

Mining Architecture Tactics and Quality

Attributes Knowledge in Stack Overflow

Tingting Bi a,c, Peng Liang a,*, Antony Tang b,d, Xin Xia c

a School of Computer Science, Wuhan University, 430072 Wuhan, China
b Faculty of Science, Engineering and Technology, Swinburne University of Technology, VIC

3122 Melbourne, Australia
c Faculty of Information Technology, Monash University, VIC 3166 Melbourne, Australia

d Software and Services Research Group, Vrije Universiteit Amsterdam, 1101, Amsterdam, The

Netherlands
{bi_tingting,liangp}@whu.edu.cn, atang@swin.edu.au, xin.xia@monash.edu

Abstract

Context: Architecture Tactics (ATs) are architectural building blocks that provide general

architectural solutions for addressing Quality Attributes (QAs) issues. Mining and analyzing QA-

AT knowledge can help the software architecture community better understand architecture design.

However, manually capturing and mining this knowledge is labor-intensive and difficult.

Objective: Using Stack Overflow (SO) as our source, our main goals are to effectively mine such

knowledge; and to have some sense of how developers use ATs with respect to QA concerns from

related discussions.

Methods: We applied a semi-automatic dictionary-based mining approach to extract the QA-AT

posts in SO. With the mined QA-AT posts, we identified the relationships between ATs and QAs.

Results: Our approach allow us to mine QA-AT knowledge effectively with an F-measure of 0.865

and Performance of 82.2%. Using this mining approach, we are able to discover architectural

synonyms of QAs and ATs used by designers, from which we discover how developers apply ATs

to address quality requirements.

Conclusions: We make two contributions in this work: First, we demonstrated a semi-automatic

approach to mine ATs and QAs from SO posts; Second, we identified little-known design

relationships between QAs and ATs and grouped architectural design considerations to aid

architects make architecture tactics design decisions.

Keywords: Architecture Tactic, Quality Attribute, Knowledge Mining, Empirical Analysis, Stack

Overflow.

1 Introduction
Software systems typically have multiple Quality Attributes (QAs) and design decisions are

made to satisfy them. Architects make trade-off decisions to improve one QA to the detriment of

another QA. Complex QA relationships, whilst known to experienced architects, are not well

explored or documented. Apart from balancing inter-QA relationships, design decisions may

sometimes involve the use of Architecture Tactics (ATs) [1]. AT aims to provide an established

design to address a particular type of design problems with particular QA concerns. ATs serve as a

building block of software architecture, and part of their purpose is to satisfy certain QAs. As

opposed to architecture patterns which are related to multiple QAs, ATs are used for addressing one

specific QA [3]. For example, ATs for performance, such as resource pooling, help to optimize

* Corresponding author at: School of Computer Science, Wuhan University, China. Tel.: +86 27 68776137; fax: +86 27

68776027. E-mail address: liangp@whu.edu.cn (P. Liang).

mailto:liangp@whu.edu.cn

response time (see an example from Stack Overflow1 (SO) in Fig. 1). Furthermore, unlike design

patterns that are described in terms of specific classes and associations, ATs are defined at a higher

conceptual level of roles and responsibilities [2]. Tracing QAs and ATs can be useful for several

reasons [32]. ATs can be analyzed in terms of QAs for understanding architectural design decisions,

which can further enrich software and architecture documentation [36]. Documenting and

understanding ATs and their rationale could be helpful for developers when they understand,

implement, and modify the code of ATs for satisfying certain QAs [2][24].

Fig. 1. An example of how ATs impact QAs from SO

Approaches of mining AT knowledge from specific software artifacts such as source code have

been tried [2][6][7]. Some research focuses on understanding specific ATs and how the

implementation of fault tolerance tactics affects architecture patterns [8]. Whilst these approaches

can be valuable in helping developers to understand AT, little is known about the relationships

between ATs and its impacts on QAs of a system. Whilst some of these AT-QA relationships are

known in the industry, they are not commonly mentioned in research literature and books. We call

them little-known QA-AT relationships and we intend to use machine learning algorithms to re-

discover and highlight them. A better understanding of the characteristics of ATs and QAs as well

as their inter-relationships would provide better and more tailored support for architects.

In addition, inexperienced architects sometimes find applying ATs to address QAs challenging
mainly because of the numerous design decisions that need to be made in order to implement AT
effectively [6]. In order to provide architects with such architectural knowledge, we need to build
up this knowledge base by learning how ATs are used to address QA issues. To achieve this goal,
we can gather and organise this knowledge from software discussion forums. In this work, we
propose an approach for mining such architectural knowledge. We use Neural Language Model and
machine learning techniques to train a dictionary-based classifier for the purpose of automatically
mining the presence of ATs and QAs in online developer communities (i.e., Stack Overflow), and
then we manually relate the ATs to relevant QAs to build a knowledge base of how developers use
ATs. As such, our approach is designed to address architecture knowledge mining issues (e.g., ATs
employed for addressing certain QAs) for undocumented AT decisions.

Our approach to knowledge mining is: firstly, we trained dictionary-based classifiers, which

can be used for mining QA-AT posts from SO. Then we used the trained classifiers to mine more

QA-AT posts from SO. We analyzed the mined posts for structuring an overview of QA-AT

knowledge through understanding how developers apply ATs to address QAs in practice.

Specifically, this study aims to address the following Research Questions (RQs):

1 https://stackoverflow.com/

https://stackoverflow.com/

RQ1: Given our proposed semi-automatic knowledge mining approach, is it effective, in
terms of accuracy (F-measure) and Performance (defined in Section 3.2.6), to mine
QA-AT posts in SO?

RQ2: Applications of mined QA-AT knowledge.

RQ2.1: What are the common architectural design relationships between QAs and
ATs that we can learn from the mined discussions?

RQ2.2: What design considerations can we provide to developers for making use of
AT-QA relationships?

By answering the RQ1, we would be able to evaluate the effectiveness of our approach for

mining QA-AT knowledge. The answers to RQ2 allow us to provide an overview of QA-AT

knowledge through understanding how developers address QAs when using ATs. In particular, this

work mainly has two contributions: (i) We proposed a semi-automatic approach, which can mine

QA-AT posts in SO. Our approach can achieve an F-measure (0.865) by SVM with a trained

dictionary to exploit term semantics for QA-AT posts mining. (ii) We conducted a qualitative

analysis of the mined QA-AT posts for relating QAs and ATs. We also suggested a set of design

considerations for developers to consider when using this QA-AT knowledge. Such knowledge can

help developers make informed decisions of applying ATs to address certain QAs.

The remainder of the paper is organized as follow: Section 2 presents the motivation of this

work. Section 3 gives the overview and details of each stage of our proposed approach. Sections 4

and 5 address the research questions and discuss the results, respectively. Section 6 describes the

related works. Section 7 discusses the threats to validity. Finally, Section 8 concludes this work

with future directions.

2 Motivation
Architects employ architectural frameworks, patterns, and tactics in design to address QA

concerns such as performance, modifiability, maintainability etc. ATs are interrelated, it may be

used with a complementary tactic or its use may exclude a conflicting tactic [14]. Since the

application of AT, singly and in combination, influences the QA behaviours of a system, architects

need to consider AT-QA knowledge appropriately [20].

Software development questions and answers (Q&A) sites (e.g., SO and R community2) gather

knowledge that covers a wide range of topics [12]. These sites allow developers to share experience,

offer help, and learn new techniques [16]. We provide two examples in Fig. 1 and Fig. 2,

respectively, which show developers’ concerns on implementing ATs in terms of certain QAs. SO

is one of the most famous and popular online Q&A forums. It contains millions of posts contributed

by tens of thousands of developers [7]. SO provides functions such as resurrecting and editing posts

that can be inactive for long periods. It supports up voting competing answers and users can earn

reputation points by posting interesting questions and answers [17]. Recent studies show that

developers and architects use social media to discuss architecture-relevant information (e.g.,

features and domain concepts) [18][19]. In this work, we only considered the SO posts that have

both questions and answers because through analyzing the questions and answers of the posts, we

can explore what design problems developers had and what potential solutions they proposed.

However, with a large volume of posts in SO, manually mining QA-AT knowledge is time-

consuming and requires a lot of efforts. As such, applying semi-automatic approaches for mining

QA-AT posts can significantly facilitate the tasks of finding the desired QA-AT knowledge, and

2 https://community.rstudio.com/

https://community.rstudio.com/

doing that repeatedly. To this end, we decided to apply a semi-automatic approach to mine QA-AT

knowledge in SO.

Fig. 2. A QA-AT post from an issue tracking system

3 Knowledge mining approach
In this section, we describe our knowledge mining approach, including training data (i.e.,

relevant posts) collection and labelling, dictionary-based QA-AT post classifier training, and the

process of empirical data analysis.

3.1 Overview of the knowledge mining approach

We proposed a knowledge mining approach, which comprises two stages: (a) Semi-automatic

dictionary-based QA-AT post classifier training and (b) QA-AT posts mining and empirical

analysis. An overview of our approach is provided in Fig. 3.

Stage 1: Semi-automatic dictionary-based QA-AT post classifier training

ATs come in many different forms and can facilitate the betterment of QAs. For example,

reliability tactics provide solutions for fault mitigation, detection, and recovery; performance tactics

provide solutions for resource contention in order to optimize response time and throughput; and

security tactics provide solutions for authorization, authentication, non-repudiation, and other such

concerns. Finding a representative sample of ATs and how they impact QAs is far from trivial. In

this stage, we trained QA-AT post classifiers, which can be used for mining QA-AT posts in SO.

The execution process of Stage 1 is composed of six steps that are described in Section 3.2.

Stage 2: QA-AT posts mining and empirical analysis

ATs are measures taken to address software architecture quality attributes, or QAs, of a system.

Using ATs, some QAs might improve whilst other QAs might be adversely affected. Bass and

colleagues [3] discuss how the selection of tactics and design patterns relate to QAs. In our previous

work [5], we analyzed the relationships between architecture patterns, QAs, and design contexts.

In this work, we further explored the interactions between QAs and ATs which can help developers

understand QA-AT relationships. The purpose of this stage is to mine more QA-AT discussions

(i.e., posts) and investigate how developers discuss and apply ATs in terms of QAs. The execution

of Stage 2 is empirical analysis of the mined QA-AT posts that are described in Section 3.3.

Fig. 3. An overview of the approach for QA-AT posts mining and analysis

3.2 Stage 1: Semi-automatic dictionary-based QA-AT post classifier

training

3.2.1 Step 1: Data preparation

Data preparation is divided into two parts:

1. QA-AT posts collection for training classifiers: we applied the following criteria to select the
QA-AT posts for training classifiers: a) posts need to be concerned with at least one of ATs; b) posts
are related to at least one QA. We manually identified QA-AT posts and non QA-AT posts in SO,
and our approach takes these posts as the training data for a QA-AT post classifier. We manually
selected QA-AT posts using the tactic names of commonly used ATs and their relevant terms
collected from [2][3][4][6][7] (see Table 1), and we list the collected ATs as below:

Heartbeat, Audit trail, Resource pooling, Authentication, Scheduling, FIFO, Checkpoint,
Rollback, Spare, Redundancy replication, Voting, Shadow operation, Secure session,
Time out, Time stamp, Sanity checking, Functional redundancy, Analytical redundancy,
Resisting attacks, Maintain data confidentiality, Recovering from attacks.

About the QAs, we adopted the ISO 25010 standard that defines eight high-level QAs: Usability,

Security, Reliability, Portability, Performance, Maintainability, Functional Suitability, and

Compatibility [11]. We also referred to a wordlist3, which is specified in the software engineering

field for identifying QAs (see Table 2).

Note that, we (the first author and a master student) searched for relevant posts in their titles,

tags, questions, comments, and answers of the posts that include QA and AT related terms. We

retrieved 6,489 posts that contained relevant terms (see Tables 1 and 2). We then manually checked

3 http://softwareprocess.es/y/neil-ernst-abram-hindle-whats-in-a-name-wordlists.tar.gz

http://softwareprocess.es/y/neil-ernst-abram-hindle-whats-in-a-name-wordlists.tar.gz

if the posts are QA-AT related, and finally we selected 1,165 QA-AT posts that include 1,203 QA-

AT instances (see Table 3(a)).

Table 1. Selected architecture tactics with their related terms

AT name Related terms

AT1 Heartbeat heartbeat, ping, ping/echo, beat, decorator, piggybacking, outbound, period

AT2 Audit trail audit, trail, wizard, log, string, category, thread

AT3 Resource

pooling

pooling, pool, thread, connect, sparrow, processor, worker, time-wait,

prototype, singleton, strategy, chain of responsibility, lazy load, static

scheduling, dynamic priority scheduling

AT4 Authentication authentic, credential, challenge, login

AT5 Checkpoint checkpoint, checkpoints, barrier, weak point

AT6 Rollback layoff, restraint, austerity, abridgement, deliver

AT7 Spare spare, unoccupied, option, unused, logging, minutes

AT8 Redundancy

replication

redundancy replication, redundancy storage, zone-redundant, geo-

redundant, replication

AT9 Voting voting, vote, balloting, choosing, voter, processor, preferred

AT10 Shadow operation shadow operation, shadow mode

AT11 Secure session secure session, security, removal

AT12 Time out time out, run out, constraint, action, monitor, timer, runtime

AT13 Time stamp time stamp, timestamp, time strap

AT14 Sanity checking sanity checking, sanity check

AT15 Functional

redundancy

functional redundancy, function requirement allocation

AT16 Scheduling schedule, dynamic priority scheduling, task, priority, adaptor, bridge,

composite, flyweight, memento, observer, proxy, strategy

AT17 FIFO FIFO, first in first out

AT18 Analytical

redundancy

parallel, separate, warm restart, dual redundancy

AT19 Resisting attacks resisting attacks, detecting, detect, recovering, recover, sensor,

authenticate, confidentiality, exposure, limit access, passwords, one-time,

passwords, digital certificates

AT20 Maintain data

confidentiality

maintain data confidentiality, handle, protecting, routine, storage,

mandatory

AT21 Recovery from

attacks

recovering from attacks, state, maintain, maintaining, redundant, access

control, profile

Table 2. Frequently discussed QAs and their related terms from mined QA-AT posts

QA name Related terms Example

QA1 Performance

(Efficiency)

performance, processing

time, response time,

resource consumption,

throughput, efficiency,

carrying into action,

carrying out, operation,

achievement, interaction,

accomplishment, action

“We propose the adaptive heartbeat between

RM and NM to achieve a balance between

updating NM’s info promptly and minimizing

the response time of extra heartbeats.”

QA2 Maintainability maintainability, update,

modify, modular,

decentralized,

encapsulation,

dependency, readability,

interdependent,

“How to adopt pooling to an existing object

that has inline-field-initialization without

sacrificing code-maintainability and

readability.”

understandability,

modifiability, modularity,

maintain, analyzability,

changeability, testability,

encapsulation

QA3 Compatibility compatibility, co-

existence, interoperability,

exchange, sharing

“I would like to be able to know about the

compatibility of web service subscriptions to

avoid duplicate request from distinct

clients … I needed built in browser … and

automatic heartbeat function offered by

Stomp.js.”

QA4 Usability usability, flexibility,

interface, user-friendly,

default, configure,

serviceability, convention,

accessibility, gui,

serviceableness,

useableness, utility,

useable, learnability,

understandability,

operability, function, use

“The aim of the heartbeats is to quickly find

any nodes that go down, or if nodes can't

communicate with the central server.

Usability on the client nodes is an issue, so I

don't want to use java (because that would

require installing a jvm).”

QA5 Reliability reliability, failure, bug,

resilience, crash, stability,

dependable, dependability,

irresponsibleness, recover,

recoverability, tolerance,

error, fails, redundancy,

integrity,

irresponsibleness,

dependable, maturity,

recoverability,

accountability,

answerableness

“I'm looking for a way in Python (2.7) to do

HTTP requests with 3 requirements: timeout

(for reliability) … but none of them meet my

requirements.”

QA6 Functional

Suitability

functional, function,

accuracy, completeness,

suitability, compliance,

performing, employable,

functionality, complexity,

functioning

“Adding a formal interface for additional

node heartbeat processing would allow

admins to configure new functionality that is

scheduler-independent without needing to

replace the entire scheduler.”

QA7 Security security, safe,

vulnerability, trustworthy,

firewall, login, password,

pin, auth, verification,

protection, certificate,

security system, law

“To ensure security, the timeout of the

cookie is also set to 5 minutes, and my jquery

performs a heartbeat back to the server to

ensure the cookie doesn't expire.”

QA8 Portability portability, portable, cross

platform, transfer,

transformability,

documentation,

standardized, migration,

specification, movability,

moveableness,

replaceability, adaptability

“Essentially I have a portable suite of

windows 7 apps that are managed by a

single backbone application. This backbone

application handles monitoring the other

apps for status and heartbeat.”

2. Posts collection for training a dictionary: we collected the posts tagged with “software

architecture” or “software design”4 to train the dictionary. One or multiple tags can be chosen by

developers when they post a question in SO, and the tags indicate the topics of the posts. An example

post tagged with “software design” used for training the dictionary is shown in Fig. 4. The output of

dictionary training is a network of related words of QA and AT [30] together with the strength of

the relationships between terms. For example, the terms “throughput” and “scalability” have a

stronger semantic relationship than the terms “throughput” and “agreement”. The trained dictionary

extracts and makes use of the related terms for further improving QA-AT posts mining from SO.

The process of dictionary training is detailed in Section 3.2.4. We excluded the posts that contain

blocks of source code in the question part because most of such posts discuss programming problems

[13]. Finally, we collected 2301 posts tagged with “software architecture” and “software design” to

train the dictionary. Note that, these 2301 posts are different from the training data used in classifier

training. Fig. 7 presents the experimental results with and without using the trained dictionary.

Fig. 4. An example of software architecture post for dictionary training.

In addition, to ensure the quality of the collected posts (i.e., two parts of training data

collection), we only include the posts with at least one answer and positive scores.

3.2.2 Step 2: Data labelling

The manual labelling of QA-AT posts can be described as a multi-label binary classification

process. A QA-AT post can be labelled under multiple labels if it is related to more than one QAs

or ATs. Similar to the process of data collection, we first performed a pilot data labelling by three

authors with 50 QA-AT posts in order to mitigate any personal bias in data labelling. In the formal

data labelling, the QA-AT posts were manually labelled by two human annotators (i.e., the first

author and one master student). After that, any disagreements on the labelled posts were discussed

and confirmed with the second and third authors. To facilitate the manual labelling, we used

MAXQDA5, which is a tool for qualitative data analysis, to label the sentences of QA-AT posts.

By the end of our labelling of the QA-AT posts, we made a final reliability test, and calculated

Cohen’s kappa reliability coefficient [37] for the categorization between the two annotators, which

is 0.81. Note that this Cohen’s kappa value was achieved after two rounds of data labelling within

the formal data labelling, and the data labelling results have also been provided in our replication

package [38].

After around three months of training data collection and labelling by the two annotators, we

finally labelled 1,165 QA-AT posts for classifier training6. We retrieved AT posts by the keywords

4 The data for training dictionary can be found in [38] (i.e., data item 7).
5 https://www.maxqda.com
6 The data for training and testing classifiers can be found in [38] (i.e., data item 1).

https://www.maxqda.com/

(see AT1 - AT21 in Table 3(a)), and each AT post returned is called retrieved AT instance (see the

fourth column of Table 3(a)). We then checked if the retrieved AT instances discuss any QAs, and

we included and labelled QA-AT instances (see the fifth column of Table 3(a)). This set of posts

are used for classifier training and testing.

A QA-AT post may discuss more than one ATs or QAs (e.g., participants discussed AT1

Heartbeat and AT13 Time out in one SO post). As such, a QA-AT post may contain one or more

QA-AT instances. The number of labelled QA-AT instances found is 1,203 (see Table 3(b)) out of

the 1165 posts.

For the training and testing dataset, we collected non QA-AT posts from SO manually. With

two classes of posts (QA-AT and non QA-AT posts) in the dataset, the class imbalance problem

has been known to hinder the learning performance of classification algorithms, and the standard

machine learning algorithms yield better prediction performance with balanced datasets [46]. This

work is an attempt to mine QA-AT posts with various machine learning algorithms, and

consequently this is a balanced dataset in which the number of samples from the two classes are

about the same (i.e., QA-AT and non QA-AT posts, see Table 3(b)). To enhance this dataset, 1,200

non QA-AT posts were collected by browsing the posts under the SO category “software” and

labelled them as “non QA-AT” category Note that these 1,200 non QA-AT posts are additional

data used for dictionary training in Step 4 (see Section 3.2.4). All the data and results of this study

have been made available online [38].

Table 3(a). Information of labelled QA-AT instances for classifier training and testing (from

2012.01.01 to 2019.06.30)

QA-AT

posts

Architecture tactic
No. of retrieved

AT instances

No. of labelled

QA-AT

instances

AT1 Heartbeat 521 128

AT2 Audit trail 501 98

AT3 Resource pooling 478 93

AT4 Authentication 453 79

AT5 Checkpoint 403 75

AT6 Rollback 398 63

AT7 Spare 387 61

AT8 Voting 381 59

AT9 Redundancy replication 354 57

AT10 Shadow operation 289 54

AT11 Secure session 281 50

AT12 Time out 274 49

AT13 Time stamp 270 47

AT14 Sanity checking 261 46

AT15 Functional redundancy 252 46

AT16 Scheduling 221 27

AT17 FIFO 200 38

AT18 Analytical redundancy 197 42

AT19 Resisting attacks 154 40

AT20
Maintain data

confidentiality
139 35

AT21
Recovering from

attacks
75 50

Sum of labelled QA-AT instances 1,200

Table 3(b). Information of labelled QA-AT posts and non QA-AT posts for classifier training and

testing (from 2012.01.01 to 2019.06.30)

Amount

No. of labelled QA-AT posts 1,165

No. of labelled non QA-AT posts 1,200

With the 1,165 QA-AT posts as the training data, it is possible that some false positives are

within the data (i.e., posts that contain some key terms regarding AT and QA but they are not

actually QA-AT relevant). In order to check the validity of the data, we conducted another round

of manual analysis of the 1,165 QA-AT posts to ensure that the data is correctly labelled.

3.2.3 Step 3: Data preprocessing

We take a number of steps to preprocess the posts: (1) Removing code snippets is to delete
source code snippets that sometimes exist in the posts. (2) Tokenization is the process that breaks a
stream of text up into words, phrases, symbols, or other meaningful elements called tokens. In our
experiment, we only keep tokens that contain English letters. (3) Stop words removal: stop words
are used often but carry little meaning to distinguish different categories of posts. We referred to a
list of stop words, which contains a set of words (e.g., “the”, “to”, “of”, “is”). Words that have a
length of no more than two are also treated as stop words. (4) Stemming: the goal of stemming is to
reduce inflected words to their word stem, base or root form.

3.2.4 Step 4: Dictionary training

In natural language processing, pre-trained word embeddings are used to alleviate the need for

a large amount of task specific training data [43]. For example, QAs can be classified by applying

word embeddings (i.e., terms matching) [39] on a set of keywords (i.e., related terms) to train a

dictionary, and the trained dictionary can then be used to mine more QA-AT discussions. The

process of dictionary training is shown in Fig. 5.

QA-AT posts (training
data)

Posts tagged with
"software architecture"
and "software design"

The trained dictionary
A semantic network of
unseen words and the
identified QA and AT

words

Words with a higher
value of "information

gain ratio"

Words of QAs and
ATs

added to

added to

manually
identified

Word2vec

Training
dataset

Fig. 5. The process of dictionary training.

Initially, some QA and AT terms were manually identified and added into the dictionary, and

then some unseen related terms (also significantly contribute to QA-AT posts mining) were

automatically extracted by Word2vec. We adopted an iterative process for extracting the keywords.

In each iteration, two annotators went through each QA-AT post of training data for identifying

related terms, and these terms were extracted and added to the dictionary. This process was repeated

until no more related terms could be identified, and the manually identified QA and AT related terms

are listed in Tables 1 and 2, respectively.

To cover unseen terms that can be used to mine more QA-AT posts, we used the posts tagged

with “software architecture” or “software design” (collected in Step 1 as described in Section 3.2.1)

to train a dictionary through constructing the semantic relationships between identified QA and AT

words and unseen terms. We then applied the dictionary to train classifiers, which can mine more

QA-AT posts from SO. In this work, we only used nouns to construct the semantic network of words,

ignoring verbs, adjective, and adverbs. We employed the Word2vec tool, which provides a vector-

based representation of words to get terms similarity by multiplying the vector of terms. A recent

study shows that Word2vec provides a state-of-the-art performance for measuring words semantic

similarity [27]. The semantic similarity between post 𝑝𝑘 and term 𝑡𝑗 is calculated based on the

definition in [33], which is shown in Formula (1), in which 𝑝𝑘 denotes the QA-AT post 𝑘 expressed

by a vector 𝑝𝑘 = (𝑡𝑘,1, 𝑡𝑘,𝑖, … , 𝑡𝑘,𝑛) , 𝑡𝑘,𝑖 denotes term 𝑖 in 𝑝𝑘, 𝑛 denotes the number of terms in 𝑝𝑘,

𝑤𝑘,𝑖 denotes the weight of term 𝑡𝑘,𝑖, and 𝑠𝑖𝑚 = (𝑡𝑘,𝑖, 𝑡𝑗) denotes the similarity between term 𝑡𝑘,𝑖

and 𝑡𝑗, which is calculated by Word2vec. We included terms with values of 𝑠𝑖𝑚 > 0.35. For each

post (for training the dictionary), we calculated all unique terms to get the similarity values between

terms. The value of 𝑖 depends on the length of posts and is calculated by Formula (2). 𝜃 is a threshold

increasing from 0 with an increment interval of 0.1. With the increase of 𝜃, the classification results

(i.e., F-measure) have no obvious tendency, making it challenging to choose the value of 𝜃 which

achieves the best classification result in F-measure [33]. Then we used Information Gain Ratio

algorithm provided by the data mining tool Weka to re-sort the terms, which can be used for

distinguishing QA-AT posts more effectively [31]. Gain Ratio measures the performance of a term

to split the population of posts into two types of posts (i.e., QA-AT posts and non QA-AT posts).

After comparing the values of Information Gain Ratio of words, we tried a set of values of Gain

Ratio of words. To be specific, the values were selected from an intensity range from 0.100 to 0.800,

and we empirically found that if the values of Information Gain Ratio of words are higher than 0.300,

these words can achieve the best performance for QA-AT posts classification in terms of F-measure.

Consequently, we added the unseen terms with an Information Gain Ratio value (> 0.300) into the

dictionary [40].

𝑠𝑖𝑚(𝑝𝑘 , 𝑡𝑗) = ∑ (𝑤𝑘,𝑖 × 𝑠𝑖𝑚(𝑡𝑘,𝑖, 𝑡𝑗)) 𝑛
𝑖=1 (1)

 𝑁 = 𝜃 × 𝑝𝑜𝑠𝑡_𝑙𝑒𝑛𝑔𝑡ℎ (2)

3.2.5 Step 5: Classifier training

In this step, we used the manually labelled QA-AT posts to train the dictionary-based
classifiers. We used a feature selection algorithms Word2vec and TF-IDF to select textual features
and calculate the weight of features, and used these textual features to train a classifier [35]. We then
used Information Gain Ratio to measure the ability of each word (i.e., the weight of features) of
classifying the posts correctly into two types (i.e., this word is more unique or common for one
particular type of posts). The range of Information Gain Ratio is between 0 and 1 and expresses the
generative probability of each word with respect to the type of post (i.e., QA-AT and non QA-AT
post) [34]. We applied six machine learning algorithms, Support Vector Machine (SVM), Bayes,
Decision Tree (DT), Logistic Regression (LR), Random Forest (RF), and Bagging to train the
classifiers.

To train the classifiers, 70% of the data (i.e., 1,165 QA-AT posts and 1,200 non QA-AT posts)
is randomly selected as training set and the remaining 30% of the data as testing set (see Table 3(a)).
The benefit of this technique is that it uses all the data for building the model, and the results often
exhibit significantly less variance than those of simpler techniques such as holdout method. We used

a library (i.e., scikit-learn) in Python V3.7. for training the classifiers, and we used default settings
for each classifier7 [47][48].

3.2.6 Step 6: Trained classifiers evaluation

We evaluated our approach that uses machine learning algorithms (i.e., SVM, Bayes, LR, DT,

RF, and Bagging) with or without a trained dictionary on QA-AT posts mining. Precision is used

to measure the exactness of prediction set, while recall evaluates the completeness. Precision and

recall can be expressed mathematically, and in Formula (3) and (4), 𝑇𝑃 denotes the number of posts

classified as type QA-AT that are actually QA-AT; 𝐹𝑃 denotes the number of posts classified as

type QA-AT that are actually non QA-AT; 𝐹𝑁 denotes the number of posts classified as type non

QA-AT that are actually QA-AT; 𝑇𝑁 denotes the number of posts classified as type non QA-AT

that are actually non QA-AT. Please not that, as the training and testing sets are randomly selected,

the results (i.e., precision, recall, and F-measure) of the classification by running the algorithms

might be slightly different each time. We present the best results of our approaches in Section 4.2.1.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3)

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4)

Based on precision and recall, we can calculate F-measure as below, which denotes the

balance and discrepancy between precision and recall:

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (5)

As mentioned in Section 3.1, after getting the classifiers, we applied the trained classifiers to

mine more QA-AT posts in SO, and we manually checked the mined posts whether they are really

QA-AT related. We defined a metric to evaluated the classifiers (i.e., Performance):

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒(%) =
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦_𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑_𝑄𝐴−𝐴𝑇_𝑝𝑜𝑠𝑡𝑠

𝑡𝑜𝑡𝑎𝑙_𝑚𝑖𝑛𝑒𝑑_𝑝𝑜𝑠𝑡𝑠
× 100% (6)

in which 𝑡𝑜𝑡𝑎𝑙_𝑚𝑖𝑛𝑒𝑑_𝑝𝑜𝑠𝑡𝑠 denotes the number of posts which are mined by the trained

dictionary-based classifiers from SO, and 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦_𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑_𝑄𝐴 − 𝐴𝑇_ 𝑝𝑜𝑠𝑡𝑠 indicates the

number of the true QA-AT posts, which were checked and confirmed by two researchers (i.e., the

first author and a master student), and any disagreements on the QA-AT posts were discussed and

resolved with the second author.

3.3 Stage 2: QA-AT posts mining and analysis

As shown in Fig. 3, in Stage 2, we trained and evaluated six dictionary-based classifiers (in

Stage 1) to mine QA-AT posts in SO. Based on the most promising results through the highest F-

measure out of the six algorithms (see Section 4.1), we selected and applied the dictionary-based

classifier SVM.

To answer RQ2, we analyzed the mined QA-AT posts to identify the presence of QAs and

ATs, and examined their relationships. We aimed to learn about developers’ perception of QA-AT

from their discussions. We employed constant comparison method [28] to analyze qualitative data

(i.e., the mined QA-AT posts) for the purposes of: (1) identifying how developers discuss QAs and

ATs (i.e., their presence, characteristic and nature); (2) comparing the relationships between the

QAs and ATs that we have identified to the ones in the literature; and (3) identifying and classifying

other topics (i.e., considerations) that are discussed by developers in the QA-AT posts.

7 The machine learning source code can be found in [38] (i.e., experiments.py).

4 Results

4.1 Effectiveness of knowledge mining (Results of RQ1)

With RQ1, we investigated the effectiveness of our semi-automatic approach on QA-AT posts

mining from two aspects: the results of trained dictionary and QA-AT posts mining from SO.

The results of trained dictionary: To investigate the effectiveness of using the trained

dictionary for improving QA-AT posts mining, we first evaluated the ability of the trained

dictionary in accurately identification of QA and AT related words. The output of the dictionary is

a network (i.e., semantic relationships) between the words manually identified by the authors and

a set of other QA-AT related words extracted from the SO posts tagged with “software architecture”

or “software design”. Developers might use different words to describe QAs and ATs (i.e., not

initially identified by the authors). In this work, we call those words “unseen terms”. Including

more relevant QA and AT words would be helpful to cover and mine more QA-AT posts in SO. In

Section 3.2.4, we describe how we collect QA and AT related words for constructing the dictionary.

The process of dictionary training starts with a set of seed words (i.e., QA and AT related words

manually identified by the authors), and then unseen terms are added into the dictionary-based on

the semantic relationships calculated by the values of similarity and Information Gain Ratio.

We provided an initial set of words which contain QA and AT related words, for example,

Time out is an AT related word identified by the authors, and we calculated the values of similarities

between Time out and unseen terms in the specific dataset (i.e., the collected posts tagged with

“software architecture” or “software design”), and if the values of similarities between Time out

and unseen terms are larger than 0.350, we include these unseen terms for further evaluation

whether they should be added to the dictionary (e.g., the similarity value of “Loadtime” is 0.450).

We then calculated the values of Information Gain Ratio of the unseen terms, if the values of

Information Gain Ratio is larger than 0.300 (e.g., the Information Gain Ratio value of Loadtime is

0.427), the unseen terms (e.g., Loadtime) can be added to extend the dictionary, and a semantic

relationship is created between, e.g., Time out and Loadtime (see Fig. 6). The dictionary training is

an iteration process, and we then calculate the semantic relationship between the unseen terms

which has been added into the dictionary and other unseen terms (e.g., Loadtime and Modular in

Fig. 6) we calculate the semantic relationships between identified words (i.e., red nodes in Fig. 6).

An example of the output result of the dictionary is shown in Fig. 6, which is calculated and

visualized by the Gephi tool. We used the red and grey circles to denote the words manually

identified and the unseen terms extracted, respectively, and the calculated values of Similarities

refer to the lines between the notes (i.e., semantic relationships between words) and the calculated

values of Information Gain Ratio illustrate the notes in Fig. 6, we have not illustrated the complete

dictionary in Fig. 6 due to the space limitation, and we made the completed results of the trained

dictionary online [38].

pooling

lag maturity

operability

optimize
memory

refactoring

dependency

login

wait

bug

shut

delay

oriented

reliable
stable

reset

practise

MVC

maintainability

stuck

correct
delete

layer

compliance

buffer

vote

website

view

performance

hb

heartbeat

safe

database

query

backup

loadtime

speed

exchange
highlight

design

memory

refactoring

layoffaudit

timeoutfast

maintain

checkpoint

figure

shuffle

highlight
designsecurity

notify

interoperability

fail

restart

SQL

dialog

modular

test

localization alarm

modularity

correctness

dependency

load

update

accuracy

fast
decentralize

understandability

functional

change

Fig. 6. Sematic relationships between terms of the trained dictionary

With the semantic relationships, we use Information Gain Ratio to calculate the values of

unseen terms for QA-AT posts classification. We listed the top fifty unseen terms in Table 4. We

observe that a set of unseen terms (not identified manually by the authors in the 1,165 QA-AT posts,

i.e., not in Tables 1 and 2) are also related to QA and AT, and those unseen terms are helpful for

improving QA-AT posts mining.

Table 4. Gain ratio of top fifty unseen terms of the dictionary8

Gain ratio of unseen terms

failure 0.612 throughput 0.610 monitor 0.607 evolution 0.601

penalty 0.597 scaling 0.594 congestion 0.590 selftest 0.587

buffer 0.583 response 0.581 component 0.577 protection 0.571

balancing 0.569 recovery 0.564 clone 0.562 update 0.584

integrity 0.580 replaceability 0.579 tolerate 0.541 restart 0.512

framework 0.503 prevention 0.495 sensor 0.487 transaction 0.475

operation 0.471 brokers 0.469 illegal 0.467 binding 0.451

model 0.436 prioritize 0.429 priori 0.418 loadtime 0.427

client 0.423 delay 0.415 tradeoff 0.409 interoperability 0.403

movability 0.401 optimize 0.391 useableness 0.393 collaborative 0.391

coupling 0.386 rest 0.382 microservices 0.380 mechanism 0.375

occur 0.371 timewait 0.369 modular 0.365 functionality 0.361

rollback 0.360 maptask 0.358 session 0.351 request 0.348

audit 0.341 wizard 0.330 simplify 0.328 query 0.319

wizard 0.315 periodic 0.314 loadbalancing 0.312 audit 0.302

QA-AT posts mining from SO: We added the unseen terms (i.e., not identified by authors

but related to QAs and ATs) into the training data for improving QA-AT posts mining. Fig. 7 shows

a comparison of the experimental results with and without the trained dictionary on the testing

dataset.

8 The output of the training dictionary can be found in [38] (i.e., data item 4).

The results show that using the trained dictionary can consistently improve the six machine

learning algorithms in terms of better weighted average F-measure for QA-AT posts mining. The

improvements of average F-measures are: 19.9% with SVM, 21.7% with Bayes, 4.2% with

Decision Tree (DT), 20.3% with Logistic Regression (LR), 8.8% with Random Forest (RF), and

12.8% with Bagging. In addition, the comparison of Recall, Precision, and F-measure values of the

six machine learning algorithms for QA-AT posts mining is shown in Table 5. The highest F-

measure (0.865) is achieved by SVM with the trained dictionary to exploit term semantics for QA-

AT posts and non QA-AT posts mining.

Fig. 7. Comparison of QA-AT posts mining results with and without using trained dictionary

0.721

0.654

0.711 0.702 0.711 0.697

0.865

0.796
0.742

0.845

0.774
0.824

0

0.2

0.4

0.6

0.8

1

SVM Bayes DT LR Bagging RF

F
-m

e
a
s
u

re

without using the dictionary using the dictionary

Table 5. Results of QA-AT posts mining (with the trained dictionary)

 QA-AT post classification

True

+ve

(posts)

False

+ve

(posts)

True

-ve

(posts)

False

-ve

(posts)

Precision Recall F-measure

SVM 903 20 1400 259 0.976 0.778 0.865

Bayes 831 163 1128 163 0.836 0.760 0.796

DT 829 242 959 335 0.774 0.712 0.742

LR 852 184 1016 313 0.822 0.731 0.845

Bagging 860 134 1178 193 0.865 0.816 0.774

RF 940 191 1025 209 0.831 0.818 0.824

As we described in Section 3.1, we applied the trained dictionary-based classifier (i.e., SVM

algorithm) to mine more QA-AT posts in SO. We firstly limited the scope of crawled posts, and

the process is similar to QA-AT posts collection (see Section 3.2.2). The crawled posts are tagged

with at least one of AT terms (see Table 1). Note that the crawled posts are different from the

training posts and we retrieved 12,761 crawled posts. Then we applied the trained dictonary-based

classifier (using the SVM algorithm) to mine potential QA-AT posts from the set of crawled posts,

and we found 5,103 posts. For the mined QA-AT posts from SO, two annotators (i.e., the first

author and a master student) checked independently whether the mined posts are really QA-AT

relevant, and any uncertain posts were discussed by three authors. Finally, 4,195 posts (out of the

5,103 mined posts) were manually checked and verified that are QA-AT relevant, and the value of

Performance is 82.2%.

RQ1 Summarization: We used a set of metrics to evaluate the effectiveness of our approach:

(1) The trained dictionary were used to identify the related terms and unseen terms of QA and AT

in developers’ discussions (see Tables 1 and 4). The F-measure values in Fig. 7 show that the

trained dictionary can improve six algorithms on QA-AT posts mining. Some improvements are

considerably more signficant (Bagging and RF) and some improvements are marginal (SVM,

Bayes, and DT). (2) Our approach can reduce the manual efforts of mining QA-AT posts collection

by human experts.

4.2 Applications of Mined Knowledge (Results of RQ2)

As mentioned in Section 2, the knowledge of ATs can provide solutions for addressing QA

concerns. However, the relationships between ATs and QAs have not been explored systematically.

To gather QA-AT knowledge and to help architects make informed design decisions when they

apply ATs to address QAs in practice, we trained semi-automated dictionary-based classifiers (see

Section 3.2), which can be used for mining QA-AT discussions from SO efficiently (see Section

4.1). The mined QA-AT knowledge was further empirically analyzed from two aspects to answer

RQ2: (1) relationships between QAs and ATs (in Section 4.2.1), and (2) other key architectural

design considerations discussed by developers when they apply ATs to address QAs (Section 4.2.2).

4.2.1 Results of RQ2.1: architectural design relationships between QAs and

ATs

To systematically understand the QA-AT relationships, we present the results from the

following three perspectives:

• Interactions between various QAs and ATs. We identified the presence of AT and QA

instances and the interactions between various ATs and QAs in the mined 4195 QA-AT posts

(see Fig. 8). We also identified the terms developers used to discuss QAs and ATs. We found

that most of discussed QAs (i.e., about 45% QA-AT posts) describe QA behavioral properties

of a system [41]. For example, a developer mentioned that “Most unreleased resource issues

result in general software reliability problems, but if an attacker can intentionally trigger a

resource leak, it may be possible to launch a denial of service attack by depleting the resource

pool9”, and in around 85% the mined QA-AT posts, developers discuss AT and QA issues

using a variety of terms (see Tables 1 and 2), for example, developers used the words

“workload”, “memory consumption”, “application crash”, and “low speed” to describe

Performance issues in the QA-AT posts. We counted the numbers of each QA and AT, and

showed the interactions between various QAs and ATs in Fig. 8. The most frequently discussed

QA and AT topics are Performance (1725 instances) and Time out (470 instances),

respectively. In addition, the discussions on the interaction between Performance and several

ATs (e.g., Time out and Checkpoint) are significantly higher than other QAs and ATs. We then

investigated the architectural design relationships between various QAs and ATs. One or more

ATs can be used to address the architectural design concerns of one or more QAs [26]. Such

tactics have different levels of impacts on QAs. For example, developers mentioned that “This

scheduling is commonly adopted to improve system performance. For example, Scheduling

services are used to execute jobs, including optimizing response time and latency”, and “Fault

detection tactic (heartbeat, Ping/Echo) is concerned with detecting a fault and notifying …

(availability).” Using the relationships that we have identified; architects and developers can

select and calibrate the appropriate tactics to satisfy QAs.

• Relationships between ATs and QAs in the mined QA-AT posts. The objective of Stage 2

is to understand how ATs impact QAs in practice. We classified the influence as positive or

negative (see Table 6, in which positive or “+” denotes that the AT benefits a specific QA,

while negative or “-” shows that the AT hinders a specific QA [45]. If employing ATs is

beneficial to certain QAs, we label the architectural design relationships between the ATs and

QAs as “positive” (see the example of “positive” relationship between “Pooling” and

“Performance” in Fig. 1). On the contrary, if applying ATs is a hindrance to certain QAs, the

architectural design relationships between the ATs and QAs are labelled as “negative”. Two

annotators (i.e., the first author and a master student) read the mined QA-AT posts and labelled

the relationships between QAs and ATs independently. Any controversial labels were further

discussed with the second author. We tallied the numbers of relationships as “positive” or

“negative”. If developers did not make a point explicitly whether a specific QA is benefited or

hindered by the ATs, we used “N/A” to denote the relationships. Please note that not all the

interactions between ATs and QAs (see Fig. 8) are with an explicit negative or positive

relationship. For example, developers do not explicitly discuss whether “Shadow operation”

influences any QAs negatively or positively. Such QA-AT relationships are not shown in Table

6. The degree of positivity or negativity is the count of incidents we found in our samples.

• Comparison on QA-AT relationships between the literature and SO. To further investigate

RQ2.1, we compared the QA-AT relationships in the mined QA-AT posts from SO (see Table

6) with the relationships from literature (i.e., the first author and a master student referred to

software architecture books and literature) [3][4][6][10][14][15][21][26]. We explored which

design relationships are documented in the literature and which design relationships are

9 https://stackoverflow.com/questions/3673558/how-to-release-resource-after-delete-a-file-by-java

https://stackoverflow.com/questions/3673558/how-to-release-resource-after-delete-a-file-by-java

additional to the literature from the posts. We provide a comparison of the QAs with their

related ATs from literature and additional design relationships that was mined from SO in Table

7.

Fig. 8. Interactions between QAs and ATs in the mined QA-AT posts.

Table 6. Architectural design relationships between ATs and QAs in the mined QA-AT posts

Functional

Suitability

Maintain-

ability
Usability Reliability Performance Compatibility Security Portability

Time out + (10) N/A + (5) + (17) + (15) N/A N/A + (4)

Heartbeat + (15) + (1) - (2) + (10) - (47) + (1) + (28) + (17)

Time stamp N/A + (6) N/A N/A - (2) N/A N/A + (7)

Sanity checking N/A + (6) N/A N/A - (1) N/A N/A + (3)

Redundancy

replication
+ (7) N/A N/A + (8) + (12) N/A N/A N/A

Functional

redundancy
+ (9) + (9) N/A + (4) + (12) N/A - (3) N/A

Analytical
redundancy

+ (11) N/A N/A N/A + (4) + (3) + (4) - (1)

Recovery from

attacks
N/A + (10) - (5) N/A - (2) + (4) + (15) N/A

Rollback + (2) + (13) N/A + (6) + (5) N/A N/A N/A

Scheduling N/A +(1) N/A N/A + (34) N/A N/A N/A

Checkpoint N/A N/A N/A N/A + (6) N/A N/A N/A

FIFO N/A N/A + (25) + (3) + (10) N/A N/A + (5)

Resource pooling N/A + (6) N/A + (5) + (2) N/A N/A + (1)

Secure session N/A N/A N/A N/A N/A N/A + (4) N/A

Resisting attacks + (13) - (9) + (13) N/A N/A N/A + (1) + (8)

Maintain data
confidentiality

+ (21) N/A N/A + (5) N/A + (4) N/A N/A

Authentication - (6) N/A + (3) + (1) N/A N/A + (14) N/A

Voting + (2) N/A + (1) + (2) + (7) N/A N/A N/A

Table 7. Comparison on the relationships between QAs and ATs documented in literature and additional

relationships extracted from SO.

Relationships between QAs and

ATs from literature

Little-known relationships between

QAs and ATs mined from SO

Performance

Benefit to

Performance

[3][6][10][14][21]

FIFO,
Manage sampling rate,

Limit event response,

Reduce overhead,
Bound execution times,

Increase resource efficiency

Redundancy, Functional redundancy,

Analytical redundancy, Rollback,

Time out, Checkpoint, Resource pooling,
Voting, scheduling

Hinder to

Performance [3]
Heartbeat Time stamp, Sanity check, Recovery from attacks

Security

Benefit to

Security

[3][4][10][14][21]

Detect service denial,

Detect message delay, Authentication,

Limit exposure, Heartbeat

Analytical redundancy, Resisting attacks,

Recovery from attacks, Secure session

Hinder to

Security
N/A

Functional redundancy

Usability

Benefit to Usability

[3][10]

Maintain task model,

Maintain user model,
Maintain system model

Time out, FIFO, Resisting attacks,

Authentication, Voting

Hinder to Usability

[3][14]
Heartbeat Recovery from the attacks

Portability

Benefit to

portability

[3]

Maintain task model,

Maintain user model,

Maintain system model

Time out, FIFO, Resisting attacks,

Heartbeat, Time stamp, Sanity checking,
Redundancy replication, Resource pooling,

Recovery from attacks

Hinder to

portability
N/A Analytical redundancy

Reliability

Benefit to

Reliability

[3][10][15][21][26]

Heartbeat,
Rollback,

Voting,

Exception,
Redundancy Replication,

Rollback

Time out, Functional redundancy,

Resisting attacks, Recovery from attacks,

Authentication, FIFO, Resource pooling,
Maintain data confidentiality

Functional suitability

Benefit to

Functional

suitability

N/A

Time out, Heartbeat, Redundancy,
Replication, Functional redundancy,

Analytical redundancy, Rollback,

Resisting attacks, Voting,
Maintain data confidentiality

Hinder to

Functional

suitability

N/A Authentication

Maintainability

Benefit to

Maintainability
N/A

Heartbeat, Time stamp, Sanity checking,
Functional redundancy, Rollback,

Resource pooling, Recovery from attacks

Hinder to

Maintainability
N/A Resisting attacks

Compatibility

Benefit to

Compatibility
N/A

Heartbeat, Analytical redundancy,
Recovery from attacks,

Maintain data confidentiality

The architectural design relationships between ATs and QAs from mined posts are shown in

Table 6. The comparison results between literature and SO are in Table 7, which reveal that: (1)

Around 21% of the relationships between QAs and ATs extracted from SO are little-known

relationships, for example, to our best knowledge, Time stamp can hinder Performance which has

not been investigated in literature [3][4][6][10][14][15][21][24][26]. These little-known

relationships can be added to literature to help developers consider potential impacts of using time-

stamp when making trade-off decisions when they apply this AT; (2) An AT can affect multiples

QAs simultaneously (see Table 7), for example, Time out can have an impact on five types of QAs

(i.e., Functional Suitability, Performance, Usability, Portability, and Reliability). We further

discuss these gaps between academia and industry on employing ATs to address QAs in Section 5.

4.2.2 Results of RQ2.2: architectural design considerations discussed in QA-

AT posts

We analyzed the mined QA-AT posts to understand architectural design considerations

between ATs and QAs. Whilst applying ATs to address QAs is well explored in existing works,

e.g., [7][10], there is no guidelines for architects, who look for information on what considerations

(e.g., design contexts) they need to consider when applying ATs to address QA concerns. As such,

we analyzed the mined QA-AT posts using constant comparison method [28], which is a systematic

approach to generate concepts and categories from the collected qualitative data, constantly

compare incidents applicable to each category, and integrate categories and their properties, to

explore and identify what design considerations developers discuss in the QA-AT posts. The first

author coded and summarized a set of design considerations (i.e., architecture topics) from the

mined QA-AT posts, and the results of coding were checked by the second author, finally any

controversial results of coding and summarized topics of QA-AT posts were further discussed and

resolved by the first three authors. For example, developers provided a brief background of the

projects, what the design problems they had, and the design solutions they proposed in terms of the

design problems.

The first author identified and coded the topics of the design discussions in the mined QA-AT

posts, and after a discussion between the first two authors during selective coding, four main

discussion topics were coded (i.e., Architecture pattern, Design context, Evaluation of design

decision, and Tool support for monitoring QAs) in the collected QA-AT posts. We counted the

percentages of QA-AT posts for each topic, for example, in around 47% posts (i.e., 1,975 out of

the 4,195 QA-AT posts collected as the results of RQ1), developers discussed architecture patterns

when they applied ATs to address QAs. An example of manual data coding using MAXQDA is

shown in Fig. 9. The results of coding, examples of each topic, and percentages of related posts are

listed in Table 8, and architects can use this architectural knowledge between QAs and ATs when

designing.

Fig. 9. An example of manual data coding using MAXQDA

Over half of the posts relate QAs to ATs (i.e., how ATs impact QAs). These discussions

represent a set of design considerations of QA-AT. We group these considerations by discussion

topics and sub-topics in Table 8. We first summarized the architecture design relationships between

QAs and ATs in Table 6 (i.e., QA-AT architecture design relationships mined from SO) and Table

7 (i.e., little-known QA-AT architecture design relationships mined from SO compared with

literature). Architects make trade-off decisions: whether to implement an AT that optimizes one

QA to the detriment of another. Through these QA-AT related discussions, we explored trade-offs,

design contexts and other issues that shape design decisions. The use of architecture patterns is one

of the major discussion topics with 47% of QA-AT posts discussing this topic

About 28% of QA-AT posts discuss design contexts. Design contexts comprise the knowledge

spanning the whole development lifecycle, which can be related to requirements, design decisions,

and risks. In the posts, developers discuss design contexts when they make design decisions. The

knowledge of the design context of specific scenarios influences the design decisions of applying

ATs and architecture patterns to address certain QAs. The topics that they touched on include

software, hardware, application and stakeholders. We have mined examples of them, as shown in

Table 8. More examples can be found in [38].

Around 15% of QA-AT posts discuss design decision evaluation (e.g., developers compared

alternatives of ATs to address specific QA concerns). Developers discuss reasons for achieving

QAs and to predict system behaviour. Discussions on design alternatives also help select suitable

ATs to achieve the desired QAs.

Finally, about 11% of QA-AT posts discuss how ATs can be applied in existing systems. In

order to satisfy given QAs, architects want to apply and implement ATs in certain ways (e.g., Kafka

as a message broker that implements heartbeat and time out). This design consideration is an

important factor for developers when choosing and adopting the existing systems for applying ATs

to address QAs in practice.

There are many and varied architectural design considerations that are useful to an architect.

Our mining and research approach has allowed us to systematically identify and group some of

these considerations by discussion topics. This identification process has allowed us to highlight

architectural design patterns, design contexts, decision evaluation and AT applications are some of

the main concerns of architects. Using this approach, knowledge can be continued to be mined and

built-up to help architects use relevant architectural design knowledge.

Table 8. Architectural design considerations grouped by topics from the mined QA-AT posts

Discussion

topic
Subtopic Example

Number of

posts as a

percentage to

discussion topic

Architecture

pattern
N/A

“There is the second approach of implementing a Heartbeat

function to periodically check if the client responds. I do think

this is the best approach for me / my scenario, but I am actually

struggling with the implementation with ASP.NET MVC. How
would I approach this in ASP.NET MVC? ”

47%

Design context

Software

context

“This is a classic problem with Internet games and contests.

The simplest possible attack against your system is to run the

HTTP traffic for the game through a proxy, catch the high-score

save, and replay it with a higher score.”

28%

Hardware

context

“The connection pooling service closes connections when they

are not used; connections are closed every 3 minutes. The Decr
Pool Size attribute of the ConnectionString property provides

connection pooling service for the maximum number of

connections that can be closed every 3 minutes.”

Application
domain

“For business information systems, Security and Functionality

are important, and it’s used by financial service companies for

their high performance requirements.”

Stakeholders

“All that said, an Access app with Jet/ACE back end can still
perform well with more than 15/20 users if those users are not

in heavy data entry/editing mode. If there are mostly read-only

user it’s pretty easy to support up to 50 users.”

Financial issues
“The correct financing is a process that requires the utmost

attention to avoid the risks in software development.”

Evaluation of

design decision

Improving
certain QAs

“Thread Pool management: the ActorSystem is response for

dispatching work from Actor instances to an underlying thread

pool. If the ActorSystem has a more complete understanding of

work distribution amongst your Actor set then it would be more

efficient at allocating the thread pool’s resources. However, the
OS is pretty good resource allocation too so the performance

improvement should be negligible.” 15%

Alternative

“I'm writing a method to check if there is new data in a FIFO

opened in RDONLY mode. Until now I was using the poll()

function but I realized that the kernel on which the code will run

doesn't have this function and it implements a subset of the
functionality and a subset of the POSIX functionality. There

are alternatives to the poll function?”

Application of

ATs with

existing

systems

N/A

“I'm sure a few folks here have a similar use case of dealing
with large processing time …Particularly, the recommended

configuration setting around heartbeat, request timeout, max

poll records, auto commit interval, poll interval, etc. if kafka is
not the right tool for my use case, please let me know as well”

11%

RQ2 Summarization: We extracted the relationships between QAs and ATs from SO and

they are shown in Table 6. These relationships could help architects make decisions when they

consider applying ATs to address QA concerns. Furthermore, we compared the extracted QA-AT

relationships with the literature (Table 7) to analyze which QA-AT relationships were not reported

in current literature. Through the comparison, we summarize the little-known QA-AT relationships

(see Table 7) that can be used as a supplement to the literature.

In addition, the analysis performed in Section 4.2.2 shows that applying ATs to address QA

concerns cannot be considered in isolation and the key considerations of architecture knowledge

(see Table 8) would help architects to make design decisions when they apply ATs to address QAs.

Such considerations could help developers better understand two common design elements (i.e.,

AT and QA) and their interactions in practice. In addition, the popularity of the discussion topics

and the considerations (in percentages) (see Table 8) suggest where attention can be placed.

5 Discussion
Although AT and QA are common architecture design elements [3][4][8], there is little-

knowledge on how ATs are used while trading off QAs in practice. QA-AT knowledge is typically

unstructured and scattered in various resources (e.g., developer forums). Through mining and

analyzing QA-AT knowledge from SO, a popular Q&A website for professional developers, we

provide a guideline on the use of ATs with respect to QAs in practice. The main contributions of

this work are: (1) Our approach (i.e., semi-automatic dictionary-based classifiers) can effectively

mine QA-AT knowledge with an F-measure of 0.865 and the Performance is 82.2%, and 4,195

QA-AT posts (discussions) were mined from SO for empirical analysis; (2) Based on the empirical

analysis of the mined QA-AT posts, we provided the relationships between QAs and ATs and a set

of architectural design considerations that developers may consider when they address QAs using

ATs in practice. The analyzed knowledge can help developers to understand the nature of QAs and

ATs and apply ATs to address QAs. In this section, we further discuss and interpret the study results

of each RQ.

Semantic network of architectural knowledge (domain knowledge): The results of QA-

AT post mining show that the trained dictionary is effective for making use of prior knowledge to

construct semantic relationships between words and concepts (see Fig. 6 and Table 4). The trained

dictionary results in better collection and representation of association on domain knowledge (i.e.,

architectural knowledge). We conclude that the semantic network of the words (i.e., domain

knowledge) is effective for improving and facilitating QA-AT knowledge mining (see Fig. 7 and

Table 5). However, as this work is an attempt for mining QA-AT knowledge, we only used 2,365

architecture related posts (i.e., tagged with “software architecture” and “software design” to build

the semantic network of architectural knowledge. We suggest that researchers and practitioners can

employ more data on constructing the semantic network of architectural knowledge.

Difficulties in AT and QA discussions extraction: In this work, we mined QA-AT posts (i.e.,

discussions) for the purpose of understanding how developers apply ATs in terms of QAs. However,

it is difficult to retrieve all QA-AT discussions by using words identification because developers

may use different words (i.e. synonyms) from the trained dictionary to describe the same QA.

Similarly, the words we used to extract AT discussions (see Table 1) may be insufficient for

retrieving all AT discussions. Therefore, we need to employ multiple methods (e.g., deep learning

techniques) for extracting more comprehensive QA-AT knowledge at different granularities (e.g.,

sentences and paragraphs) [49].

The gap between academia and industry on employing ATs to address QAs: ATs are fine

grained reusable architectural building blocks and are widely used in practice. However, we found

that there exists a gap between academia and industry applying ATs to address QAs. Very few

researches introduce the negative impact of ATs on QAs. However, in SO, there are many cases in

which certain types of ATs were mentioned with the characteristics of hindering specific QAs, such

as Security could be hindered by Functional redundancy (see Table 7). Beyond that, we also found

that there are few researches that investigate ATs for addressing certain QAs (i.e., Maintainability,

Reusability, and Functional Suitability). We can only compare five QAs from ISO 25010 and their

related ATs from literature and SO (see Table 7). In addition, around 21% little-known

relationships between QAs and ATs are identified in SA. As such, this study can supplement what

is currently lacking in the literature. For example, a set of ATs are extracted from SO that can be

used to address Maintainability (see Table 7).

Architectural design considerations in practice: The analysis of the mined QA-AT posts

(i.e., RQ2.2) have highlighted a number of architectural topics (see Table 8). Design considerations

in QA-AT encompass the use of design patterns, design contexts, design decision evaluation and

ATs in existing systems. Similar to QA-AT posts that have been mined, design discussions can

reveal the trade-offs in decisions [42]. The result to RQ2.2 provides a glimpse on how developers

deal with the interactions between QAs and ATs. Further research on the relationships between

QAs and ATs in different design contexts can be useful.

6 Related work
There have been several attempts to provide methods and tools to assist architects to deal with

QAs in architectural design. We report the literature in two areas: (a) using ATs to address QAs

and (b) automatic architectural knowledge mining. We compare these works with our work in Table

9.

6.1 Applying architecture tactics to address quality attributes

Kim and colleagues proposed a quality-driven approach to address QAs using ATs. In their

approach, ATs are represented as feature models, and their semantics are defined using Role-based

Metamodeling Language (RBML) which is a UML-based pattern specification notation. Given a

set of quality attribute, architecture tactics are selected and composed. There is a set of benefits of

using this approach, for example, the variations captured in tactic specifications allow various tactic

instantiations [14]. Bogner and colleagues investigated design decisions related to quality attributes

for a Service-Based system. They proposed a lightweight manual design method called Service-

Oriented Architecture Design Method (SOADM) that takes functional requirements and quality

attributes as input and produces an architecture model of the necessary services and their

interactions. To ensure that quality attributes goals are achieved, architectural tactics are used to

enrich business services with system-related components that should realize the tactics [1].

Alashqar and colleagues introduced a new Multi Criteria Decision Making (MCDM) method for

analyzing the preferences and interactions of quality attributes based on Choquet integral fuzzy

measure. The analysis process is based on understanding the impact of implementing architecture

tactics on quality attributes when developing an industrial system. These works are similar to our

work that focuses on the relationships between ATs and QAs, while we mined and analyzed the

knowledge of QA and AT from developers’ discussions [25].

6.2 (Semi-) Automatic techniques in mining architectural knowledge

Mirakhorli and and colleagues evaluated and compared the efficacy of six classification

algorithms (i.e., SVM, C45, Bagging, SLIPPER, Bayesian logistic regression, and AdaBoost) for

identifying ATs from source code [2]. Mirakhorli and colleagues, in another piece of work, used

classification techniques and information retrieval to identify architecture tactic-related classes in

source code. This approach can be used to automatically construct traceability links between source

code and architectural tactics. This approach also minimizes the human effort required to establish

traceability that can be used to support maintenance activities and prevent architectural erosion [21].

Velasco-Elizondo and colleagues proposed an approach based on an information extraction

technique (i.e., entities extraction) and knowledge representation (i.e., ontology) to automatically

analyze architecture patterns considering specific quality attributes (e.g., Performance) [22]. To be

specific, an ontology contains two sub-types of ontologies. One is English grammar-based ontology.

The other is performance ontology that defines performance-specific concepts (e.g., security and

throughput). Information extraction techniques (i.e., entity extraction) and the ontology were used

to identify the relationships between architecture patterns and quality attributes in architecture

pattern descriptions. The experiment results show that their approach is helpful for inexperienced

architects to select architecture patterns through knowing whether specific quality attributes are

promoted or inhibited. Casamayor and colleagues applied NLP techniques and K-means algorithm

to semantically categorize candidate responsibilities into groups [23]. This approach firstly

processes requirements documents by POS tagging technique to detect the actions and tasks that

the system needs, then K-means is used to group similar responsibilities into architectural

components. The experiments show that the results obtained by this approach correspond to the

expected architectural components made by experts. These works motivate us to develop a semi-

automatic approach to extract and mine QA-AT knowledge from textual information (i.e., SO).

6.3 Comparison between our work and related work

The works presented in Section 6.1 applied different approaches to mine AT knowledge and

investigate the interactions between ATs and QAs, however, those works focus on specific ATs

and they do not explore the relationships between ATs and QAs in practice. Furthermore, the work

presented in Section 6.2 motived us to use a semi-automated approach to mine architectural

knowledge at a larger scale and involving developers’ opinions (i.e., from Stack Overflow).

We compare the characteristics of related work with our work in Table 9. Our work used SO

for understanding how developers apply ATs to address QAs. We proposed a semi-automatic

approach, which uses Neural Language Model for training the dictionary and machine learning

techniques for training the QA-AT post classifiers. We then employed the trained QA-AT post

classifiers to mine more QA-AT posts in SO, and further empirically analyzed the mined QA-AT

posts for revealing their occurrences and the strengths of their relationships.

Table 9. Comparison of the characteristics of related work with our work

Related

Works

Data extraction

approach

Data analysis

approach
Focus

Artifacts

Used

Our Work A semi-automatic

dictionary-based

QA-AT posts

extraction

approach from SO

Descriptive statistics

and constant

comparison

Focus on

relationships analysis

between ATs and

QAs.

4,195

relevant posts

form SO

Mirakhorli

and

colleagues

[7]

Automatic source

code extraction

from OSS

Topic analysis Focus on the

relationships between

topical domain

concepts and the use

of ATs.

Source code

in 1,000 OSS

projects

Mirakhorli

and

colleagues

[6]

Automatic source

code extraction

from OSS

Semi-automatic data

classification (i.e.,

machine learning)

Focus on how design

patterns were used to

implement various

ATs.

Source code

in 500 OSS

projects

Mirakhorli

and

colleagues

[2]

Automatic source

code extraction

from OSS

Manual analysis on

classification results of

machine learning and

information retrieval

(i.e., customized

classifiers)

Focus on discovering

and visualizing

architectural code,

and mapping these

code segments to

ATs.

Source code

in 50 OSS

projects

Harrison

and

colleagues

[8]

Controlled

experiment (i.e.,

two groups)

Analyzing and

comparing experiment

results from two groups

manually

Focus on

understanding the

information of fault

tolerance tactics that

affect the architecture

patterns of a system.

Information

collected

from two

groups of

participants

Gopalakris

hnan and

colleagues

[9]

Automatic source

code extraction

from OSS

Topic analysis Recommend ATs

based on latent topics

discovered in the

source code.

Source code

in 11,600

OSS projects

Sabry and

colleagues

[10]

Survey and

questionnaire

Quantitative analysis Focus on analyzing

the relationships

between QAs and

ATs.

Data

collected

from a survey

of 29

developers

Bi and

colleagues

[5]

Manual data

extraction (i.e.,

relevant

discussions)

Descriptive statistics

and constant

comparison

Focus on

relationships

extracting between

architecture patterns,

quality attributes, and

design contexts.

748 relevant

posts (i.e.,

discussions)

collected

from SO

7 Threats to validity
There are several threats that can potentially affect the validity of our research results. We

discuss three threats to the validity according to the categorization in [29]. Internal validity is not

considered since this study does not address any causal relationships between variables and results.

Construct validity focuses on whether the theoretical constructs are interpreted and measured

correctly. A threat to construct validity in this study involves whether the training QA-AT posts

used for experiments were labelled correctly by the researchers. To achieve a common

understanding of various QAs and ATs, we reviewed literatures related to ATs and checked various

terms that are synonyms with ATs. In addition, we used the definitions of QA types in the ISO

25010 standard. But using a standard cannot guarantee that the researchers understand the

definitions of various QAs. To mitigate this threat, a pilot QA-AT posts extraction was conducted

by three authors, and any disagreements on the extraction results were further discussed and

resolved by the three authors, in order to get a consensus among researchers on the extraction of

QA-AT posts. Another threat lies in the manual analysis of the mined QA-AT posts. To overcome

this threat, we employed constant comparison method to analyze the mined QA-AT posts. The first

author empirically analyzed the QA-AT posts, and the second author checked the results. Any

disagreements on the coding results and analysis of QA-AT posts were discussed and resolved by

three authors. Moreover, before the formal data analysis, we conducted a pilot data analysis by the

first three authors, and any conflicting results were discussed and resolved to eliminate personal

biases. Lastly, semi-automatic mining cannot retrieve all QA-AT posts. Our intention is to mine

commonly used ATs and to understand the QA-AT knowledge discussed in SO. As such, missing

ATs can be captured and added for training data collection in order to get more comprehensive

results on QA-AT posts mining.

External validity refers to the extent of the generalizability of the study results. We only

collected the data from SO. This may be a risk to the external validity of the results and findings,

for example the extracted relationships between QAs and ATs (see Tables 6 and 7). However, since

SO is the largest and most popular Q&A community widely used by software professionals

worldwide [44], the risk of missing out representative data is mitigated. Moreover, QA-AT

knowledge from other sources, like the development platform GitHub and social media Twitter are

also needed critical to supplement our study results, which is considered as our future work to

enhance external validity. Although we used constant comparison method to identify architecture

design topics that architects are concerned with, the grouping of the data studied in RQ2.2 can be

subjected to researchers’ interpretations. Additionally, the data we used is limited to SO posts.

Whilst every measure is taken by the researchers to remain objective and thorough, our claim on

the knowledge generalizability is still limited.

Reliability concerns with the repeatability of a study producing the same results. To mitigate

the threats to reliability, we specified the process of our approach in a research protocol which can

be repeated to produce similar results. The manual interpretations of the terms can be different for

researchers with different architecture working experience. We mitigated this risk by working with

these terms carefully. A pilot study was conducted by two authors and the analysis results were

checked by three authors to eliminate the misinterpretation of the results.

8 Conclusions and future work
In this work, we proposed a semi-automatic approach to mine the knowledge of QAs and ATs

from SO. This approach achieved an F-measure of 0.865 and Performance of 82.2% by using the

dictionary-based machine learning techniques for mining the QA-AT posts in SO (see Section

4.2.1). Whilst the knowledge mining approach we employed is not new, its application to mine AT

and QA knowledge is novel. In order to investigate how QAs are related to ATs and other

architectural design considerations, we manually analyzed the mined QA-AT discussions. We used

that data to see how ATs impact QAs in design.

We have several findings:

(1) we have developed and tested mechanisms to mine QA and AT knowledge effectively

from unstructured architectural knowledge source SO. The mined data allow us to discover new

architecture design terminologies. For example, developers used “outbound” or “decorator” to

describe Heartbeat, which cannot be found from the literature. The synonyms or related concepts

are shown in Tables 1 and 2;

(2) we have applied an empirical analysis method to relate QAs to ATs from the mined

discussions. We have been able to see that different ATs have different impacts on QAs. Such

relationships between QAs and ATs are new and useful. They could help architects consider quality

requirements when selecting ATs;

(3) through the mining process and empirical analysis, we grouped the mined QA-AT posts

by four architectural discussion topics (see Table 8) in which architects can consider when

employing ATs.

 With the findings, we conjecture that similar mining approaches can be further explored to

extract software development knowledge from a variety of rich and unstructured developer

discussion forums such as Stack Exchange, Bytes, and GitHub. It may be possible to use a similar

mining approach to convert unstructured discussions into empirical- and evidence-based software

engineering knowledge.

Acknowledgements
This work is partially sponsored by the National Key R&D Program of China with Grant No.

2018YFB1402800. We would like to thank Tianlu Wang, who helped to collect and label the SO

posts in this work.

References
[1] J. Bogner, S. Wagner, and A. Zimmermann. Using architectural modifiability tactics to

examine evolution qualities of service-and microservice-based systems, SICS Software-

Intensive Cyber-Physical Systems, 34(2-3): 141-149, 2019.

[2] M. Mirakhorli and J. Cleland-Huang. Detecting, tracing, and monitoring architectural tactics

in code, IEEE Transactions on Software Engineering, 42(3): 205-220, 2016.

[3] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice, 3rd Edition,

Addison-Wesley Professional, 2012.

[4] N. B. Harrison and P. Avgeriou. How do architecture patterns and tactics interact? A model

and annotation, Journal of Systems and Software, 83(10): 1735-1758, 2010.

[5] T. Bi, P. Liang, and A. Tang. Architecture patterns, quality attributes, and design contexts:

how developers design with them? in: Proceedings of the 25th Asia-Pacific Software

Engineering Conference (APSEC), Nara, Japan, pp. 49-58, 2018.

[6] M. Mirakhorli, P. Mäder, and J. Cleland-Huang. Variability points and design pattern usage

in architectural tactics, in: Proceedings of the 20th International Symposium on the

Foundations of Software Engineering (FSE), pp, 1-11, Article No. 52, 2012.

[7] M. Mirakhorli, J. Carvalho, J. Cleland-Huang, and P. Mäder. A domain-centric approach for

recommending architectural tactics to satisfy quality concerns, in: Proceedings of the 3rd

International Workshop on the Twin Peaks of Requirements and Architecture (TwinPeaks),

Rio de Janeiro, Brazil, pp. 1-8, 2013.

[8] N. B. Harrison, P. Avgeriou, and U. Zdun. On the impact of fault tolerance tactics on

architecture patterns, in: Proceedings of the 2nd International Workshop on Software

Engineering for Resilient Systems (SERENE), London, United Kingdom, pp. 12-21, 2010.

[9] R. Gopalakrishnan, P. Sharma, M. Mirakhorli, and M. Galster. Can latent topics in source

code predict missing architectural tactics? in: Proceedings of the 39th International

Conference on Software Engineering (ICSE), Buenos Aires, Argentina, pp. 15-26, 2017.

[10] A. E. Sabry. Decision model for software architectural tactics selection based on quality

attributes requirements, Procedia Computer Science, 65: 422-431, 2015.

[11] ISO, ISO/IEC 25010, Systems and software engineering – Systems and software Quality

Requirements and Evaluation (SQuaRE) – System and software quality models, pp. 1-34,

2011.

[12] R. Abdalkareem, E. Shihab, and J. Rilling. What do developers use the crowd for? a study

using stack overflow, IEEE Software, 34(2): 53-60, 2017

[13] S, Nasehi, J. Sillito, F. Maurer, and C. Burns. What makes a good code example?: A study

of programming Q & A in stack overflow, in: Proceedings of the 28th IEEE International

Conference on Software Maintenance (ICSM) Trento, Italy, pp. 25-34, 2012.

[14] S. Kim, D. Kim, L. Lu, and S. Park. Quality-driven architecture development using

architecture tactics, Journal of Systems and Software, 82(8): 1211-1231, 2009.

[15] N. B. Harrison and P. Avgeriou. Incorporating fault tolerance tactics in software architecture

patterns, in: Proceedings of the 2008 RISE/EFTS Joint International Workshop on Software

Engineering for Resilient Systems (SERENE), Newcastle Upon Tyne, UK, pp. 9-18, 2008.

[16] J. Vassileva. Toward social learning environments, IEEE Transactions on Learning

Technologies, 1(4): 199-214, 2008.

[17] B. Vasilescu, A. Capiluppi, and A. Serebrenik. Gender, representation and online

participation: A quantitative study of stackoverflow, Interacting with Computers, 6(5): 488-

511, 2013.

[18] M. Soliman, M. Galster, A. R. Salama, and M. Riebisch. Architectural knowledge for

technology decisions in developer communities: An exploratory study with stackoverflow,

in: Proceedings of the 13th Working IEEE/IFIP Conference on Software Architecture

(WICSA), Venice, Italy, pp. 128-133, 2016.

[19] D. Pagano and W. Maalej. How do open source communities blog?, Empirical Software

Engineering, 18(6): 1090-1124, 2013.

[20] T. Bi, P. Liang, A. Tang, and C. Yang. A systematic mapping study on text analysis

techniques in software architecture, Journal of Systems and Software, 144: 533-558, 2018.

[21] M. Mirakhorli, Y. Shin, J. Cleland-Huang, and M. Cinar. A tactic-centric approach for

automating traceability of quality concerns, in: Proceedings of the 34th International

Conference on Software Engineering (ICSE), Zurich, Switzerland, pp. 639-649, 2012.

[22] P. Velasco-Elizondo, R. Marín-Piña, S. Vazquez-Reyes, A. Mora-Soto, and J. Mejia.

Knowledge representation and information extraction for analyzing architectural patterns,

Science of Computer Programming, 121: 176-189, 2016.

[23] A. Casamayor, D. Godoy, and M. Campo. Functional grouping of natural language

requirements for assistance in architectural software design, Knowledge-Based Systems,

30(6): 78-86, 2012.

[24] F. Bachmann, L. Bass, and R. Nord. Modifiability Tactics, Software Engineering Institute,

Technical report, Carnegie Mellon University, Pittsburgh, 2007.

[25] A. M. Alashqar, A. A. Elfetouh, and H. M. El-Bakry. Analyzing preferences and interactions

of software quality attributes using choquet integral approach, in: Proceedings of the 10th

International Conference on Informatics and Systems (ICIS), Giza, Egypt, pp. 298-303,

2016.

[26] N. B. Harrison and P. Avgeriou. Implementing reliability: the interaction of requirements,

tactics and architecture patterns, Architecting dependable systems VII. Springer, Berlin,

Heidelberg, pp. 97-122, 2010.

[27] T. Mikolov, K. Chen, G. Gorrado, and J. Dean. Efficient estimation of word representations

in vector space, in: Proceedings of the 1st International Conference on Learning

Representations (ICIL), Scottsdale, Arizona, USA, pp. 1128-1135, 2013.

[28] B. G. Glaser and A. L. Strauss. The Discovery of Grounded Theory: Strategies for

Qualitative Research, Transaction Publishers, 2009.

[29] M. Höst, P. Runeson, M. C. Ohlsson, B. Regnell, and A. Wesslén, Experimentation in

Software Engineering. Springer, 2012.

[30] Y. Li, Z. A. Bandar, and D. McLean. An approach for measuring semantic similarity between

words using multiple information sources, IEEE Transactions on Knowledge and Data

Engineering, 15(4): 871-882, 2003.

[31] J. Dai and Q. Xu. Attribute selection based on information gain ratio in fuzzy rough set

theory with application to tumor classification, Applied Soft Computing, 13(1): 211-221,

2013.

[32] D. Falessi, G. Cantone, and R. Kazman. Decision-making techniques for software

architecture design: A comparative survey, ACM Computing Surveys, 43(4): 1-28, 2011.

[33] C. H. Li, J. C. Yang, and S. C. Park. Text categorization algorithms using semantic

approaches corpus-based thesaurus and WordNet, Expert Systems with Applications, 39(1):

765-772, 2012.

[34] J. R. Quinlan. C4.5: Programs for Machine Learning, San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 1993.

[35] G. Forman. An extensive empirical study of feature selection metrics for text classification,

Journal of Machine Learning Research, 3(3): 1289-1305, 2003.

[36] W. Ding, P. Liang, A. Tang, and H. van Vliet. Knowledge-based approaches in software

documentation: A systematic literature review, Information and Software Technology,

56(6): 545-567, 2014.

[37] J. Cohen. A Coefficient of Agreement for Nominal Scales, Educational and Psychological

Measurement, 20(1): 37, 1960.

[38] Mining Architecture Tactics and Quality Attributes Knowledge in Stack Overflow:

Replication Package: https://github.com/QA-AT/Mining-QA-AT-Knowledge-in-SO

[39] J. Cleland-Huang, R. Settimi, X. Zou, and P. Solc. The detection and classification of non-

functional requirements with application to early aspects, in: Processings of the 14th IEEE

International Requirements Engineering Conference (RE), pp. 36-45, 2006.

[40] A. G. Karegowda, A. S. Manjunath, and M. A. Jayaram. Comparative study of attribute

selection using gain ratio and correlation based feature selection, International Journal of

Information Technology and Knowledge Management, 2(2): 271-277, 2010.

[41] J. Eckhardt, A. Vogelsang, and D. M. Fernández. Are "non-functional" requirements really

non-functional? an investigation of non-functional requirements in practice, in: Proceedings

of the 38th International Conference on Software Engineering (ICSE), pp. 14-22, Austin, TX,

USA, 2016.

[42] A. Alebrahimand and M. Heisel. Bridging the Gap Between Requirements Engineering and

Software Architecture: A Problem-Orieneted and Quality-Driven Method. Springer, 2017.

[43] S. Godbole, I. Bhattacharya, and A. Gupta. Building re-usable dictionary repositories for

real-world text mining, in: Proceedings of the 19th ACM international conference on

Information and knowledge management (CIKM), pp. 1189-1198, Toronto, Ontario, Canada,

2010.

[44] S. Meldrum, S. A. Licorish, and B. T. R. Savarimuthu. Crowdsourced knowledge on stack

overflow: a systematic mapping study, in: Proceedings of the 21st International Conference

on Evaluation and Assessment in Software Engineering (EASE), pp. 180-185, Karlskrona,

Sweden, 2017.

[45] N. B. Harrison and P. Avgeriou. Leveraging architecture patterns to satisfy quality attributes,

in: Proceedings of the 1st European Conference on Software Architecture (ECSA), pp. 263-

270, Aranjuez, Spain, 2007.

[46] S. Kotsiantis, D. Kanellopoulos, and P. Pintelas. Handling imbalanced datasets: A review,

GESTS International Transactions on Computer Science and Engineering, 30(1): 25-36,

2006.

[47] G. A. A. Prana, C. Treude, F Thung, T. Atapattu, and D. Lo. Categorizing the content of

GitHub README files, Empirical Software Engineering, 24(3): 1296-1327, 2019.

[48] C. Treude and M. P. Robillard. Augementing API documentation with insights from Stack

Overflow, in: Proceeding of the 38th IEEE International Conference on Software

Engineering (ICSE), pp. 392-403, Austin, TX, USA, 2016.

[49] R. Witte and Q. Li. Text mining and software engineering: an integrated source code and

document analysis approach, IET Software, 2(1): 3-16, 2008.

https://github.com/QA-AT/Mining-QA-AT-Knowledge-in-SO

