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Abstract

Automated production systems (aPS) are highly customized systems that consist of hardware and software. Such aPS are controlled
by a programmable logic controller (PLC), often in accordance with the IEC 61131-3 standard that divides system implementation
into so-called program organization units (POUs) as the smallest software unit and is comprised of multiple textual (Structured Text
(ST)) and graphical (Function Block Diagram (FBD), Ladder Diagram (LD), and Sequential Function Chart(SFC)) programming
languages that can be arbitrarily nested.

A common practice during the development of such systems is reusing implementation artifacts by copying, pasting, and then
modifying code. This approach is referred to as code cloning. It is used on a fine-granular level where a POU is cloned within a
system variant. It is also applied on the coarse-granular system level, where the entire system is cloned and adapted to create a
system variant, for example for another customer. This ad hoc practice for the development of variants is commonly referred to as
clone-and-own. It allows the fast development of variants to meet varying customer requirements or altered regulatory guidelines.
However, clone-and-own is a non-sustainable approach and does not scale with an increasing number of variants. It has a detrimental
effect on the overall quality of a software system, such as the propagation of bugs to other variants, which harms maintenance.

In order to support the effective development and maintenance of such systems, a detailed code clone analysis is required.
On the one hand, an analysis of code clones within a variant (i.e., clone detection in the classical sense) supports experts in
refactoring respective code into library components. On the other hand, an analysis of commonalities and differences between
cloned variants (i.e., variability analysis) supports the maintenance and further reuse and facilitates the migration of variants into a
software productline (SPL).

In this paper, we present an approach for the automated detection of code clones within variants (intra variant clone detection)
and between variants (inter variant clone detection) of IEC61131-3 control software with arbitrary nesting of both textual and
graphical languages. We provide an implementation of the approach in the variability analysis toolkit (VAT) as a freely available
prototype for the analysis of IEC 61131-3 programs. For the evaluation, we developed a meta-model-based mutation framework to
measure our approach’s precision and recall. Besides, we evaluated our approach using the Pick and Place Unit (PPU) and Extended
Pick and Place Unit (xPPU) scenarios. Results show the usefulness of intra and inter clone detection in the domain of automated
production systems.

Keywords: Clone Detection, Variability Mining, IEC 61131-3, Reverse Engineering

1. Introduction

During the evolution of software systems, code cloning is
a common practice [1] for reusing software artifacts. To cope
with an increasing market for custom-tailored software systems,
developers often follow a clone-and-own approach where exist-
ing variants are copied and altered to create new variants [2].
It is an unsustainable approach that reduces the overall soft-
ware quality due to bug propagation, increases the maintenance
effort, and hinders further reuse [3]. In the field of clone de-
tection, research focuses on high-level programming languages
such as Java or C [1, 4, 5, 6]. In the domain of automated pro-
duction systems (aPS), code cloning is a common practice due
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to frequently changing products, customer requirements, and
altered regulatory guidelines [7, 8].

The state of the art programming languages for program-
ming logical controller software is defined in the IEC 61131-3
standard [9]. It comprises five programming languages, the two
textual languages Structured Text (ST) and Instruction List (IL),
and the three graphical languages Sequential Function Chart
(SFC), Ladder Diagram (LD), and Function Block Diagram
(FBD). The standard allows the nesting of languages languages,
such as using Structured Text (ST) in Function Block Diagram
(FBD) implementations. The control program developers can
select the language that is best suited for a particular task, sig-
nificantly increasing their productivity. Programs implemented
according to IEC 61131-3 are divided into POUs as the small-
est software unit in a program. Such systems are often reused
by copying the whole system and then modifying it to create
new and independent system variants (referred to as clone-and-
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own). Furthermore, developers also often reuse single POUs
within a system (referred to as classical code cloning), for ex-
ample, the POU that controls a sorting conveyor that can occur
several times in a production system [10, 11].

To restore the sustainable development of cloned system
variants, they need to be re-engineered into a structured reuse
approach, such as a software product line (SPL) [12, 13]. There-
fore, a detailed analysis of system variants concerning code
clones within a variant (intra clone detection) and commonal-
ities and differences between cloned variants (inter clone de-
tection) is essential. It serves as a first step to re-engineer sys-
tem variants into an SPL [14, 15] and to refactor code clones
into reusable and configurable software artifacts such as library
components [16].

We propose a fully customizable comparison approach for
IEC 61131-3 in order to support the detection of clones within a
variant (intra variant clone detection) and between variants (in-
ter variant clone detection). This supports developers in tracing
clones within and between variants, which helps them create
reusable components within systems and migrating system vari-
ants into an SPL, respectively. Specifically, the contributions of
this paper are as follows:

• A model-based, fine-grained, and fully customizable ap-
proach for the detection of code clones within variants
(intra clone detection) and analysis of commonalities and
differences between cloned variants (inter clone detec-
tion) of IEC 61131-3 programs composed of arbitrarily
nested sub languages.

• Publicly available prototype implementation called VAT,
evaluation data and results1.

• A mutation framework for the evaluation of clone detec-
tion tools for IEC 61131-3 systems.

• Detailed evaluation and analysis of the approach by ap-
plying it to a large clone data set created using the mu-
tation framework, as well as to the PPU and xPPU case
study systems.

The remainder of this paper is structured as follows: Sec-
tion 2 provides relevant background on the IEC 61131-3 stan-
dard with the utilized programming languages and describes
code clones and variability analysis. Section 3 presents our ap-
proach for detecting clones within and between variants. In
Section 4, we explain the implementation of our approach as
a tool called VAT. In Section 5, we evaluate our approach by
performing qualitative and quantitative analyses. Finally, we
discuss related work in Section 6 and conclude in Section 7.

2. Background

This section provides background on IEC 61131-3 control
software, types of code clones, and variability analysis.

1https://github.com/TUBS-ISF/IEC_61131_3_Clone_Detection
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Figure 1: IEC 61131-3 software model [17].

2.1. IEC 61131-3 Control Software

Automated production systems are typically controlled by
PLCs, which are typically programmed in accordance with the
IEC 61131-3 standard. A PLC executes programs in a cycle
that is divided into three phases input scan, program execution,
and update of outputs. Figure 1 illustrates the IEC 61131-3
software model. The highest level of a PLC controlled system
is described in a configuration, which is assigned to a partic-
ular type of control system, including the hardware, i.e., pro-
cessing resources, memory addresses for all input and output
channels, as well as the system capabilities. Within a configu-
ration, there are resources, which are a processing facility that
can execute IEC programs. A resource can contain one or more
tasks controlling the execution of programs and function blocks.
Programs are defined as a logical assembly of all programming
language elements and constructs necessary to fulfill plant ma-
chinery’s control task. Functions and function blocks are the
basic elements and contain specific implementation. Functions
do not have a state and always return the identical output given
the same input. In contrast, function blocks contain a state and
tracking the execution history. Programs, function blocks and
functions are called program organization units (POUs), within
the IEC 61131-3. A POU contains a declaration part ( 1 Fig-
ure 5) where variables and data types are defined and a body
part ( 2 Figure 5) where algorithms are implemented. For
the implementation of POUs, the IEC 61131-3 provides multi-
ple languages, which are Structured Text (ST) shown in Sec-
tion 2.1.1, Function Block Diagram (FDB) reflected in Sec-
tion 2.1.2, Ladder Diagram (LD) illustrated in Section 2.1.3,
Sequential Function Chart (SFC) which is explained in Sec-
tion 2.1.4. The last implementation language is Instruction List
(IL), an assembly-like programming language, which we don’t
consider due to its deprecation in the previous version of the
IEC 61131-3 standard. The control program developers can se-
lect the language that is best suited for a particular task, signif-
icantly increasing their productivity. Moreover, different lan-
guages can be nested so that developers can flexibly switch lan-
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guages based on the specific tasks, as explained in Section 2.2.

2.1.1. Structured Text (ST)
ST is a high-level textual language that looks syntactically

similar to C or Pascal [18]. An ST implementation is a compo-
sition of single steps called statements (cf.Listing 1). Available
statement types are for, while, if, case, assignment, and function
call. ST allows implementing complex algorithms, long math-
ematical functions, array manipulation, and repetitive tasks.

Listing 1: Example of a Structured Text program.

1 IF A THEN
2 D := A AND (B OR C ) ;
3 END IF

Listing 1 shows an example ST implementation, which assigns
the logical expression (A ∧ (B∨C)) to the variable D under the
condition that A is true.

2.1.2. Function Block Diagram (FBD)
FBD comes from the field of signal processing, where in-

teger and/or floating-point values are processed [19]. It is a
graphical programming language that can describe the function
between input and output variables. A POU implemented in
FBD contains a declaration part and an implementation part.
The declaration part is used to define variables or constants,
either graphical or textual. The implementation part uses net-
works on the top layer to structure the implementation. Net-
works represent either a logical or arithmetic expression. Ev-
ery network has a mark that can be used as a jump target from
other networks. For the implementation of networks, we can
use functions such as logical AND and function blocks such as
timer on delay. All function blocks have input and output ports,
which can be connected with variables or with other blocks.
Blocks describe a function between input and output.

AND

OR
C

A

B
D

Function Block

Transition

Figure 2: LD example

Figure 2 illustrates a FBD implementation of a network con-
sisting of a logical AND and a logical OR Function Block. The
resulting logical expression of this implementation is (A∧ (B∨
C) = D.

2.1.3. Ladder Diagram (LD)
LD is a graphical programming language such as FBD and

resembles an electric circuit structure. An LD implementation
contains a series of networks that are limited on the left and
right sides by a current vertical line called the power rail shown
in Figure 3. Networks are implemented using contacts, coils,
and connecting lines as in a circuit diagram. Contacts pass the
condition true and false from left to the right side. A coil trans-
mits the value of the connections from left to right and stores
it in a variable. In addition to contacts and coils, the usage of
function blocks and programs is allowed.

A B Coil

Contact

C

D

Power 
Rail

Figure 3: LD example

Figure 3 shows an LD implementation which uses three
contacts (A,B,C) and a coil (D) to express the following ex-
pression (A ∧ (B ∨C) = D.

2.1.4. Sequential Function Chart (SFC)
SFC is a graphical programming language used for PLCs

based on binary Petri nets [20]. It can be used to program
processes divided into single steps. The main components of
an SFC implementation are Steps with associated Actions and
Transitions with assigned conditions, as shown in Figure 4. An
SFC implementation consists of a series of steps connected with
directed Transitions. Steps in an SFC implementation can be
active or inactive. When a Step is active, the associated actions
are executed. A step is triggered. Either the step is an initial
step specified by the developer, or all the steps above are active,
and the connecting transition is active. Actions can be either
entry or exit action. An entry action is executed right after a
step is activated, and the exit action is executed after the step
turns from active to inactive.

Step 1

Step 2 Step 3

N    Action 1

Transition 1

Transition 2

Figure 4: LD example

Figure 4 shows an example SFC implementation. Step1 is
the initial step with the assigned Action1. When the condition
of Transition1 evaluates to true, Step2 and Step3 are executed
parallel. Both steps are joined when the Transition2 condition
evaluates to true.

2.2. Nesting of IEC61131-3 Languages

An additional challenges for the analysis of IEC 61131-3 is
the language nesting. Figure 5 shows the implementation of a
program using four languages for its implementation. On the
top, we can see the global variable declaration with the defi-
nition of the Boolean variables A and B 1 . The program is
implemented in SFC 2 and has one step that executes a time-
delayed (D) action, which is implemented using LD. In the LD
implementation 3 , we use an execute function block that ex-
ecutes ST code 4 .

2.3. Types of Clones

Two fragments of code that are similar or even equal are
called code clones. The similarity between code clones can be
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Figure 5: Example IEC61131-3 Program utilizing four programming languages
shown in TwinCAT3[21].

assessed based either on their textual representation or on their
functionality. Textual clones are often the result of copying and
pasting existing code to another location where it can then be
adapted if necessary. Roy et al. [5] classify code clones accord-
ing to the following four types:

• Type I: Two code fragments that are similar except for
changes in white space or variation in code comments.

• Type II: Code fragments that are syntactically equal but
can show renaming of literals or identifiers as well as the
changes of Type I clones.

• Type III: In addition to the properties of Type 2 clones,
the fragments can show further modifications such as ad-
ditional statements, added, or deleted lines.

• Type IV: Two code fragments that offer the same func-
tionality but are implemented differently. Type IV clones
are also called semantic clones.

In Figure 6 we show a cloned pair of ST implementations.
On the left, if the variable CONDITION evaluates to true (cf.
line 1), we assign the value 5 to the variable VALUE (cf. line 2).
On the right, the variable VALUE is renamed to VAR1 (cf. line
2), and the if condition block is extended with an additional
assignment (cf. line 3). So these code fragments are type III
clones of each other. We can also apply the commonly available
definition of clones to IEC 61131-3 languages. The only differ-
ence is the name of the artifacts. In the context of IEC systems,
we speak of configurations or POU, whereas in object-oriented
languages, for example, classes and methods are common arti-
facts.

1 IF CONDITION THEN
2 VALUE := 5 ;
3 END IF

1 IF CONDITION THEN
2 VAR1 := 5 ; //RENAME
3 VAR2 := 7 ; //ADD
4 END IF

Figure 6: Example Structured Text Clone Pair

2.4. Variability Analysis

In contrast to clone detection, variability analysis describes
the identification of similar and variable parts between a family
of software variants. A family of software is a set of programs
that has common properties [22]. One member of this software
family represents a valid realization of one product known as a
software variant. Depending on how such a software family has
been created, the effort of creating new variants and maintaining
existing products increases rapidly [12]. A variability analysis
is recommended to re-instantiate software variants’ sustainable
development in a system created with clone-and-own. Such an
analysis can support developers in maintaining software fam-
ilies, e.g., tracing bugs between variants, or helping them by
migrating the whole software family into an SPL [12, 23, 24].

3. Clone Detection Approach

This section presents our approach for the detection of code
clones in IEC 61131-3 control software. We first explain the
general comparison approach and then each step in more detail
in the following sections. Figure 7 illustrates the process for the
detection of code clones.

In the first step, the control software is parsed 1 . The
parsing process transforms a PLCOpenXML file into a model
based on a set of meta-models. We created these meta-models
as an abstraction of the IEC 61131-3 standard to reduce the
complexity. A PLCOpenXML file contains the implementation
of a system as a set of POUs. Every POU may be implemented
in one of five languages proposed by the IEC61131-3 and can
contain nested implementations in different languages.

A configurable comparison metric 2 can customize the
comparison process. This metric is a composition of options
and weighted attributes that the user can customize. The in-
put model(s) are decomposed into smaller elements based on
selected options. These elements are then compared with each
other, and a similarity value is computed based on the weighted
attributes.

The comparison step 3 receives as input either one in-
stance of a model representing a system (in case of intra clone
detection) or two instances, each representing a system variant
(in case of inter clone detection). The comparison process de-
composes the input models into smaller elements and then com-
pares them to compute pairwise similarities based on the com-
parison metric. The difference between intra and inter clone de-
tection is only in the pairing of elements for comparison. In the
case of intra clone detection (i.e., the detection of clones within
a system), all pairwise combinations of all POUs in one model
are created and compared. In contrast, the inter clone detection
(i.e., the detection of clones between variants of a system) re-
ceives two models (each representing a variant) as input, and
all POUs within the first model are compared against all POUs
of the second model. The result of the comparison process is a
similarity tree in which each node is a description of a weighted
edge in a completed, weighted, bipartite graph.

The matching step 4 calculates an independent edge set on
this graph to filter it and obtain the most similar elements. The
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Figure 7: Process for the detection of code clones.

independent edge set contains information about the relation of
elements that are finally presented 5 to the user in the form
of a family model for more straightforward interpretation than
just a list of matched pairs.

3.1. Parsing Nested IEC 61131-3 Code

The parsing process transforms a PLCOpenXML file into
an instance of our meta-models. We decided on this file format
because most of the tools that deal with IEC 61131-3 code sup-
port the export of projects into this format. Besides, this format
reflects the project structure and delivers meta information of
the project. To process the project structure, we created a set of
meta-models that capture the extent of PLCOpen projects.

<<Meta-Model>>
Expression

<<Meta-Model>>
Expression

<<Meta-Model>>
Configuration

<<Meta-Model>>
Configuration

<<Meta-Model>>
SFC

<<Meta-Model>>
SFC

<<Meta-Model>>
ST

<<Meta-Model>>
ST

<<Meta-Model>>
FBD

<<Meta-Model>>
FBD

<<Meta-Model>>
LD

<<Meta-Model>>
LD

<<Meta-Model>>
Diagram

<<Meta-Model>>
Diagram

<<Meta-Model>>
Language

<<Meta-Model>>
Language

Figure 8: Meta-models and their dependencies as UML class diagram.

Figure 8 illustrates a schematic overview of our meta-model
architecture. On the top level, the configuration meta-model
models the project structure and contains elements such as the
POUs and their implementations. As an abstraction layer be-
tween the configuration and the implementation of each POU,
we introduced the Language meta-model. Additionally, we cre-
ated a meta-model for each of the IEC 61131-3 programming
languages that inherit from the Language meta-model, except
for IL, which has been deprecated in the last version of the
standard. As another abstraction level, the diagram meta-model

contains the common elements of the two graphical languages
FBD and LD such as networks, ports, and jumps. Moreover, we
created a meta-model for expressions used in all programming
languages, such as the condition of contacts in an LD imple-
mentation or a Boolean expression in an ST statement. We cre-
ated eight meta-models that contain a total of 51 classes and 18
enumerations. Generally, our meta-models and their classes al-
low capturing detailed information about systems and artifacts,
which is essential for a detailed analysis of such systems. Fur-
thermore, our meta-models are an abstraction of the IEC 61131-
3 standard, which reduces the complexity of systems imple-
mented in accordance with it. As input for the parsing process,
we utilize a PLCOpenXML file and get a meta-model instance
as output, which is the input for the comparison process.

In Listing 2 and Listing 3 we illustrate an example POU
declaration and implementation, respectively. Figure 9 shows
the respective model representation as UML object diagram.
The root is the POU, which has the declaration and the Struc-
turedText objects as child elements. The declaration object con-
tains the defined variables A and B and the implementation ob-
ject the statements of our example ST implementation.

3.2. Comparison Metric Definition

A fully customizable, fine-grained comparison metric drives
the comparison of IEC 61131-3 artifacts. It allows domain ex-
perts to customize the comparison process. A metric is a hier-
archical composition of options and attributes. Attributes are
atomic comparison operations that compare two elements with
each other, such as comparing two statement types. Each at-
tribute’s result is a float value between 0 and 1, which indicates
how similar are the compared elements in percent. Options can
activate and deactivate parts of the comparison process, such
as the comparison of global variables. Moreover, it is possi-
ble to adjust every attribute and option with a weight, allowing
the customization of the metric and prioritization of parts of
the comparison. In general, options define which elements to
compare, and attributes define how to compare these elements.

Figure 10 shows a part of a metric for the comparison of
POUs. The composition of options and attributes has the same
structure as the model (cf. Figure 9). In this graph, options can
contain options and attributes, and attributes are leaves. In the
example metric in Figure 10 we compare POUs only based on

5



Listing 2: POU declaration

PROGRAM EXAMPLE
VAR

A: BOOL ;
B : BOOL ;

END_VAR

Listing 3: POU implementation

IF A THEN

B:= FALSE ;
END_IF

Symbol : String = “A“

EXP1 : VariableExpression

Symbol : String = “A“

EXP1 : VariableExpression

Identifier : String = “Example“

P1 : POU

D1 : Declaration ST1 : StructuredText

implementations

name : String = “A“
Type : Bool

V1 : Variable

name : String = “B“
Type : Bool

V2 : Variable

declareted variables

I1 : If

statements

CB1 : ConditionalBlockcondition

A1 : Assignment

sub statements

right

left 

Symbol : String = “A“

EXP2 : VariableExpression

Symbol : String = “A“

EXP2 : VariableExpression

Symbol : BOOL = “FALSE“

L1 : Literal

Symbol : BOOL = “FALSE“

L1 : Literal

Figure 9: Instance of the meta-model, as UML object diagram, representing the
IEC 61131-3 code shown in Listing 2 and Listing 3.

their variables (indicated by the X on the left of the respective
option) and ignore their implementation. Variables are com-
pared with two attributes, which compare the type and the name
of variables. Selected attributes are adjusted with a weight that
is shown on their right. In total, our clone detection technique
for IEC 61131-3 supports 17 options and 65 attributes for the
definition of a custom comparison metric. A detailed list of all
attributes and options is available in our online material 2.

More formally, a comparison metric M is represented by a
root option. An option o is a triple (O′, A, t,w) where O′ is a set
of sub-options, A is a set of attributes, t is the type of artifact the
option applies to, and w ∈ [0, 1] is a weight value. An Attribute
a ∈ o.A is a pair ( f ,w), where f is a function f (x, y) = s with
x and y being implementation artifacts (i.e., elements of our
meta-model) and s ∈ [0, 1] the computed similarity value, and
w ∈ [0, 1] is a weight value.

3.3. Comparison Process for IEC 61131-3 Models

In this section, we present the general comparison approach.
In Section 3.3.1 we describe the comparison of model elements
and the resulting similarity tree. Each node of the tree describes
a relation between an element of the first and the second input
model. Finally, we describe how we cope with nested imple-
mentation artifacts shown in Section 3.3.2.

2github.com/TUBS-ISF/IEC_61131_3_Clone_Detection

POU Option 1.0

Option Name WeightAttribut Name Category

Variable Option 1.0

Variable Name 0.5

Variable Type 0.5

Impl Option 0.0

Variable Attributes

Language Attributes
Structured Text Attributes

Figure 10: An illustration of a part of our comparison metric.

3.3.1. Comparison Approach and resulting Similarity Tree
The comparison function shown in Algorithm 1 receives

two artifacts of the same type and the option for comparison. If
both artifacts have child elements and the comparison of these
elements is enabled in the metric (i.e., an option with matching
type exists), the function is called recursively for each pair of
child artifacts. This way, we systematically perform all pair-
wise comparisons of elements. Considering the input as sets of
artifacts X and Y , we create all pairs X × Y and compute their
similarities based on the comparison metric (specifically, the
current option). The resulting data structure is a tree comprised
of three types of similarity nodes: pairs of elements, options,
and attributes. Pairs of elements can have options and attributes
as children, options can only have element pairs as children,
and attributes do not have children.

After the forward path of the recursion in Algorithm 1, only
the attribute nodes (which are the leaves) of the resulting sim-
ilarity tree have a similarity value assigned, as shown in Fig-
ure 11. It shows the similarity tree that is created during the

2
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Artifacts A
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B
0.0

B

A
0.0

A

B
0.0

A

A
0.0

Figure 11: Similarity tree of the comparison of the example model shown in
Figure 9 with itself using the example metric shown in Figure 10.

comparison of our example model shown in Figure 9 driven by
the example metric shown in Figure 10. Driven by the metric,
the process compares both models systematically and creates
pairs of elements for the comparison. The root node of the sim-
ilarity tree is the pair of POUs with the name EXAMPLE ( 1
in Figure 11). Due to the selected variables option in the metric
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Algorithm 1 Comparison Algorithm
1: function compare(Artifact x, Artifact y, Option o) . Compare the current pair of artifacts x and y using option o
2: ArtifactPairSimilarityNode n← (x, y, 0.0) . Create Artifact Pair Node (artifact1, artifact2, similarity)
3: for all Option o′ ∈ o.O′ do . For all options
4: OptionSimilarityNode on← (o′, 0.0) . Create Option Node (option, similarity)
5: for all (x′, y′) ∈ x.children × y.children : x.t = y.t = o′.t do . For all pairs of child artifacts that match the option type
6: n′ ← compare(x′, y′, o′)) . Recursively compare pairs of child artifacts
7: on.children← on.children ∪ { n′ } . Add child artifact pair node as child to current option node
8: on.similarity← on.similarity + n′.similarity . Add child artifact pair similarity to similarity of current option node
9: end for

10: on.similarity← on.similarity ∗ o′.w . Adjust similarity by option weight
11: n.children← n.children ∪ { on } . Add option node as child to current artifact pair node
12: n.similarity← n.similarity + on.similarity . Add option node similarity to similarity of current artifact pair node
13: end for
14: for all Attribute a ∈ o.A do . For all attributes
15: AttributeSimilarityNode an← (a, a. f (x, y) ∗ a.w) . Create Attribute Node (attribute, similarity)
16: n.children← n.children ∪ { an } . Add attribute node as child to current artifact pair node
17: n.similarity← n.similarity + an.similarity . Add attribute node similarity to similarity of current artifact pair node
18: end for
19: return n
20: end function

(Figure 10), all pairwise combinations of variables are created
and compared. The pairs are compared using the attributes that
are contained in the metric, which are Variable Name and Vari-
able Type ( 3 Figure 11). Only the attributes have a similarity
value after the comparison that needs to be propagated to all
other nodes.

The similarity values of the remaining nodes are set on the
backward path of the recursion where the weighed similarity
values are propagated upward in the similarity tree, as shown in
Figure 12. First, the leaf artifact pairs ( 1 in Figure 12) update
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Figure 12: Similarity tree shown in Figure 11 after the similarity values have
been propagated upward.

their similarity by based on the similarities of their attributes.
After that, the variables option ( 2 in Figure 12) updates its
similarity based on their children’s similarity values. Finally,
the similarity value of the root artifact pair ( 3 in Figure 12) is

updated.
Each node in this graph describes a weighted edge between

an element of A and B, which expresses the relation between
them (cf. Figure 11. The edge’s weight is a float value between
0 and 1 reflects the similarity between both elements. All nodes
in this graph can be considered as a completed weighted bipar-
tite graph between both sets of elements.

3.3.2. Detecting Nested Implementations
Our meta-models are designed to store different implemen-

tation languages in one model. This allows us to compare dif-
ferent combinations of nestings in the implementation, such as
an action in an SFC implementation that is implemented in an-
other language. To compare different language nestings, we
extended the metric with pointers at any place where IEC im-
plementations can be nested. This allows to jump to the corre-
sponding language options and attributes whenever an artifact
with a type is detected that corresponds to another language. In
Figure 17 and Figure 19, this is indicated by black arrows on the
left side. The whole process is called recursively, which allows
comparing nestings of any level. We extended the similarity
tree with an implementation option for artifacts with a nested
implementation. To the best of our knowledge, this is the only
work that provides this functionality. This comparison is possi-
ble based on the abstraction level in our meta-model structure,
which allows us to model abstract languages on the one hand.
On the other hand, the recursively defined comparison approach
compares models based on a fully customizable metric.

3.4. Matching Process using the Similarity Tree

The resulting similarity tree is processed to match each el-
ement of the one input model to at most one element of the
other input model. This matching is important, as the relations
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Figure 13: Example completed weighted bipartite graph 1 and a calculated
independent edge set of this graph 2

identified during the comparison are usually ambiguous as ele-
ments can be contained in multiple pairs. For instance, the chil-
dren of the variables option ( 2 in Figure 12) are all pairwise
combinations of the input models’ variables. The result con-
tains the triples (A.A, B.A, 1.0), (A.A, B.B, 0.5), (A.B, B.A, 0.5),
(A.B, B.B, 1.0), which are visualized as a completed, weighted,
bipartite graph ( 1 in Figure 13). Every node on the left is
connected with all nodes on the right and vise versa. During
the matching phase, the graph is filtered and afterward contains
only element-pairs with the highest similarity, also known as
an independent edge set. Therefore, we use an approximation
algorithm that sorts the edge set by similarity and picks the
elements with the highest similarity. After that, selected ele-
ments are marked to prevent them from being selected again.
2 in Figure 13 shows the calculated matching of our exam-
ple. Finally, we can update the solution and get a similarity of
100% between both models as expected because we compared
a model with itself.

3.5. Presentation of the Result

The last step in our process is the presentation. In contrast to
other clone detection approaches that present results as and edit
script, we visualize the results as a family model [25]. Family
models represent the variable architecture of product lines in-
dependently of the programming or modeling languages. It is
a comprehensible representation of commonalities and differ-
ences between artifacts. A further advantage of a family model
is that it is possible to derive a domain-level feature model
from it. A family model contains three different element types:
mandatory, optional, and alternative are assigned using an ad-
justable threshold of λ. Mandatory elements are marked with
an exclamation mark ! and have a similarity value larger than
λ, which means that they are common in both models or code
clones. Optional elements are marked with a question mark ?
and have a similarity of zero, which means that they are only
contained in either of the two variants or code fragments. The
last element type is alternative, which is marked with a left and
right arrow and assigned when 0 < similarity < λ. Alter-
native elements are similar to each other but not equal, as is the
case after a smaller code modification. In Figure 14, we show
the resulting family model of the comparison between our ex-
ample program (Figure 9) and a modification of it. We extended
the implementation with an assignment and added the variable
C which are marked with the blue question mark.

Figure 14: Resulting family model of the comparison between the example in
Figure 9 and a variant of it.

3.6. Summary

In this section, we showed our approach for the detection of
fine-grained changes between implementation artifacts. This
approach can detect code clones in variants and detect vari-
ability between variants. Based on the parsing process, Type
I clones are detectable due to the code normalization utilized
by the lexer. Type II clones can be detected based on utilized
attributes that compare different properties of the respective im-
plementation artifacts, such as the name of the type or more spe-
cific attributes. The detection of Type III clones in fine-grained
elements such as a statement with a changed expression can be
detected with attributes. Cloned code fragments are visualized
in the family model with the . These elements result from
the similarities of their nested artifacts and can show changes on
cloned code and differences between two variants. This clone
detection can be used to detect variation points between two
variants.

4. Implementation

In order to evaluate our approach, we implemented it in a
publicly available tool we call the Variability Analysis Toolkit
(VAT)3.

4.1. Implementation Techniques

Meta models that describe the IEC 61131-3 project struc-
ture are created with the Eclipse Modeling Framwork (EMF),
which utilizes Ecore. Ecore is a meta-model that represents an
implementation of the Essential Meta-Object Facility (EMOF),
which is a subset of the Meta-Object Facility™ (MOF)4, a mod-
eling standard defined by the Object Managment Group (OMG)5.
To transform PLCOpenXML into a model representation, we
created a parser using ANother Tool for Language Recogni-
tion (ANTLR)6, which generates a lexer and a parser based on
a grammar file.

3https://github.com/TUBS-ISF/IEC_61131_3_Clone_Detection
4www.omg.org/mof
5www.omg.org
6www.antlr.org

8

https://github.com/TUBS-ISF/IEC_61131_3_Clone_Detection


The data structures, as well as the compare engine, are im-
plemented using Java 8. The prototype is developed as Rich
Client Platform (RCP) client based on the Eclipse 4.07 frame-
work and runs on Windows8 with a Java Virtuel Machine (JVM).
All parts of the VAT are plug-ins that are reusable in other ap-
plications.

All meta-models, grammar files, and plug-ins with their
source code are freely available in our online materials9.

4.2. The Variability Analysis Toolkit
The VAT is a tool that supports domain experts with the

analysis of IEC 61131-3 programs. In order to improve the
usability of our approach, we implemented a graphical user in-
terface that supports domain experts during every step of our
approach.

4.2.1. Metric Definition
A screenshot of the interface for the definition of the com-

parison metric is shown in Figure 15. The metric definition is
supported by the Metric Manager 1 . In the Metric Manager,
we can see the base structure of a metric, which contains op-
tions that allow us to enable and disable parts of the comparison
approach. Attributes can be selected in the Attribute Manager
2 , which contains 66 predefined attributes that are sorted by
artifact categories. For the comparison of fine-grained artifacts
we implemented 29 attributes in total, that can compare fine-
grained implementation artifacts such as single statements or
function blocks. We implemented 11 attributes for the com-
parison of ST, 6 attributes for SFC, 5 attributes for LD, and
7 attributes for FBD. To adjust the weights of options and at-
tributes, which express their impact on the comparison process,
we can use the Weight Controller 3 . Metrics can be stored
and exchanged, which allows domain experts to discuss utilized
metrics.

4.2.2. Comparison and Presentation
A screenshot of the comparison process and the presenta-

tion of the results is sown in Figure 16. To start the comparison
approach, at least one model from the project explorer 1 must
be selected. In a context menu, the user can then select if an
intra or inter variant clone detection shall be performed, which
changes the selected models’ decomposition process. After se-
lecting the comparison mode, the compare engine 2 shows,
and the user can select a metric and decide if it wants to com-
pare weighted or not.

After the comparison, the results are presented in family
model 3 . The comparison details, such as element similari-
ties per attribute, can be inspected using the Detail View 4 .
This view shows utilized attributes, options, and their weights
as well as the resulting similarity value and supports experts in
the comprehension of the created results.

7www.eclipse.org
8www.microsoft.com
9https://github.com/TUBS-ISF/IEC_61131_3_Clone_Detection

1

2 3

Figure 15: User interface for the metric definition process.

4

1

2

3

Figure 16: User interface for the comparison and presentation process.

5. Evaluation

We evaluated different aspects of our clone detection ap-
proach. The correctness, measured in precision and recall, of
results are crucial for detecting code clones within software
variants and analyzing commonalities and differences between
software variants. Otherwise, incorrectly matched elements in-
evitably compromise subsequent steps such as refactoring code
clones into library components or consolidating a set of vari-
ants into an SPL. Thus, analyzing the results concerning their
correctness is an essential goal of our evaluation. Another key
aspect for the productive use of the toolkit is its scalability in
terms of run time and memory consumption.

5.1. Research Questions

Based on the requirements we identified to be relevant, we
defined the following research questions (RQs) that we address
in this evaluation:
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RQ1 Correctness: With what precision and recall can we de-
tect code clones in arbitrarily nested IEC 61131-3 programming
languages?

• RQ 1.1: What is the impact of different comparison met-
rics on precision and recall?

RQ2 Scalability: Does the clone detection approach scale?

• RQ 2.1: Is the run time of the comparison approach within
reasonable bounds?

• RQ 2.2: Is the memory consumption of the comparison
approach within reasonable bounds?

RQ3 Usefulness: How useful is the approach when applied to
realistic industrial subject systems?

• RQ 3.1: How similar are the different PPU and xPPU sce-
narios to each other based on a fine-grained and coarse-
grained metric?

• RQ 3.2: How many clones per type can be identified dur-
ing the evolution of the PPU and xPPU scenarios?

5.2. Setup

We evaluated our approach on an Intel Core i7-3770k (3,5
GHz) with 16 GB of RAM, running Windows 10 64bit. We
utilize two different comparison metrics. On the one hand,
we use a coarse-grained metric that compares the implementa-
tion using attributes that count the number of specific artifacts,
such as how many steps are in an SFC implementation. On the
other hand, we use a fine-grained metric to detect fine-grained
changes between single statements, such as an extended con-
dition. This lets us draw conclusions on the impact of a fine-
grained comparison metric in comparison to a coarse-grained
comparison metric. All weights for the options and attributes
are chosen with our intuition of importance. For example, the
implementation of POUs has more impact on their similarity
than their variable declarations. In the following, we show all
metrics employed in this evaluation in detail with their respec-
tive attributes and options.

Base Metric. Driven by the base metric, the comparison pro-
cess decomposes models from POU level down to fine-grained
implementation artifacts such as statements. The base metric is
not used in the evaluation directly. Instead, it represents the
common base for the following metrics that extend it. Fig-
ure 17 shows the base metric, which contains mostly options.
The black arrows on the left side indicate pointers to avoid re-
dundancy and to support language nesting. For example, the
variable attributes used in the POU variables option are the
same as the variable attributes used in the global variables op-
tion. Therefore, we simply place a pointer from the former to
the latter. The dashed, black arrows on the left side indicate
pointers to options and attributes in sub-metrics.

Option Name Weight

0.8(Option) Compare POUs

(Option) Compare Global Variables 0.2

Configuration Attributes

0.5(Option) POU Implementation

(Option) Compare POU Variables 0.2

POU Attributes

0.2(Option) Compare POU Actions

POU Name (Levensthein Distance) 0.05
0.05POU Type

0.6Variable Name (Levensthein Distance)
Types of Variables 0.4

Variable Attributes

1.0(Option) Action Implementation
Action Attributes

Attribut Name

Sub-Metric

Sub-Metric

Category

Variable Attributes

Figure 17: Illustration of the base metric with all selected options and attributes.

0.5Number of Transitions
Number of Steps 0.5

Sequential Function Chart Language Attributes

0.4Number of Statements
Number of Operands 0.3

Structured Text Language Attributes

0.3Types of Statements

WeightAttribut Name Category

Figure 18: Illustration of the coarse-grained metric.

Coarse-grained Metric. This metric is based on our previous
work [26] and extends the base metric with attributes for the
comparison of languages as illustrated in Figure 18. It is based
on attributes that simply count elements, i.e., how many state-
ments are contained in an ST implementation or how many
steps are performed in an SFC implementation.

Fine-grained Metric. The fine-grained metric extends the base
metric with further attributes and options for the comparison of
IEC 61131-3 languages. In contrast to the coarse-grained met-
ric, it compares fine-grained artifacts with each other and can
detect fine-grained changes such as additional expressions in a
condition. It also contains additional options for the compar-
ison of nested artifacts. Figure 19 shows all selected options
and weighted attributes. Again, the black arrows on the left
indicate pointers. For example, a LD implementation can con-
tain nested FBD, as indicated by the Compare Nested FBD op-
tion. Therefore, underneath the option Compare Nested FBD
we place a pointer to the FBD Implementation category of the
metric. These, in turn, contain an option Compare Nested ST
with a pointer to the ST Implementation category of the metric.

5.3. Subject Systems

To evaluate our approach for the detection of intra variant
as well as inter variant clone detection, we use the Pick and
Place Unit (PPU) and Extended Pick and Place Unit (xPPU)
scenarios. The PPU handles and manipulates work pieces of
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Option Name WeightAttribut Name Category

Function Block Diagram Implementation Attributes

Structured Text Implementation Attributes
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Figure 19: Illustration of the fine-grained metric.

different material. It is a universal demonstrator for the study of
evolution of aPS [27]. It consists of 23 evolutionary steps, each
referred to as a scenario. All used PPU and xPPU scenarios are
IEC 61131-3 projects exported in the PLCOpenXML format.
The scenarios were created using TwinCat3 [21].

Figure 20 shows the first PPU scenario on the left and the
third PPU scenario on the right. Scenario 1 of the PPU consists
of a stack 1 that serves as input storage for workpieces a crane
2 utilized for the transportation of workpieces and a ramp 3
as a workpiece output storage. These parts can be found in the
third scenario, as well. In the third scenario, a stamp 4 was
added to stamping workpieces. The introduced functionality to
stamp workpieces induces an adaption of the underlying soft-
ware in response to the hardware changes. For each scenario
a PLC implementation is available, which utilize ST and SFC
as programming languages. These scenarios contain language
nesting between ST and SFC, which are actions that are called
in SFC and implemented in ST. Further information on the
PPU and the respective evolution of the scenarios can be found
in [27].

5.4. Methodology

The evaluation is divided into two parts: a quantitative and a
qualitative analysis. During the quantitative analysis, we mea-
sure correctness and scalability. To determine the correctness

1

2

3

1

2

3

1

2

3

4

1

2

3

4

Figure 20: Illustration of the first PPU scenario on the left and the third PPU
scenario on the right.

(RQ1), we measure the precision and recall. The measurement
of recall and precision is difficult for tool developers due to a
lack of case studies with an existing ground truth [28, 5]. There-
fore, we decided to employ a mutation-based strategy. We im-
plemented a mutation framework for IEC 61131-3 based pro-
grams. The mutation framework is integrated into the VAT and
available on GitHub10.

The evaluation is driven by a evaluation-cycle shown in Fig-
ure 21. The process starts with a randomly selected model of

Mutation 
Framework

MutantMutantSeedSeed

VAT

Mutation Context

Solution

Next Iteration

Figure 21: Iterative evaluation process to calculate the recall and precision of
our clone detection approach.

the PPU and xPPU scenarios, which serves as a seed for the
mutation process. Our mutation framework creates an exact
copy of this seed model and randomly injects mutations. We
defined 11 mutation-operators for the mutation to add or re-
move artifacts and change identifiers or expressions. All mu-
tations are based on the meta-model representation that reflects
the IEC 61131-3 standard and generates syntactically correct
artifacts. Changes are stored as pairs in the mutation context:
mutation = (origin,mutant, operator). Mutated scenarios can
be stored as models and the mutation context as JSON files, al-
lowing to generate cloned variants with existing ground truth.
To evaluate our approach, we devised an automated process,
which generates mutants, compares them, and calculates the
precision and recall. The process generates a mutant out of a
selected seed model and stores all changed artifacts in a mu-
tation context. Seed model and mutant model are compared

10https://github.com/TUBS-ISF/variability_analysis_

toolkit_iec
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using the VAT. Changed elements are collected out of the re-
sulting solution data-structure and compared with the mutation
context. The precision and recall are measured for only the in-
jected/changed artifacts. We use the following definition for the
interpretation of our results: Changed artifacts within the muta-
tion context and solution data-structure are true positives (TP).
Changed artifacts in the solution data-structure, but not in the
mutation context are false positives (FP). Artifacts that are only
in the mutation context and not in the solution data-structure
are false negatives (FN). For the calculation of the precision
and recall, we use the following definitions:

Precision =
T P

T P + FP
Recall =

T P
T P + FN

To evaluate the scalability (RQ2) of the VAT, we measure run
time and memory consumption during the comparison approach
in relation to the system size.

The second part of our evaluation is the qualitative analysis,
which gives insight into the usefulness (RQ3) of the VAT. We
perform a pairwise comparison of each PPU and xPPU scenario
using the coarse-grained as well as the fine-grained metric. To
evaluate our approach for intra-system clone detection, we per-
form a clone analysis on the granularity level of POUs for each
PPU and xPPU variant. The intra-system clone analysis gran-
ularity is adjustable, for example to POU level or even finer-
grained implementation level. For the purpose of this evalua-
tion, we decided to visualize the results on the granularity level
of POUs, as it is well-suited for a re-engineering workflow to-
wards planned reuse of IEC 61131-3 legacy software [29].

5.5. Results and Discussion

In this section, we present and discuss the results of our
quantitative and qualitative evaluation.

5.5.1. Quantitative Analysis: Correctness (RQ1)
To evaluate correctness, we use our mutation framework to

fully automatically compute recall and precision using a stan-
dard mutation-based analysis procedure. As per standard for
mutation analysis, the framework is configured to only use one
category of mutations, i.e., either only T2 mutations such as
renaming of artifacts, or only T3 mutations such as insertions
or deletions of artifacts, per model. We perform two runs with
10000 iterations each, to determine the precision and recall for
Type II and Type III mutations respectively. We also calculate
the overall precision an recall over all types of mutations. Due
to the parsing process which normalizes the PLCOpenXML
files, we cannot detect Type I mutations, and thus not distin-
guish Type I and Type II clones. In Table 1, we show the preci-
sion and recall measures.

The coarse-grained metric achieves a precision of 100%
for the analysis of Type II clones but only a recall of 6,86%.
Only coarse changes on configuration or POU level could be
detected. Renaming of implementation artifacts could not be
detected due to the fact that elements are only counted and
not compared directly. For the analysis of Type III clones, the
coarse metric achieves a higher recall of 68,52%, as added or

Fine T2 Coarse T2 Fine T3 Coarse T3 Fine Total Coarse Total

True Positives 7738 686 9991 6852 17729 7538
False Positives 0 0 0 44 0 44
False Negatives 2262 9314 9 3148 2271 12462

Precision-Total 100 100 100 99,36 100 99,42
Recall-Total 77,38 6,86 99,91 68,52 88,65 37,69

Table 1: Evaluated precision and recall for the fine- and coarse-grained metric
with all resulting value based on 20.000 mutations.

removed artifacts result in a changed similarity value during
the comparison between those elements and can thus be de-
tected. Overall, the coarse-grained metric achieves a precision
of 99,42% and a recall of 37,69%.

The fine-grained metric achieves better results, as expected.
For the analysis of Type II clones, precision is at 100% and
recall at 77,38%. A detailed analysis of the resulting mutants
showed that the VAT, using the fine-grained metric for the com-
parison, had problems with the renaming of some elements such
as the returning type of a POU within the Type II run. To
improve the recall value in this case, additional attributes are
needed for the comparison of POUs that consider those ele-
ments. For the detection of Type III clones, the VAT achieved
a precision of 100 % and a recall of 99,91%. Some variable in-
sertions and removals could not be detected, causing all 9 false
negatives. Overall, our approach achieved a precision of 100%
and a recall of 88,65% using the fine-grained metric, which are
excellent precision and recall values.

The fine-grained metric could, in contrast to the coarse-
grained metric, detect changes on the implementation level, such
as renamed, added, or removed statements. We conclude that,
based on a coarse-grained metric, IEC 61131-3 systems can be
analyzed only on an abstraction level where the correct position
of cloned artifacts is not essential, which is why the coarse-
grained metric has such a low recall value. The fine-grained
metric is the better choice to get more details about the correct
location of code clones. Ultimately, the desired granularity of
comparison can be freely configured based on the comparison
metric to achieve the desired results. Detected clones are then
shown in the family model at a desired level of granularity.

Overall, the used data set together with the achieved results
provide strong evidence for the correctness of our approach.
Moreover, the created metrics can be automatically evaluated
using the mutation framework to assess their feasibility.

5.5.2. Quantitative Analysis: Scalability (RQ2)
Run Time (RQ 2.1). Reasonable run-times for the analysis of
fine-grained variability relations between software variants are
required for the productive use of the VAT. To measure the run-
time, we use an event-based benchmark system that is already
implemented in the VAT. For the comparison, we created a
metric that compares all artifacts within the xPPU scenarios.

We perform all possible pairwise comparisons of the xPPU
scenarios and show the run-time results in Figure 22. The x-
axis shows the total number of element pairs that were created
during the comparison process, and the y-axis shows the re-
quired time for the comparison in seconds. On the left side
in Figure 22, we can see the comparison of scenario S14 with
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Elements Pairs Attributes Comparisons

Projects 1 0 0
POU 2,116 2 4,232

Actions 25,663 0 0
Steps 207,125 4 828,500

Statements 204,126 10 2,041,260

Overall 439,030 2,873,992

Table 2: Pairs of created elements and comparisons for the detection of clones
within the largest xPPU scenario S24.

itself. Scenario S14 is the smallest scenario of the xPPU sce-
narios, and the comparison process creates ≈ 108, 000 element
pairs when compared with itself, which takes 0.295 seconds.
The comparison of the largest xPPU scenario S24 with itself is
shown on the right in Figure 22 and in detail in Figure 22. Dur-
ing this comparison, ≈ 439, 000 element pairs are created, and
it requires 0.916 seconds. The red line indicates a linear rela-
tionship between created element pairs and comparison time.
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Figure 22: Run-time in relation to number of created pairs during the compari-
son.

To provide more details about the comparison, we count the
number of element pairs that are created during the comparison
of scenario S24 with itself. This scenario represents the last
evolution step of the xPPU scenarios and contains all elements
of the scenarios before. In Table 2, we list the number of el-
ement pairs that are created and the number of attributes and
comparisons. The comparison process creates ≈ 207, 000 pairs
of steps. These steps are compared with four attributes, which
results in over 828, 500 comparisons. Overall, for the compar-
ison of scenario S24 with itself, the compare process creates
≈ 439, 030 pairs of elements. In total, to compare both mod-
els, ≈ 2.9 million comparisons are made. To reduce the ran-
dom impact of a non-closed test system, we repeated the run-
time measurement ten times and created average values. For the
comparison of scenario S24 with itself, the comparison process

takes a total time of 0.916 seconds on average. The trend-line
in Figure 22 indicates a linear increase in run-time in relation
to artifacts to compare. Hence, we consider the run-time of the
VAT as reasonable for the evaluated scenarios.

Memory Consumption (RQ 2.2). Another key factor for the
scalability of software, such as the VAT, is the memory con-
sumption. We assume that, if the VAT is reliably applicable to
realistic industrial models, then it is useful to domain experts.

To determine the memory consumption, we use VisualVM
that provides insight into the JVM memory dump assigned to a
process ID. We perform a scripted pairwise comparison of all
PPU scenarios. Specifically, we compare each of the 23 PPU
scenarios pairwise, resulting in a total of 276 pairwise compar-
isons. This means we perform the comparison and matching
steps and storage of the family models 276 times. The memory
consumption is shown in Figure 23. The orange area represents
the allocated heap memory of the JVM. The blue area repre-
sents the used heap, i.e., how much memory is actually used by
the VAT. For all 276 comparisons, the process takes 3 minutes
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Figure 23: Memory consumption (y axis) of the VAT when applied to all PPU
and xPPU scenarios in sequence (x axis).

and 18 seconds. The initial heap size is ≈ 850 MB, and during
the comparison, the JVM allocated more memory to a max-
imum of ≈ 1, 697 MB. After each comparison of two models,
the family model is created and drawn to the family model view.
Each peak in used memory is a result of the drawing process.
The maximum amount of memory used depends on the size of
the drawn models. Comparison of scenario S1 with itself re-
sults in a smaller family model than the comparison between
scenario S24 with itself. Consequently, the memory consump-
tion is lower. However, as a maximum value, ≈ 1, 356 MB of
RAM is used for the pairwise comparison of 23 models. Thus,
we conclude that our approach scales for larger models as well.

5.5.3. Qualitative Analysis: Usefulness (RQ3)
Based on the quantitative analysis we could show that the

output that is created by the VAT is correct and that the VAT
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% S2 S3 S4a S4b S5 S7 S8 S9 S10 S11 S12 S13
S1 91,21 75,05 71,52 71,51 75,08 65,97 65,97 63,1 63,1 63,1 63,1 60,32
S2 81,31 77,41 77,39 81,34 71,11 71,11 67,83 67,83 67,83 67,83 64,79
S3 94,86 94,88 99,96 86,19 86,06 81,50 81,5 81,50 81,57 77,60

S4a 99,58 94,82 89,46 89,33 84,65 84,65 84,65 84,65 80,90
S4b 94,84 89,48 89,35 84,67 84,67 84,67 84,67 80,89
S5 86,16 86,03 81,48 81,47 81,47 81,47 77,58
S7 99,86 94,48 94,48 94,48 94,48 88,41
S8 94,55 94,55 94,55 94,55 88,48
S9 99,07 99,08 99,08 92,66

S10 99,86 99,78 93,33
S11 99,91 93,45
S12 93,54

Table 3: Similarities between PPU scenarios in percent using the fine-grained
metric.

% S15 S16 S17 S18 S19 S20 S21 S23 S24
S14 78,33 72,40 68,90 67,58 65,43 55,45 52,17 51,46 51,09
S15 91,43 86,54 84,82 81,15 67,8 63,61 62,64 62,22
S16 94,51 92,57 88,22 73,34 68,63 67,56 67,14
S17 97,18 91,73 76,07 71,18 70,05 69,63
S18 93,87 77,75 72,74 71,58 71,16
S19 82,56 77,20 75,94 75,40
S20 93,64 92,02 91,49
S21 98,20 96,46
S23 96,70

Table 4: Similarities between xPPU scenarios in percent using the fine-grained
metric.

scales well. In this section, we show a qualitative analysis
to assess the usefulness of the VAT for the re-engineering of
IEC 61131-3 based systems by giving insights into the detected
clones in the PPU and xPPU evolution scenarios.

Scenario Similarity (RQ 3.1). We separately evaluate the over-
all similarities calculated for each pairwise project comparison
for the PPU and xPPU scenario sets. The overall similarity is an
indicator of the relationship between projects. We created and
analyzed 292 family models for the analysis of PPU and xPPU
scenarios in total. In this section, we only provide aggregated
data and refer to our supplementary material11, which contains
all scenarios, metrics, and family models, and the implementa-
tion of the VAT.

In Table 3 and Table 4, we show all pairwise similarities for
the comparison of the PPU and xPPU scenarios. In both cases,
the similarity decreases in every row from left to right, which is
plausible and can be explained by the increasing divergence of
scenarios that are further apart in time. In Figure 24, we show
a fragment of the resulting family model of comparing scenar-
ios S23 and S24. The TurnConveyorOff 3 step, which is used
by the SFC implementation, calls an action that is implemented
in ST. The resulting family model shows that the nested action
could be matched, which results in a mandatory element. More-
over, we could analyze different scenarios that show different
kinds of language nesting, such as a utilized function block in a
LD implementation or a ST implementation in a function block.
Hence, we argue that our comparison approach can detect and
compare nested implementations and that it is useful in real-
world scenarios. Overall, we were able to detect fine-grained
changes such as parts of a statement like renaming of a func-
tion or an additional literal in an expression. In Figure 25,

11https://github.com/TUBS-ISF/IEC_61131_3_Clone_Detection

Figure 24: Snippet of the family model of the comparison between scenarios
S23 and S24.

Figure 25: Snippet of the family model of the comparison between scenarios
S14 and S23.

we show a snippet that shows the resulting family model of
the comparison between scenarios S14 and S23. We can see
a variation point between both OperationPanel POUs, which
contains two mandatory ! , a changed , and an additional
? assignment. We investigated this change and found that it

can be explained with a renaming of the DI ManuelButton into
DI AutomaticButton. We analyzed all resulting family models
and the respective PLCOpenXML files to manually verify our
results and found them to be sensible.

To investigate the impact of a fine-grained metric on the
overall similarity, we created a heat-map that shows how the
similarity values change between the comparison with fine-grained
implementation artifacts with the fine-grained metric, compared

% S2 S3 S4a S4b S5 S7 S8 S9 S10 S11 S12 S13
S1 -1,07 -1,92 -1,82 -1,81 -1,92 -1,77 -1,77 -1,85 -1,85 -1,85 -1,85 -1,43
S2 -1,45 -1,38 -1,38 -1,45 -1,44 -1,44 -1,61 -1,61 -1,61 -1,61 -1,43
S3 -0,02 -0,01 0,00 -0,57 -0,57 -1,00 -1,00 -1,00 -1,00 -0,61

S4a -0,02 -0,02 0,32 0,32 -0,15 -0,15 -0,15 -0,15 0,21
S4b -0,01 0,33 0,33 -0,14 -0,14 -0,14 -0,14 0,29
S5 -0,57 -0,57 -1,00 -1,01 -1,01 -1,01 -0,6
S7 0,00 -0,54 -0,54 -0,54 -0,54 -1,7
S8 -0,54 -0,54 -0,54 -0,54 -1,7
S9 -0,01 -0,01 -0,01 -1,20

S10 -0,01 -0,02 -1,21
S11 -0,01 -1,20
S12 -1,19

lowest similarity min -3 -2 -1 0 1 2 3 max highest similarity

Table 5: Similarity difference heat-map of PPU scenarios: similarity is higher
than with the coarse-grained metric marked green and lower marked red.
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% S15 S16 S17 S18 S19 S20 S21 S23 S24
S14 -1,43 -1,32 -1,43 -1,2 -2,25 -1,62 -1,51 -1,48 -1,39
S15 -0,21 -0,53 -0,19 -1,91 -1,36 -1,26 -1,24 -1,17
S16 -0,38 -0,01 -2,08 -1,5 -1,39 -1,36 -1,29
S17 -0,36 -3,00 -2,22 -2,07 -2,02 -1,95
S18 -2,95 -2,18 -2,03 -1,98 -1,91
S19 0,14 0,14 0,13 0,22
S20 0,00 0,00 0,09
S21 -0,04 -0,81
S23 -1,51
lowest similarity min -3 -2 -1 0 1 2 3 max highest similarity

Table 6: Similarity difference heat-map of xPPU scenarios: similarity is higher
than with the coarse-grained metric marked green and lower marked red.

to the coarse-grained metric that compares languages with count
metrics. In Table 5 and Table 6 we illustrate these maps for the
PPU and xPPU scenarios. Red-colored cells show that the fine-
grained metric results in a lower similarity value than using the
coarse-grained metric. A green-colored cell means that the re-
sulting similarity is higher. As we can see, most of the cells are
colored red, which means that the comparison utilizing the fine-
grained comparison metric results in a lower similarity, e.g., the
similarity between S17 and S19 is 3 percent lower. We analyzed
the resulting family models to explain and discuss this behavior.
For example, when we compare the scenarios S17 and S19, we
can see that the Main POU implementation of S17 contains 93
statements and the scenario S19 95 statements. With a simple
statement count metric, which relates the statements, we ob-
tained a similarity of 93

95 · 100 = 97, 89%. In contrast, the fine-
grained comparison metric compares every single statement. In
this case, we have 32 mandatory ! , 61 altered statements,
and 2 optional ? statements. Based on the changes, the re-
sulting similarity between these implementations using a fine-
grained metric is 68.72%. Moreover, the comparison of nested
languages can lower the similarity based on changed artifacts
in the nested implementations. In the case that the nested ar-
tifacts are not altered, the overall similarity would not change.
Still, in the case that the nested artifacts are changed, it would
yield a lower similarity. Hence, we conclude that fine-grained
metrics lower the overall similarity if fine-grained artifacts are
altered. When only adding or removing artifacts, the coarse-
grained metric will capture the similarity correctly as well.

Cloned POUs in the PPU and xPPU Scenarios (RQ 3.2). A
common approach to evolve systems is code cloning. We an-
alyzed each of the PPU and xPPU scenarios to identify pos-
sible cloned POUs. To filter our results, we used a similarity
threshold of 70%, which means all artifacts that have a similar-
ity lower than the threshold are not considered. For each sce-
nario, we performed a pairwise POU comparison, which results
in an analysis of 354 family models for the PPU scenarios and
810 family models for the xPPU scenarios. In Figure 26 and
Figure 27 we show our aggregated results of the analysis of the
PPU and xPPU scenarios. The bars show the changed amount
of POUs in the respective evolution step. The blue bar shows
how many POUs were added, the orange bar how many were
removed, and the gray bar shows how many clones were intro-
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Figure 26: Results of the intra clone detection with all PPU scenarios.
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Figure 27: Results of the intra clone detection with all xPPU scenarios.

duced. Besides, the black trend line shows the amount of POUs
in the respective scenario, and the orange trend line shows how
many of this POUs are potential clones. The first scenario S1
contains a potential cloned POU which stores the status of the
respective POU in a Boolean variable. During the evolution
of this system, nine POUs are added, in which 7 are poten-
tial clones. For example, in scenario S3, the BistableCylinder
is added, a Type III clone of the MonostableCylinder. In Fig-
ure 28 we depict a snippet of the resulting family model with
the respective SFC implementation of the comparison between
the MonostableCylinder and BistableCylinder. 1 shows the
family model of the ACT extend action used by both POUs. As
we can see, the SFC implementation was altered by adding an
action to the Extended Cylinder step. The difference can be in-
spected in the respective implementations shown in 2 and 3 .
An additional copy of the MonostableCylinder POU is added
during the evolution to scenario 15. The only change is a re-
naming of the POU from Monostable Cylinder to Switch, which
can be classified as a type II clone. In scenario 15, the POUs Pi-
cAlpha and RefillConveyor are added, which are clones of each
other. However, we were able to identify 25 of 46 POUs as po-
tential clones in scenario 24, which represents the last evolution
step. Overall, we could detect Type I and Type III clones during
the PPU and xPPU scenarios’ evolution.

The intra- and inter-system clone detection approach allows
visualization of cloned artifacts within a system and shows vari-
ation points between artifacts. That information is useful for the
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MonostableCylinder.ACT_Extend BistableCylinder.ACT_Extend

1

2 3

Figure 28: Resulting family model of the ACT Extend Action utilized by
Monostable- and Bistablecylinder within scenario three.

developer to show potential candidates for the extraction of li-
brary components, which can be reused in different IEC 61131-
3 systems.

5.6. Threats to Validity

This section categorizes the threats to the validity of our
results into construct, internal, external, and conclusion validity
and identifies the respective threats.

5.6.1. Construct Validity
To measure the precision, we used a mutation framework

that generates mutant models. Mutant models are syntactically
correct, but we can not guarantee that they are semantically cor-
rect. Measured precision and recall may be lower for a real-
world subject system.

To identify the performance of our approach, we bench-
marked the VAT. Therefore, we performed a run-time measure
using the event-based benchmark system provided by the VAT.
For memory consumption, we analyzed the memory dump that
is created by the VisualVM. Both measures are key factors for
the analysis of the scalability and are specially selected to give
an insight into the VAT performance. Other measures might
also support the results in terms of performance, and other de-
velopers might identify more suitable ones. Moreover, in a
non-closed system, run-time deviations occur that we can not
influence, such as hardware faults. However, we argue that our
selection of measures supports the corresponding performance
analysis. Furthermore, we measured the run-time several times
and used the average value to reduce the deviation.

To investigate our approach’s usefulness, we manually eval-
uated the results of the VAT using human intuition. The result-
ing similarity values between element pairs and our matching
approach’s results may only make sense for us. The intuition

of other researchers or domain experts might be different, such
that they question the usefulness of our results. Besides, the
metrics we used for comparing IEC 61131 programming lan-
guages and their nestings may not be suited to all scenarios.

5.6.2. Internal Validity
All measures we discussed and the data we gathered during

the evaluation might be influenced by factors, which we did not
consider. This might restrict the validity of the performance
measures and the drawn conclusions. However, we carefully
analyzed the performance and performed control measures to
reduce the random impact factors such as memory scheduling
or the code optimization performed by the JVM.

5.6.3. External Validity
We evaluated the comparison approach and especially the

attributes by using synthetic case studies that show a represen-
tative history of changes. Other scenarios can show different
kinds of changes and nesting of languages, which we did not
consider and may stay undetected, e.g., changing a statement
type by replacing a while-loop with a for-loop. We used the
PPU and xPPU case studies to perform the comparative mea-
surement. This case study is only implemented in ST and SFC.
Systems of other domains may show other utilized program-
ming languages and language nestings. We argue that evaluated
scenarios show a significant complexity and are representative
for systems in the domain of aPS.

5.6.4. Conclusion Validity
Our comparison approach for IEC 61131-3 languages is re-

alized using metrics to compare different variants of software
systems. Metrics use attributes, options, and weights and are
highly configurable. Also, the user can customize the VAT by
adjusting different thresholds in the preferences. The configu-
ration of the metric and setup of the VAT largely depends on hu-
man intuition and the user’s domain knowledge. Consequently,
the metrics we used during the evaluation are not reliable be-
cause other developers might select other parameters that can
cause different results. However, we argue that the used metrics
and settings were created with high caution and are evaluated
using a mutation framework. Besides, we explicitly provide the
capability to customize metrics and configure the VAT to meet
the user’s expectations.

6. Related Work

Clone and own is a common and popular reuse strategy in
the software development domain. In the past decades, the
interest in code clones is also exhibited in existing research’s
wealth. In general, clone-detection aims to reduce large soft-
ware systems’ maintenance effort by tracing clones or transfer-
ring a software system into an SPL [30]. Both activities require
a detailed analysis of the respective software systems. Most
of the research focused on detecting code clones in high-level
programming languages such as C, C++, and Java [1, 5, 6].
However, in the domain of aPS, cloning code is also a common
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practice [7, 8]. To bridge the gap, we developed a compari-
son approach that allows detecting clones in and between soft-
ware variants, which are implemented regarding the IEC61131-
3 standard. Our approach relates to two main categories, which
are Intra Clone Detection and Variability Analysis or also re-
ferred to as Inter Clone Detection.

Intra Variant Clone Detection (Classic Clone Detection)
Different code clone detection approaches have been pre-

sented in the last decades. Roy et al. classified clone detec-
tion techniques by utilizing internal source code representation,
which are text-, token-, tree-, graph and model-based [5]. Kel-
ter et al. [31] show an approach to compare pairs of UML class
diagrams. They semantically lift derived differences to enhance
comprehensibility. In extension of their work, they utilize State
Charts [32]. However, unlike our approach, results are not
presented in a family model, in which we present our results.
Alanen et al.[33] presented a model comparison of UML mod-
els to achieve a model versioning system for MOF-based mod-
els. They presented three meta-model independent algorithms
to calculate differences, merge and calculate the union of two
models, and depend on the UML’s Universally Unique Identi-
fiers (UUID). Results of the analysis are presented as deltas,
which are used for the merge algorithm.

In the industrial domain, the analysis of behavior and data-
flow models such as MATLAB/Simulink models that are of-
ten used in the context of Model-driven engineering (MDE)
becomes essential. Deissenboeck et al. [34, 35] showed a
clone detection approach for model-based languages on MAT-
LAB/Simulink models using a depth-first search heuristic for
cloned pairs on a labeled graph that is created out of a model.
Pham et al. [36] presented an accurate clone detection approach
in graph-based models. Those models are comparable with
FBD , which are using transitions to connect blocks to model
a behavior. However, both approaches transforming the mod-
els into a graph representation in the difference we transform
the PLCOpenXML into a model and work directly on them.
Alalfi et al. [37, 38] adapted a text-based code clone detec-
tion technique to identify clones in the textual representation of
Simulink models. A particular issue they have is the graphical
representation of results. Our approach uses a solution struc-
ture, which can be presented as a family or technical feature
model.

Yu et al. present an approach that detects clones in Java us-
ing the Smith-Waterman algorithm on Java bytecode [39]. This
approach is only suitable for languages that are translated into
Java bytecode. In contrast to Java, IEC61131-3 languages are
compiled into machine language that is executed directly and
not interpreted by a JVM. Hummel et al. show an incremental
graph-based clone detection algorithm in [40]. They use a data
structure called the clone index to store sub-graphs for efficient
matching. Although the relation between statements forms a
graph, adding or removing a statement changes the underlying
graph. Consequently, the detection is inappropriate for variabil-
ity mining, as we want to quantify possible clones in terms of
similarities. In [41], Kamiya et al. show a clone detection tech-
nique that uses transformation rules and a token-based compari-

son. Their approach is limited and can not use source files writ-
ten in two or more programming languages. For our case, it is
not suitable because IEC61131-3 source files can contain a mix
of all four languages. With the rise of deep learning, techniques
were presented with a learning-based paradigm. White et al.
[42] specified a learning-based approach that utilizes a Recur-
sive Neural Network (RvNN) to detect clones in Java code.

In the domain of aPS only a few researchers analyzed IEC
61131-3 software system. H K et al. [43] proposes a method for
detecting semantic clones in IEC61131-3 based systems by per-
forming an input-output variable impact and dependency anal-
ysis. Thaller et al. [44] analyzed a real-world PLC software
system using an extended version of Simian [45], which is a
text-based clone detection tool. The analyzed system is imple-
mented using ST and C++. Fahimipirehgalin et al. [46] pre-
sented a call-graph based approach that allows detect similari-
ties between two software structures, e.g., POUs, which support
the detection of clones with a pre-selection of potentially simi-
lar artifacts. In the field of clone detection on LD Nedvěd et al.
[47] presents a tool that can detect differences between LD im-
plementation based on their PLCOpenXML representation. We
are the first to analyze IEC61131-3 variants with nested imple-
mentations on a fine-grained level to the best of our knowledge.

Inter Variant Clone Detection (Variability Analysis)
The identification of variability in software evolution has

been subject to research for several years. However, there are
few extractive approaches focused on reverse engineering of
legacy systems without feature information. In our prior work,
we analyze Pascal programs to identify code clones [48]. We
use a model-based approach for the comparison of Pascal vari-
ants that compares programs statement-wise. For the compar-
ison of ST implementations, we adopt this approach because
both languages have a similar structure. Schlie et al. [49] em-
ploy an adjustable matching window technique to enhance vari-
ability analysis in MATLAB Simulink models. The windows
define a sub-graph on which a data flow based comparison is
applied to compare each model. The approach takes hierarchi-
cal structures of blocks into account while comparing windows.
In contrast to our approach, we strictly compare the four lan-
guages’ implementation artifacts within the same hierarchical
level. Holthusen et al. [50] showed a family model mining ap-
proach for FBD, which is an adaption of their previous work
in the automotive domain analyzing MATLAB Simulink mod-
els [51, 52]. Both approaches are working on block-based lan-
guages, which have a more straightforward structure than tex-
tual languages. Moreover, they do not consider the ST imple-
mentation that can occur in some function blocks. Duszynski
et al. [53], present the Variant Analysis, which is an approach
for the individual analysis of multiple software variants. Vari-
ants are mapped onto a system structure model. Although the
variants are represented as models, they use a string-based com-
parison approach applied to these variants’ source code. As our
model stores elements with their corresponding source code,
we support string-based comparisons as well. However, our
approach operates on pairs of software variants and compares
them to a lower detail level. Fischer et al. [54], present the
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ECCO (Extraction and Composition for Clone-and-Own) tool,
which can automatically locate reusable parts from previously
developed variants. The conceptual framework behind ECCO
is shown in [55]. The process is divided into three steps: extrac-
tion, composition, and completion, while the variability analy-
sis is performed on an artifact tree that allows comparing any
artifacts. The ECCO tool compares artifact trees and stops if
two nodes are not equal. In contrast to ECCO, our approach de-
termines the changes and compares all sub-elements if it finds
differences between artifacts. Finally, our work’s fundamental
is the VAT[26] that we extended with our concepts and used to
perform the evaluation.

Mutation Framework
For the evaluation of or approach, we implemented a mu-

tation framework that allows to mutate scenarios based on a
meta-model and store the mutation context, which can be used
as ground truth. The mutation framework is inspired by other
authors that also used a mutation based strategy to evaluate their
clone-detection approach. Roy et al. [56] proposed an evalua-
tion framework that uses code fragment mutation to create and
inject known code clones that can be used to measure recall
and precision of clone detection tools accurately. Stephan et
al. [57, 58] showed a mutation-based evaluation framework for
evaluating the Simulink clone detection approach. Svajlenko et
al. [59] introduced Big Clone Bench as a big data, varied and
comprehensive clone benchmark for modern tools. In contrast
to our work, the existing mutation frameworks use existing code
fragments from a repository to inject them into models. We use
existing models as a seed and generate artifacts based on our
meta-model, reflecting the IEC61131-3 standard. Other authors
use mutation frameworks in another context, such as software
testing. Just [60] showed Major, a framework for the mutation
analysis and fault seeding to evaluate software test suits.

7. Conclusion and Future Work

With an increasing interest in variant variety for industrial
products, variability has become a key factor of many software
systems. In the domain of aPS and their control, software often
remains in use for decades. To reduce such a system’s mainte-
nance effort, the detection of clones and analysis of variability
is crucial. On the one hand, code-clones can be refactored into
reusable artifacts such as library components. And on the other
hand, the variability analysis can support experts in migrating
a system portfolio into an SPL. To this end, the identification
of code clones and the detection of variability in the domain
of aPS is a remaining challenge that requires appropriate tool
support. A key feature of such tools is a fine-grained analysis
of implementation artifacts to provide useful results to domain
experts.

This paper proposed a comparison approach for IEC 61131-
3 languages to detect fine-grained changes between variants
(Inter Clone Detection) and within a variant (Intra Clone De-
tection). We implemented our comparison approach in the VAT
tool. To compare fine-grained implementation artifacts, we im-
plemented 29 attributes and added options to compare nested

implementation languages. We evaluated our concept based on
our implementation.

To assess our concept, we performed a qualitative and quan-
titative analysis. The quantitative analysis allows us to reason
about the correctness and performance of our approach. There-
fore, a mutation framework was implemented, which generates
mutants that for automatic evaluation of the VAT. We applied
a fine-grained and a coarse-grained metric and compared their
impact on precision and recall. To argue about the performance
and scalability, we measured the run-time and memory con-
sumption.

To show our clone-detection approach’s usefulness as a step
during the re-engineering of legacy aPS systems, we used two
metrics during the qualitative analysis and applied them to all
pairwise comparisons of the PPU and xPPU scenarios. We
showed the similarities for the PPU and xPPU scenarios and
what impact the different granularities of metrics have on the
similarity values and the precision and recall.

Moreover, we evaluated the detection and comparison of
nested implementation languages. In general, we conclude that
our comparison approach with a fine-grained metric has excel-
lent precision and recall values and can detect changed arti-
facts of nested implementations. Overall, the evaluation shows
that our approach can detect fine-grained changes between and
within IEC 61131-3 implementations down to fine-grained ar-
tifacts such as statements.

Our work provides several possibilities for future work. To
this point, we can only compare, match, and merge two vari-
ants. For the generation of a 150% model, it is crucial to extend
our approach to cope with multiple input models. This allows
us to merge a complete variant portfolio and reduce the effort of
migrating such systems. Based on the clone detection results,
we try to establish a semi-automatic refactoring of code-clones
into reusable artifacts such as library components. An addi-
tional field of interest is improving our mutation framework
with more complex mutation operations. More configuration
possibilities such as only ST or SFC mutations would allow
assessing the precision and recall of the clone detection for a
single language. This would help compare our approach with
other solutions that only support the comparison of a subset of
our approach. Moreover, it eases the assessment of code detec-
tion tools and calculates precision and recall, but it can also be
used to assess test suits.
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