction (C7). But
none have been designed to allow functionality distribution
(C3) and the inclusion of new platforms (C4). Platform ex-
tension (C5) is a recent addition to Flutter in the form of
“platform channels”22, which are somehow similar to this
approach’s concept of global functions, as discussed later.

3. A holistic approach for cross-platform
software development
In order to overcome the limitations of existing work,

this research proposes a holistic view of cross-platform soft-
ware development23. For that, it borrows the main idea from
Model Driven Development (MDD) [10], which is to com-
bine generative programming, software transformation tech-
niques and domain-specific languages (DSL). But just using
MDD for cross-platform development has already been pro-
posed and successfully tested by others, as discussed in the
previous section. The main difference introduced in this re-
search is how platform-specific details are taken into consid-
eration, as shown in Figure 1.

The left side of Figure 1 shows a typical MDD-based
cross-platform solution. The software engineer works on a
higher abstraction level, to produce a platform-independent
model. She is shielded from the details of the underly-
ing platforms by means of platform-specific generators and
transformations. These artifacts are provided to the devel-
oper as black-box components, to be used as they are or with
some parameterization. As a result, the developer can fo-
cus on business domain concepts, as intended by MDD. But

22flutter.dev/docs/development/platform-integration/platform-channels
23https://github.com/JulianoZ/CrossPlatformApproach/

JZ Blanco and D Lucrédio: Preprint submitted to Elsevier Page 4 of 18

A holistic approach for cross-platform software development

Figure 1: An overview of a typical MDD cross-platform solution (left) compared with the
approach proposed in this research (right).

there is little flexibility to modify platform details or include
new platforms. The only solution would be to modify the
code generators or transformations, but since these were de-
signed to be used as black-box components, this is a difficult
task. Also, code generators produce different versions of the
same software. This means that all functions for the entire
system are generated for all platforms, equally.

In contrast, this approach (right side of Figure 1) takes a
more holistic viewpoint. Business domain concepts and the
platform details are meant to be under the control of the de-
veloper. The only black-box components are the language-
specific code generators, which will only need to change if
the target language changes, what is not likely to occur very
often. This allows platforms to be modified or added by the
developer. The approach also provides the ability to choose
where each part of the software will be deployed. For exam-
ple, an administrative area of a systemmay be targeted at the
web only. Themain front-endmay be targeted at the web and
mobile platforms, and a part of a system dealing with sen-
sors might be targeted at wearable and arduino platforms.
All these specifications are platform-independent, and the
entire solution is treated as a single software entity.

This is made possible with a Generic Purpose Language
(GPL) designed for this goal. This GPL is a textual program-
ming language with some high-level constructs for business
domain concepts, detailed behavior, platform details and
functionality distribution. So, if a different way of gener-
ating code for a specific platform is needed, or if a new plat-
form needs to be supported, the developer can use the GPL
instead of dealing with code generators or modifying gen-

erated code. Figure 2 shows the three models that need to
be specified by the software engineer when creating a cross-
platform system using the GPL: the system model (left), the
platform model (right) and the deployment model (middle).

Figure 2: Cross-platform approach elements.

3.1. The system model
The systemmodel is composed of three main parts: Data

Types and Classes, Global Functions and Global Details.
The first part of a system model are Data Types and

Classes. These are regular object-oriented constructs to
specify a system’s structure and behavior. Listing 1 shows
an example of this part of the systemmodel, where three data
types (lines 1-3) and one class (lines 4-12) are defined. The
class has two attributes (line 5) and one operation (lines 6-
12). Currently, the GPL has support for most object-oriented
programming language features, however it is still a proto-
type and may have some missing implementation details.

JZ Blanco and D Lucrédio: Preprint submitted to Elsevier Page 5 of 18

A holistic approach for cross-platform software development

Listing 1: Data type and class declarations using the GPL.
1 datatype int

2 datatype string

3 datatype double

4 class Coordinates {

5 double x, y;

6 operation dist(o: Coordinates): double {

7 dx: float

8 dy: float

9 dx := o.x - x

10 dy := o.y - y

11 return sqrt(dx^2 + dy^2)

12 } }

The second part of a system model are Global Func-
tions. These are the most important elements of the ap-
proach, as they establish the relationship between platform-
independent and platform-specific models. Consider for ex-
ample a function for obtaining the device location. Each
platform (android, iOS, web, etc.) will have a different im-
plementation, possibly with a different function signature.
But, in essence, they could be represented as a function,
called “getLocation()” that returns a pair of coordinates (lat-
itude and longitude). In the approach, this is exactly what a
global function is: an abstraction for a function that is needed
by the system, has the same (or a very similar) signature, but
requires platform-specific implementations.

Listing 2 shows an example of global function declara-
tions. It is possible to see that the approach supports cross-
domain global functions, such as getGPSPosition (line 1), to
obtain a device’s position, for example. This type of func-
tion can be used in different applications, from different do-
mains. The approach also supports domain-specific global
functions, such as InsertProductIntoCart, SelectCustomer

and SelectProduct (lines 2-4). These are specific to an e-
commerce domain.

Listing 2: Example of Global Function Declarations.
1 global getGPSPosition (): Coordinates

2 global SelectCustomer(id: string): Customer

3 global SelectProduct(id: string): Product

4 global InsertProductIntoCart(customer: Customer ,

product: Product , quantity: int): string

A global function is supposed to be supported by dif-
ferent platforms. This is possible as long as the platforms
are able to implement the declared function prototype. For
example, most smartphones are capable of obtaining their
positions from GPS satellites, therefore they will probably
be able to provide a compatible implementation for function
getGPSPosition. But a desktop or portable computer does
not have a GPS receiver, therefore it will not be able to im-
plement this function24. As discussed before, the approach
does not assume that all platforms will run identical versions
of the entire system, therefore not all global functions will
be implemented by all platforms. Instead, the approach as-
sumes that the system requires that these functions will be
implemented by at least one platform, otherwise the system
will not be able to execute properly.

24Computers have location systems, but they normally depend on an-
tennas and might not function in a farm or in the ocean, for example.

The third part of a system model are Global Details.
These represent platform-specific code that only makes
sense in a particular platform and that cannot be general-
ized as a global function. In other words, any piece of code
that is not the implementation of a global function, such
as additional variables, methods and annotations, that must
somehow appear in the generated code, must be specified as
global details. For example, global function SelectCustomer

from Listing 2, when deployed in the web platform, requires
a database connection to be available. The implementation
for this function could contain code that creates a new con-
nection every time the function is called, but a more efficient
approach would be to create the connection once, store it as
a class attribute, and reuse it across calls. A class attribute
would fall outside the implementation of a global function,
and this is where global details are useful. They can be used
to include class attributes, additional methods (other than the
global function itself), annotations, among other code.

Global details consist of a declaration, implementation
and use. The declaration is very simple, as shows Listing
3. The implementation of this example, which will create a
connection attribute and helper methods, will be described
later (Listing 7).

Listing 3: Example of Global Details Declarations.
1 globalDetails DBConnection

Global functions and details can be used by any class. An
example is shown in Listing 4. The use of a global details in
a class is declared with the keyword usesGlobalDetails (line
2). In this example, these details represent database con-
nection initialization code. The use of a global function in
a class is declared with the keyword usesGlobal (lines 3-5).
To improve readability, the complete global function decla-
ration has to be repeated into the class. Then, these functions
can be invoked normally (lines 11-13) as if they were local
functions, except for the keyword global.

Listing 4: A class using global functions and details.
1 class ShoppingCartDAO {

2 usesGlobalDetails DBConnection

3 usesGlobal SelectCustomer(id: string): Customer

4 userGlobal SelectProduct(id: string): Product

5 usesGlobal InsertProductIntoCart(customer: Customer

, product: Product , quantity: int): string

6 operation addProduct(custId: string , prodId: string

, quantity: int): list <string > {

7 objCust: Customer

8 objProd: Product

9 newProd: string

10 accessData: list <string >

11 objCust := global SelectCustomer(custId)

12 objProd := global SelectProduct(prodId)

13 newProd := global InsertProductIntoCart(objCust

, objProd , quantity)

14 } }

Each global function will have a different implementa-
tion on each platform. In the example of Listing 4, the global
invocations in lines 11-13 might refer to a SQL database if
the class is deployed into a web platform, or to a SQLite
database if the class is deployed into a mobile platform. But

JZ Blanco and D Lucrédio: Preprint submitted to Elsevier Page 6 of 18

A holistic approach for cross-platform software development

here in the system model, this is intentionally left undefined.
It shouldn’t matter which platform will run this code, it only
needs a compatible implementation for these functions.

Global functions and global details are very similar to
the concept of platform channels present in Flutter. There
are two main differences: first, in Flutter only the predefined
platforms are supported, while in this approach any plat-
form can implement any global function; second, in Flutter,
channels are linked to the implementation during runtime,
while here they are included in the generated code, thus be-
ing linked during compilation time. Flutter’s runtime-based
approachmakes it easier to reuse channels as black-box com-
ponents, in different apps. This approach’s generation-based
process, together with global details, makes it easier to ex-
tend or customize platform-specific code.

3.2. The platform model
The platform model consists of implementations for the

global functions and global details, and is defined for a par-
ticular language. The global function prototypes are de-
clared using the GPL syntax, but the actual implementation
of these functions may be written using either the GPL or
the platform’s native programming language. Using the plat-
form language is preferred, as it allows more direct access to
all of the platform’s features. Listing 5 shows three exam-
ple of platforms: Web using C# (lines 1-5), iOS using Swift
(lines 6-10) and Augmented Reality using C# (lines 11-15),
an entirely new platform developed for this project.

Listing 5: Implementation of global functions.
1 platform Web: CSharp {

2 implementsGlobal InsertProductIntoCart(c: Customer , p

: Product , quantity: int): string {

3 //C# code that implements the function on the web

4 // platform using SQL for persistence

5 } }

6 platform iOS: Swift{

7 implementsGlobal InsertProductIntoCart(c: Customer , p

: Product , quantity: int): string {

8 // Swift code that implements the function on iOS

9 // using SQLite for device persistence

10 } }

11 platform AugmentedReality: CSharp {

12 implementsGlobal GetDiskImagesAsync(picturesFolder:

StorageFolder): list {

13 //C# code that implements the function on

14 //the platform for Augmented Reality

15 } }

As discussed before, the holistic approach does not as-
sume that all platforms will run identical versions of the en-
tire system. In the example of Listing 5, it makes no sense
to provide an implementation for the InsertProductIntoCart

global function for the Augmented Reality platform, as this
platform does not have data persistence support. There-
fore, only the Web and iOS platforms will contain an im-
plementation for this global function. The Augmented Real-
ity platform will have an implementation for global function
GetDiskImagesAsync, for displaying images.

The software engineer has flexibility to provide custom
implementations for each platform. In the example of List-
ing 5, each platform adopts a different persistence mech-

anism: SQL-based, for Web/C# platform (lines 3-4), and
SQLite-based, for the iOS/Swift platform (lines 8-9).

Also to increase the flexibility, the approach has sup-
port for Apache Velocity templates25, making implemen-
tation code more flexible and increasing their reusability.
As an example of this additional feature, Listing 6 shows
a domain-independent way to declare, implement and use
a global function SelectObject, which can query any object
from a SQL database. In the declaration part (line 2), there
is nothing different from a normal global declaration, except
for the generic type <E>, which can be specified later.

In the implementation (lines 4-21), triple apostrophes
(''' in lines 5 and 21) are used to delimitate the template
contents. Apache Velocity tags (starting with # and $) are
used to query the generic type <E> in search for its features.
It is possible, for example, to use E’s name ($E.name in lines
6 and 12) to specify the query parameters and specific SQL
values (line 12), or to query E’s attributes ($E.attributes in
line 12) to generate an SQL statement.

When using this global function, it is necessary to spec-
ify a concrete class to be used for code generation. In this
example, class Order (line 23) will be the object being in-
serted. The approach takes care of linking these definitions
and generating correct code for the platform. The result is
that this global function may be reused in different domains.

Listing 6: Declaring, Implementing and Using a domain-
independent global function using Apache Velocity.
1 // Declaration

2 global <E> SelectObject(ord: string): list <E>

3 // Implementation

4 implementsGlobal <E> SelectObject(ord:string):list <E>{

5 '''

6 List <$E.name > listObj = new List <$E.name >();

7 $E.name obj = new $E.name();

8 Connection objCon = new Connection ();

9 MySqlConnection Conn = new MySqlConnection ();

10 Conn = objCon.OpenConnection ();

11 MySqlCommand command = Conn.CreateCommand ();

12 command.CommandText = "select #foreach($f in $E.

attributes)${f.name}#if($foreach.hasNext) , #

end#end from $E.name " + ord;

13 for(Reader.Read()){

14 #set($count = 0)

15 #foreach($f in $E.attributes)

16 obj.set${f.name.substring (0,1).toUpperCase ()}$

{f.name.substring (1)}(Reader.get${f.type.

name.substring (0,1).toUpperCase ()}${f.

type.name.substring (1)}($count));

17 #set($count = $count + 1)

18 #end

19 listObj.add(obj)

20 } return listObj;

21 ''' }

22 // Use

23 usesGlobal <Order > SelectObject(ord: string): list <

Order >

In addition to global functions, the platform model also
contains implementations of global details. Listing 7 pro-
vides an example of an implementation of global details. As
discussed before, these are used to create platform-specific

25velocity.apache.org

JZ Blanco and D Lucrédio: Preprint submitted to Elsevier Page 7 of 18

velocity.apache.org

A holistic approach for cross-platform software development

code (fields and methods) that cannot be generalized as
global functions. In this case, connecting to MySQL web
platform in C# requires a class attribute for the connection
(line 4), a method for opening the connection (lines 5-9) and
a method for closing the connection (lines 10-12). These
will be used internally by global function implementations.

Listing 7: implementation of global details for a MySQL
database connection in a web platform.
1 platform Web : CSharp {

2 implementsGlobalDetails DBConnection{

3 '''

4 private MySqlConnection Conn;

5 public MySqlConnection OpenConnection (){

6 Conn = new MySqlConnection (" server

=127.0.0.1; database=ecommerce;uid=18

feb24ac5h;pwd=pass");

7 Conn.Open();

8 return Conn;

9 }

10 public void CloseConnection (){

11 Conn.Close();

12 }

13 '''

14 }

If a platform has no need for specific details, it may leave
the implementation for the global details empty. As a result,
no additional code will be generated for that platform.

3.3. The deployment model
The deployment model simply defines which classes will

execute on which platforms, serving as a guide for code gen-
eration. The snippet shown in Listing 8 presents an example
of deploying different classes on different platforms. The
only restriction is that a platform chosen for deployment of
a particular class must have an implementation for all global
functions and details used by that class. In this example,
the User and UserDAO classes are being deployed to all plat-
forms. The ShoppingCartDAO class is being deployed on An-
droid (line 8) and iOS (line 9), but not on the web.

Listing 8: Deployment Configuration (deploy).
1 deploy Ecommerce {

2 User: Android

3 User: iOS

4 User: Web

5 UserDAO: Android

6 UserDAO: iOS

7 UserDAO: Web

8 ShoppingCartDAO: Android

9 ShoppingCartDAO: iOS

10 }

3.4. Code generation
As discussed before, the only black-box components are

the language-specific code generators. Currently, there are
generators for the Java, C#, and Swift languages, so it is pos-
sible to define platforms based on these languages. New
generators can be added to the approach by implementing
a mapping between the GPL constructs and target language
constructs, using Eclipse Xtext26 and Apache Velocity27.

26www.eclipse.org/Xtext/
27velocity.apache.org

Figure 3 shows an example of deploying classes User and
UserDAO into the web/C# platform. It is possible to see how
the system and platform models from the examples shown
in this section are integrated into the generated code, which
will contain all that is necessary for proper execution.

4. Evaluation
Four evaluations were conducted with the goal of find-

ing evidence regarding the seven main contributions of the
approach presented in the end of Section 2. The first eval-
uation was a proof-of-concept, focused on verifying if the
approach can be used to produce a real cross-platform sys-
tem. The second evaluation was an expert evaluation. It was
conducted with five experts and focused on gathering spe-
cialized opinions regarding the expected contributions. The
third evaluation was similar to the second, but with novice
developers. The idea was to test if the approach can shield
these developers from the technical details, allowing them to
develop software for these platforms even without the neces-
sary knowledge. Finally, the fourth evaluation involved us-
ing the approach to create test cases for different platforms,
following observations made by the experts.

4.1. Proof-of-concept
This evaluation was conducted by the researchers, and

had three stages. The first stage occurred before the ap-
proach was developed, and consisted in the development of a
complete cross-platform system for the e-commerce domain.
Since the approach did not exist then, the development fol-
lowed an ad-hoc process. Three platforms were supported:
web, android and iOS. The system’s architecture follows the
Model View Controller (MVC) [4] style,. The system has
basic CRUD (Create, Retrieve, Update and Delete) func-
tions, an area for customers to browse and order products
using a virtual shopping cart, and an administrative area for
sellers to process the orders. The customer area also includes
functions to detect the customer location. Mobile platforms
(Android and iOS) only have the customer area, while web
platforms have both the customer and administrative areas.

The second stage occurred after the approach was de-
veloped, and consisted in migrating the existing system into
the approach, i.e. creating the system, platform and deploy-
ment models. The main challenge in this stage was to de-
cide which parts of the systemwould become systemmodels
(data types and classes) and which would become platform
models (global functions and global details). As discussed
before, the main idea is to try to generalize common func-
tions with similar signatures as global functions.

Device location support was obviously part of the plat-
formmodels, so it was defined as global function and details.
For the other parts, we identified the similarities between
the platforms in the original code. We observed that around
79% of the developed system consists in concepts and func-
tions that are related either to the MVC architectural style or
to CRUD functions. Therefore, we defined global functions
and details for these concepts, and used Velocity templates

JZ Blanco and D Lucrédio: Preprint submitted to Elsevier Page 8 of 18

www.eclipse.org/Xtext/
velocity.apache.org

A holistic approach for cross-platform software development

Figure 3: Code generation result for classes User and UserDAO in the web/C# platform

Figure 4: Shopping cart screen of the e-commerce application
shown on four real devices, in three different platforms

to implement them. As a result, two platforms for each de-
vice type were defined: one for the “Model” layer and one
for the “Controller” layer. For this proof-of-concept, we did
not migrate the “View” layer into the approach, as it involves
visual design and layout definition that is better performed
directly in the platform’s native IDE.

In the third stage, a fourth platform was included, to test
the approach’s flexibility to include new platforms. To re-
ally put this flexibility to the test, a new platform was cre-
ated solely for this research, so that it would be demonstrated
that the approach does support unforeseen devices. The plat-
form consisted of an augmented reality (AR) device that can
project images on real-world objects, allowing customers to
see products on a display being highlighted by the device.

Figures 4 and 5 show five different devices running the
application. In Figure 4 four devices are showing the shop-
ping cart screen: a desktop computer for the web platform,
two tablets (Android and iOS), and one smartphone (An-
droid). Figure 5 shows the augmented reality device pro-
jecting images over some products on display, to highlight
them as they are selected by the customer.

Figure 5: Augmented reality device highlighting real-world
products and projecting their names above as they are selected
in the e-commerce application

4.1.1. Results
With the proof-of-concept developed and running, the

seven contributions of the approach were evaluated.
Table 2 shows a comparison in terms of LOC (lines of

code), without and with the approach, excluding the “view”
layer of the MVC architecture as it was not implemented
in the proof-of-concept. The three zeroes in the table are
explained as follows: 1) there is no platform-specific code
for the augmented reality (AR) device without the approach,
as it was only included in the second stage; 2) there is no
platform-independent code without the approach, as it is
written entirely in the platform’s language and can not be
reused in the other platforms (Android, iOS and Web plat-
forms use different languages in the proof-of-concept); and
3) there is also no platform-independent code written in a
native language with the approach.

When comparing the total size of the two versions of
the system (last line of Table 2), there is a large reduction
in terms of LOC. This is expected, as the generic CRUD
functions were made generic and were reused for all persis-
tent classes. This observation indicates that contribution C7
(Development and maintenance cost reduction) is being de-
livered by the approach. The LOC analysis also indicates
that the reuse of similar concepts between platforms through

JZ Blanco and D Lucrédio: Preprint submitted to Elsevier Page 9 of 18

A holistic approach for cross-platform software development

Without With approach
approach GPL Native

Platform- Android 1204 16 207
specific iOS 1503 16 157
code Web 1012 10 97

AR 0 55 89
Platform-independent code 0 238 0

Total 3719 335 550
885

Table 2
LOC analysis for the proof-of-concept

modeling is made possible with the approach (contribution
C2). Each class was deployed in two or three platforms. This
also contributed to the reduction in LOC.

Finally, the LOC analysis indicates that the approach
leads to a better focus on conceptual work. While all 3719
lines of code of the original systemmix generic domain con-
cepts and platform details, with the approach there are 238
lines of code that correspond exclusively to high-level con-
cepts. The remaining lines of code, created using the GPL
and native code, focuses on platform details alone. This sep-
aration helps to raise the abstraction level in which the soft-
ware engineer can work (contribution C1).

The proof-of-concept have also shown that distributing
functionality across the platforms and devices is possible and
requires little effort (contribution C3). It was very simple to
replicate the original system deployment with the approach,
with the added benefit of avoiding code duplication.

The third stage of the proof-of-concept demonstrated the
ability to include new platforms (contribution C4). A newly
created device for augmented reality was included in the sys-
tem without requiring an entirely new development. Exist-
ing classes were targeted at the AR platform during deploy-
ment and new global functions were successfully added.

In summary, the development of the proof-of-concept
led to indications that all contributions, except C5 (exten-
sion of the approach through platformmodels) andC6 (code
reuse across domains), are being achievedwith the approach.

4.2. Expert Evaluation
A second evaluation consisted in an experiment in-

volving experts with large experience in web and mobile
technologies (minimum 10 years) and some experience
with multiplatform frameworks (desirable but not manda-
tory). Using convenience sampling, the researchers searched
through their contacts in academia and industry in search
for volunteers. In the end, five experts that fulfill the re-
quirements were selected. All of them have experience in
different programming languages, system architectures, pro-
gramming languages and databases. Two experts (E1 and
E2) work in software companies, and have large software
development experience. Two experts have academic and
research experience, one being a PhD candidate in computer
science (E3) and one being a PhD teacher in a computer
technology center (E4). The fifth expert (E5) has a PhD in
computer science and has experience in the industry but is
currently a teacher and researcher in a technology center.

In this evaluation, the experts had to perform five dif-

ferent software development tasks using the approach. The
tasks were defined as follows:

Task 1: implement a shopping cart for a restaurant applica-
tion for three platforms (Android, iOS and Web).

Task 2: reconfigure how each part of the proof-of-concept
system is deployed in the different platforms. The ex-
perts were also asked to use the GPS location in some
specific platforms.

Task 3: include the support for a new database into the
proof-of-concept.

Task 4: create a new project, for a different domain (a li-
brary), with functions for user authentication and bor-
rowing books.

Task 5: include a new platform (Android smartwatch) in
the e-commerce proof-of-concept, where the product
listing functionality would be deployed.

In all tasks, experts could reuse all models and code from
the e-commerce proof-of-concept.

The evaluation with experts had three stages. In the first
stage, the experts had to learn how to use the approach and
how the proof-of-concept system is organized. A repository
containing documents and tutorials28 was made available for
the experts. The repository also has the source code for the
proof-of-concept system, including all models (system, plat-
form and deployment). The code was fully documented to
facilitate understanding. Experts were asked to record the
time spent in the first stage.

In the second stage, the experts had to perform the tasks.
They used their personal computers, using their own free
time. They were also free to contact the researchers to ask
questions. The time spent in each task should be recorded.

In the third and final stage, each expert was interviewed.
A script with eleven questions (Q1-Q11) was defined:

Q1. What is your opinion regarding the learning curve of
the approach?

Q2. What is your opinion regarding the programming lan-
guage (GPL) used in the approach? Is the language
easy or difficult to use? Is it intuitive? How complex
is the language?

Q3. What is your opinion regarding the platform models
provided by the approach? Is it possible to include all
technical details through global functions? Is it possi-
ble to reuse technical details in systems from different
domains? Is it possible to extend the approach through
platform models?

Q4. What did you think of the global functions and generic
parameters, used together with Velocity templates, to
create dynamic functions in the platformmodels? Can

28The complete experts material are available at: https://github.com/

JulianoZ/CrossPlatformApproach

JZ Blanco and D Lucrédio: Preprint submitted to Elsevier Page 10 of 18

https://github.com/JulianoZ/CrossPlatformApproach
https://github.com/JulianoZ/CrossPlatformApproach

A holistic approach for cross-platform software development

they automate code generation? Do they allow the cre-
ation of dynamic functions during coding? Do they
have the potential to create custom code for different
entities?

Q5. What did you think of the deployment model? Com-
ment on: the distribution of functionality, switching
platforms for some functions, such as receiving or-
ders in the examples, and managing code generation
through this model.

Q6. Do you believe the approach can reduce cross-platform
development costs?

Q7. How do you evaluate the maintenance of a cross-
platform system developed with the approach? Were
you able to change the modeling (GPL) and reuse the
generated code? For example, switching a variable
from float to double or change the way the shopping
cart stores information (in a database or in memory).

Q8. How do you evaluate the benefits provided by the ap-
proach in the development of cross-platform systems?

Q9. Please rate your experience with the approach in a scale
from 1 to 10, where 1 means a very poor experience
and 10 means a very good experience.

Q10. Do you have another idea to reduce costs in cross-
platform development?

Q11. Please rate each of the following contributions in a
scale from 1 to 10. (all contributions, except C7, are
listed for the expert to rate)

Most questions were open-ended. Therefore, in order to
analyze the responses, the interviews were recorded and a
transcript was written to facilitate analysis29. The transcripts
were analyzed separately by the two authors of this paper.
During this analysis, the researchers annotated those parts
that indicate some evidence in favor (C+) or against (C-)
one or more of the contributions. The two sets of annotations
were then compared and a common agreement was reached
after discussions. Finally, the number of annotations was
counted in order to provide a quantitative view of the col-
lected evidence. In this process, when there were more than
one annotation of the same type in the same response from
the same expert, only one was accounted for. This was nec-
essary because sometimes the experts were repeating them-
selves during their responses to a question.

4.2.1. Quantitative analysis
All tasks were completed successfully by all experts. Ta-

ble 3 summarizes the time spent during learning and during
each task, for each expert. As it can be seen, the average time
spent by experts during the entire study was 14h10. Learn-
ing took, in average, 6h24, with the remaining time spent
in the five tasks. There was some variability from expert to

29The complete experts transcripts are available at: https://github.com/
JulianoZ/CrossPlatformApproach

Exp. Learn. T1 T2 T3 T4 T5 Total
E1 6h00 1h00 2h20 0h40 0h45 1h30 12h15
E2 4h00 0h40 3h40 0h45 0h30 4h00 13h35
E3 7h00 0h25 1h20 0h35 0h25 1h30 11h15
E4 8h00 2h30 2h20 2h30 0h30 2h00 17h50
E5 7h00 2h00 2h55 1h30 1h30 1h00 15h55

Ave. 6h24 1h19 2h31 1h12 0h44 2h00 14h10

Table 3
Time spent by each expert in learning and in each task

expert, regarding some tasks. Expert E3 was the fastest in
most tasks, and task T2 was the longest, followed by T5.
Despite these differences, we consider that the experts were
not significantly different from each other and fromwhat was
expected, indicating that the tasks were performed more or
less in the same way by the experts.

Question Q9 asked experts to rate the approach, which
received an average rate of 9. Question Q11 asked experts
to analyze each contribution. The average ratings were the
following: C1=9.2, C2=10, C3=8.8, C4=9, C5=9.2 and
C6=8.4. Overall, all experts provided very positive results
for all questions, which might represent some bias and is a
possible validity threat, as discussed later. But it also indi-
cates that these contributions are being achieved, in partic-
ular C2, which received maximum rating from all experts.
Some smaller values were provided by some experts in par-
ticular cases. These are analyzed in the following sections.

Figure 6 shows the total amount of annotations for each
contribution, after an analysis of the responses. As it can be
seen, in general, all contributions have a positive result, i.e.
with more annotations in favor than against them.

Figure 6: Number of annotations in favor (C+) and against
(C-) each contribution.

Although the quantitative results are overall positive,
there were limitations and negative observations made by
experts. In the following section each contribution is indi-
vidually analyzed, based on the expert responses.

4.2.2. Qualitative analysis
A total of 21 annotations favor contribution C1 (High

abstraction level modeling in a single environment). 33%
of the annotations regardingC1 appear in questionQ2. Four
experts (E1, E2, E3 and E4) were able to identify the higher
abstraction levels and hiding of technical details behind the
platform models. Among these 21 annotations, the follow-
ing excerpts from the transcript exemplify this perception:

E2: “The complexity is low because most details are
concentrated in the platform models (...) It is possible to
keep the logic in a high level, using the GPL.”. E3: “The

JZ Blanco and D Lucrédio: Preprint submitted to Elsevier Page 11 of 18

https://github.com/JulianoZ/CrossPlatformApproach
https://github.com/JulianoZ/CrossPlatformApproach

A holistic approach for cross-platform software development

approach increases the abstraction level and considerably re-
duces the complexity”.

There were also 10 noticed limitations for contribution
C1. Four experts (E1, E2, E3 and E5) reported the lack
of a way to test the algorithms written in the GPL. This is
not a problem with the approach, as it is possible to create
a platform for generating test code, but the experts failed to
see this possibility. Expert E2 also emphasized, in question
Q2, that the GPL could be improved with syntax validation
and code completion. There are some basic functions in this
regard provided by Xtext, but improvements are necessary
to make the current implementation more usable.

Another limitation pointed out by the experts (E2 in Q6
andE5 inQ10) is a lack of confidence in the generated code.
They did not point out any error during the experiment, but
they raised the question, which indicates that they might not
trust code generation. Expert E2 also pointed out possible
performance problems in the generated code. Althoughmost
of these are probably solvable through GPL programming
and platform optimizations, the concern reinforces this lack
of trust. This has a negative impact on contribution C1, as
the developer will have to inspect and test the lower abstrac-
tion level models and generated code to be more confident.

There are two sources of possible errors in code genera-
tion: in the code generators and in the platform models. The
code generators might have some problems, but they should
disappear as the approach is used more often and bugs are
discovered. The platform models may also introduce errors,
and they must be tested to increase confidence. As pointed
out by E5, the approach does not provide a good support for
native programming, and the developer will have to resort to
the native IDE. This also goes against C1.

Expert E1, in Q10, reported difficulty in creating some
of the classes for the “controller” layer. Having to customize
these classes for each platform, through the concept of global
details, required a new way of thinking. According to the
expert, this was difficult to grasp at first, but once the concept
is fully understood it may lead to long term benefits.

Expert E4 reported in Q10 the lack of support for the
“View” layer. This was expected, as this layer not included
in the platforms provided for the study.

According to expert E3 in Q10, the higher abstrac-
tion level would benefit from a visual representation of the
classes. Since the GPL is a textual language, developers
might find it difficult to understand the relationship between
the classes. This is also a limitation related to C1.

Nowwe analyze contributionC2 (Reuse of similar con-
cepts between platforms through modeling). There were
10 annotations in favor of this contribution, with around 30%
appearing inQ4. These are indications that the approach can
facilitate the reuse of similar concepts between platforms.
Some examples extracted from the transcript illustrate the
experts’ opinions: E1: “(The approach) can use the same
algorithm to generate code for different platforms.” E2: “If
the GPS example worked for Android and iOS then it works
with any other resource.”

In question Q7 the experts pointed out advantages that

come from reusing the source code in different platforms
during system maintenance, with changes being performed
at high level in the GPL (E1 and E4). For example, expert
E4 stated that “All you have to do is save the changes and
the native code for every platform is updated.” Experts also
mentioned the possibility to reuse generic algorithms for dif-
ferent platforms in Q5 (E2 and E3).

The reuse of similar concepts between platforms, how-
ever, was perceived as a medium to long term benefit, as it
is necessary to develop the platform models first. For ex-
ample, E3, in Q2, stated: “I believe the benefits will only
be reached in the long term, when all the platform models
and global functions are implemented”. According to E3
and E5, having to manually create and test, in their native
IDEs, all the global functions for a cross-platform system
requires a lot of effort. This initial effort can be reduced as
new systems reuse existing models. Importing older models
was cited as a possible way to overcome this limitation, as
mentioned by some experts (E5 inQ7, E1, E3 and E4 inQ6
and E5 inQ4. Expert E1 even suggested that a collaborative
repository could be made available to facilitate reuse.

ContributionC3 (Reduced system configuration costs)
was unanimously reported in Q5 as a positive contribu-
tion. Experts pointed out some advantages in using a model
specifically to configure code generation:

E1: “It is possible to easily see where each class is di-
rected (which platform) and manage functionality distribu-
tion”. E3: “I found it very simple, very interesting, since
we can leave everything in a single block and more easily
manage the multiplatform system”.

However, some limitations were pointed out. As stated
by E3 in Q2 and Q8, and E5 in Q5, the benefits of the de-
ployment model depend on the existence of implementations
for the global functions: E3: “The approach separates the
development among the various abstraction levels involved
in the process. However, I believe the gains will be achieved
in the long term, when the platform models and global func-
tions are implemented”.

Another limitation associated with C3 was highlighted
by E3 in Q3, regarding large systems and library dependen-
cies. In these systems, libraries may become deprecated or
suffer changes that require the platforms to be constantly up-
dated. In the studies no such problems appeared, but the fact
that an expert demonstrated concern in such scenarios is a
potential limitation that must be addressed.

Annotations regarding contribution C4 (Inclusion of
new platforms with a small impact) appeared predomi-
nantly in questions Q3 and Q5. According to the responses
to these questions, the approach supports the inclusion of any
new function, and any platform that can be developed in one
of the supported languages can be included. For example,
E2 says: “I think it is possible to add any technical function
in the platform models”.

Regarding the impact of such inclusion, experts E1, E4
and E5 in Q5 report that it is low, as long as there are
some models and implementations from other platforms to
be reused. If a new platform has to be completely developed

JZ Blanco and D Lucrédio: Preprint submitted to Elsevier Page 12 of 18

A holistic approach for cross-platform software development

from scratch, there will be considerable effort, as reported
by expert E1 in Q11. Knowing how to explore reuse is a
key factor, according to this expert.

In order to analyze contribution C5 (Extension of the
approach through platform models), we asked experts to
extend one of the platforms in Task T3, to give them the ba-
sis to form an opinion. All experts stated that the approach
allows the evolution of the platform models by themselves,
without having to wait for new releases from a third-party
tool vendor. Another point of interest, made by E2 and E3
in Q3 is the fact that the developer can adjust the gener-
ated code. This is an advantage over existing frameworks,
as discussed earlier. For example, E2 says: “Flutter gener-
ates code that cannot be changed. Your approach does not
have such problem, since it is possible to extend platform
models and work with a readable generated code”.

This particular comment from E2 is significant, as it is
one of the main benefits expected for the approach. In his
comment, the expert cited some problems regarding the dif-
ferences in configuration and permissions for using the cam-
era and GPS in the iOS and Android platforms. According
to E2, Flutter does not allow fine adjustments in each plat-
form, treating both platforms in the same way. He also cites
specific requirements for publishing applications in the app
stores, which also may require adjustments on the generated
code for each platform. Since it is not possible to modify
the generated code with Flutter, this may cause hard to solve
problems during the execution or publication of the applica-
tion. This approach, on the other hand, allows these changes
to be made by the software engineer on the platform models.

The negative comments on this contribution refer to the
lack of trust on the generated code. According to E2 inQ10,
there must be some way to guarantee that the approach gen-
erates code that is correct and with good performance. As
discussed inC1, the software engineer has control over most
of the generated code. Although this brings flexibility, it has
a downside, since she is also responsible for testing it and
make sure the code is working as expected.

Another limitation mentioned by E1, E2 and E3 inQ10,
and E3 and E5 in Q3 is the absence of a test mechanism for
new functions in the platformmodels. This is a negative fac-
tor for C5, and is similar to the limitation mentioned regard-
ing C1. But here the problem is different, since it refers to
testing the platforms, and not the system. Ideally, this should
be made in the native language, using a native IDE, which
goes against the purpose of using a single environment to
create and evolve the software. On the other hand, simpler
adjustments and extensions can be made in the models, as
reported by E4 in Q8.

The annotations regarding C6 (Code reuse across do-
mains) appear in Q3 (35%) and Q4 (65%). In Q3, some
experts reported that the Apache Velocity templates help to
make the platformmodels generic enough to be used in other
domains. In Q4 all experts reported that the generated code
can be fully customized through global functions, and this
allows the platform models to be used with any entity and
in any domain. The following excerpts from the transcript

illustrate their opinions: E2: “I believe it is possible to reuse
the code and it is very practical, since it is generic. You can
change details very easily, just informing which entity is to
be persisted”. E5: “Global functions make a lot of sense in a
multiplatform scenario, but it still makes sense for a single,
specific platform”.

Expert C4, in Q10, also pointed out the limitation that
the reuse was restricted to the “Model” and “Controller” lay-
ers of MVC. This was expected, as in the studies the “View”
layer was left out of scope. Although in theory this could be
implemented as a new platform and a set of global function-
s/details, we believe there are many details that need to be
addressed, which is why this is left to future work.

The last contribution C7 (Development and mainte-
nance cost reduction)was the most cited by experts in their
responses, mostly because this is a generic statement that
may be influenced by all other contributions. It was even
cited as one of the main benefits of the approach by experts
E1 and E3 in Q8.

The annotations regarding C7 are also generic, and ex-
perts associate cost reduction with gains in productivity,
management and time. The main reasons for such gains
come from: the GPL (E4 and E5 in Q2); the reuse of plat-
form models (all experts in Q4, E5 in Q2 and Q5, E4 in Q5
and E2 in Q3; the overall architecture (all experts in Q6);
facilitated maintenance (all experts in Q7).

The following examples illustrate the perceived benefits
in cost reduction: E5: “If the global functions are imple-
mented, productivity is greatly increased”. E3 in Q8: “It
also improves themanagement of the developers’ roles in the
process”. E4: “Time and management gains seems good”.

Overall, the opinions strongly support this contribution.
Some limitations were cited, however. These appear in all
questions, but most are inQ10. Most were already discussed
in the previous sections: the lack of support for the “View”
layer, for example, is one of them. The extra effort needed for
implementing the platform models was also cited. Experts
E1, E3 and E4, in Q6, explicitly state that the benefits are
only possible under the condition that all platform models
are implemented. Expert E5 made comments in this regard
in almost all questions. Expert E3 also points out the need
for extra testing for the platform models.

Another limitation is that the approach requires experts
in different languages for the proper implementation of all
global functions for all platforms (E3 in Q4). However, the
same expert indicates that, in the end, this pays off in terms
of productivity gains (Q4) and better role management (Q8).

4.3. Novice Evaluation
The third evaluation was similar to the second, but it

involved novice developers, not familiar with web and mo-
bile development. We selected four undergraduate students
from the last year of their SystemAnalysis and Development
course offered at Federal Institute of São Paulo (IFSP) - cam-
pus Piracicaba - Brazil. These students had basic program-
ming knowledge and minor experience with IDEs, but they
still hadn’t studied mobile and web development. Since the

JZ Blanco and D Lucrédio: Preprint submitted to Elsevier Page 13 of 18

A holistic approach for cross-platform software development

Nov. Learn. T1 T2 T3 T4 Total
N1 10h00 2h30 1h00 3h00 0h30 16h40
N2 12h00 3h00 1h30 3h00 1h00 20h30
N3 7h00 2h00 1h30 3h35 0h40 14h05
N4 8h00 4h00 1h30 2h30 0h50 16h10
Ave. 9h15 2h50 1h20 2h55 0h45 16h48

Table 4
Time spent in learning and in each task

goal of this evaluation was to test if these students could de-
velop software for web and mobile platforms, all the nec-
essary platform models were provided to them prior to the
study. As in the previous study, participants were asked to
perform some tasks for the e-commerce domain, but here the
tasks did not require understanding or modifying the plat-
form models (global functions and global details):

Task 1: create an authentication function for a mobile app.

Task 2: create a function to retrieve products stored in
SQLite database to present to the end user.

Task 3: support for updating products in a shopping cart.

Task 4: reconfigure how each part of the application is de-
ployed in the different platforms, and useGPS location
in some specific platforms.

All tasks required creating classes for the “Model” and
“Controller” layers, with business logic being specified us-
ing the GPL. Reuse of global functions and global details
was expected. As in the previous study, the “View” layer
was already provided and did not require development.

This evaluation also had three stages, as the previous
one. A repository with all necessary material (documenta-
tion, tutorials and necessary tools) was made available for
the participants30. The same interview questions used in the
previous study was used here, but questions 3 and 4, which
focused on understanding and modifying platform models,
were not considered as relevant because beginner partici-
pants were not expected to be able to answer them properly.
All interviews were transcribed and analyzed by the two re-
searchers, as in the previous study.

4.3.1. Quantitative analysis
All tasks were successfully completed by the novice par-

ticipants. Table 4 presents the time spent by each one. The
average time was 16h48min, with an average learning time
of 9h15min. These values were higher than those spent by
the experts (Table 3), even considering that experts hadmore
tasks to do (modifying platform models). This is expected
due to the lack of experience of these participants.

The ratings provided in questions Q9 (average=9.25)
and Q11 (C1=9.5, C2=10, C3=9.5 and C6=9.5) were posi-
tive, indicating that the approach was seen as mostly positive
by novice developers, delivering the expected contributions,
except for C4 and C5 which were not considered here.

30The complete novices material and transcripts are available at: https:
//github.com/JulianoZ/CrossPlatformApproach

Figure 7 summarizes the amount of annotations for each
contribution made in the interview transcripts. It is possible
to see here indications that the approach delivers most con-
tributions, with positive annotations outnumbering the nega-
tive annotations. The exceptions were C4 and C5, with neg-
ative observations being more frequent. As detailed later,
these annotations reflect the fact that participants reported
not being able to understand, modify or create platformmod-
els (they were only able to reuse them). This was expected,
as these participants were students without knowledge in
mobile or web development, and platform models are essen-
tially a place to put such technical details.

Another interesting observation is that, overall, the
novice developers were less critic than the experts, with less
negative comments. We believe this is explained by the fact
that, in general, less experienced developers are also less ca-
pable of performing a deeper analysis of a new technology.

Figure 7: Number of annotations in favor (C+) and against
(C-) each contribution.

4.3.2. Qualitative analysis
Contribution C1 (High abstraction level modeling in a

single environment) was the most evident, as shown by the
14 positive annotations. All participants perceived an in-
crease in the abstraction level and the isolation from techni-
cal details. Some exemplary comments follow: N1: “The
GPL is not complex, as it does not have technical details”.
N3: “It is possible to programwithout knowing the technical
details of each platform and thus focus on application logic”.

However, there were 4 negative annotations. N3 and N4
pointed out the lack of support for the graphical user inter-
face, and N3 pointed out the lack of resources for testing. N1
also mentioned the lack of programming resources, such as
conversion and code completion. AndN3mentioned that the
certainty of the code working is only possible in the native
IDEs, demanding additional work.

The positive evidence regarding C2 (Reuse of similar
concepts between platforms through modeling) corresponds
to 6 positive annotations in the transcripts, with examples
being: N1: “I realized it can automate the creation of code
for different platforms”. N3: “I liked the adaptations made
by the approach regarding the specifics (technical details) for
different entities and platforms”.

Therewere no negative observations regardingC2, prob-
ably because the participants did not have to deal with techni-
cal details in the platform models, only reuse them, and thus
everything worked. In comparison with the previous study,
this was perceived differently by the experts, who observed
that reuse between platforms required extra effort.

JZ Blanco and D Lucrédio: Preprint submitted to Elsevier Page 14 of 18

https://github.com/JulianoZ/CrossPlatformApproach
https://github.com/JulianoZ/CrossPlatformApproach

A holistic approach for cross-platform software development

Four positive annotations regardingC3 (Reduced system
configuration costs) were made. Some examples are: N3:
“... it allows us to really manage which functions will be
generated for each platform”. N4: “You can easily choose
where each system function goes”. No negative comments
were made regarding C3.

Contribution C4 (Inclusion of new platforms with a
small impact) had more negative (4) than positive (2) com-
ments, with the most illustrative examples being: N1: “...I
don’t really know how to use them in other situations, or how
to create new global functions”. N3: “I did not understand
how to create a global function”.

The participants showed concern and doubts when deal-
ing with global functions. Although they could successfully
reuse them, they wondered if they were capable of under-
standing or creating new ones. An interesting fact is that this
was not expected from them, but they reported such concerns
anyway. But there were two positive comments regarding
the possibility of including new platforms: N2: “...it does
not limit the user to the platforms supported by the tool man-
ufacturers”. N3: “It is a nice feature, that enables the user to
use and include more platforms”.

Evidence regarding C5 (Extension of the approach
through platform models) is very similar to C4. The lack
of expertise regarding technical details hindered the partic-
ipants’ confidence in modifying existing platform models:
N1: “...I understand how to use them... ...but I would not
know how to create new functions”. N2: “I think it is easy
to use a global function... ... but I wouldn’t know how to
create new functions”.

Contribution C6 (Code reuse across domains) was seen
mostly positive. For example: N2: “Global functions allow
the creation of code for any entity by easy configuration with
generic parameters.” N3: “It is possible to access global
functions in any place of the system and reuse the code”.

The single negative comment reinforces the lack of con-
fidence in reusing these resources, which is something also
mentioned by experts: N1: “I don’t know if this may create
a problem in the reuse of global functions”.

C7 (Development and maintenance cost reduction) was
the second most identified contribution, with 12 positive an-
notations, being unanimously cited as a benefit by the par-
ticipants. Some examples are: N2: “What I find most inter-
esting is the reduction of development cost”.N4: “The great
benefit is the agility in development, which end up reduc-
ing the costs”. The only negative comment was made by
N3: “But it is necessary to use the native environments for
execution and tests, which demands specific knowledge and
may reduce productivity”.

4.4. Discussion
The first study brought evidence favoring contributions

C1,C2,C3,C4 andC7, but this was just a proof-of-concept.
The second and third studies brought evidence in favor and
against all seven contributions of this approach. The amount
of evidence in favor is larger, which indicates that the ap-
proach is successful in achieving its goals. We also observed

a difference between expert and novice developers. While
experts were able to see the benefits in terms of the exten-
sion/inclusion of platforms more clearly, novice developers
failed to see such benefits, mostly because this requires tech-
nical knowledge regarding the platforms.

Another interesting observation was made by a partic-
ipant. This was not foreseen as an important contribution,
but because the third study was conducted with students, it
appeared as a side benefit of the approach, as exemplified by
the following comment:

N4: “At the same time you learn a new GPL language,
you end up learning some Java, Swift, C#. It contributes to
the learning of other languages as well.”

This is an unexpected benefit, particularly useful for
learning. Students can use the approach to see examples of
how a piece of abstract code translates to different platforms.

The studies also uncovered eight important limitations.
These are summarized as follows, ranked in a decreasing or-
der of severity according to our analysis:

L1. Need to resort to the native language and IDE;

L2. Benefits are only expected in the long term, as global
functions need to be fully implemented first;

L3. Lack of support for testing, including tests for validating
the system, the platforms and the generated code;

L4. Lack of support for the “View” layer in MVC;

L5. Need to understand a new programming pattern, which
may have a steep learning curve;

L6. Lack of trust in the generated code correctness;

L7. Lack of trust in the generated code performance; and

L8. Lack of support for a visual modeling language.

The first limitation is a more fundamental one. Initially,
the approach was supposed to support a single environment
for creating the software, but in the end it became clear that
the native platforms’ IDEs have to be used when creating
platform implementations. As the time passes and the plat-
forms are implemented and tested, there is less need to resort
to the native IDEs. This is also the essence of limitation L2.

L3 and L4 are also important, but we think they can
be solved by providing new platforms specifically for these
tasks. Regarding L3, we conducted a fourth evaluation
specifically for this reason, as described later. Regarding
L4, global functions and details may be used to represent
common interface concepts, such as event handling and
state management. It might even be possible to create plat-
forms for domain-specific interfaces, based on the fact that
many systems from the same domain share similar inter-
faces. These are the subject of future work.

L5 is also mentioned as an important limitation. The
concept of global functions and details requires learning a
new programming technique.

L6 and L7 are the other side of the flexibility provided
by the approach. The software engineer has more control

JZ Blanco and D Lucrédio: Preprint submitted to Elsevier Page 15 of 18

A holistic approach for cross-platform software development

over the generated code, but is also responsible for making
sure it is correct and adequate.

Finally, L8 was cited by one of the experts as a possi-
bility for improvement. This limitation was not perceived in
practice, however, since the textual language was acknowl-
edged as intuitive and easy to understand.

4.4.1. Threats to validity
There are some aspects that must be discussed regarding

possible validity threats in the studies.
The first study was carried out by the researchers, what

might have introduced bias. To reduce this bias, no opinions
or data related to the learning curve were taken into consid-
eration in this study. Only the feasibility of the approach, its
models, and the ability to include a previously unsupported
platform were tested in the proof-of-concept.

For the second and third studies, there are also some
identified threats. Finding novice developers was easier, as
the researchers also work in the academia and are constantly
teaching software development subjects to inexperienced de-
velopers. But finding experts was a very difficult task, as
it required many hours of volunteer work. The researchers
resorted to their contacts in academia and industry and it
was possible to find five experts that fulfill the requirements
(minimum 10 years of experience with mobile and web de-
velopment and some experience with multiplatform devel-
opment). However, this sampling was not ideal as the partic-
ipants knew the researchers and might have provided biased
answers. Nevertheless, the amount of negative observations
made by the experts was considerable and indicates that the
bias might have not been very strong. It also indicates that
their level of expertise was adequate enough to allow them to
identify real problems, going beyond a superficial analysis.

It was also very difficult to define tasks for the partici-
pants. The entire study took an average of 14 hours of work
from each expert and 17 hours from each novice developer.
These were not performed uninterruptedly, as the partici-
pants worked a small amount of time each day. It took sev-
eral days to complete all tasks, therefore they were in contact
with the approach for a long time. Ideally, the tasks should
be longer, so that the participants could have a deeper un-
derstanding of all its details. However, this was not possible
because their availability for the study was partial.

Still regarding the tasks, we attempted to cover different
scenarios to exercise the different contributions of the ap-
proach. For example, task T3 asked experts to modify an
existing platform to support a new database, and T5 asked
experts to include a new platform (Android Wear). In the
end, it was possible to collect evidence regarding all contri-
butions. However, no task required an entire system to be
developed from scratch. This could probably lead to more
identified benefits and limitations but, again, was not possi-
ble due to the participants’ partial availability.

Another threat is related to a possible external factor. All
participants identified productivity gains, but we think that
part of these gains might have originated from the Apache
Velocity templates, and not the approach. Although the tem-

plates alone do not promote cross-platform reuse and devel-
opment, they can greatly reduce programming effort, spe-
cially in the CRUD domain. There were some tasks that
did not involve the use of such templates, they might have
influenced the participants’ responses, who attributed 100%
of the productivity gains to the approach, while in reality a
fraction of that probably resulted from Velocity.

One of the limitations (L5) relates to the learning curve
regarding the approach, in particular the use of global func-
tions and details. Both experts and novice developers man-
aged to complete the tasks, but they had examples to follow,
therefore the learning aspect was not completely addressed.

Finally, the second and third studies had strong subjec-
tivity, in two aspects. Personal opinions are subjective. To
reduce this subjectivity, we selected five experts with expe-
rience, to increase the confidence that their opinions are not
isolated or based on guesswork. The second subjective as-
pect was the analysis of the participants’ opinions, carried
out by the researchers. To reduce this threat, the two authors
of this paper conducted the analysis separately, and then a
consensus was reached after discussion.

4.5. Fourth evaluation: unit testing
This fourth study was conducted by the researchers as

a response to observations made by experts and novice de-
velopers regarding testing in the platforms (Limitation L3).
After discussions, we thought this could be done by creat-
ing platform models for unit testing in different platforms.
In this solution, global functions are created to represent as-
sert functions, present in most unit testing frameworks. Each
platform model is responsible for defining how the global
assert functions translate to its own platform-specific assert
functions, including additional code, such as annotations, if
necessary, as global details. Test cases can reuse the global
functions and call the assert functions normally.

Listing 9 illustrates the solution. By reusing a global as-
sert function (line 2) and including specific details required
by unit test frameworks (line 3), the developer can simply
call the assert function (line 21) normally. In this example,
an error was deliberately introduced in the “Debit” method
(line 16) to cause this test case to fail.

Listing 9: Cross-platform test case using the approach.
1 class BankAccountTest{

2 usesGlobal globalAssertEquals(expected: double ,

actual: double , msg: string): void{}

3 usesGlobalDetails UnitTestAnnotation

4 operation balanceTest (): void{

5 m_customerName: string

6 m_customerName := ``Juliano ''
7 beginningBalance: double

8 debitAmount: double

9 expected: double

10 beginningBalance := 11.99

11 debitAmount := 4.55

12 expected := 7.44

13 account :BankAccount

14 account.setM_customerName(m_customerName)

15 account.setM_balance(beginningBalance)

16 account.Debit(debitAmount)

17 actual : double

JZ Blanco and D Lucrédio: Preprint submitted to Elsevier Page 16 of 18

A holistic approach for cross-platform software development

18 actual := account.getM_balance ()

19 msg: string

20 msg := ``Account not debited correctly ''

21 global globalAssertEquals(expected , actual , msg)

22 } }

After properly configuring code generation for each de-
sired platform, the generated code was successfully executed
in the different platforms, as shows Figure 8. In the figure,
the test case from Listing 9 is being executed in iOS and An-
droid, with the same error being accused in both cases.

Figure 8: The same test case executed in iOS and Android.

This evaluation demonstrates that the approach can be
used to test application logic in multiple platforms, but there
are other issues to be explored, such as testing native re-
sources and integration tests. These are left for future work.

5. Concluding remarks
Cross-platform development solutions have been inves-

tigated for a long time, and new research is often arising in
the industry and academia. There are many open areas for
research, as existing solutions are still not mature enough [5].

In this spirit, this paper presents an approach for cross-
platform development, where the main idea is to keep devel-
opment in a single, platform-independent modeling environ-
ment, and use generators to produce executable code. The
approach takes advantage of similar concepts across plat-
forms and facilitates the inclusion and exchange of platforms
used by the system. As a consequence, developers can ben-
efit from reuse provided by code generators and still have
control to customize, extend or include new platforms.

The approach targeted seven contributions, selected af-
ter an analysis of the solutions available in industry and
academia. Four studies were conducted to evaluate them.

There were some threats to the validity of the studies, but
overall the collected evidence supports the contributions. In
particular, the studies demonstrated the ability to extend or
modify existing platforms, what is not possible in most ex-
isting tools. We also created a new type of device and in-
cluded it into the approach successfully. In most existing
tools, these tasks would be impossible, as the modification
of platforms and the inclusion of new platforms depend on
the tool vendor, and not the developer. The studies also
demonstrated the distribution of functionality among plat-
forms, what is also not a common feature in most existing
tools. These features give the approach a holistic view over
cross-platform development.

The studies have also shown that it is not currently possi-
ble to completely abandon the platforms’ native IDEs. This
observation goes against the approach’s primary goal of us-
ing a single environment to create the software. This prob-
lem tends to be reduced as time passes and the platforms
become more stable, with benefits in the long term.

Future work is being planned to overcome the limitations
identified in the studies, as described in Section 4.4. In par-
ticular, we plan to experiment with the “View” layer, as it
was not considered in the research so far and was pointed
out by most participants of the studies as a missing feature.

Some practical improvement possibilities were also
identified. One of them is the use of Object Oriented Pro-
gramming concepts in the platform models, allowing inher-
itance between platform models and facilitating reuse and
system management. One of the experts also suggested a
model repository. While it is possible to reuse models in the
approach by copying the files, more elaborated ways of reuse
could be the subject of future work, so that platform mod-
els may be reused within a community. Similarly to code
repositories associated with dependency management sys-
tems, this effort could help to reduce the initial effort men-
tioned by experts when using the approach.

Finally, while our approach gives expert developers the
possibility to deal with all complexities to each platform,
novice developers would be more comfortable if they could
be somehow shielded from this complexity, as it is common
inmost commercial tools. This is also subject of futurework.

Acknowledgement
The research work reported in this paper received finan-

cial support from grants #2015 / 24429-1 and #2017 / 25343-
9 - São Paulo Research Foundation (FAPESP) - Brazil.

CRediT authorship contribution statement
J. Z. Blanco: Conceptualization of this study, Method-

ology, Software, Data curation, Funding acquisition, Project
administration, Resources, Writing - Original draft prepara-
tion, Validation, Investigation. D. Lucrédio: Conceptual-
ization of this study, Methodology, Software, Data curation,
Funding acquisition, Project administration, Resources, Su-
pervision, Writing - Original draft preparation.

JZ Blanco and D Lucrédio: Preprint submitted to Elsevier Page 17 of 18

A holistic approach for cross-platform software development

References
[1] Acerbis, R., Bongio, A., Butti, S., Brambilla, M., 2015. Model-driven

development of cross-platformmobile applications with webratio and
ifml, in: Proc. of the Second ACM International Conference on Mo-
bile Software Engineering and Systems, IEEE Press. pp. 170–171.

[2] Behrens, H., 2010. MDSD for the iphone: developing a domain-
specific language and ide tooling to produce real world applications
for mobile devices, in: Proc. of the ACM international conference
companion on Object oriented programming systems languages and
applications companion, ACM. pp. 123–128.

[3] Benouda, H., Azizi, M., Moussaoui, M., Esbai, R., 2017. Auto-
matic code generation within mda approach for cross-platform mo-
biles apps, in: 2017 First International Conference on Embedded &
Distributed Systems (EDiS), IEEE. pp. 1–5.

[4] Bucanek, J., 2009. Model-view-controller pattern. Learn Objective-C
for Java Developers , 353–402.

[5] Chen, S., Fan, L., Su, T., Ma, L., Liu, Y., Xu, L., 2019. Auto-
mated cross-platform gui code generation for mobile apps, in: 2019
IEEE 1st International Workshop on Artificial Intelligence for Mobile
(AI4Mobile), IEEE. pp. 13–16.

[6] Cimino, M.G., Marcelloni, F., 2012. An efficient model-based
methodology for developing device-independent mobile applications.
Journal of Systems Architecture 58, 286–304.

[7] Czarnecki, K., Østerbye, K., Völter, M., 2002. Generative program-
ming, in: European Conference on Object-Oriented Programming,
Springer. pp. 15–29.

[8] Dageförde, J.C., Reischmann, T., Majchrzak, T.A., Ernsting, J., 2016.
Generating app product lines in a model-driven cross-platform devel-
opment approach, in: System Sciences (HICSS), 2016 49th Hawaii
International Conference on, IEEE. pp. 5803–5812.

[9] Elouali, N., Le Pallec, X., Rouillard, J., Tarby, J.C., 2014. Mimic:
leveraging sensor-based interactions in multimodal mobile applica-
tions, in: CHI’14 Extended Abstracts on Human Factors in Comput-
ing Systems, ACM. pp. 2323–2328.

[10] France, R., Rumpe, B., 2007. Model-driven development of complex
software: A research roadmap, in: Future of Software Engineering
(FOSE ’07), pp. 37–54. doi:10.1109/FOSE.2007.14.

[11] Heitkötter, H., Hanschke, S., Majchrzak, T.A., 2013. Comparing
cross-platform development approaches for mobile applications. Web
Information Systems and Technologies 140, 120–138.

[12] Hoffman, D.L., Novak, T.P., 2018. Consumer and object experience
in the internet of things: An assemblage theory approach. Journal of
Consumer Research 44, 1178–1204.

[13] Inayatullah, M., Azam, F., Anwar, M.W., 2019. Model-based scaf-
folding code generation for cross-platform applications, in: 2019
IEEE 10th Annual Information Technology, Electronics and Mobile
Communication Conference (IEMCON), IEEE. pp. 1006–1012.

[14] Jones, C., Jia, X., 2014. The axiom model framework: transform-
ing requirements to native code for cross-platform mobile applica-
tions, in: Evaluation of Novel Approaches to Software Engineering
(ENASE), 2014 International Conference on, IEEE. pp. 1–12.

[15] Litayem, N., Dhupia, B., Rubab, S., 2015. Review of cross-platforms
for mobile learning application development. IJACSA 6.

[16] Majchrzak, T.A., Ernsting, J., Kuchen, H., 2015. Model-driven
cross-platform apps: Towards business practicability, in: Proc. of the
CAiSE 2015 Forum at the 27th International Conference onAdvanced
Information Systems Engineering, pp. 129–136.

[17] Marcotte, E., 2010. Responsive Web Design 2010. URL: www.

alistapart.com/articles/responsive-web-design.
[18] Martinez, M., Lecomte, S., 2017. Towards the quality improvement

of cross-platform mobile applications, in: 2017 IEEE/ACM 4th In-
ternational Conference on Mobile Software Engineering and Systems
(MOBILESoft), pp. 184–188.

[19] Min, B.K., Ko, M., Seo, Y., Kuk, S., Kim, H.S., 2011. A uml meta-
model for smart device applicationmodeling based onwindows phone
7 platform, in: TENCON 2011-2011 IEEE Region 10 Conference,
IEEE. pp. 201–205.

[20] Miravet, P., Marin, I., Ortin, F., Rodriguez, J., 2014. Framework for

the declarative implementation of native mobile applications. IET
software 8, 19–32.

[21] Moreno-Vozmediano, R., Montero, R.S., Huedo, E., Llorente, I.M.,
2017. Cross-site virtual network in cloud and fog computing. IEEE
Cloud Computing 4, 46–53.

[22] Perchat, J., Desertot, M., Lecomte, S., 2013. Component based frame-
work to create mobile cross-platform applications. Procedia Com-
puter Science 19, 1004–1011.

[23] Rieger, C., Lucrédio, D., Fortes, R.P.M., Kuchen, H., Dias, F., Duarte,
L., 2020. A model-driven approach to cross-platform development of
accessible business apps, in: Proceedings of the 35th Annual ACM
Symposium on Applied Computing, pp. 984–993.

[24] Sabraoui, A., Abouzahra, A., Afdel, K., Machkour, M., 2019. MDD
approach for mobile applications based on dsl, in: 2019 International
Conference of Computer Science and Renewable Energies (ICCSRE),
IEEE. pp. 1–6.

[25] da Silva, L.P., e Abreu, F.B., 2014. Model-driven gui generation and
navigation for android bis apps, in: Model-Driven Engineering and
Software Development (MODELSWARD), 2014 2nd International
Conference on, IEEE. pp. 400–407.

[26] Taentzer, G., Vaupel, S., 2016. Model-driven development of mo-
bile applications: Towards context-aware apps of high quality., in:
PNSE@ Petri Nets, pp. 17–29.

[27] Umuhoza, E., Brambilla, M., Cabot, J., Bongio, A., et al., 2015. Auto-
matic code generation for cross-platform, multi-device mobile apps:
Some reflections from an industrial experience, in: Proceedings of
the 3rd International Workshop on Mobile Development Lifecycle,
ACM. pp. 37–44.

[28] Usman, M., Iqbal, M.Z., Khan, M.U., 2017. A product-line model-
driven engineering approach for generating feature-based mobile ap-
plications. Journal of Systems and Software 123, 1–32.

[29] Vaupel, S., Taentzer, G., Gerlach, R., Guckert, M., 2018. Model-
driven development of mobile applications for android and ios sup-
porting role-based app variability. Software & Systems Modeling 17,
35–63.

[30] Wasserman, A.I., 2010. Software engineering issues for mobile ap-
plication development. Proceedings of the FSE/SDP workshop on
Future of software engineering research - FoSER ’10 978-1-4503,
397–400. URL: http://portal.acm.org/citation.cfm?doid=1882362.
1882443, doi:10.1145/1882362.1882443.

Juliano Zanuzzio Blanco is graduated in Data
Processing by Americana College of Technology
(FATEC-2002), M.Sc. (2009) and PhD (2020) in
Computer Science degrees at the Federal Univer-
sity of São Carlos, Brazil. Currently belongs to the
faculty of the Federal Institute of São Paulo Cam-
pus Piracicaba (IFSP). Has experience in Com-
puter Science, focusing on web and mobile appli-
cation software development.

Daniel Lucrédio got the Computer engineer
(2002) and M.Sc. in Computer Science (2005)
degrees at the Federal University of São Carlos,
Brazil, and PhD (2009) at University of São Paulo,
São Carlos, Brazil, with two doctoral internships:
George Mason University (VA, USA) and Mi-
crosoft Research (WA, USA). Currently an asso-
ciate professor at Federal University of São Carlos,
Brazil, working mainly with Model-Driven Engi-
neering, Cross-platform software development and
Cloud computing.

JZ Blanco and D Lucrédio: Preprint submitted to Elsevier Page 18 of 18

http://dx.doi.org/10.1109/FOSE.2007.14
www.alistapart.com/articles/responsive-web-design
www.alistapart.com/articles/responsive-web-design
http://portal.acm.org/citation.cfm?doid=1882362.1882443
http://portal.acm.org/citation.cfm?doid=1882362.1882443
http://dx.doi.org/10.1145/1882362.1882443

