
HUNTER: AI based Holistic Resource Management for Sustainable Cloud Computing

Shreshth Tuli1, Sukhpal Singh Gill2, Minxian Xu3, Peter Garraghan4, Rami Bahsoon5, Schahram Dustdar6, Rizos Sakellariou7,
Omer Rana8, Rajkumar Buyya9, Giuliano Casale1, Nicholas R. Jennings1,10

Abstract

The worldwide adoption of cloud data centers (CDCs) has given rise to the ubiquitous demand for hosting application services
on the cloud. Further, contemporary data-intensive industries have seen a sharp upsurge in the resource requirements of modern
applications. This has led to the provisioning of an increased number of cloud servers, giving rise to higher energy consumption
and, consequently, sustainability concerns. Traditional heuristics and reinforcement learning based algorithms for energy-efficient
cloud resource management address the scalability and adaptability related challenges to a limited extent. Existing work often fails
to capture dependencies across thermal characteristics of hosts, resource consumption of tasks and the corresponding scheduling
decisions. This leads to poor scalability and an increase in the compute resource requirements, particularly in environments with
non-stationary resource demands. To address these limitations, we propose an artificial intelligence (AI) based holistic resource
management technique for sustainable cloud computing called HUNTER. The proposed model formulates the goal of optimizing
energy efficiency in data centers as a multi-objective scheduling problem, considering three important models: energy, thermal and
cooling. HUNTER utilizes a Gated Graph Convolution Network as a surrogate model for approximating the Quality of Service
(QoS) for a system state and generating optimal scheduling decisions. Experiments on simulated and physical cloud environments
using the CloudSim toolkit and the COSCO framework show that HUNTER outperforms state-of-the-art baselines in terms of
energy consumption, SLA violation, scheduling time, cost and temperature by up to 12, 35, 43, 54 and 3 percent respectively.

Keywords: Holistic Resource Management, Energy-Efficiency, Cloud Computing, Artificial Intelligence, Thermal Management.

1. Introduction

Cloud computing has proven to be a reliable, cost-effective
and scalable computing service choice to host and deliver soft-
ware solutions for diverse industrial applications [1]. Many
businesses have migrated to cloud data centers (CDCs) to take
advantage of on-demand, elastic and scalable resource provi-
sioning, saving companies on capital investments and mainte-
nance of in-house infrastructure [2]. The plethora of deploy-
ment choices offered by most cloud providers allows users to

1Department of Computing, Imperial College London, UK
2School of Electronic Engineering and Computer Science, Queen Mary

University of London, UK
3Shenzhen Institutes of Advanced Technology, Chinese Academy of Sci-

ences, China
4School of Computing and Communications, Lancaster University, UK
5School of Computer Science, University of Birmingham, UK
6Distributed Systems Group, Vienna University of Technology, Austria
7Department of Computer Science, University of Manchester, UK
8School of Computer Science and Informatics, Cardiff University, UK
9Cloud Computing and Distributed Systems (CLOUDS) Laboratory,

School of Computing and Information Systems, The University of Melbourne,
Australia

10Loughborough University, UK
E-mail addresses: s.tuli20@imperial.ac.uk (S. Tuli), s.s.gill@qmul.ac.uk
(S.S. Gill), mx.xu@siat.ac.cn (M. Xu), p.garraghan@lancaster.ac.uk (P. Gar-
raghan), r.bahsoon@cs.bham.ac.uk (R. Bahsoon), dustdar@dsg.tuwien.ac.at
(S. Dustdar), rizos@manchester.ac.uk (R. Sakellariou), ranaof@cardiff.ac.uk
(O. Rana), rbuyya@unimelb.edu.au (R. Buyya), g.casale@imperial.ac.uk (G.
Casale) and n.r.jennings@lboro.ac.uk (N.R. Jennings).

customize resources according to their objectives. However,
the rise of AI and Internet of Things (IoT) applications in In-
dustry 4.0 [3] has led to an increase in the overall requirements
of cloud resources. In particular, cloud providers, such as Ama-
zon, Microsoft and Google, have witnessed heavy reliance and
increase in the number of cloud data centers to fulfill the in-
creasing demands of users [4].

A large amount of energy is required to run these cloud data
centers efficiently. Specifically, there is a need to manage the
cloud resources effectively to lower the energy consumption
and help reduce the cost and carbon footprints. This demand of-
ten comes with high energy consumption, a major part of which
is attributed to the cooling costs [2]. The cooling infrastructure
of a CDC can consume almost the same level of energy as the
computing nodes themselves [5]. Major public cloud providers
need to invest in large scale cooling infrastructures, making it an
expensive exercise [6]. Producing holistic energy-aware mod-
els for resource management, which consider both cooling and
computational costs, has been acknowledged as an important
open problem [6]. Specifically, the research gap presents a need
for task scheduling in CDCs that considers the energy, thermal
and cooling costs as optimization objectives [2].

Challenges. The problem of providing holistic resource
management for sustainable cloud computing is fundamentally
challenging because the relationship between energy consump-
tion, the computational infrastructure and the cooling system is
complex. Another challenge is the coordination of the schedul-
ing decisions for different tasks that considers both computing

Preprint submitted to Journal of Systems and Software October 29, 2021

ar
X

iv
:2

11
0.

05
52

9v
3

 [
cs

.D
C

]
 2

8
O

ct
 2

02
1

power and cooling power in tandem. Another factor to con-
sider in minimizing energy consumption is the reduction in re-
source intensive or thermal hotspots that can degrade the per-
formance of the system [6]. Consequently, as non-stationary
workloads are required to be serviced, the cooling systems and
hence the power and temperature metrics of hosts change dy-
namically [7]. Furthermore, tasks running in a datacenter may
be inter-dependent. This is a common when jobs are allocated
to a cloud environment with each job consisting of multiple
independent tasks and service level agreements (SLAs) being
defined for each job. The overall response time and SLA vi-
olations would then be defined at the job level instead of be-
ing measured for each task. Moreover, in hybrid public-private
clouds, the host machines have different resource capacities in
terms of their CPU, RAM, disk and network capabilities. These
issues further complicate scheduling as now the representation
of the system also needs to capture the inter task dependencies
and host heterogeneity.

Existing solutions. Over the past few years many re-
source management techniques have been proposed that target
SLA compliance and the improvement of Quality of Service
(QoS) [2]. Specific solutions that target sustainable comput-
ing aim at leveraging monitored metrics like energy consump-
tion and temperature of host machines [2]. Only a few solu-
tions also consider the energy and cost implications of cool-
ing solutions [6]. Most prior work presents meta-heuristic al-
gorithms [6] and deep learning techniques [7]. Most state-of-
the-art models use meta-heuristic approaches like genetic algo-
rithms or integer linear programming [6, 8, 9, 10, 11]. Other
recent methods use reinforcement learning (RL); specifically,
the traditional tabular models like Q-Learning [12, 13]. How-
ever, such meta-heuristic and RL techniques require several ex-
ploratory decisions before updating their models, making them
harder to adapt quickly in highly volatile settings, considering
inter-task dependencies, thermal characteristics or converging
quickly to a scheduling decision [14]. All such features are cru-
cial for a holistic solution for sustainable scheduling [2].

Background and new insights. As is common in most prior
work, modelling the optimization variable, i.e. the scheduling
decision, as a placement matrix does not capture the inter-task
dependencies well [15]. An improved approach is to use ge-
ometric modelling of the scheduling decisions, particularly as
a graph, as it enables structure specific extraction of the sys-
tem state information. Recently proposed Artificial Intelligence
(AI) techniques, such as graph neural networks or graph en-
coders, can efficiently capture such geometric data [16, 17].
One such network, called Gated Graph Convolution Network
(GGCN) enables aggregation of the graph node information us-
ing convolution operations and message passing [16], making
it suitable to model distributed computing network as a graph.
This enables a more versatile optimization approach that also
takes into account the task hierarchy and edge-cloud hierarchy,
not considered in most prior work [14, 9]. We use a GGCN
model as a surrogate of the QoS objective scores allowing us
to swiftly run placement optimization. Such a surrogate model
enables us to quickly get the QoS score for an input (scheduling
decision) without actually executing it in the physical environ-

ment, saving us time and cost. Such deep surrogate models are
commonly used in the literature [10, 13, 14].

Our contributions. In this work, we significantly ex-
tend our previous work [6] by proposing a Holistic resoUrce
maNagemenT technique for Energy-efficient cloud computing
using aRtificial intelligence, called HUNTER. The proposed
method uses a GGCN network as a QoS surrogate to optimize
the scheduling decision for a hybrid public-private cloud envi-
ronment. It uses performance to power ratio as a heuristic to
explore the scheduling search space that enables us to signif-
icantly reduce scheduling time. In our previous work [6], we
proposed a holistic management technique for cloud resources
and established a relationship between replication and service
consolidation to improve the energy-efficiency and cut the car-
bon footprint. However, our previous work did not deal with
heterogeneous resources and dynamic workloads. In this work,
we extend existing thermal and energy consumption models to
also include the cooling overheads [7]. Further, to prevent ex-
cessive scheduling overheads, we use performance to power ra-
tio as a heuristic to significantly reduce the time to converge
to a scheduling decision [18]. To adapt in volatile scenarios,
we periodically adjust the weights of the deep surrogate model
using backpropagation.

The contributions of this research work are summarized as:
• We propose a novel energy-efficient resource management

approach (HUNTER) that uses GGCN as a deep surrogate
model for quick QoS estimation and three sustainability
models, viz, thermal, energy and cooling.
• Extensive experiments on simulated (using the

CloudSim [19] toolkit) and physical cloud testbeds
(using the COSCO [14] framework) show that the pro-
posed model outperforms state-of-the-art schedulers for
sustainable computing.
• HUNTER gives the best energy consumption, SLA viola-

tion, cost and temperature by 11.90%, 35.41%, 53.86%
and 3.47% respectively. HUNTER achieves this with
42.78% lower scheduling overheads compared to the best
baseline.

The rest of the article is organized as follows. Section 2
overviews the related work. Section 3 presents the HUNTER
scheduler. Performance evaluation is carried out in Section 4
with additional results and analysis in Section 5. Section 6 con-
cludes the paper and proposes future work.

2. Related Work

A significant amount of research has been devoted to the area of
resource management in cloud computing. Table 1 summarizes
the comparison of HUNTER with existing works based on im-
portant key features. Given our scope of holistic management
of resources particularly focusing on sustainability, we classify
the state-of-the-art work into two main categories: 1) meta-
heuristic methods (rows 1-3) and 2) reinforcement learning
models (rows 4-8). The ‘holistic’ column represents whether
the approach provides an end-to-end solution for scheduling,
considering all parameters for sustainable cloud computing [6].

2

Table 1: Comparison of HUNTER with related work (Xmeans that the corresponding feature is present).

Work Holistic Dynamic
Technical Sustainability Models QoS and other Optimization Parameters
Approach Energy Thermal Cooling Temperature Time SLA Violation Rate Cost Energy

TOPSIS [20] X Threshold Based X X X X
MALE [21] X Memory Mapping X X X X
CRUZE [6] X Cuckoo Optimization X X X X X X X X
MITEC [8] X Genetic Algorithm X X X X
PADQN [12] X Deep Q Learning X X X X
ANN [10] X Neural Network X X X
SDAE-MMQ [13] X Autoencoders X X X X
HDIC [9] X X NARX Network X X X X
HUNTER X X Surrogate Modelling X X X X X X X X

The ‘dynamic’ column represents whether the technique adapts
on-the-fly for non-stationary environments.

Meta-Heuristic Methods. Our previous work, CRUZE [6],
aimed to reduce the total cloud energy consumption whilst max-
imizing reliability of the system. It utilizes efficient design
models with respect to energy, reliability, capacity and cool-
ing. To generate a scheduling decision, CRUZE uses a Cuckoo
optimization approach. Another work, FECBench [22] pro-
vides performance interference prediction models for services
of cloud providers to develop resource management techniques.
The authors have constructed a process pipeline to construct
multi-resource stressors using machine learning. To minimize
prohibitive profiling costs, the authors have explored multi-
dimensional resource metrics with minimal experimental runs
using design of experiments (DoE) that significantly minimizes
prohibitive profile cost. In similar efforts, the MALE algo-
rithm [21] was recently introduced to minimize energy con-
sumption in a cloud datacenter by reducing memory consump-
tion and contention. This is achieved by mapping memory re-
quirements of virtual machines to cloud hosts using a prede-
fined best-fit criteria. Similarly, TOPSIS [20] presents a set
of heuristics to significantly reduce energy consumption using
thermal features that are recorded from cooling devices and
servers. This approach uses a threshold based load-balancing
technique to prevent thermal hotspots and minimize failures due
to overheating. A similar work, MITEC [8] uses a genetic algo-
rithm to optimize scheduling decisions and updates the energy
and thermal models to tune the fitness scores for each alloca-
tion decision. Other works in this category propose autonomic
cloud resource management mechanisms for the execution of
batch and interactive workloads by leveraging the multiple re-
source layers and host heterogeneity to reduce energy consump-
tion [23, 24, 25]. However, most methods in this category in-
cluding CRUZE, Ella-W and GRANITE do not adapt in volatile
settings. Still, we include the CRUZE and MITEC methods as
a baseline in our experiments to represent this category.

Reinforcement Learning. In recent years, several machine
learning (ML) based schedulers have been proposed that aim to
optimize energy consumption of CDCs. Reinforcement learn-
ing (RL) is an sub-field within ML that models the system as an
interactive environment using QoS parameters to dynamically
modify the scheduling policy [26]. One of the most versatile
RL techniques is the deep Q learning (DQL). Here, a deep neu-

ral network is used to estimate a long-term reward (commonly
referred to as the Q value) for each state. Many recent works,
for instance PADQN [12] and SDAE-MMQ [13], formulate the
scheduling problem as a RL problem and utilize deep Q learn-
ing to produce task placement decisions [27]. Here, the de-
cision is modelled as the state of the RL system with actions
as task migration or allocation decisions. Each action changes
the model state and gives a reward in the form of a QoS score.
More advanced DQL based approaches use sophisticated neural
networks to predict the Q values for each scheduling decision.
SDAE-MMQ uses a stacked denoising autoencoder as a value
network and MiniMax-Q instead of vanilla Q-learning [13].
Another work, HDIC [9], uses a nonlinear auto-regressive net-
work with exogenous inputs (NARX) as a value network. Ad-
vanced neural models typically take a long time to train and
infer Q values for large-scale state inputs. Other works directly
use a deep neural network to produce a task allocation or mi-
gration decision [28]. For instance, a recent ANN approach
uses an artificial neural network to produce a softmax output
for each task [10]. Taking the argmax for each output gives
us the scheduling decision for each task. The ANN is trained
using a supervised learning framework with actions being re-
warded using QoS metrics like energy consumption and execu-
tion time. Such approaches usually scale well with the number
of tasks or hosts in the system, but are unable to capture inter-
task dependencies to efficiently handle task placement. More-
over, Q-learning based methods are known to be slow to adapt
in volatile settings [14]. We use the PADQN, ANN, SDAE-
MMQ and HDIC methods as baselines in our experiments as
these are empirically the best methods this category.

These approaches focus on particular perspectives of cloud
resources management, e.g. computing or network. Unlike
these works, our approach considers resource management in
a holistic manner by considering energy, thermal and cooling
characteristics whilst reducing scheduling and task migration
overheads.

3. The HUNTER Scheduler

3.1. System Model
Figure 1 shows the system model considered in this work. Mo-
tivated from prior work [29, 14], we consider the following
components of the CDC.

3

Cloud Users

Cloud Workload
Management Portal

Workloads

Gateway
Devices

Workload Manager

Cloud Broker

Resource Utilization
and SLA deadlines QoS Manager

SLA Manager

Service Manager

Task Batch with
dependencies,
QoS and SLA

demands

GGCN based
Surrogate Model

Surrogate
Training

Decision
Optimization

Resource Manager

CDC Manager

Resource
Monitoring

Energy
Monitoring

Thermal
Manager

Container
Orchestration

Public CloudPrivate Cloud

Results

LAN Router

VLAN

Scheduling
Decision

Resource
Metrics

Figure 1: System Model of HUNTER

• Cloud Users: The users share workloads as jobs to the
CDC (more details in Section 3.2). The data is collected
using IoT sensors and passed on to the CDC using gateway
devices like smartphones and tablets [14].
• Cloud Workload Management Portal: A graphical user

interface for cloud users to interact with the system for the
submission of workloads along with their SLA and QoS
details.
• Workload Manager: Initially, the workload manager pro-

cesses all the incoming workloads. An admission con-
troller realizes all workloads as container instances [6, 14].
• Cloud Broker: The central cloud server that allocates in-

coming jobs to various compute resources (cloud worker
nodes). It consists of the following components:

– Service Manager: Contains two elements, SLA and
QoS managers that manage the heterogeneous cloud
services while processing workloads. The QoS man-
ager contains the information about QoS require-
ments for different workloads, while the SLA man-
ager contains the information about an agreement
signed between a cloud user and a provider based on
QoS requirements.

– CDC Manager: Continually monitors the resource
utilization of all active tasks and hosts in the sys-
tem. It also monitors the QoS parameters (including
the energy and thermal characteristics of cloud hosts)
and also performs the task allocation and migration.
In this work, we assume tasks as container instances
and task migration as the transfer and restoration of
container checkpoints.

– Resource Manager: Decides the schedule for each
task in the system. The resource manager includes
the sustainability models for energy, thermal and
cooling parts of the CDC. For resource schedul-
ing, the manager contains a GGCN based surrogate
model that estimates QoS parameters. It performs
training and on-the-fly tuning of the GGCN model
to adapt in non-stationary settings. This manager
also runs an exploration strategy that checks the QoS

scores for a set of allocations and chooses the best
one as the scheduling decision (more details in Sec-
tion 3.5).

• Cloud Hosts: The cloud broker is connected to a hetero-
geneous set of worker nodes. Some nodes are present
in the same Local Area Network (LAN) as the broker,
called the private cloud. Others are present in a geograph-
ically distant location and connected using a virtual LAN
(VLAN). As is common practice, we assume that private-
cloud nodes are resource constrained but offer low latency
services, and public-cloud nodes have abundant resources
but have high communication latency.

The HUNTER scheduler resides as the Resource manager in
the Cloud Broker, taking tasks as inputs from the Workload
Manager (see Figure 1). HUNTER uses resource metrics from
the Resource Monitor and executes scheduling decision through
Container Orchestration (as tasks are realized as containers in
our system).

3.2. Workload Model and Problem Formulation

As common in prior work, we assume that generating schedul-
ing decisions is a discrete-time control problem [14, 30]. We
divide the timeline into equal duration intervals, with the t-th
interval denoted as It (starting from i = 0). We assume a fixed
number of host machines and denote the set of cloud hosts by
H. The workloads are in the form of jobs Jt, where each job
ji ∈ Jt is composed of multiple tasks ji = {t0, . . . , t| ji |}. There
are no precedence constraints among tasks that belong to the
same job, but the QoS metrics are calculated at the job level
instead of the task level. Thus, it is important to consider inter-
task dependencies while scheduling. All new jobs created at the
interval It are denoted as Nt, with all active jobs being denoted
as At. A job is considered to be active if at least one task of that
job is being executed in the cloud environment. If no task of a
job j ∈ Nt can be allocated to a cloud node then it is added to a
wait queue Wt. All created jobs that are not active and are not
in the wait queue are considered to be completed and we can
calculate their metrics like response time and SLA violation.

We consider the problem of maximizing the QoS objective

4

score accumulated across all intervals in a bounded time ex-
periment. We denote the QoS score for interval It by Ot and
consider a total n intervals in an experiment. We denote the uti-
lization metrics of all hosts in interval It−1 as Ut. Now using Ut,
we need to predict a scheduling decision S t. All tasks for jobs
in Nt ∪Wt ∪ At are called feasible tasks. Thus, the problem can
be formulated as:

maximize
S t

n∑
t=0

Ot

subject to ∀ t, S t : Pt ∪ Qt → H,

∀ t, Pt = set of feasible tasks in Nt ∪Wt ∪ At,

∀ t,Qt = set of active tasks in the system.
(1)

In the rest of the discussion we consider these symbols only
for a single interval and drop the t subscript for notational con-
venience.

3.3. Sustainability Models

In this work, to decouple the different aspects of sustainable re-
source management [6], we have designed three different mod-
els: energy, thermal and cooling. For completeness, we re-
produce the formulae from our prior work [6], with necessary
adaptations for the new formulation.

3.3.1. Energy Model
This model is designed to encapsulate all parameters related
to the energy consumption, ranging from compute devices to
the cooling components [31]. The total energy of a CDC is
calculated as

ETotal = EComputing + ECooling. (2)

The computing system consists of hosts and its energy con-
sumption includes that of the different components like CPU,
RAM, disk, network and peripherals. Thus, EComputing can be
defined as

EComputing = EProcessor+EStorage+EMemory+ENetwork+EExtra. (3)

Processor. Here, EProcessor represents the processor’s energy
consumption, which is calculated by adding the idle and dy-
namic consumption of all cores. Thus,

EProcessor =

cores∑
r=1

Er
dynamic + Er

idle, (4)

where Er
dynamic and Er

idle are the dynamic and idle energy con-
sumption of the r-th core. Here, Edynamic is calculated using

Edynamic =
Elinear

dynamic + Enon-linear
dynamic

2
. (5)

Elinear
dynamic is calculated as

Elinear
dynamic = CV2 f , (6)

where C is CPU capacitance, f is CPU clock frequency, and V
is CPU voltage. Enon-linear

dynamic is calculated using

Enon-linear
dynamic (h j) = µ1 · U j + µ2 · U2

j , (7)

where µ1 and µ2 are non-linear model parameters and U j is
CPU utilization of host h j.

Storage. EStorage represents the energy consumption of stor-
age devices to store data. The data read and write operations
account for the energy consumption in such devices

EStorage = EReadOperation + EWriteOperation + EIdle. (8)

EMemory represents the energy consumption of the main mem-
ory (RAM/DRAM) and cache memory (SRAM), which is cal-
culated using

EMemory = ESRAM + EDRAM. (9)

Network. ENetwork represents the energy consumption of
networking equipment such as routers, switches and gateways,
LAN cards, etc., and is calculated as

ENetwork = ERouter + ESwitches + EGateways + ELAN cards. (10)

Peripherals. EExtra represents the energy consumption of
other parts, including the current conversion loss and others and
is calculated as

EExtra = Emotherboard +
∑
f∈F

E f
connector (11)

where Emotherboard is energy consumed by motherboard(s) and∑
f∈F E f

connector is energy consumed by a connector (port) run-
ning at the frequency f, where the set of port frequencies is de-
noted by F.

3.3.2. Cooling Model
In the cooling model, ECooling denotes the energy consumed by
cooling devices to maintain the temperature of a cloud datacen-
ter, which is calculated using

ECooling = EAC + ECompressor + EFan + EPump, (12)

where EAC is the energy consumption of the air-conditioner in-
side the cloud-datacenter, ECompressor is the energy used by the
compressor, EFan is that of the fans attached to the radiators
and EPump is that of the pump within the all-in-one (AIO) water
cooling solution.

3.3.3. Thermal Model
To design the thermal model, we use the Computer Room Air
Conditioning (CRAC) model and RC (where R and C are ther-
mal resistance (k/w) and heat capacity (j/k) of the host respec-
tively) used as a time-constant to estimate the temperature of
the CPU for each host (T cu) [6, 7]. Thus,

T cu = PR + Tempinlet + T initial ∗ e-RC, (13)

5

Figure 2: GGCN based surrogate model of HUNTER. The three inputs to the
model and the graph structure are shown in red. Feed-forward and graph con-
volution operations are shown in blue and purple respectively. All activations
are shown in green and all data structures are shown in grey.

where the inlet temperature (Tempinlet) is calculated using
CRAC model (T cu); the RC model is used to calculate CPU
temperature (T CPU); P is the dynamic power of host. T inital is
the initial temperature of the CPU, which is taken as the ambi-
ent temperature of the datacenter [7].

The detailed description of the thermal model and the various
metrics is given in our previous works [6].

3.4. GGCN based Surrogate Model
As described in Section 1, we model the inputs of our surrogate
model using a geometric graph representation (see Figure 2).
We form two graphs D and S . The former represents the inter
task dependencies and the latter represents the bi-partite graph
corresponding to the scheduling decision. D = (VD, ED), where
VD denotes the tasks as nodes and ED denotes the inter-task
dependency in terms of the jobs they belong to as undirected
edges. Each task has a feature vector corresponding to the In-
structions per Second (IPS), RAM, Disk and Bandwidth con-
sumption. The RAM, Disk and Bandwidth consumption also
include the read and write speeds of such tasks. Each edge
(tp, tq) in ED is an unordered pair such that tasks tp and tq be-
long to the same job j ∈ J. S = (VS , ES) is a bi-partite graph
with nodes of two types: tasks and hosts. The edges of the
graph (tp, hr) ∈ ES correspond to the allocation decision of the
current state, where task tp is allocated to host hr. Similar to D,
each task has a feature vector corresponding to the IPS, RAM,
Disk and Bandwidth consumption. The feature vectors of the
host machines consist of the IPS, RAM, Disk and Bandwidth
consumption and capacities.

To perform graph convolutions, we combine S and D into a
single heterogeneous graph, where the edge set now becomes

ED ∪ ES , such that each edge now also has an edge type (task
dependence or allocation relation). This hetero-graph is then
sent to the GGCN model to run convolution operations. The
GGCN model executes convolutions across the edges of the
graph where the convolution operations are weighted using a
Gated Recurrent Unit (GRU). The convolution operations al-
low the model to share information across different tasks and
hosts whilst inferring a latent representation of the scheduling
decision. This information sharing helps the downstream oper-
ations to explicitly leverage the inter-task dependencies and the
implications of an allocation or migration decision on host uti-
lization characteristics. The GRU based weighting allows the
model to be flexible with respect to the extent to which the fea-
ture vectors of hosts and tasks should be combined. Formally,
the message passing leads to graph-to-graph updates

r0
i = Tanh (W ei + b) ,

xk
i =

∑
j∈n(i)

Wkrk−1
j ,

rk
i = GRU

(
rk−1

i , xk
i

)
.

(14)

Here, W, b are parameters of the feed-forward layer within the
GGCN network, ei is the feature-vector (described previously)
of a node i ∈ VD ∪ VS in the heterogeneous graph and k varies
from 1 to p. Also, the messages for task i are aggregated over
one-step connected neighbors n(i) over the p convolutions, re-
sulting in an embedding rp

i for each task node in the graph. The
stacked representation for all tasks is represented as rp. Convo-
lutions across these edge types help as the dependence of task
utilization characteristics with the allocated hosts is the maxi-
mum and much lower for hosts on which the task is not allo-
cated. This allows the scheduling decision to properly manage
task and hosts utilization characteristics while also considering
the changing demands of tasks. We generate the graph encod-
ing eS by passing rp through a feed-forward layer as

eS = FeedForward(rp). (15)

We also capture the thermal-characteristics of the host ma-
chines in terms of their current temperatures (Tcu) and the
power to load profile11 (see Figure 3 for a sample performance
to power profile). We model the thermal profile and current
temperature of all hosts as vectors (Temp) and pass through a
FeedForward network

eT = ReLU(FeedForward(ReLU(FeedForward(Temp)))).
(16)

We then use Bahdanau style self-attention [32] to generate
an estimate of the QoS objective. This allows the model to
focus only on those hosts that can potentially become thermal
hotspots.

Ô = Sigmoid(FeedForward(eS · Softmax(eT))). (17)

11We use Standard Performance Evaluation Corporation (SPEC) power
consumption models to generate power to load performance curves of our cloud
hosts. URL: https://www.spec.org/power_ssj2008/

6

https://www.spec.org/power_ssj2008/

Figure 3: A sample power to load curve for a cloud server. Reproduced
with permission. Source: SPEC benchmark power profile repository
https://www.spec.org/power_ssj2008/results/res2021q2/power_

ssj2008-20210528-01098.html.

Job 1

Job 2

Job j

Tasks Hosts

Allocation
Decisions

Host Feature
Vectors

(Resource Utilization
and Capacities)

Task Feature
Vectors

(Resource
Consumption)

GGCN based
Surrogate Model

Estimate of the
QoS objective

Simuated or
Physical Execution QoS Scores

Prediction
Error

Backpropagate
Loss to Update

Weights

Model Training

Model Testing

Explore Decision Space
to Optimize QoS estimate

Figure 4: Graphical representation of the GGCN model.

The sigmoid operator allows us to generate an output within
[0, 1] to enable training with normalized QoS scores. The
GGCN model is agnostic to the QoS objective in general; how-
ever, in our experiments we use energy, temperature and SLA
violation rates to train and fine-tune the model (see Section 3.5).
To train the GGCN model, we use the Mean-Square-Error
(MSE) loss between the predicted and ground-truth QoS scores.

3.5. Using GGCN Model for Scheduling
We now present the modus operandi of the proposed HUNTER
resource scheduling technique using the GGCN network as a
surrogate model (summarized in Algorithm 1). Figure 4 shows
a graphical representation of the HUNTER scheduler. The in-
put for the scheduler is the resource utilization metrics of the
hosts and tasks that need to be allocated or migrated and the
thermal characteristics of the cloud hosts. These are obtained
from the resource monitoring and the thermal management ser-
vices in the cloud broker (see Figure 1). These metrics are then
combined to generate the S and D graphs and the T vector as
described in Section 3.4. The allocation in the S graph is ob-
tained from the scheduling decision of the previous interval for

It for t > 0 and a random allocation otherwise (line 2 in Alg. 1).
Thus, from the input [S ,D,T] we obtain an estimate of the QoS
score Ô. Now to generate a scheduling decision, we choose
subsets of all tasks and hosts, each of size K. We sort the tasks
based on the power consumption of their hosts, breaking ties
using the CPU utilization and consider top K such tasks (line 4
in Alg. 1). Now, for each such high energy-resource consump-
tion task, we choose a target host where it can be migrated. To
do this, we sort all hosts in terms of the performance to power
ratio and choose the bottom K hosts (line 5 in Alg. 1). Now,
we consider all K × K combinations and choose the host h that
maximizes the objective score estimate obtained from the sur-
rogate model. We denote the updated S graph with task-host
allocation (t, h) by S (t, h) (line 7 in Alg. 1).

To choose the value of the K parameter, we leverage the net-
work transfer constraints. Consider the router bandwidth (in
MB/s) in a CDC to be denoted by B and the size of a schedul-
ing interval (in seconds) by IS . Also, let us denote the minimum
size of a container in the CDC in MB by S C . Then we define

K =
B × IS

S C
. (18)

Intuitively, this denotes the upper-bound of the number of tasks
that can be migrated in the scheduling interval. If we try to
migrate more than K tasks in any decision, the tasks would
take more than IS seconds, rendering the migration useless as
new decisions are taken every IS seconds. For a typical set-
ting with bandwidth of 100-MB/s, scheduling interval of 300-
seconds and container size of 3000-MB, K = 10 allowing us
to check only 100 task-to-host allocations. This can be signifi-
cantly more efficient than checking all task-host combinations,
which may be in thousands.

The motivation behind using the performance-to-power ratio
to sort hosts is as follows. Consider the sample performance
to power ratio profile shown in Figure 3. This ratio indicates
the amount of CPU computational performance we get for each
watt of power consumed. It is apparent that this ratio is highest
for 70% CPU load and reduces for higher or lower CPU loads.
Most cloud servers have similar trends in their power profiles,
with a sweet spot around 70-80%. Higher CPU load can be
easily avoided by capping the constraint checker in the sched-
uler to not allocate tasks to host with 80% CPU load. However,
choosing the optimal target host for lower CPU loads is chal-
lenging due to the heterogeneity of the host power profiles. This
key insight of using the performance-to-power ratio allows us
to minimize the number of migrations as well as the time to
explore different scheduling options.

Further, to adapt in volatile settings, at every scheduling in-
terval we train the neural approximator using back-propagation.
To do this, we obtain the latest QoS objective score from the
QoS manager of the cloud broker and fine-tune the weights of
the GGCN model by back-propagating the MSE loss between
the predicted and true QoS scores. The ground-truth QoS score
is obtained as (lines 14-16 in Alg. 1)

O = 1 − (α · AEC + β · AT + γ · S LAV), (19)

7

https://www.spec.org/power_ssj2008/results/res2021q2/power_ssj2008-20210528-01098.html
https://www.spec.org/power_ssj2008/results/res2021q2/power_ssj2008-20210528-01098.html

Algorithm 1 HUNTER Scheduler
Require:

Pre-trained GGCN model f
Convergence threshold ε
Consideration parameter K; Learning rate γ

1: procedure HUNTER(s)
2: S ,D,T ← ResourceMonitor()
3: Ô← f ([S ,D,T])
4: Tasks← get top K tasks based on power consumption
5: Hosts ← get bottom K hosts based on performance to

power ratio
6: for (t ∈ Tasks) do
7: host← arg maxh∈Hosts f ([S (t, h),D,T])
8: if (allocation of t to h is feasible)
9: Allocate or migrate t to h.

10: else
11: Add t to wait queue.
12: end if
13: end for
14: O = 1 − (α · AEC + β · AT + γ · S LAV)
15: Datapoint← ([S ,D,T],O)
16: Backpropagate f using Datapoint and MSE loss
17: end procedure

where AEC, AT and S LAV denote the average normalized en-
ergy consumption, average normalized temperature and SLA
violation for the leaving tasks in the previous interval. Here,
α, β, γ are convex-combination weights. To minimize the met-
rics of energy, temperature and SLA violations, we maximize
O. Continuous training of the model allows it to quickly adapt
to dynamic workloads and also consider changing scheduling
decisions and use these as well to consider task migrations and
allocations. As shown in line 8 in Alg. 1, for each container,
we check if allocation to the host corresponding to the maxi-
mum QoS score of the GGCN model is feasible, if yes we al-
locate/migrate the container to this host else add it to the wait
queue to be processed in the next interval.

Computational Complexity. Assuming that the inference
of a deep neural network is an O(1) operation, we provide
the computational complexity in the Big-O notation. Assume
p = |P∪Q| active tasks and q = |H| hosts in the system. Select-
ing K ≤ q hosts and tasks from these sets based on the previ-
ously described metric is an O(q log K) and O(p log K) opera-
tion. Checking all K × K task to host allocations is a O(K2) op-
eration. Overall, the computational complexity of checking the
various allocation choices is O(K2+q log K+p log K) = O(p+q)
as K is a fixed constant (hyperparameter). This is significantly
better than checking all possible task-host combinations, viz,
O(pq) in the typical case where p > q.

4. Performance Evaluation

We now describe how we evaluate the HUNTER scheduler
and compare it against the state-of-the-art baselines: PADQN,
CRUZE, MITEC, ANN, SDAE-MMQ and HDIC as described
in Section 2.

4.1. Evaluation Setup

We have tested our proposed approach in both real and sim-
ulated cloud environments using the COSCO framework [14]
and the CloudSim toolkit [19]. We keep the size of the schedul-
ing interval as 5 minutes or 300 seconds and run our experi-
ments for 100 scheduling intervals to generate QoS results. For
statistical significance, we average over 5 runs. The first is a
physical setup where we have used 10 Azure VMs in a dis-
tributed cloud setup as described below.
• Private Cloud. 6 Azure machines, four of type B2s (dual-

core CPU with 4 GB RAM) and two of type B4ms (quad-
core with 16 GB RAM). They were instantiated in the Lon-
don, UK Azure datacenter.
• Public Cloud. 4 Azure machines, two of type B4ms

(quad-core with 16 GB RAM) and two of type B8ms (octa-
core with 32 GB RAM). They were instantiated in the Vir-
ginia, USA Azure datacenter.

We also tested on a simulated platform with 5 times the in-
stances as described above to give a total of 50 hosts. The for-
mer allows more accurate testing of our approach while the lat-
ter allows large-scale experimentation. We use the SPEC power
benchmarks to determine the energy consumption of the data-
centers as done in prior work [14]. We used the R and C values
in (13) as 0.5 and 0.03 based on prior work [33]. We followed
the same implementation details as in prior work [14, 30, 34].

4.2. Workloads

For our physical experiments we use the DeFog benchmark-
ing applications for their diverse and non-stationary work-
loads [35]. DeFog consists of various compute intensive AI
applications like Yolo, PocketSphinx and Aeneas. The include
workloads in the form of object detection in images, natu-
ral language processing, audio-text synchronization and speech
recognition. We encapsulate these workloads as Docker con-
tainers to execute in our cloud servers. At the start of each
scheduling interval we create Poisson(λ) jobs with λ = 1.2.
The jobs are sampled uniformly from the three applications of
Yolo, PocketSphinx and Aeneas. We divide the input batch of
each job into 3 to 5 parts and send them to separate containers
(each container acts as a task).

In our simulated setup, we use the popular dynamic traces
from the BitBrain dataset to emulate a large-scale execu-
tion [36]. The dataset consists of performance metrics of more
than a thousand hosts in a heterogeneous CDC. These traces
are collected from the Alibaba distributed datacenter, which is
very popular for providing services to perform business com-
putations and manage hosting of industrial applications. Insur-
ers (Aegon), credit card operators (ICS) and many major banks
(ING) are the main customers of this datacenter. Further, var-
ious financial computing applications (e.g. Algorithmics and
Towers Watson) related to credit worthiness domain are hosted
here. Moreover, traces are divided into two categories: Rnd and
fastStorage. To allow diverse workloads, we use both traces in
our experiments. These traces consist of time-series models of
CPU, RAM, Disk and Bandwidth utilization characteristics. As
in the physical setup, we create jobs using the the Poisson(5)

8

(a) Energy Consumption (b) Temperature

HUNTER
HDIC

SDAE-M
MQ

ANN
MITEC

CRUZE
PADQN

Model

20

40

60

80

A
ve

ra
ge

 C
PU

 U
til

iz
at

io
n

(\%
)

(c) CPU Utilization (d) RAM Utilization

(e) SLA Violations

HUNTER
HDIC

SDAE-M
MQ

ANN
MITEC

CRUZE
PADQN

Model

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Fa
irn

es
s (

Ja
in

's
in

de
x)

(f) Fairness (g) Completed Tasks (h) Cost

(i) Scheduling Time (j) Wait Time

Execution Time (Interval)

(k) Migration Time

Execution Time (Interval)

(l) Migration Count

Figure 5: Comparison of HUNTER against baselines on physical setup with 10 hosts

distribution with each job is sampled uniformly at random from
the Rnd and fastStorage categories and has 3 to 5 tasks. the λ
parameter is chosen based on prior work [14].

4.3. Model Training

The GGCN model takes as an input, the utilization matrix of
the active tasks and the capacity matrix of the target hosts. This
includes the metrics like CPU, RAM, Disk and Network Band-
width. We also include the SLA deadline as part of the task
utilization matrix. To train the model we first run a random
scheduler to cover as much of the state space as possible. We
run this for a 1000 scheduling intervals and create a dataset of
the form {([S ,D,T],O)}.

Details for Reproducibility: We pass the input through a 4
layer GGCN model with 64 nodes each and initialize the hidden
state of the GRU by a zero vector. We use AdamW optimizer
with a learning rate of 10−4 to train our model and use early-
stopping as our convergence criterion [37]. All model training

and experiments were performed on a system with configura-
tion: Intel i7-10700K CPU, 64GB RAM, Nvidia GTX 1060
and Windows 11 OS.

4.4. Evaluation Metrics

To compare the proposed HUNTER method against the base-
line methods, we use the following metrics:
• Energy consumption given as Etotal in (2).
• SLA Violations which is given as∑

i S LAVi∑
i ji

,

where S LAVi is the 1 if SLA of job ji is violated else 0.
• Average Response Time which is the mean response time

for all completed jobs in an experiment
• Datacenter Temperature given by (13).
• Cost is given by Time × Price. We use the Microsoft

Azure pricing calculator to obtain the cost of execution per

9

(a) Energy Consumption (b) Temperature (c) CPU Utilization (d) RAM Utilization

(e) SLA Violations (f) Fairness (g) Completed Tasks (h) Cost

(i) Scheduling Time (j) Wait Time (k) Migration Time (l) Migration Count

Figure 6: Comparison of HUNTER against baselines on simulator with 50 hosts

hour (in US Dollars) https://azure.microsoft.com/
en-gb/pricing/calculator/.
• Fairness is given by the Jain’s fairness index [14].
• Scheduling Time is the average time to generate a schedul-

ing decision.
• Wait Time is given as the average time a job spends in the

waiting queue.
• Migration Time is the average time a task spends in con-

tainer migration.

4.5. QoS Results
Figures 5 and 6 show the QoS parameters on the COSCO
framework and CloudSim simulator respectively. Figures 5(a)
and 6(a) show the energy consumption in a scheduling interval
averaged over the number of tasks. Among the baselines, HDIC
and SDAE-MMQ provide the most energy efficient policies. As
we go from 10 to 50 hosts, the gaps in the energy consump-
tion among schedulers increase, showing how robust the mod-
els are in minimizing energy consumption in large-scale setups.

Overall, HUNTER gives the lowest energy consumption, re-
ducing by up to 11.90% compared to the best baselines (HDIC
in physical and SDAE-MMQ in simulated testbeds). This is
because of the high number of tasks that complete execution in
case of HUNTER and the use of the performance-to-power ra-
tio (Figures 5(g) and 6(g)). Figures 5(b) and 6(b) show that
HUNTER gives the lowest average temperature for both se-
tups, giving a reduction of up to 3.47% compared to the best
baselines, ∼ 3◦C (HDIC). This is because of the thermal-aware
attention operation in the GGCN based surrogate model that al-
lows HUNTER to emphasize scheduling for hosts that could
act as thermal hostpots. Figures 5(c), 5(d), 6(d) and 6(d) show
the CPU and RAM utilization of all models. All models have
similar resource utilization metrics, with some cases where the
RAM consumption in the HUNTER approach is quite high.
Checking the execution traces in case of the HUNTER sched-
uler shows that this is due to the strict load-balancing rules to
prefer keeping the number of containers in hosts to maintain
the highest performance to load. Migrations based on such an

10

https://azure.microsoft.com/en-gb/pricing/calculator/
https://azure.microsoft.com/en-gb/pricing/calculator/

500
1000

1500
2000

2500
3000

Number of jobs

200

250

300

E
n
er

g
y

(K
W

h
r)

(a) Energy

500
1000

1500
2000

2500
3000

Number of jobs

80

90

100

110

T
em

p
er

a
tu

re
(o

C
)

(b) Temperature

500
1000

1500
2000

2500
3000

Number of jobs

5

10

15

20

S
L

A
V

io
la

ti
o
n

R
a
te

(%
)

(c) SLA Violations

500
1000

1500
2000

2500
3000

Number of jobs

0

1000

2000

3000

C
o
st

(U
S
D

)

(d) Cost

500
1000

1500
2000

2500
3000

Number of jobs

0

250

500

750

1000

1250

S
ch

ed
u
li
n
g

T
im

e
(s

ec
o
n
d
s)

(e) Scheduling Time

Figure 7: Sensitivity analysis of HUNTER and baselines with increasing number of workloads on physical setup with 10 hosts.

500
1000

1500
2000

2500
3000

Number of jobs

400

600

800

1000

E
n
er

g
y

(K
W

h
r)

(a) Energy

500
1000

1500
2000

2500
3000

Number of jobs

80

90

100

110

T
em

p
er

a
tu

re
(o

C
)

(b) Temperature

500
1000

1500
2000

2500
3000

Number of jobs

5

10

15

20

25
S

L
A

V
io

la
ti

o
n

R
a
te

(%
)

(c) SLA Violations

500
1000

1500
2000

2500
3000

Number of jobs

0

2000

4000

6000

C
o
st

(U
S
D

)

(d) Cost

500
1000

1500
2000

2500
3000

Number of jobs

0

100

200

300

400

S
ch

ed
u
li
n
g

T
im

e
(s

ec
o
n
d
s)

(e) Scheduling Time

Figure 8: Sensitivity analysis of HUNTER and baselines with increasing number of workloads on simulated setup with 50 hosts.

approach can, in rare cases, lead to slight resource contention
at the cost of minimizing energy or temperature. This is pri-
marily when there are sudden spikes in task resource demands,
having a cascading effect on other tasks running in the same
host. Avoiding such cases is left as part of the future work.
Figures 11(d) and 6(e) show that the proposed approach is able
to reduce SLA violations by up to 35.41% compared to the best
baselines (HDIC). This is primarily due to the accurate QoS ob-
jective prediction, allowing the model to minimize the SLA vio-
lation rates by checking the QoS estimate for several placement
choices. Figures 5(f) and 6(f) show that all models have compa-
rable fairness index values. Figures 11(e) and 6(h) show the av-
erage cost per task for each model. The HUNTER method has
the lowest average cost giving up to 53.86% compared to the
best baseline (SDAE-MMQ). PADQN has very high cost due
to the excessive migration overheads as shown by Figures 5(k),
5(l), 6(k), 6(l). HUNTER like many other baselines has low
wait times (Figs. 5(j) and 6(j)). Compared to the best base-
lines (HDIC and SDAE-MMQ), HUNTER has 42.78% lower
scheduling time (Figs. 5(i) and 6(i)).

5. Analyses

5.1. Sensitivity Analysis

We now show how various models scale with the number of
workloads. The results in the previous section were time bound,
i.e., for 100 scheduling intervals. Now we show how the QoS
parameters vary with the number of workloads (see Figs. 7

and 8). Figures 7(a) and 8(a) show the variation in the con-
sumption of energy with increasing number of jobs. HUNTER
consumes up to 19.8% less as compared to best baseline models
(HDIC and SDAE-MMQ). Overall, the rise in energy consump-
tion with number of jobs for HUNTER is not as high as other
baseline methods. This is because HUNTER uses the perfor-
mance to power profiles of cloud hosts to maintain optimal per-
formance while minimizing energy consumption. Figures 7(b)
and 8(b) show the change in the temperature with the variation
of job quantity. The value of temperature in HUNTER is 5.5%
less than CRUZE because HUNTER uses CRAC-based cool-
ing management [7] that avoids overloading and underloading
of resources and can switch off idle resources automatically.
Figures 7(c) and 8(c) show the change in the SLA violation rate
with the variation of number of jobs. The value of SLA viola-
tion rate in HUNTER is up to 42.12% lower as compared to the
HDIC baseline. Figures 7(d) and 8(d) show the change in the
cost with the variation job count. HUNTER gives up to 63.75%
less cost as compared to CRUZE and SDAE-MMQ. This is pri-
marily due to the optimal performance to load management in
the HUNTER scheduler. Figures 7(e) and 8(e) show the dis-
tribution of the scheduling time with the job count. There is
a sharp increase in PADQN model as DQN scales poorly with
time [14]. HUNTER has a higher scheduling time compared
to the heuristic based baselines: CRUZE and MITEC. How-
ever, compared to the best baselines in terms of energy, temper-
ature and cost, i.e., SDAE-MMQ and HDIC, HUNTER has up
to 56.12% lower scheduling times.

11

500
1000

1500
2000

2500
3000

Number of jobs

200

250

300

350

400

450

E
n
er

g
y

(K
W

h
r)

(a) Energy

500
1000

1500
2000

2500
3000

Number of jobs

80

85

90

95

100

T
em

p
er

a
tu

re
(o

C
)

(b) Temperature

500
1000

1500
2000

2500
3000

Number of jobs

2.5

5.0

7.5

10.0

12.5

15.0

S
L

A
V

io
la

ti
o
n

R
a
te

(%
)

(c) SLA Violations

500
1000

1500
2000

2500
3000

Number of jobs

500

1000

1500

C
o
st

(U
S
D

)

(d) Cost

500
1000

1500
2000

2500
3000

Number of jobs

0

200

400

600

800

1000

S
ch

ed
u

li
n

g
T

im
e

(s
ec

o
n

d
s)

(e) Scheduling Time

Figure 9: Comparison of QoS metrics using the HUNTER scheduler on simulated and physical platforms.

500
1000

1500
2000

2500
3000

Number of jobs

0.5

1.0

1.5

C
o
effi

ci
en

t
o
f

V
a
ri

a
ti

o
n

(a) Energy

500
1000

1500
2000

2500
3000

Number of jobs

2

4

6

8

C
o
effi

ci
en

t
o
f

V
a
ri

a
ti

o
n

(b) Temperature

500
1000

1500
2000

2500
3000

Number of jobs

0.5

1.0

1.5

2.0

C
o
effi

ci
en

t
o
f

V
a
ri

a
ti

o
n

(c) SLA Violations

500
1000

1500
2000

2500
3000

Number of jobs

1.5

2.0

2.5

3.0

3.5

4.0

C
o
effi

ci
en

t
o
f

V
a
ri

a
ti

o
n

(d) Cost

500
1000

1500
2000

2500
3000

Number of jobs

1

2

3

4

5

C
o
effi

ci
en

t
o
f

V
a
ri

a
ti

o
n

(e) Scheduling Time

Figure 10: Coefficient of Variance for various metrics on the simulated platform.

5.2. Comparison between Simulated and Physical Setups

We now compare the QoS metrics for the HUNTER approach
for the simulated (CloudSim) and physical setups (COSCO)
(see Figure 9). Clearly, all QoS parameters increase with the
rise of the number of jobs. Figures 9(a), 9(b), 9(c), 9(d) and
9(e) show a performance comparison of simulated and physical
setup for energy consumption, host temperature, SLA violation
rate, cost and scheduling time. Naturally, we get higher energy
consumption, SLA violation rates and scheduling times for the
simulated setup as there are five times the number of hosts in
that of the physical setup. COSCO allows us to conduct more
accurate experiments which give us less noisy fine-tuning as the
model adapts to volatile workloads. This describes why the av-
erage rise in the temperature with the number of jobs is lower
for the physical setup. Moreover, due to the imprecise compu-
tation of the resource utilization metrics for the tasks and hosts,
the experiments of CloudSim simulator gives results that have
high deviation from the ones conducted on the physical plat-
form. Scalability wise we are able to show that HUNTER is
able to scale well when the number of workloads or host ma-
chines is large.

5.3. Analysis of Model Training and Inference Times

Table 2 compares the training and inference times of the
HUNTER approach with the baseline methods. CRUZE and
MITEC do not have any training overheads as they run on-
line without training any AI model or neural network. We
also test the training time for the GGCN model. Compared

Table 2: Comparison of training and inference times (in seconds) between
HUNTER and baseline methods on simulated setup with 50 hosts.

Model Training Time Inference Time

HUNTER 908 ± 12 0.88 ± 0.13
HDIC 1193 ± 68 1.12 ± 0.28
SDAE-MMQ 2058 ± 102 1.17 ± 0.05
ANN 102 ± 4 0.20 ± 0.01
MITEC - 0.19 ± 0.03
CRUZE - 0.01 ± 0.01
PADQN 340 ± 81 0.23 ± 0.02

to various other prior works which rely on deep reinforcement
learning (HDIC, SDAE-MMQ, ANN and PADQN) that take
up to 2058 ± 102 seconds, HUNTER takes only 908 ± 12 sec-
onds to train its model, giving a training overhead reduction
of 55.87% compared to SDAE-MMQ and 23.88% compared to
HDIC. This is negligible compare to the discrete time interval
of 300 seconds used in our orchestration controllers and hence
it is feasible to adopt the HUNTER approach in dynamically
changing environments.

When comparing the inference times, the best baselines
(HDIC and SDAE-MMQ) have a relatively high inference times
of up to 1.17 seconds. HUNTER gives a scheduling time of
0.88 seconds, 24.78% lower than these baselines.

12

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
re

d
ic

ti
o
n

E
rr

o
r

(M
S

E
)

1.0

1.2

1.4

1.6

1.8

R
el

a
ti

v
e

P
er

fo
rm

a
n

ce

(a) Prediction Error

0

100

200

300

400

500

600

E
n

er
g
y

(K
W

h
r)

1.0

1.1

1.2

1.3

1.4

1.5

1.6

R
el

a
ti

v
e

P
er

fo
rm

a
n

ce

(b) Energy

0

20

40

60

80

100

T
em

p
er

a
tu

re
(o

C
)

1.000

1.025

1.050

1.075

1.100

1.125

1.150

1.175

1.200

R
el

a
ti

v
e

P
er

fo
rm

a
n

ce

(c) Temperature

0

2

4

6

8

10

12

S
L

A
V

io
la

ti
o
n

R
a
te

(%
)

1.0

1.2

1.4

1.6

1.8

2.0

R
el

a
ti

v
e

P
er

fo
rm

a
n

ce

(d) SLA Violations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

S
ch

ed
u

li
n

g
T

im
e

(s
ec

o
n

d
s)

1.000

1.025

1.050

1.075

1.100

1.125

1.150

1.175

1.200

R
el

a
ti

v
e

P
er

fo
rm

a
n

ce

(e) Cost

0

1

2

3

4

C
o
st

(U
S

D
)

1

2

3

4

5

R
el

a
ti

v
e

P
er

fo
rm

a
n

ce

(f) Scheduling Time

Figure 11: Ablation Analysis of different model components of HUNTER for the simulated setup with 50 hosts. The bar graphs show absolute values. The line
graphs show the performance relative to HUNTER.

5.4. Statistical Analysis
The Coefficient of Variation (CoV) is used to analyse statistical
significance of the experiments as it measures the distribution of
the QoS metrics around the mean-value. Moreover, CoV gives
an overall analysis of HUNTER’s robustness to environment
volatility. Figures 10(a), 10(b), 10(c), 10(d) and 10(e) show the
CoV of energy consumption, temperature, SLA violation rate,
execution cost and scheduling time with the increase in number
of jobs. The range of CoV is (0.2–0.89%) for energy consump-
tion, (0.42–1.1%) for SLA violation rate, (1.5–2.1%) for cost,
(0.5–3.1%) for scheduling time and (1–6%) for temperature.
HUNTER has comparatively low CoV indicates that the model
is able to handle dynamic workloads well and is robust enough
to handle environment non-stationarity [6].

5.5. Ablation Analysis
To study the relative importance of each component of the
model, we exclude every major one and observe how it affects
the performance of the scheduler. An overview of this ablation
analysis is given in Figure 11. First, we consider the HUNTER
scheduler without the top-K heuristic and check all task-to-host
allocations (w/o Heuristic model). Clearly, this gives a much
higher scheduling time (Fig. 11(f)) and has worse effect on
the other QoS metrics due to its high overheads. Second, we
consider a model without the thermal-aware attention, i.e., we
only use GGCN part of the deep surrogate model (w/o Attn
model). Here we see that the average temperature increases
significantly, also impacting energy and cost. The other model
we consider is replacing the GGCN network with a completely
feed-forward one (w/o GGCN model). Here we see a signifi-
cant increase in the MSE prediction error (Fig. 11(a)) leading
to higher temperature, cost, SLA violations and energy con-
sumption.

6. Conclusions and Future Work

In this paper, we proposed a Gated Graph Convolution Network
(GGCN) based holistic resource management scheduling tech-
nique called HUNTER. Our scheduler enables energy-efficient
utilization of cloud servers and reduces thermal hotspots.
HUNTER achieves this by adding cooling specific energy and
temperature models, unseen in previous approaches. Further,
using a GGCN based deep surrogate model allows HUNTER

to quickly generate QoS estimates, avoiding significant costs
in testing various scheduling decisions. HUNTER uses per-
formance to power ratio as a heuristic to effectively balance
the load on cloud hosts, giving maximum compute power
while reducing energy consumption. This heuristic also allows
HUNTER to quickly explore the scheduling search space and
quickly converge to a decision. Extensive experiments on both
physical and simulated testbeds show that HUNTER outper-
forms baselines in most QoS metrics. Furthermore, the small
values of the coefficient of variation of energy and tempera-
ture indicate that HUNTER is efficient in resource manage-
ment while handling dynamic workloads. HUNTER optimizes
five key performance parameters, viz, temperature, energy con-
sumption, cost, SLA violation and time. The experiments
demonstrate that the HUNTER performs better than existing AI
based (HDIC, SDAE-MMQ, ANN and PADQN) and heuristic
algorithm (CRUZE and MITEC) based resource schedulers.

This work can be extended by factoring in parameters that re-
late to scalability, security and reliability and their energy ram-
ifications. Future work may also consider how cooling man-
agement can be further enhanced by capturing domain spe-
cific tactics for cooling; IoT and Fog/Edge computing reliant
domains such as agriculture, healthcare and smart homes are
among the candidate application domains to consider. Cur-
rently, HUNTER only decides the appropriate placement de-
cisions for tasks; however it can be extended to also decide the
AC or fan settings in the cases of deadline constrained or bursty
workloads. Finally, HUNTER can use the concept of serverless
edge computing to effectively scale applications.

Software Availability

The code is available at https://github.com/

imperial-qore/COSCO/tree/ggcn. The Docker
images used in the experiments are available at
https://hub.docker.com/u/shreshthtuli.

CRediT authorship contribution statement

Shreshth Tuli: Conceptualization, Data curation, Investiga-
tion, Methodology, Software, Visualization, Validation, For-
mal analysis, Writing - original draft. Sukhpal Singh Gill:
Conceptualization, Data curation, Investigation, Methodology,

13

https://github.com/imperial-qore/COSCO/tree/ggcn
https://github.com/imperial-qore/COSCO/tree/ggcn
https://hub.docker.com/u/shreshthtuli

Software, Visualization, Validation, Formal analysis, Writing -
original draft. Minxian Xu: Investigation, Methodology, Writ-
ing - original draft. Peter Garraghan: Conceptualization, Data
curation, Writing - review & editing. Rami Bahsoon: Investi-
gation, Methodology, Writing - original draft, Writing - review
& editing. Schahram Dustdar: Formal analysis and Writing -
review & editing. Rizos Sakellariou: Methodology and Writ-
ing - review & editing. Omer Rana: Visualization and Writ-
ing - review & editing. Rajkumar Buyya: Conceptualization,
Writing - original draft and Supervision. Giuliano Casale: Su-
pervision, Visualization, Writing - review & editing. Nicholas
R. Jennings: Conceptualization, Writing - original draft, Su-
pervision, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

Shreshth Tuli is supported by the President’s Ph.D. Scholarship
at the Imperial College London. This research work is partially
supported by the EPSRC Research Grant (EP/V007092/1), Na-
tional Natural Science Foundation of China (62102408), and
SIAT Innovation Program for Excellent Young Researchers.
The authors thank Muhammad Hassaan Anwar for his sugges-
tions at the initial stages of this work.

References

[1] A. Berl, E. Gelenbe, M. Di Girolamo, G. Giuliani, H. De Meer, M. Q.
Dang, K. Pentikousis, Energy-efficient cloud computing, The computer
journal 53 (7) (2010) 1045–1051.

[2] J. Shuja, A. Gani, S. Shamshirband, R. W. Ahmad, K. Bilal, Sustainable
cloud data centers: a survey of enabling techniques and technologies, Re-
newable and Sustainable Energy Reviews 62 (2016) 195–214.

[3] K. W. Chun, H. Kim, K. Lee, A study on research trends of technologies
for Industry 4.0; 3D printing, artificial intelligence, big data, cloud com-
puting, and internet of things, in: Advanced multimedia and ubiquitous
engineering, Springer, 2018, pp. 397–403.

[4] P. Wankhede, M. Talati, R. Chinchamalatpure, Comparative study of
cloud platforms-Microsoft Azure, Google Cloud Platform and Amazon
EC2, Journal of Research in Engineering and Applied Sciences.

[5] E. Pakbaznia, M. Pedram, Minimizing data center cooling and server
power costs, in: Proceedings of the 2009 ACM/IEEE international sym-
posium on Low power electronics and design, 2009, pp. 145–150.

[6] S. S. Gill, P. Garraghan, V. Stankovski, G. Casale, R. K. Thulasiram, S. K.
Ghosh, K. Ramamohanarao, R. Buyya, Holistic resource management
for sustainable and reliable cloud computing: An innovative solution to
global challenge, Journal of Systems and Software 155 (2019) 104–129.

[7] M. T. Chaudhry, T. C. Ling, A. Manzoor, S. A. Hussain, J. Kim,
Thermal-aware scheduling in green data centers, ACM Computing Sur-
veys (CSUR) 47 (3) (2015) 1–48.

[8] A. Akbari, A. Khonsari, S. M. Ghoreyshi, Thermal-aware virtual machine
allocation for heterogeneous cloud data centers, Energies 13 (11) (2020)
2880.

[9] S. MirhoseiniNejad, G. Badawy, D. G. Down, Holistic thermal-aware
workload management and infrastructure control for heterogeneous data
centers using machine learning, Future Generation Computer Systems
118 (2021) 208–218.

[10] M. Sharma, R. Garg, An artificial neural network based approach for en-
ergy efficient task scheduling in cloud data centers, Sustainable Comput-
ing: Informatics and Systems 26 (2020) 100373.

[11] N. Fareghzadeh, M. A. Seyyedi, M. Mohsenzadeh, Toward holistic per-
formance management in clouds: taxonomy, challenges and opportuni-
ties, The Journal of Supercomputing 75 (1) (2019) 272–313.

[12] Y. Ran, H. Hu, X. Zhou, Y. Wen, DeepEE: Joint optimization of job
scheduling and cooling control for data center energy efficiency using
deep reinforcement learning, in: 2019 IEEE 39th International Confer-
ence on Distributed Computing Systems (ICDCS), IEEE, 2019.

[13] B. Wang, F. Liu, W. Lin, Energy-efficient vm scheduling based on deep
reinforcement learning, Future Generation Computer Systems.

[14] S. Tuli, S. Poojara, S. N. Srirama, G. Casale, N. Jennings, COSCO: Con-
tainer Orchestration using Co-Simulation and Gradient Based Optimiza-
tion for Fog Computing Environments, IEEE Transactions on Parallel and
Distributed Systems.

[15] Z. Zhao, G. Verma, C. Rao, A. Swami, S. Segarra, Distributed schedul-
ing using graph neural networks, in: ICASSP 2021-2021 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP),
IEEE, 2021, pp. 4720–4724.

[16] L. Ruiz, F. Gama, A. Ribeiro, Gated graph recurrent neural networks,
IEEE Transactions on Signal Processing 68 (2020) 6303–6318.

[17] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, S. Y. Philip, A comprehensive
survey on graph neural networks, IEEE transactions on neural networks
and learning systems 32 (1) (2020) 4–24.

[18] Y. Zhang, X. Wang, X. Liu, Y. Liu, Ł. Zhuang, F. Zhao, Towards better
cpu power management on multicore smartphones, in: Proceedings of the
Workshop on Power-Aware Computing and Systems, 2013, pp. 1–5.

[19] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, R. Buyya,
Cloudsim: a toolkit for modeling and simulation of cloud computing en-
vironments and evaluation of resource provisioning algorithms, Software:
Practice and experience 41 (1) (2011) 23–50.

[20] E. Arianyan, H. Taheri, S. Sharifian, Novel energy and SLA efficient re-
source management heuristics for consolidation of virtual machines in
cloud data centers, Computers & Electrical Engineering 47 (2015) 222–
240.

[21] B. Liang, X. Dong, Y. Wang, X. Zhang, Memory-aware resource man-
agement algorithm for low-energy cloud data centers, Future Generation
Computer Systems 113 (2020) 329–342.

[22] Y. D. Barve, S. Shekhar, A. Chhokra, S. Khare, A. Bhattacharjee,
Z. Kang, H. Sun, A. Gokhale, FECBench: A holistic interference-aware
approach for application performance modeling, in: 2019 IEEE Interna-
tional Conference on Cloud Engineering (IC2E), IEEE, 2019, pp. 211–
221.

[23] M. S. A. Shuvo, M. A. R. Munna, S. Sarker, T. Adhikary, M. A. Razzaque,
M. M. Hassan, G. Aloi, G. Fortino, Energy-efficient scheduling of small
cells in 5G: A meta-heuristic approach, Journal of Network and Computer
Applications 178 (2021) 102986.

[24] A. A. Butt, S. Khan, T. Ashfaq, S. Javaid, N. A. Sattar, N. Javaid, A cloud
and fog based architecture for energy management of smart city by using
meta-heuristic techniques, in: 2019 15th International Wireless Commu-
nications & Mobile Computing Conference (IWCMC), IEEE, 2019, pp.
1588–1593.

[25] G. G. Kumar, P. Vivekanandan, Energy efficient scheduling for cloud data
centers using heuristic based migration, Cluster Computing 22 (6) (2019)
14073–14080.

[26] R. S. Sutton, A. G. Barto, Reinforcement learning: An introduction, MIT
press, 2018.

[27] D. Zeng, L. Gu, S. Pan, J. Cai, S. Guo, Resource management at the
network edge: A deep reinforcement learning approach, IEEE Network
33 (3) (2019) 26–33.

[28] J. N. Witanto, H. Lim, M. Atiquzzaman, Adaptive selection of dynamic
vm consolidation algorithm using neural network for cloud resource man-
agement, Future generation computer systems 87 (2018) 35–42.

[29] A. Madej, N. Wang, N. Athanasopoulos, R. Ranjan, B. Varghese, Priority-
based fair scheduling in edge computing, in: 2020 IEEE 4th International
Conference on Fog and Edge Computing (ICFEC), IEEE, 2020, pp. 39–
48.

[30] D. Basu, X. Wang, Y. Hong, H. Chen, S. Bressan, Learn-as-you-go with
megh: Efficient live migration of virtual machines, IEEE Transactions on
Parallel and Distributed Systems 30 (8) (2019) 1786–1801.

14

[31] S. MirhoseiniNejad, H. Moazamigoodarzi, G. Badawy, D. G. Down, Joint
data center cooling and workload management: A thermal-aware ap-
proach, Future Generation Computer Systems 104 (2020) 174–186.

[32] D. Bahdanau, K. H. Cho, Y. Bengio, Neural machine translation by jointly
learning to align and translate, in: 3rd International Conference on Learn-
ing Representations, ICLR 2015, 2015.

[33] M. Wolf, The physics of computing, Elsevier, 2016.
[34] K. Alwasel, D. N. Jha, E. Hernandez, D. Puthal, M. Barika, B. Varghese,

S. K. Garg, P. James, A. Zomaya, G. Morgan, et al., IoTsim-SDWAN:
A simulation framework for interconnecting distributed datacenters over
software-defined wide area network, Journal of Parallel and Distributed
Computing 143 (2020) 17–35.

[35] J. McChesney, N. Wang, A. Tanwer, E. de Lara, B. Varghese, Defog: fog
computing benchmarks, in: Proceedings of the 4th ACM/IEEE Sympo-
sium on Edge Computing, 2019, pp. 47–58.

[36] S. Shen, V. Van Beek, A. Iosup, Statistical characterization of business-
critical workloads hosted in cloud datacenters, in: 2015 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, IEEE,
2015, pp. 465–474.

[37] I. Loshchilov, F. Hutter, Decoupled weight decay regularization, in: In-
ternational Conference on Learning Representations, 2018.

Shreshth Tuli is an undergraduate stu-
dent at the Department of Computer Sci-
ence and Engineering at Indian Institute
of Technology - Delhi, India. He is a na-
tional level Kishore Vaigyanic Protsahan
Yojana (KVPY) scholarship holder for
excellence in science and innovation. He
is working as a visiting research fellow

at the Cloud Computing and Distributed Systems (CLOUDS)
Laboratory, Department of Computing and Information Sys-
tems, the University of Melbourne, Australia. Most of his
projects are focused on developing technologies for future re-
quiring sophisticated hardware-software integration. His re-
search interests include Internet of Things (IoT), Fog Com-
puting, Network Design, Blockchain and deep learning. For
further information, visit https://shreshthtuli.github.
io/.

Sukhpal Singh Gill is a Lecturer (As-
sistant Professor) in Cloud Computing
at School of Electronic Engineering and
Computer Science, Queen Mary Univer-
sity of London, UK. Prior to this, Dr.
Gill has held positions as a Research As-
sociate at the School of Computing and
Communications, Lancaster University,
UK and also as a Postdoctoral Research

Fellow at CLOUDS Laboratory, The University of Melbourne,
Australia. Dr. Gill is serving as an Associate Editor in Wiley
ETT and IET Networks Journal. His research interests include
Cloud Computing, Fog Computing, Software Engineering, In-
ternet of Things and Healthcare. For further information, please
visit http://www.ssgill.me.

Minxian Xu is currently an assistant
professor at Shenzhen Institutes of Ad-
vanced Technology, Chinese Academy
of Sciences. He received the BSc de-
gree in 2012 and the MSc degree in 2015,
both in software engineering from Uni-
versity of Electronic Science and Tech-
nology of China. He obtained his PhD
degree from the University of Melbourne

in 2019. His research interests include resource scheduling and
optimization in cloud computing. He has coauthored 20+ peer-
reviewed papers published in prominent international journals
and conferences. His Ph.D. Thesis was awarded the 2019 IEEE
TCSC Outstanding Ph.D. Dissertation Award. More informa-
tion can be found at: minxianxu.info.

Peter Garraghan is a Reader and EP-
SRC Fellow in Distributed Systems. His
research expertise is empirically study-
ing and designing high performance, re-
silient, and sustainable distributed sys-
tems at scale (Cloud computing, Ma-
chine Learning systems, Datacentres,
core network infrastructure) in the face
of societal and environmental change.

His research places strong emphasis on conducting analysis,
design, and evaluation via experimentation on systems both in
laboratory and production. Peter has published over 50 arti-
cles, has industrial experience building large-scale production
distributed systems, and has worked and collaborated interna-
tionally with the likes of Alibaba Group, Microsoft, BT, STFC,
CONACYT, and the UK datacenter and IoT industry. He is
the recipient of the prestigious EPSRC Early-career Fellowship
(2021 - 2025), and his research on sustainable computing and
future AI systems has featured in the media including the BBC
and the Daily Mail.

Rami Bahsoon is a Reader at the
School of Computer Science, University
of Birmingham, UK. Bahsoon’s research
is in the area of software architecture,
cloud and services software engineering,
self-aware software architectures, self-
adaptive and managed software engi-
neering, economics-driven software en-
gineering and technical debt manage-
ment in software. He co-edited four

books on Software Architecture, including Economics-Driven
Software Architecture; Software Architecture for Big Data and
the Cloud; Aligning Enterprise, System, and Software Archi-
tecture. He was a Visiting Scientist at the Software Engineer-
ing Institute (SEI), Carnegie Mellon University, USA (June-
August 2018) and was the 2018 Melbourne School of Engi-
neering (MSE) Visiting Fellow of The School of Computing
and Information Systems, the University of Melbourne (Au-
gust to Nov 2018). He holds a PhD in Software Engineering
from University College London (2006) and was MBA Fellow
in Technology at London Business School (2003–2005). He is

15

https://shreshthtuli.github.io/
https://shreshthtuli.github.io/
http://www.ssgill.me
minxianxu.info

a fellow of the Royal Society of Arts and Associate Editor of
IEEE Software - Software Economies.

Schahram Dustdar is Full Profes-
sor of Computer Science heading the
Research Division of Distributed Sys-
tems at the TU Wien, Austria. He is
founding co-Editor-in-Chief of the new
ACM Transactions on Internet of Things
(ACM TIoT) as well as Editor-in-Chief
of Computing (Springer). He is an As-
sociate Editor of IEEE TSC IEEE TCC,

ACM ToW, and ACM ToIT, as well as on the editorial board
of IEEE Internet Computing and IEEE Computer. Dustdar is
recipient of the ACM Distinguished Scientist award (2009),
the IBM Faculty Award (2012), an elected member of the
Academia Europaea: The Academy of Europe, where he is
chairman of the Informatics Section, as well as an IEEE Fel-
low (2016).

Rizos Sakellariou obtained his PhD
from the University of Manchester in
1997. Since then he held positions with
Rice University and the University of
Cyprus, while currently he is with the
University of Manchester leading a lab-
oratory that carries out research in High-
Performance, Parallel and Distributed
systems, which over the last 10 years has
hosted more than 30 doctoral students,

researchers and long-term visitors. Rizos has carried out re-
search on a number of topics related to parallel and distributed
computing, with an emphasis on problems stemming from effi-
cient resource utilization and workload allocation and schedul-
ing issues. He has published over 140 research papers, His re-
search has been supported by several UK and EU projects and
has been on the Program Committee of over 150 conferences
and workshops.

Omer Rana is a Professor of Perfor-
mance Engineering in School of Com-
puter Science & Informatics at Cardiff
University and Deputy Director of the
Welsh e-Science Centre. He holds a PhD
from Imperial College. His research in-
terests extend to three main areas within
computer science: problem solving en-
vironments, high performance agent sys-

tems and novel algorithms for data analysis and management.
Moreover, he leads the Complex Systems research group in the
School of Computer Science & Informatics and is director of
the “Internet of Things” Lab, at Cardiff University. He serves
on the Editorial Board of IEEE Transactions on Parallel and
Distributed Systems, ACM Transactions on Internet Technol-
ogy, and ACM Transactions on Autonomous and Adaptive Sys-
tems. He has served as a Co-Editor for a number of journals,
including Concurrency: Practice and Experience (John Wiley),
IEEE Transactions on System, Man, and Cybernetics: Systems,
and IEEE Transactions on Cloud Computing.

Rajkumar Buyya is a Redmond
Barry Distinguished Professor and Di-
rector of the Cloud Computing and Dis-
tributed Systems (CLOUDS) Laboratory
at the University of Melbourne, Aus-
tralia. He is also serving as the found-
ing CEO of Manjrasoft, a spin-off com-
pany of the University, commercializing

its innovations in Cloud Computing. He has authored over 850
publications and seven text books including ”Mastering Cloud
Computing” published by McGraw Hill, China Machine Press,
and Morgan Kaufmann for Indian, Chinese and international
markets respectively. He is one of the highly cited authors
in computer science and software engineering worldwide (h-
index=149, g-index=322, 116,500+ citations). He served as the
founding Editor-in-Chief of the IEEE Transactions on Cloud
Computing. He is currently serving as Co-Editor-in-Chief of
Journal of Software: Practice and Experience, which was es-
tablished 50+ years ago. For further information, please visit
his cyberhome: www.buyya.com.

Giuliano Casale joined the Depart-
ment of Computing at Imperial College
London in 2010, where he is currently
a Reader. Previously, he worked as a
research scientist and consultant in the
capacity planning industry. He teaches
and does research in performance engi-
neering and cloud computing, topics on
which he has published more than 100
refereed papers. He has served on the

technical program committee of over 80 conferences and work-
shops and as co-chair for several conferences in the area of per-
formance and reliability engineering, such as ACM SIGMET-
RICS/Performance and IEEE/IFIP DSN. His research work
has received multiple awards, recently the best paper award at
ACM SIGMETRICS. He serves on the editorial boards of IEEE
TNSM and ACM TOMPECS and as current chair of ACM SIG-
METRICS.

Nicholas R. Jennings is the
Vice-Chancellor and President of
Loughborough University. He is an
internationally-recognised authority in
the areas of AI, autonomous systems,
cyber-security and agent-based com-
puting. He is a member of the UK
government’s AI Council, the governing
body of the Engineering and Physical
Sciences Research Council, and chair

of the Royal Academy of Engineering’s Policy Committee.
Before Loughborough, he was the Vice-Provost for Research
and Enterprise and Professor of Artificial Intelligence at
Imperial College London, UK’s first Regius Professor of Com-
puter Science (a post bestowed by the monarch to recognise
exceptionally high quality research) and the UK Government’s
first Chief Scientific Advisor for National Security.

16

www.buyya.com

	1 Introduction
	2 Related Work
	3 The HUNTER Scheduler
	3.1 System Model
	3.2 Workload Model and Problem Formulation
	3.3 Sustainability Models
	3.3.1 Energy Model
	3.3.2 Cooling Model
	3.3.3 Thermal Model

	3.4 GGCN based Surrogate Model
	3.5 Using GGCN Model for Scheduling

	4 Performance Evaluation
	4.1 Evaluation Setup
	4.2 Workloads
	4.3 Model Training
	4.4 Evaluation Metrics
	4.5 QoS Results

	5 Analyses
	5.1 Sensitivity Analysis
	5.2 Comparison between Simulated and Physical Setups
	5.3 Analysis of Model Training and Inference Times
	5.4 Statistical Analysis
	5.5 Ablation Analysis

	6 Conclusions and Future Work

