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ABSTRACT

The evolution analysis on Web service ecosystems has become a critical problem as the frequency
of service changes on the Internet increases rapidly. Developers need to understand these evolu-
tion patterns to assist in their decision-making on service selection. ProgrammableWeb is a popular
Web service ecosystem on which several evolution analyses have been conducted in the literature.
However, the existing studies have ignored the quality issues of the ProgrammableWeb dataset and
the issue of service obsolescence. In this study, we first report the quality issues identified in the
ProgrammableWeb dataset from our empirical study. Then, we propose a novel method to correct
the relevant evolution analysis data by estimating the life cycle of application programming inter-
faces (APIs) and mashups. We also reveal how to use three different dynamic network models in the
service ecosystem evolution analysis based on the corrected ProgrammableWeb dataset. Our experi-
mental experience iterates the quality issues of the original ProgrammableWeb and highlights several
research opportunities.

1. Introduction

With the development of Web 2.0 and the wide adoption
of service-oriented architecture (SOA), many services now
expose their features in the form of application programming
interfaces (APIs). Multiple APIs can be easily composed
into an application, also called mashups [1], that creates and
delivers unique new value to customers. This growing phe-
nomenon is called the API economy [2]. As domain barriers
have opened and cross-border cooperation and cross-border
integration have become more common, the promotion of
the API economy in the Internet era has gradually weakened
the concept of the traditional domain. These represent sub-
stantial changes to the traditional Internet ecosystem, lead-
ing to the evolution of service ecosystems.

The API economy has enabled businesses in regard to
cross-border integration and innovation, creating an increas-
ing number of new applications. Moreover, as users experi-
ence these new applications, they may discover new needs,
which not only further accelerates the innovation process
but also intensifies market competition. Service providers
need to be sensitive to the changes of user needs and pref-
erences and constantly bring forth new services. Therefore,
studying the evolution of service ecosystems is important
because it can offer insights and significant benefits from
different perspectives. From a business perspective, evo-
lution analysis assists decision-making by helping service
providers and market regulators understand the evolutionary
patterns of a service ecosystem, thereby guiding sustainable
and healthy service/service ecosystem development. For ex-
ample, through evolution analysis, service providers can learn
the collaboration strategies of their competitors and discover
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popular market evolution trends, allowing them to adjust their
business strategies for fleeting innovation opportunities and
thereby maintaining or enhancing the competitiveness of their
services. From a technical perspective, evolution analysis
can mine interpretable prior knowledge from data to facili-
tate other downstream tasks, such as service recommenda-
tion, service discovery, and service composition, thereby ac-
celerating the pace of service development [3, 4].

ProgrammableWeb' is the largest online API store plat-
form, and it collects a large number of third-party APIs and
mashups. Every day, new APIs/mashups emerge, existing
APIs perish, and different APIs dynamically cooperate to
create new mashups. Thus, itis a typical Web service ecosys-
tem. In addition, Programmable Web serves as a standard re-
search dataset in the field of service computing. As a typical
representative of the real Internet ecosystem, it has been em-
ployed to support many service science studies, especially
in the fields of service recommendation [5, 6, 7], service
discovery [8, 9], service evolution analysis [10], and qual-
ity of service (QoS) prediction [11, 12]. As of January 9,
2021, ProgrammableWeb collected 23,881 APIs and 7,973
mashups, with detailed information such as date of creation,
category, profile, and active status.

Motivation: A number of studies have focused on the
evolution analyses of the ProgrammableWeb service ecosys-
tem from a variety of perspectives. The analysis results of
all the existing studies show a positive and optimistic attitude
towards the healthy development of the Programmable Web
service ecosystem. Some studies have also provided a gen-
erative model of the service ecosystem network to guide ser-
vice recommendation and service discovery. These studies
[13, 14, 15, 16] are usually explicitly or implicitly based on
two assumptions: i) the ProgrammableWeb dataset is high
quality and credible, and ii) the obsolescence of APIs and

Thttps://www.programmableweb.com/.
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Figure 1: Overview of this paper relative to existing studies in
the context of evolution analysis.

mashups and the impact of such demise can be ignored. How-
ever, these assumptions require more careful data process-
ing because the ProgrammableWeb dataset has certain flaws.
For example, quality issues in labeling, especially regarding
the active availability status and obsolescence times of APIs
and mashups, are important. Ignoring the demise of APIs
and mashups makes it more difficult to assess the true health
status of the service ecosystem, promotes blindly optimistic
conclusions, leads to inaccurate evolutionary patterns, and
damages downstream tasks.

Figure 1 shows the overview of this paper relative to
existing studies in the context of evolution analysis. Exist-
ing studies directly use the raw data crawled from the Pro-
grammableWeb for dynamic network modeling followed by
evolutionary analysis. However, in this paper, we first iden-
tify and correct the erroneous information related to evolu-
tion in the Programmable Web dataset, specifically for the ac-
tive state and time-related attributes. Then, we discuss how
to use dynamic networks to model the service ecosystem.
After establishing a dynamic network model, we analyze the
evolution of the service ecosystem using the network proper-
ties and network visualization approaches. Finally, we dis-
cuss the problems that exist in the service ecosystem and
their impacts on other service tasks.

The main contributions and innovations of this study are
as follows:

C1 We identify data quality issues, including data incom-
pleteness, data errors and data noise, in the commonly
used Programmable Web dataset by exploiting statisti-
cal methods, automated network request testing, and
manual inspections.

C2 We correct the active status of APIs and mashups in
the ProgrammableWeb dataset based on the results of
automated network request testing and propose a nor-
mal distribution-based method to estimate the active
time of APIs and mashups. We have released the new
ProgrammableWeb dataset with the active status and
active time corrected for other researchers to conduct
related studies”.

>The dataset is available on GitHub: https:/github.com/HIT-

C3 We conduct an evolution analysis based on the cor-
rected Programmable Web dataset, and the results show
that the original dataset is not suitable for service ecosys-
tem research. The assumption of perfect data quality
misleads statistical results of the data and affects the
choice of algorithms. If these factors are not consid-
ered, the results of the existing research works based
on the old dataset should be revisited, such as various
conclusions about the current health status, diversity,
and network laws of the ProgrammableWeb service
ecosystem.

C4 During the evolution analysis, we analyze the poten-
tial impact of the data quality issues of the original
ProgrammableWeb dataset from both business and tech-
nical viewpoint, and provide some suggestions for ad-
dressing or avoiding these quality problems. We also
highlight some opportunities for future research using
the new ProgrammableWeb dataset.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the related works. Section 3 presents vari-
ous data quality issues related to the evolutionary analysis
of the ProgrammableWeb dataset. Section 4 provides a data
restoration method based on probability estimation. Section
5 clarifies how to use dynamic networks to model service
ecosystems. Section 6 explains the methods, reports the re-
sults of the evolution analysis of the service ecosystem, and
discusses the impacts of other quality issues of the original
ProgrammableWeb dataset on traditional service computing
tasks and the new challenges and opportunities that the cor-
rected ProgrammableWeb dataset introduces for traditional
tasks. Finally, Section 8 offers some concluding remarks.

2. Related Works

In recent years, the evolution analysis of service ecosys-
tems, such as the ProgrammableWeb, has been studied ex-
tensively. The existing studies focus on individual service
state changes and the changes to the service network topol-
ogy that are intended to help developers select and integrate
appropriate services into their own applications. The ulti-
mate goal of these studies is to provide prior knowledge to
help solve various traditional service computing problems,
such as service recommendation and service label predic-
tion [17].

For example, Wang et al. [18] discovered user behav-
ior patterns in mashup communities by studying the network
and clustering properties of the ProgrammableWeb service
ecosystems. The authors argued that mashup communities
possess scale-free properties and frequently used APIs at-
tract large numbers of users. Weiss et al. [19] examined the
structure of the mashup ecosystem and its growth over time
and concluded that i) the distribution of mashups over APIs
follows a power law and that ii) the complexity of mashups
continues to increase. Huang et al. [20] proposed a three-
phase network prediction approach (NPA) to study both us-

ICES/Correted-ProgrammableWeb-dataset
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Figure 2: The death time distribution of the APIs in the deathpool.

age patterns and the evolution traces of the entire Programm-
ableWeb service ecosystem for evolution-aware service rec-
ommendation. The authors in [14] considered the evolu-
tion of service ecosystems for service recommendation, ex-
tracted service evolution patterns by exploiting latent Dirich-
let allocation (LDA) and time series predictions, and then
used these patterns to guide service recommendation. Lyu
etal. [21] proposed a three-level view model for Web service
ecosystem visualization. Such visualization is valuable not
only for understanding the ecosystem but also for providing
support to service consumers, helping them to discover ap-
propriate services. Bai et al. [22] developed a tailored topic
model to mine effective representations of service ecosys-
tems that addresses both service evolution and information
sparsity, while Gan et al. [23] proposed a novel approach for
service multilabel recommendation using deep neural net-
works.

In addition to exploring the Web service ecosystem rep-
resented by the ProgrammableWeb, the evolution of other
types of service ecosystems have also been explored in re-
cent studies. For instance, the work in [24] focuses on mi-
croservice ecosystems. Aggregating structural, deployment,
and run-time information of an evolving microservice sys-
tem into one model provides actionable insights to help de-
velopers manage service upgrades, architectural evolution,
and changing deployment trade-offs. Wang et al. [25] also

focused on microservice ecosystems by proposing a distributed

knowledge-based evolution model (DKEM) that can discover
stable evolution patterns and automatically explore new and
more stable cooperation among services. In addition to these
technical-level service ecosystems, some researchers have
turned their interests to the evolution of business-level ser-
vice ecosystems. A very recent work in [26, 27] proposed
a novel multilayer network-based service ecosystem model
(MSEM) that can be constructed automatically by mining
massive textual datasets from the Internet. Via the introduc-

tion of the concept of service events, MSEM can not only
explore evolutionary patterns but also determine the driving
factors of the evolution.

3. Data Quality Issues

We collected a total of 23,678 APIs and 7, 766 mashups
from the ProgrammableWeb website (including data in the
deathpool). After checking and testing these data, we iden-
tified three serious data quality issues related to prior evolu-
tionary analyses using the original Programmable Web dataset.
These issues are described in detail in the rest of this section.

3.1. Untrustworthy Death Time

ProgrammableWeb places the deprecated APIs and mash-
ups into a collection called the “deathpool”. The time at
which a deprecated API or mashup enters the deathpool is
marked and this time is often referred to as the “death time*
of the API or the mashup.

We conducted statistical studies on the death times of
APIs and mashups in the deathpool provided by Programma-
bleWeb and the results are shown in Figure 2 and Figure 3.
The results indicate that the death times of most APIs and
mashups in the deathpool are clustered at specific periods
(e.g., April 2014). Interestingly, some APIs/mashups are
created even later than the creation time; for example, Iron
Mountain Policy Center® was marked as deprecated in April
2014 but was actually submitted on January 21, 2020. This
might be the result of the automatic processing at a certain
time because the death time labels are obviously unreason-
able and are therefore unsuitable for Web service evolution
studies. In terms of distribution, the distribution of death
times between 2018 and 2020 is more in line with the prior
knowledge of experts. We also compiled statistics on the sur-
vival duration of APIs that died during this period, as shown

3https://www.programmableweb.com/api/iron-mountain-policy-
center
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Figure 3: The death time distribution of the mashups in the deathpool.

in Figure 7, and found no data in the results that violate com-
mon sense, such as a service that dies before its birth. To
further confirm the reliability of this portion of the data, we
randomly selected 20 APIs and investigated their real death
times. We found that the average death time error was 50
days, which is an acceptable result. Therefore, we believe
that recent data (those with death times from 2018 to 2020)
are reliable estimations of API/mashup death times. This
aspect will be discussed in more detail in Section 4.1.

3.2. Incorrect API Status
We tested the status of APIs that was marked as available
in two ways:

1. We detected whether the descriptive text of the API
explicitly indicates its available status. When the text
indicates “no longer available®, we consider the API’s
status to be dead (or obsolete).

2. For the rest of the APIs, we tested the results of ac-
cessing their API endpoints (URL addresses) under
strict conditions to prevent available APIs from be-
ing marked as dead APIs when it is determined that
the API is not available. We conclude that an API is
regarded as obsolete only when its URL is not reach-
able or when the network access request returns a 404
status code.

After using automatic network request tests to check” the
availability status of all APIs and manually analyzing their
descriptive texts, we summarize three different death pat-
terns of unavailable APIs, as illustrated in Figure 4:

e Death: The API no longer provides its services in any
form; i.e., it has entirely and permanently perished
from the ecosystem.

4All the network request tests were conducted on the Google Cloud
platform. We repeated the tests three times on different dates and in different
periods and manually reviewed 100 randomly selected results.

e Transfer: The original API is no longer available, but
all its functions were transferred to another API that
continues to provide services. This pattern usually oc-
curs when an API is acquired or the name is changed.

e Split: The original API is no longer available; its ser-
vices have been split into several independent APIs,
and each independent API provides a portion of the
original API’s services.

Table 1 shows the statistical results of the available sta-
tus of the APIs on ProgrammableWeb. From the table, we
can see that only approximately 44.7% of the APIs are truly
active and that only 14.8% of the unavailable APIs are cor-
rectly marked as unavailable (including APIs in the death-
pool). In addition, 85.2% of the unavailable APIs are incor-
rectly marked as active. The proportions of different death
patterns are listed in Table 1. Most of the unavailable APIs
(over 99.9%) are caused by the death of the APIs. The num-
ber of unavailable APIs caused by transfer and split is rela-
tively small, 17 and 7, respectively. However, the APIs that
are unavailable due to split and transfer have a substantial
impact on the API service ecosystem. For example, the most
commonly used APIs, such as Google Map, Facebook, and
Twitter, have all split. The statistical results in Figure 6 also
support this point.

3.3. Incorrect Mashup Information

The data quality issues in mashups are primarily twofold:
a) incorrect activity status and b) incorrect API composition
information.

An incorrect activity status means that mashups cannot
properly provide the services they describe but are still marked
as available. We invited 5 coders who are all graduate stu-
dents working on service computing topics, to perform man-
ual analysis. For each mashup, two coders are randomly se-
lected for manual checking. Coders were required to report
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Table 1

The statistical results of the available status of the APIs on
ProgrammableWeb. All the APIs in the deathpool are marked
as dead.* denotes the overall percentage, ** denotes the row
percentage.

Labeled . .
Truth Available  Unavailable
. 10,534
Available (447%") -
. De:?d 11,087 1,934
Unavailable | Split 7 (14.8%")
Transfer 17 o

whether content in the homepage of this mashup is inconsis-
tent with the description in the page of this mashup on Pro-
grammableWeb. For those mashups that did not match, they
were asked to check the history information at WebArchive’
and then summarized the reasons for the unavailability. When
two coders come to different conclusions on one mashup,

Shttp://web.archive.org

(b) Replaced by other service

this mashup will be voted by the remaining three coders. Fi-
nally, we use Inter-Rater Reliability (IRR)[28] to measure
the level of agreement. During the manual checking, we did
not find any cases that different coders have different con-
clusions on one mashup, and this is mainly because of the
relevant professional background of all five coders and the
clear criteria for their judgment. Therefore, the IRR is 100%
agreement between coders on 100% samples, which is suffi-
cient agreement among multiple coders. Based on the pro-
vided report, we conclude that mashups are unavailable due
to two different patterns: wunreachable and replaced. Fig-
ure 5 illustrates these two patterns with examples. Based
on the above two patterns, the remaining mashups are deter-
mined to be unavailable if they satisfy any of the following
conditions:

e Unreachable: The homepage is not accessible or does
not exist (404).

e Replaced: The homepage’s HTML source code does
not contain information about the mashup.

We manually checked 530 mashups and this number is

Mingyi Liu et al.: Preprint submitted to Elsevier
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greater than 366 (the minimum number of mashups for sta-
tistical representation with a 95% confidence level and 5 in-
tervals). The 530 mashups were selected based on the fol-
lowing steps:

Step 1 330 mashups were manually checked at random, in-
cluding 130 available mashups and 200 unavailable
mashups. The purpose of this step is to build mashup

status detection algorithm. We stopped when we checked

200 unavailable mashups because 1) for these un-
available mashups, coders not only need to deter-
mine their availability, but more importantly, to
identify exact unavailable time of these mashups
by searching on http://web.archive.org, which is an
extremely time-consuming task. 2) during the ex-

amination, we found that after 50 unavailable mashups

were found, no new reasons for mashup unavail-
ability emerged, so we believe that 200 unavailable
mashups are sufficient for summarising the patterns
of mashups unavailability and providing sufficient

apriori knowledge for the algorithm to be constructed.

Step 2 200 mashups were randomly selected from mashups
marked as unavailable by the algorithm for manual
check. The purpose of this step is to check the valid-
ity of the rule-based algorithm we have constructed.
We chose 200 to be consistent with the number of 200

unavailable mashups in the previous step.

The test results show that the true numbers of available
and unavailable mashups are 2,489 (32.0%) and 5,277 (68.0%),
respectively, while the numbers given by Programmable Web
are 6,247 (80.4%) and 1,519 (19.6%), respectively (includ-
ing mashups in the deathpool).

Incorrect API composition information refers to mashups
that are still available but are marked as invoking some un-
available APIs. We found 4, 942 mashups that invoked un-
available APIs, and 1, 934 that were still available. Figure 6
shows mashups invoking the different types of unavailable
APIs, where each sector is labeled with the number and per-
centage of mashups using a particular type of unavailable
API. For example, in Figure 6(b), the number of available
mashups invoking only split APIs is 2, 174, which is 56.9%
of the number of available mashups that invoke unavailable
APIs. The figure provides some insights that have been over-
looked in the past studies:

1. APIs that are widely used and provide rich services
tend to split and subsequently provide more refined
services.

2. The importance of different APIs in mashups is dif-
ferent. Some APIs do not participate in a mashup or
could be replaced by other APIs in the mashup. Thus,
even if these APIs are abandoned, the mashup can still
guarantee the availability of services.

3.4. Other Quality Issues
This section discusses several other data quality issues in
the original ProgrammableWeb dataset. These issues are not

Transfer: 20 [EZE3 | Death: 2476 QIR

Split: 1540 EEEEY

(a) Ratio of all mashups that invoke different types of unavailable
APIs

Death: 965 EEEEER

Split: 2147 EXEEA |~

(b) Ratio of available mashups that invoke different types of un-
available APIs

Figure 6: Ratio of mashups that invoke different types of un-
available APIs.

relevant to the evolutionary analysis but are relevant to other
tasks such as API tag prediction. This section also covers
some quality issues that cannot be corrected without external
data or manpower.It should be noted that these data quality
issues do not affect the data correction methods in Section 4:
1) these issues are independent of the quality issues raised in
Section 3.1, Section 3.2 and Section 3.3; 2) these issues are
evolutionary-independent.

The descriptive texts of APIs and mashups contain con-
siderable noise, and the information in the texts is sparse,
which hinders tasks that require semantic support, such as
service tag prediction [23] and service recommendation [5].
Bai et al. [22] also reported this problem and tried to use
service representation-latent Dirichlet allocation (SR-LDA)
to mine API/mashup topic words to alleviate the noise and
sparsity problems. However, based on the results of their
study, there is still much room for improvement. The issue
of the quality of the description text will not have an impact
on the research questions or methods in this paper, as it is
only private property of API/mashup that is independent of
time and API/mashup status.

Toy mashups refer to the mashups that do not offer prac-
tical application value to users. Such mashups are usually
the result of developers practicing or are created just for fun,
such as Website-Grader® and Trump'’s Circle of Death’. Gen-

Shttps://www.programmableweb.com/mashup/website-gradercom
7https://www.programmableweb.com/mashup/trumps-circle-death
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erally, these toy mashups should be treated as noisy data and
filtered out. However, much manual annotation is required
to accurately identify these toy mashups. Therefore, this is-
sue is usually overlooked in research. Nevertheless, we note
that toy mashup noise has a potential impact for algorithms
operating on the entire dataset and that the extent of this in-
fluence depends on the application scenario. Fortunately, the
toy mashups have no effect on most of the research questions
in this paper because these research questions use only part
of the data and automatically filter out the toy mashups. The
toy mashups do have a small impact on RQ1 in Section 6,
but they do not affect the conclusion drawn for the question.

A mashup is formed by combining various APIs in a cer-
tain sequence. Unfortunately, no relevant information ex-
ists regarding the combination sequence in the original Pro-
grammableWeb dataset. Moreover, the original sequence is
almost impossible to automatically recover based on infor-
mation stored in the original ProgrammableWeb. Therefore,
we make a compromise and focus on the co-occurrences of
APIs in mashups.

3.5. Impact of Data Quality Issues

The implications of the abovementioned data quality is-
sues for service computing tasks, except for the evolution
analysis, are discussed in this section; implications for the
evolution analysis are explained in detail after the answers
to each of the research questions in Section 6.

Incorrect API/mashup availability status will significantly
affect the reliability of the results generated by application
scenarios, such as service recommendation, service selec-
tion, service combination, etc., that need to satisfy user re-
quirements. Since they will recommend services that have
been unavailable for a long time, this obviously does not
meet the needs of realistic conditions.

Incorrect death time and availability status can be a ma-
jor threat to the correctness of various time-aware methods.
The original ProgrammableWeb dataset is presented as an
incremental dynamic network in which only new nodes (APIs,
mashups) and edges (invoke relations) are added. However,
the fact that the API/mashup fails at different times makes
the data structure of an incremental dynamic network un-
realistic, and the nodes and edges in this network can exit
the network. This causes many operations that could be per-
formed on an incremental dynamic network to be inoperable
or costly in terms of time and space.

Incorrect API composition information, the lack of API
combination sequence information, and toy mashups will af-
fect the reliability of the results of tasks such as service com-
position, service discovery and service selection because these
tasks rely on the statistical results of known API composi-
tions , and these data quality issues lead to unreliable and
missing API composition profiles.

4. Data Correction

In this section, the data quality issues mentioned in Sec-
tion 3 are addressed to better support the evolution analysis
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Figure 7: The distribution of survival days for APIs placed in
the deathpool from 2018 to 2020.

of the service ecosystem. Before expounding on the details
of the method, we wish to clarify the following points:

e Our method is not perfect in the sense that the data
correction results are not totally accurate; they are a
probability estimate.

e Because this paper focuses on service ecosystem evo-
lution, our method aims at the whole service ecosys-
tem; in other words, we can guarantee the rationality
of the overall distribution of the data but cannot guar-
antee the accuracy of individual samples.

e To balance the algorithm’s complexity, human cost,
and other factors, we ignored some unimportant fac-
tors and made several reasonable assumptions.

4.1. Estimated Death Time

It is not feasible to directly estimate the death times of
APIs and mashups. Therefore, we calculated the death times
by estimating survival days. The statistical results of the
longevity of APIs placed in the deathpool from 2018 to 2020
are shown in Figure 7.

Based on Figure 7, we assume that the longevity of APIs
and mashups (xq, x,, ..., x,,) follows a normal distribution
N (u, c%), which is one of the most common and applicable
distributions in the real world. Then, the key problem is how
to learn the approximate values of parameters y and o2 based
on the sample (x{, x5, ...,x,). The standard approach for
addressing this problem is to use the maximum likelihood
method, which requires maximization of the log-likelihood
function:

n
InL£(u,0%) = Y In f(x;|u,0%) = —g In(27) — gln c?
= (D

— = 2w’
20% 5

where f(x) is the probability density function (PDF). Taking
the derivatives of 4 and ¢ and solving the resulting system
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of first-order conditions yields the maximum likelihood es-
timates:

=

L1
M:xE— xi’ (2)
nt:l
1 n
~2 =2
= — . — . 3
6 nZ(X, x) 3)

i=1

To ensure that the distribution estimated using the longevity

of APIs placed in the deathpool from 2018 to 2020 is repre-

sentative, we first randomly selected 200 unavailable APIs/mashups

and manually checked their survival days
(x, X/, ..., x)) through the Web snapshots provided by Way-

back Machine® to represent the overall distribution. Then,

we estimate the values of parameters 4’ and o' g based on
the sample (x},x), ..., x}) using Eq.(2) and Eq.(3). Finally,
we use the Z-statistic to test whether the two distributions
are the same:

~ Al

a=f

N ~2
V62+0'

Normally, in qualitative terms:

Z = 4

o If the Z-statistic is less than 2, the two distributions
are the same.

e If the Z-statistic is between 2.0 and 2.5, the two distri-
butions are marginally different.

o [f the Z-statistic is between 2.5 and 3.0, the two distri-
butions are significantly different.

o [f the Z-statistic is more then 3.0, the two distributions
are highly significantly different.

The Z-statistic for these two distributions is 0.385, which is
much less than 2. Therefore, we can state that the distribu-
tion estimated using the longevity of APIs is the same as the
distribution of the whole dataset, which means that the data
in Figure 6 are representative.

For each obsolete API or mashup x, we generate a longevity

value, d,,, from the normal distribution N4, &2). The un-
available time end,, can be calculated as follows:

d start, +d, if start, +d, <=,
end, =
* random(start,, ) otherwise,

®

where start, is the creation time of x; f§, denotes the ear-
liest time that x is confirmed to be unavailable. In this pa-
per, we take the value as the date of the first network request
test (September 10, 2020). We also introduce a random dis-
tribution random(-) to prevent end, from being later than
P, In particular, with the transferred/split APIs, we do not
have to use such a method to estimate the unavailable time.
Suppose an API x has split/transferred into a new API set
{x1,x,,...,x,}. The unavailable time of x is:

end, = max(startx1 ,starty ..., startxm). 6)

8http://web.archive.org

4.2. Correct API Composition for Mashups

We use M, = {ay,a,,...,a;} to represent an available
mashup at time #, where a denotes an API included in the
mashup. Suppose at time 7+ 1 the mashup M, is still avail-
able, but API g; is no longer available. The representation
of M, depends on the pattern of a; being unavailable, as
shown in Equation (7):

M, - {a;) if death
M= M, - {a;} + {a} if transfer,a;, — d|
S if split,
M, —{a;} +{a;y,....a;,}
a; = {a,-’l, .

@)

The handling of death and transfer cases is easy to un-
derstand. For split APIs, we made a reasonable assumption
due to imperfections in the information. We assumed that
all the APIs g; ; generated by splitting will be used by the
mashup to ensure complete functionality despite knowing
that only one subset would be used in reality. For example,
mashup Mosoto® was composed of Box'® and Facebook'!
services when it was first created. Thus, it can be denoted as
{Box, Facebook}. Then, something happened on Facebook
that caused it to split into Facebook Ads'?, Facebook At-
las"3, Facebook Graph'* and Facebook Marketing">. Sub-
sequently, the representation of Mosoto is {Box, Facebook
Ads, Facebook Atlas, Facebook Graph, and Facebook Mar-
keting}. Next, when Facebook Ads and Facebook Atlas are
deprecated, the Mosoto representation changes again to { Box,
Facebook Graph, and Facebook Marketing}.

5. Service Ecosystem Dynamic Network
Model

The service ecosystem is a continuously evolving com-
plex network system consisting of service entities and inter-
actions between them. This system can be naturally modeled
as three different dynamic networks in which the structure
changes over time depending on different scenarios: i) the
Mashup-API network (M-A), ii) the API-API network (A-
A), and iii) the category-category network (C-C).

Definition 1. The Mashup-API network (M-A) is a dynamic
bipartite graph G, 4 = {A, M, E s 4}, where A refers to the
APIs, M refers to the mashups, E ;4 = {(u, v, start, end)|u
€ M, v € A} denotes the invoking relations between mashups
and APIs, and start and end represent the duration of each
relation. An APl/mashup x € AU M can be denoted as
x = {start,end,c}, where c represents the primary cate-
gory to which x belongs. G, = (A", M', E', } is used to
represent a snapshot corresponding to the M-A at time t.

9https://www.programmableweb.com/mashup/mosoto
10https://www.programmableweb.com/api/box
Uhttps://www.programmableweb.com/api/facebook
2https://www.programmableweb.com/api/facebook-ads
Bhttps://www.programmableweb.com/api/facebook-atlas
4https://www.programmableweb.com/api/facebook-graph
Bhttps://www.programmableweb.com/api/facebook-marketing
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Mashup-API Network

Figure 8: Conversion between the three dynamic network types.

Definition 2. The API-API network (A-A) is a homogeneous
network serial snapshot, denotedas G 4 4 = {GL " Gi sy
G" ). G, = (A", E!, } is the A-A snapshot at time t gen-
erated by a Mashup-API network snapshot G, ,. E' , =
{(u, v, w)|u,v € A"} represents the API concurrence rela-
tions, and (u, v, w) indicates that API u and API v are in-

voked together in an available mashup w at time t.

Definition 3. The category-category network (C-C) is a hy-
pergraph serial snapshot, denoted as G = {G ICC, Gé o
.GLoY. Gi = {C',EL.) is the C-C snapshot at time
t generated by an API-API network snapshot G; W
C is a set of categories to which the APIs belong. E’C c =
{(u, v, w)|u,v € C} indicates the number of times that an
API of category u and an API of category v are invoked to-

gether in an available mashup w at time t.

where

Figure 8 shows the conversion process between the three
dynamic network types. The square in the figure represents
a mashup, the circle represents an API, and the color of the
shape denotes the primary category. The link in the fig-
ure denotes the invoking/concurrence relations. These three
different dynamic networks reflect the evolution of the Pro-

grammableWeb service ecosystem from different levels, which

will be discussed in detail in the next section.

6. Service Ecosystem Evolution Analysis

This section analyzes the service ecosystem evolution
from the perspective of complex networks. The subsequent
analysis in this section is organized by answering six re-
search questions and identifying research challenges and op-
portunities based on the analysis. The title of each research
question consists of two parts. The first part concerns which
dynamic network model is selected to support the research
question, and the second part explains the research question.
As shown in Figure 9, we have constructed 6 research ques-
tions at three levels: the service ecosystem as a whole (RQ1,
RQ2, RQ3), the local structure of the service ecosystem
(RQ3, RQ4 and service individuals in the service ecosystem
(RQS, RQ6). In particular, in RQ1, RQ2, RQ4 and RQS5,
we found different conclusions from existing studies. Fur-
thermore, in RQ3 and RQ6 we found that the current Pro-
grammableWeb service ecosystem cannot satisfy the com-
plex service market requirement.

Category-Category Network
API-API Network

. 4RQ1
Service Ecosystem as a Whole —oRQ2
——oRQ3

‘.‘ aggregation
—oRQ3

Local Structure of Service Ecosystem

— o>RQ4

taggregaticn
Service Individuals in Service —RQ5

Ecosystem

——oRQ6

Figure 9: The link between six research questions.

Itis worth mentioning that although the method discussed
in Section 4 cannot guarantee that an API/mashup individual
is completely correct, it does guarantee the accuracy of the
overall distribution of the Programmable Web service ecosys-
tem. We repeated the experiments several times indepen-
dently and found that the results have no influence on the
conclusions of the evolutionary analysis in this paper.

RQ1: [M-A] What is the health status of the Programmable Web

service ecosystem?

The number of available APIs and mashups is the most
intuitive indicator of the health and prosperity of a service
ecosystem. Figure 10 shows how the number of available
APIs and mashups changes over time. The blue line (i.e., No
death) denotes that APIs and mashups are always available;
the green line (i.e., Deathpool) denotes using the deathpool
information provided by the original ProgrammableWeb to
determine whether an API or mashup is available; and the
red line (i.e., Corrected) denotes the results of our corrected
ProgrammableWeb dataset.

To the best of our knowledge, all the existing studies are
based on the first two scenarios (No death or Deathpool), and
consequently, they provide “optimistic” estimates regarding
the health and prosperity of the ProgrammableWeb service
ecosystem [10]. However, our corrected data show that the
reality might be much worse.

Based on the change curve of the number of available
APIs and mashups, there is no evidence to support contin-
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Figure 10: The numbers of available APIs and mashups change
over time (daily).

uous “explosive” growth, which has often been mentioned
in the existing studies. The results show that after 2014, the
ProgrammableWeb service ecosystem actually began to de-
cline. Although the number of new APIs remains stable year
over year, the rate of API obsolescence has continued to ac-
celerate, especially after 2018. While the addition of new
mashups has stagnated since 2014, the rate of obsolescence
has remained steady. We argue that the reason for this phe-
nomenon is that the popularity of the mobile Internet has led
to an increasing shift of Web mashups to mobile apps [28],
which is also supported by online statistics'©.

In summary, the changes in the number of mashups and
APIs in the ProgrammableWeb service ecosystem indicate
that the ecosystem is in poor health and could become ex-
tinct unless necessary steps are taken to remedy the situ-
ation.

RQ2: [A-A] Does the degree distribution of the service
ecosystem network comply with the power law?

In almost all studies on service ecosystem network evo-
lution, degree distribution is a core element. Many studies
[29, 8, 21, 30] have concluded that the degree distribution
of the A-A network complies with the power law, and a gen-
erative model of the A-A network is built to support down-
stream tasks. However, based on the theoretical analysis and

16https://www.statista.com/statistics/2662 10/number-of-available-
applications-in-the-Google-play-store/

our experimental results, we believe that this conclusion may
be misleading due to insufficient statistics and inappropriate
evaluation indicators.

Figure 11 presents the results of the degree distribution
changes over time. The figure shows that the degree distri-
bution is quite consistent with the power law'”, especially on
the corrected ProgrammableWeb dataset. The existing stud-
ies usually adopt the p-value as evidence that the degree dis-
tribution of the ProgrammableWeb service ecosystem net-
work conforms to the power law. We first followed [29] and
conducted a goodness-of-fit test based on the Kolmogorov-
Smirnov (KS) distance to calculate a p-value to quantita-
tively measure the plausibility of the power law. The results
are shown in Figure 12.

We can see from Figure 12 that the p-value fluctuates
substantially. Thus, we argue that the results do not support
that the power law is a plausible hypothesis for the data:

e A p-value depends upon both the magnitude of as-
sociation and the precision of the estimate (the sam-
ple size), while a smaller sample size tends to result
in a larger p-value. p-values are typically used to
reach a conclusion of “significant” or “not significant”
based on whether the p-value is larger than a thresh-
old. Consequently, p-values are more similar to quali-
tative measurements than quantitative measurements.
For a detailed discussion we refer readers to [31].

e P-values are computed based on the assumption that
the null hypothesis is true. A p-value represents the
probability that the data deviates from the null hy-
pothesis by a certain amount. Consequently, a p-value
measures the compatibility of the data with the null
hypothesis—not the probability that the null hypothe-
sis is correct. Therefore, it is unreasonable to compare
p-values associated with different null hypotheses as
in [29].

To summarize, we argue that the current statistics
and measurement methods are insufficient, inappropri-
ate, or have difficulty supporting the hypothesis that the
degree distribution complies with the power law. Down-
stream tasks such as service recommendation and service
discovery based on the existing findings may risk incorrect
hypotheses and degrade the effectiveness of the method.

RQ3: [C-C] What are the changes in diversity and pop-
ularity of different categories in the service ecosystem?
Diversity reflects the vitality of an ecosystem and is also
positively related to the richness of the services that a service
ecosystem can provide [15, 32]. Understanding the chang-
ing trends of popular service categories in a service ecosys-
tem can provide developers with suggestions when provid-
ing new services. The C-C network naturally reflects the
diversity and the popularity of various categories in the ser-
vice ecosystem. The number of nodes indicates the diversity

171f consistent, the overall trend should be close to a straight line, not a
curve.

Mingyi Liu et al.: Preprint submitted to Elsevier

Page 10 of 16



year=2006 year=2007

@ Nodeath ¥ Deathpool . = Correted

year=2009 year=2010

year=2011 year=2012

year=2013

year=2014 year=2015

year=2016

year=2018

Figure 11: The degree distribution changes over time (yearly).
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Figure 12: The p-value for the power law changes over time
(yearly).

of service categories, and the locations (generated by visual
layout) and sizes of nodes (number of aggregated APIs) can
be used to indicate popularity.

Figure 14 depicts the diversity of the Programmable Web
service ecosystem changes over time by counting the num-
ber of nodes in the C-C network, which is generated from the
corresponding A-A network after removing isolated APIs.

ning. Although the node size has undergone a relative de-
crease, it still captures the center place, which means that
this category is often used with other categories (we all use
such services everywhere). For example, when searching for
a restaurant on a map, users also obtain additional informa-
tion, such as customers’ reviews and discounts.

eCommerce also appeared from the beginning, but it did
not undergo rapid development until recent years. However,
its popularity has remained consistent. In recent years, eCom-
merce nodes have become one of the largest node clusters in
the graph; that is, eCommerce is included as part of other
categories’ services more than ever before. Therefore, when
creating a new mashup to provide a new service, the mashup
may achieve a higher probability of recommendation if it in-
cludes eCommerce services.

Unlike the categories mentioned above, the search node
was initially very large and then gradually decreased. It also
moved to the edge of the graph. This implies that using com-
plete search services is not as necessary as it was before.
Instead, services may implement their own searches rather
than relying on search services provided by others.

Additionally, Figure 13 also reflects the slow update and

The red curve shows that the diversity of the Programmable Wéhcomplete inclusion of APIs and mashups in the current

service ecosystem first increased, then entered a plateau,
and began to decline rapidly after 2017.

The evolution of the C-C network is visualized using
Gephi 18 and shown in Figure 13, which also indicates the
changes in the popularity of different categories. In partic-
ular, Mapping has been a popular category from the begin-

18 An open graph viz platform: https://gephi.org

ProgrammableWeb dataset. For example, the APIs of speech
recognition, natural language processing (NLP), image pro-
cessing and other cognitive services, which have been pro-
moted by large companies such as Microsoft, Google, Ama-
zon, and Baidu in recent years, have not been included.

RQ4: [A-A] What are the changes in the number and size
of connected components over time?
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Figure 13: Visualization of the evolution of the category-category network (yearly).
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The connected components form a subgraph in which
any two vertices are connected to each other by paths that
are connected to no additional vertices in the subgraph. Con-
nected components are an important feature of the A-A net-
work. On the one hand, connected components can reflect
the development of the service ecosystem via their number
and size. Intuitively, we know that if the entire A-A net-
work is a large connected component, more combinations
are available, making it more likely that rich applications
(mashups) will be created. On the other hand, many service
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Figure 15: The number of connected components and the size
of the largest connected component (yearly).

recommendation and service discovery algorithms [14, 33,
29] are essentially performed on connected components that
reach a certain scale.

Figure 15 shows how the number of connected compo-
nents and the size of the largest connected components has
changed over time. The total number of connected com-
ponents first grew, then stabilized, and then began to de-
cline sharply after 2018, but the number of components
greater than 4 remained stable. The size of the largest
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Table 2

Top 5 most frequently co-occurring API pairs and 5 low-frequency but high-survival-rate

API pairs.
API1 API2 Active Use | Total Use | Survival Rate | Avg Days
/api/twitter /api/google-maps 63 185 0.34 | 1,405.09
/api/youtube /api/flickr 36 184 0.2 | 1,589.16
/api/twitter /api/facebook 64 179 0.36 | 1,414.26
/api/google-maps /api/flickr 47 169 0.28 | 1,608.62
/api/google-maps /api/youtube 48 157 0.31 1,596.5
/api/google-visualization | /api/google-maps 8 10 0.8 769.0
/api/facebook /api/instagram-graph 9 13 0.69 | 1,094.75
/api/instagram-graph /api/twitter 12 18 0.67 | 1,212.17
/api/google-maps /api/google-geocoding 21 33 0.64 | 1,117.75
/api/google-maps /api/zillow 7 11 0.64 | 1,070.25
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Figure 16: Survival rate distribution of mashups that use co-
occurring APls.

connected component has continued to shrink since 2013;
by 2020, it was below 200. The figure also shows that many
isolated connected components exist in the A-A network and
that most of the connected components are very small (less
than 5). From a data science perspective, most of the data
(isolated small components) provide poor information when
performing tasks such as data-driven service recommenda-
tion, service discovery, and service composition. The size of
the largest connected component is also quite small, which
introduces the small data problem and greatly limits the abil-
ity to apply advanced machine learning methods [34, 35, 36,
37] to service computing.

RQS5: [A-A] Are mashups that use frequently co-occurring
APIs more likely to survive?

The existing service recommendation methods [5, 38]
essentially involve statistical analysis and processing of the
frequency of co-occurring APIs. The more frequently an
API pair appears, the more likely it is to be recommended
to developers. This naturally raises the question of whether
frequently co-occurring APIs truly represent a good combi-
nation. More directly, is the survival rate of mashups that
use frequently co-occurring APIs higher?

Figure 16 demonstrates the changes of mashups’ aver-
age survival rates over the co-occurring frequencies of APIs.
The survival rate reaches the highest level when the frequency
is between 40 and 60 and then decreases, which clearly in-

dicates that using high-frequency pairs does not mean a ten-
dency to survive.

Table 2 lists some co-occurring APIs as examples: the
first five are the most frequently co-occurring API pairs, and
the last five are low-frequency (e.g., less than or approxi-
mately 30 times) but high-survival-rate API pairs. Clearly,
the mashups that invoke the frequently co-occurring API pairs
do not have a higher survival rate. The survival rates of the
five API pairs with the highest usage frequency are all be-
low 40%, and those that use (YouTube and Flickr) are as low
as 20%. However, the survival rate of some API combina-
tions used at low frequencies exceeds 60%, and the highest
reach 80%. Another interesting observation is that among
the high-survival API pairs, in most cases, the two APIs are
from the same developer, or one of the API categories is So-
cial (e.g., Twitter, Facebook, or Instagram Graph).

In conclusion, mashups that use frequently co-occurring
API combinations do not mean that they are more likely
to survive. This phenomenon has brought new challenges
to service recommendation and service composition, such as
how to consider factors such as survival rate and developer
relationships in recommendation or composition.

RQ6: [M-A] Are new mashup sizes becoming larger over
time?

With the rapid development of the Internet, user require-
ments have become increasingly complex. It has become
a trend for service providers to connect more external ap-
plications to their own platforms to satisfy these increas-
ingly complex user requirements [39, 40, 19]. For exam-
ple, WeChat and Alipay achieved this by Mini-program; Mi-
crosoft released Office'” to enable users to access Word, Pow-
erPoint and Excel in one app. Therefore, a large size mashup
tends to have more complete functionalities.

We wanted to know whether the abovementioned evo-
lutionary trend is also occurring in Web application-based
mashups, that is, whether mashups have changed to meet the
increasingly complex requirements of users.

A mashup’s size can be denoted by the number of APIs
it invokes. Figure 15 shows a box chart of the number of

https://play.google.com/store/apps/details ?id=com.microsoft.office.
officehubrow
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Figure 17: The complexity of mashups changes over time
(yearly).

APIs invoked by newly submitted mashups each year. From
the figure, we can see that most mashups provide only a sim-
ple service and the number of APIs they invoke is less than
3. The overall size of newly submitted mashups changed
very little between 2006 and 2020: the average numbers of
APIs they invoke remains steady between 1.2 and 2.5. The
boxplot in Figure 17(b) shows the changes in size among all
mashups. Apparently, no large change has occurred since
2012 in any part of this boxplot. Another interesting phe-
nomenon is that the size of new mashups gradually increased
each year prior to 2012. The most complex mashup added in
2012 was composed of 36 APIs, which is a fairly dramatic
number. However, after 2012, the complexity of newly sub-
mitted mashups began to decline.

The size of mashups in recent years has not increased,
which may imply that Web-based mashups cannot adapt well
to the increasingly complex requirements of users. The pop-
ularity of the mobile Internet, the lack of open APIs, and the
existence of commercial barriers may be other reasons for
the decline in Web-based mashups.

7. Threats to Validity

In this section, we will discuss the threats to validity in
detail. There are three main threats: An Alternative Method,
A More Appropriate Probability Distribution, Time Er-
rors and Accuracy of Rule-based Techniques.

An Alternative Method. There are two categories of
methods to perform the estimation of death time:

1. One is the overall estimation based on the probabil-
ity distribution represented by the method proposed in
Section 4.1. This kind of method is independent of the
information in the specific API/mashup and can only
guarantee a reasonable overall sample distribution but
cannot provide a precise estimation.

2. Another method that we did not adopt is to construct
a regression model and use it to predict the number
of days each unavailable API/mashup survives. Ide-
ally, this is the best method because it ensures both
a reasonable overall distribution and individual accu-
racy. Unfortunately, this method is not practicable on
the ProgrammableWeb dataset. First, the amount of
data is too small, which hinders deep learning-based
regression models. Second, the information provided
in the ProgrammableWeb dataset makes it difficult to
identify features related to survival days, which hin-
ders the feature engineering-based machine learning
regression models.

As we stated at the beginning of Section 4, our proposed
method is not perfect and can only guarantee a reasonable
overall data distribution, but this is sufficient in the scenario
of evolutionary analysis. When we have more labeled data
and richer information, it will be better to construct a re-
gression model, which will produce more accurate results.
Therefore, it is important to emphasize that the method pro-
posed in this paper is a relatively reasonable and feasible way
to address the evolutionary analysis scenario under the cur-
rent data conditions.

A More Appropriate Probability Distribution. In Sec-
tion 4.1, we assumed that the longevity of APIs/mashups
follows a normal distribution and confirmed that the overall
distribution and the data used for estimation were identically
distributed by the Z-test. However, this does not indicate that
the normal distribution is the best distribution. As more la-
beled data are provided, we may find that the survival days
of the service follow a more complex distribution so that we
can replace the normal distribution now used for estimation
with a more accurate probability distribution. It should be
noted that under the condition of limited observation data, it
is not suitable to choose a complex distribution—it is more
robust to utilize a simple distribution such as the normal dis-
tribution.

Time Errors. In Section 4.1, we select 20 APIs to check
their dead times and found an error of 50 days. This error
may slightly affect some of the descriptions in some of the
research questions; for example, the turning points in RQ1
may be offset, but these do not affect the final conclusions of
the research questions in this paper. We have also repeated
the experiment several times to mitigate this threat.

Rule-based Techniques. We use rule-based techniques
when checking the availability of APIs and Mashups. Due
to the limitation of rule-based techniques, there may be a
small number of false positive and false negative samples,
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which may result in slight variations in specific values, such
as those in Table 1. To deal with this issue, we have taken
repeated tests and manual sampling to verify the validity of
these techniques. More manual checking and improving the
rules-based technology can further reduce the risks associ-
ated with the rules-based technology.

8. Conclusion

In this paper, we analyzed the evolution of the Programm-
ableWeb service ecosystem from a dynamic network per-
spective. We first summarized the quality issues in the orig-
inal ProgrammableWeb dataset and analyzed the negative
effects of these quality issues on traditional service comput-
ing tasks. Then, we proposed novel methods to correct the
evolution-related data quality issues, including API/mashup
availability status, API/mashup death time, and mashup com-
position. Finally, we conducted a set of extensive experi-
mental analyses on the corrected Programmable Web dataset,
and the most intriguing finding is that the development of
the ProgrammableWeb service ecosystem is less optimistic
than that reported by the existing studies. In fact, we dis-
covered considerable evidence that the ProgrammableWeb
is declining. Our empirical analysis has identified a num-
ber of research challenges and opportunities. To ensure that
the ProgrammableWeb community continues to flourish, we
encourage researchers, developers, and managers to address
these challenges with innovative solutions.
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