
A Novel Load Balancing Scheme for Mobile Edge
Computing?

Zhenhua Duan1, Cong Tian1,∗, Nan Zhang1,∗, Mengchu Zhou2, Bin Yu1,∗,
Xiaobing Wang1, Jiangen Guo1, Ying Wu1

Abstract

To overcome long propagation delays for data exchange between the remote cloud
data center and end devices in Mobile Cloud Computing (MCC), Mobile Edge
Computing (MEC) is emerging to push mobile computing, network control and
storage to the network edges. A cloudlet in MEC is a mobility-enhanced small-
scale cloud, which contains several MEC servers located in close proximity to
mobile devices. The main purpose of a cloudlet is to stably provide services to
mobile devices with low latency. When a cloudlet offers hundreds kinds of ser-
vices to millions of mobile devices, it is critical to balance the loads so as to
improve performance.

In this paper, we propose a three-layer mobile hybrid hierarchical P2P (MHP2P)
model as a cloudlet. MHP2P performs satisfactory service lookup efficiency and
system scalability as well as high stability. More importantly, a load balance
scheme is provided so that the loads of MHP2P can be well balanced with the
increasing of MEC servers and query load. A large number of simulation ex-

?This research is supported by the National Key Research and Development Program of
China (2018AAA0103202); National Natural Science Foundation of China (62172322, 61751207,
61732013); Key Science and Technology Innovation Team of Shaanxi Province(2019TD-001).

∗Corresponding author.
Email addresses: zhhduan@mail.xidian.edu.cn (Zhenhua Duan),

ctian@mail.xidian.edu.cn (Cong Tian), nanzhang@xidian.edu.cn (Nan Zhang),
zhou@njit.edu (Mengchu Zhou), yubin9011@126.com (Bin Yu),
xbwang@mail.xidian.edu.cn (Xiaobing Wang), jgguo@mail.xidian.edu.cn
(Jiangen Guo), YingWu9208@126.com (Ying Wu)

1Institute of Computing Theory and Technology, and ISN Lab, Xidian University, Xi’an,
710071, China

2Department of Electrical and Computer Engineering, New Jersey Institute of Technology,
Newark, NJ 07102, USA

Preprint submitted to Journal of Systems and Software December 21, 2021

ar
X

iv
:2

11
2.

10
09

1v
1

 [
cs

.D
C

]
 1

9
D

ec
 2

02
1

periments indicate that the proposed scheme is efficient for enhancing the load
balancing performance in MHP2P based MEC systems.

Keywords: Mobile Edge Computing, Cloudlet, MHP2P, Load Balance

1. Introduction

Recently, mobile devices (such as smart phones, tablet computers etc.) are
becoming more useful tools for learning, entertainment, social networking, up-
dating news and businesses. In the beginning, mobile users do not get the same
satisfaction compared with desktop due to resource limitations of mobile devices.
With the tremendous advancements in wireless communications and networking,
Mobile Cloud Computing (MCC) [1, 2, 3] is emerging as a new paradigm of com-
puting in the last decade to improve above scenario. With MCC, the high-rate
and highly-reliable air interface allows resource-constrained end-user devices to
offload some computations to the remote resourceful cloud. After the evolution of
MCC, many cloud computing services such as mobile health care, mobile learning
and mobile gaming can be directly accessible from mobile devices [4, 5, 6, 7].

With the advent of cloud computing, the back-end server is typically hosted
at the cloud data center. Though the use of a cloud data center offers various
benefits such as scalability and elasticity [8], its consolidation and centralization
lead to a large separation between a mobile device and its associated data center.
Offloading computation to the public cloud may involve long latency and low
bandwidth for data exchange between the public clouds and edge device through
the Internet [9, 10]. Thus, MCC is not adequate for a wide-range of emerging
mobile applications that are latency-critical.

As a new platform proposed by the European Telecommunications Standard
Institute (ETSI) in 2014, Mobile Edge Computing (MEC) “provides IT and cloud-
computing capabilities within the Radio Access Network (RAN) in close proxim-
ity to mobile subscribers” [11]. In an MEC platform, the edge responsibility is
increased. Computation and service are allowed in cloudlets at the edge, which
include several proximal MEC servers. Mobile applications benefit from MEC by
offloading their computation-intensive tasks to the MEC servers, aiming to reduce
the network latency and bandwidth consumption [12, 13, 14].

There are three basic components in the model of MEC: (1) mobile devices
include all types of devices (both mobile phones and IoT devices) connected to
the network; (2) MEC servers are typically small-scale data centers deployed in
close proximity with end users. MEC servers have the responsibility of traditional

2

network traffic control (both forwarding and filtering) and hosting various mobile
edge applications (edge health care, smart tracking etc.) and (3) public cloud is
the cloud infrastructure hosted in the Internet.

Since the lower requirements for computation power and storage space, more
devices can act as MEC servers. Harvesting the vast amount of the idle computa-
tion power and storage space distributed at the network edges can yield sufficient
capacities for performing latency-critical tasks at mobile devices. Models of com-
putation tasks, communications, mobile devices and MEC servers are studied in
recent years. These state-of-the-art researches involve deployment of MEC sys-
tems [15], mobility management for MEC [16] and security-and-privacy issues in
MEC [17] etc. However, there are still challenges in a cloudlet including millions
of MEC servers and mobile users:

(1) In a geographic area, there may exist a large number of MEC servers which
can supply kinds of services for enormous amount of mobile users. For
a mobile user, how to find out a suitable MEC server efficiently and then
connect it is a concerned issue [18];

(2) With the popularity of MEC, more and more network elements at the net-
work edge are willing to act as an MEC server. To ensure stability of a
cloudlet, the leaving and joining of MEC servers should be detected in time.
For key servers which manage others, recovery approaches should be per-
formed to continue the MEC service [19];

(3) Unlike remote cloud data centers, the computation power and storage space
in an MEC server is insufficient to serve too many mobile users simultane-
ously. For a cloudlet with several MEC servers, it is necessary to ensure
performance of the service by applying load balancing schemes to manag-
ing MEC servers in the cloudlet [20].

In order to construct a cloudlet performing satisfactory server lookup effi-
ciency and system scalability as well as high stability, we integrate a three-layer
mobile hybrid hierarchical P2P (MHP2P) network as a cloudlet into MEC sys-
tems. It can take advantages of both Distributed Hash Table (DHT) and flooding
methods to improve performance [21]. MHP2P uses Chord [22] as the upper
layer, clusters as the middle one and mobile devices as the lower one. Here the
whole system is regarded as a Chord ring composed of a set of virtual nodes. Each
virtual node corresponds to a cluster which is a group of MEC servers in the close
geographical area.

3

In our system, an MEC server can be any device which can access network,
including workstations, desktop computers and tablet computers. In practice, it
can be a hospital, a market or a petrol station offering online service, or idle com-
puters willing to provide computing service. MHP2P is good at efficiency because
a search message is transferred within DHT on the top level in a large scale and
flooding search is limited to clusters each of which consists of a small number
of MEC servers only. MHP2P is stable because MEC servers joining or leaving
the system is limited to a cluster. MHP2P has better scalability due to the com-
bination of DHT and flooding approaches. It inherits the good scalability from
DHT since clusters are organized into a Chord ring. Meanwhile, inter-cluster and
intra-cluster load balancing schemes are provided to solve the problem of load
imbalance in the MHP2P upper and middle layers.

The contributions of the paper are summarized as follows:

(1) A novel cloudlet model called MHP2P is presented for MEC systems. It has
high stability, scalability and look-up efficiency. More importantly, load
balancing schemes are provided so that the loads in MHP2P can be well
balanced with the increasing of MEC servers and query load;

(2) Except for theoretical analysis, a large number of experimental simulations
are conducted and the results show that the proposed schemes can signifi-
cantly improve the degree of load balancing even the model size is in mil-
lions.

The paper is structured as follows. A motivating example is given in the next
section. Section 3 provides our novel cloudlet model. Section 4 describes the
details of the inter-cluster and intra-cluster load balancing schemes. A large num-
ber of simulation results are shown in Section 5. Finally, conclusion is drawn in
Section 6.

2. A motivating example

In our daily life, health communities and city hospitals provide emergency
services. An emergency department usually provides longer service time than
other departments, even remains open 24 hours. With the development of Internet,
more and more emergency departments offer audio or video services for medical
advice and diagnosis online. Based on the IP address, an ambulance can find the
precise geographical location at the time when a patient requires.

4

When a patient expects to obtain some emergency medical services, he will
first open an application installed on his mobile device. Then the application will
send the query to the data center and receive information about suitable ones. In
the case in which all related information is stored in the remote cloud, the long
propagation distance from the end user to the remote cloud center will result in
excessively long latency. What is worse, the increasing of query number will
lead to the network congestion, in which situation the response takes more time.
Suppose a patient needs service supplied by a emergency department, long time
latency may make the patient miss the best time for rescue.

From the above scenario, it can clearly be seen that MCC is unsuitable for
latency-critical service. Instead, an MEC can be employed to avoid frequently re-
questing the remote cloud for each query. Further, a cloudlet consisting of several
MEC servers in proximity to mobile users is really necessary. Related information
about service suppliers is stored in MEC servers. In fact, service suppliers can act
as MEC servers since they are constantly online and have enough storage capabil-
ity. With an ideal environment, sufficient service suppliers can join together in a
cloudlet.

With the increasing of MEC servers and service queries, there are three prob-
lems that we must take into account:

(1) It is necessary to store information about different kinds of service suppli-
ers in a specific rule which allows one to efficiently look up the required
information;

(2) MEC servers should be well managed so that the failure of an MEC server
should be detected in time. A cloudlet should maintain stability even when
MEC servers frequently join and leave;

(3) To avoid network congestion and the overload of an MEC server, the loads
of the whole cloudlet should be well balanced to ensure its performance and
fairness.

3. A novel cloudlet model

This section presents the architecture of MHP2P as a novel cloudlet model.
MHP2P is a hybrid hierarchical P2P network combining both unstructured and
structured P2P networks. The upper structured layer, which stands for the overall
framework, is based on Chord using DHT. The middle unstructured layer, includ-
ing several MEC servers, is based on a cluster using flooding. The lower layer are
mobile devices which request services.

5

3.1. MHP2P framework
The framework of MHP2P is shown in Fig. 1. It evolves from HP2P archi-

tecture presented in [21]. As you can see, a node (N) stands for an MEC server
in a cloudlet, which can be workstations, desktop computers, tablet computers
etc. An MEC server has two functions: (1) to supply its own service and (2) to
store metadata for other service suppliers. A piece of metadata is used to record
the necessary information of a service supplier, including the service name, ge-
ography location, IP address, business hours, and service description etc. Nodes
are classified into two types: Ordinary node (ODN) and Supernodes (S). Supern-
odes are the MEC servers with high network bandwidth, computation power and
shared disk storage capacity. In general, a supernode will perform some specific
tasks beyond ordinary ones. A cluster (CL) is a group of MEC servers in a geo-
graphical area. The same style of management and routing is followed in a cluster.
A virtual node (V) is actually a cluster. However, in the hierarchical networks, a
cluster appears at the top level as a virtual node. A mobile device (M) is a service
requester, which is willing to connect a service supplier in time to obtain required
service.

Figure 1: Framework of MHP2P

When a mobile device needs some service, it initiates a request to a boot server.
According to the response from the boot server, the mobile device then connects
with a suitable MEC server to publish its service query. After the look-up process
in MHP2P, the mobile device finally gets a successful response if the service can

6

be found in the cloudlet. Otherwise, the query will be sent to the remote cloud,
which is out of scope of this paper.

MEC servers in our model are organized in clusters where messages are for-
warded by Gossip Flooding [23]. In each cluster, some supernodes are elected
from ordinary nodes. All clusters are organized in a Chord mechanism. Each
cluster is as a virtual node in the Chord ring that has a routing table maintained by
its supernodes. Communications among clusters are forwarded by their supern-
odes.

A candidate will substitute for a supernode if the supernode leaves its clus-
ter. Only when no node exists or all supernodes collapse at the same time, will a
cluster disappear. Hence, a cluster tends to be stable in a long period since its es-
tablishment. The Chord overlay routing information will not be influenced by the
frequently joining or leaving of nodes, which will only impact on several neigh-
borhood nodes in a cluster. Therefore, the whole network keeps stable. Further,
the nodes with high bandwidth are effectively utilized with the employ of “power”
supernodes. Finally, by combining the high search efficiency and scalability of
DHT, the whole system performance can be significantly enhanced.

3.2. Architecture of upper layer
The original protocol of Chord supports just one operation: mapping a given

key onto a node. In MHP2P, the original Chord is modified to map one dimen-
sional hash space onto a cluster. The key is a service name and the value is IP
address where the metadata is stored. Clusters in the modified Chord are iden-
tified by a consistent hash function [24]. When a cluster is established, the IP
address of its supernode is hashed to be an m-bit identifier by a hash function.
With the same hash function, a service name is hashed to be m-bit ID. Then the
relation between service and clusters is established [21].

A successor item of the finger table in the upper layer of MHP2P points a su-
pernode table recording a group of supernodes in the same cluster. Given a service
name as a key, the Chord overlay is able to find the cluster that is responsible for
storing the key’s value by a Chord routing mechanism. In a cluster, all supern-
odes maintain a finger table together. The supernode table of related clusters is
updated when a supernode is changed. In a supernode table, it must be assured
that the cluster can be valid if at least one supernode item is valid. Therefore, the
existence of several supernodes in a supernode table enhances the stability of the
routing table.

7

3.3. Architecture of middle layer
A cluster in MHP2P is used as the middle layer to restrict the flooding ex-

tension and enhance the system stability. MEC servers with vicinal geography
locations are organized into a cluster. There are two kinds of nodes in a cluster:
supernodes and ordinary nodes. Nodes with high capability act as the leaders of
clusters, which are called supernodes. Supernodes collaborate to manage the clus-
ter and maintain its finger table. A cluster is established when the first node joins
it, and the first node’s ID is considered to be the cluster’s ID. At the same time,
the first node becomes the first supernode in it. The nodes joining it afterward
are generally considered to be ordinary nodes. Other supernodes can be selected
by the cluster establisher. All supernodes work together to manage the cluster to
transfer the information across different clusters.

In one cluster, the main way for the communication of different nodes is a
lightweight flooding in which a node just sends a newly generated message to a
set of randomly selected neighbor nodes. These nodes do similarly in the next
round, and so do other nodes until the message is spread to the entire cluster or
TTL is reduced to zero.

3.4. Architecture of lower layer
The lower layer of our model is composed of mobile devices and the number

of devices can reach millions. The application installed on a mobile device sends
a message to a boot server first. After that, the boot server will establish a connec-
tion between the mobile device and its nearest MEC server. Then a query is sent
from the mobile device to the MEC server, which contains the expected service
name and IP address of the mobile device. The MEC server will help the mobile
device forward the service query to the Chord. The detailed process to look up the
service metadata will be given in the next subsection.

After one or more service suppliers are located, the MEC server connecting
with the mobile device will first get the query result. The nearest service supplier
will be selected by the MEC server and then sent to the mobile user. At last, the
mobile user connects with the service supplier directly in peer-to-peer fashion.

3.5. Lookup service of MHP2P
After a query is transmitted from a mobile device to its nearest MEC server, it

is sent to the Chord to locate the cluster that stores the metadata, and then queries
are spread in the cluster through a lightweight flooding search.

The detailed search process of MHP2P is as follows:

8

1. A mobile device M sends a query to its nearest node Pi;

2. Pi in CLi sends the query to Si in CLi;

3. Si finds a successor (a cluster CLj) through the Chord;

4. Si forwards the query to successor CLj;

5. In CLj , its supernode Sj floods the query;

6. When found, node Pj in CLj returns a successful response to Pi, go to 7;
and otherwise Pi sends the query the remote cloud;

7. After the filtering procedure, Pi sends suitable information to M.

4. Load balancing in our model

The MHP2P upper layer is constructed by Chord which employs protocols
based on DHT, thereby leading to a serious load imbalance problem that some
clusters initiate flooding queries in high frequency while others are in idle states.
In the MHP2P middle layer which uses the Gossip protocols, the load imbalance
causes the problem that some nodes maintain too many metadata that consume
too much of their processing capacity, while others maintain few metadata only.

To solve the load imbalance problem in MHP2P, this section presents a load
balancing scheme, which consists of inter-cluster and intra-cluster load balanc-
ing. In the former, we achieve the MHP2P upper layer load balance by means of
cluster splitting and cluster moving to adjust loads of nodes on the Chord ring.
In the latter, the MHP2P middle layer reaches load balance by making full use
of supernodes. Since the supernodes own the whole view of their corresponding
cluster, their guidance can be used to enable a node with heavy load to find an-
other with light load in the same cluster easily. For clarity, Table 1 lists the terms
and notions used in this section.

4.1. Inter-cluster load balancing
4.1.1. Load definition in inter-cluster load balancing

The load of a node in a network can represent the utilization of bandwidth,
the utilization of CPU cycles, the number of items to maintain and the number
of messages to process. In the MHP2P architecture, each node completes most
of operations by sending and receiving messages such as flooding messages and
metadata maintaining messages. Thus we define load as the number of messages

9

Table 1: Terminology

Notation Definition
ClusterA cluster A
LengthA length of address space that ClusterA should manage on the Chord ring
LoadA the load of cluster A
loadn the load of node n

capacityn the power of node n
Loadavr the average cluster load by estimation
ratea the load rate of node a
rateavr the average load rate of a cluster
α α ∈ (1, 2) is used to determine whether a node is with high load rate or low load rate

β
β ∈ [0, 0.5) is used to determine whether a cluster can find a neighbor cluster to
transfer or receive some loads

γ γ ≥ 2 is used to determine whether a cluster can split to reduce its cluster loads

k
k is used to determine the number of clusters from which a cluster should receive
the load messages to estimate Loadavr

a node to process in each period of time. Cluster load is defined in terms of the
average number of messages in the cluster for a node to process:

LoadA =
1

NumA

∑
n∈A

loadn (1)

where NumA is the number of nodes in cluster A, and n is a node index.

4.1.2. Average cluster load estimation
Since the MHP2P upper layer is a fully distributed network, we are not able

to obtain its average cluster load directly. In its inter-cluster load balancing, a
supernode in each cluster selects k× logN other clusters randomly to obtain their
cluster loads at regular intervals. Finally, a supernode estimates the average cluster
load by calculating the average cluster load of k × logN clusters as follows:

Loadavr =
1

k · logN

k·logN∑
m=0

Loadm (2)

where N represents the number of nodes available in the network. Because the
inter-cluster load balancing scheme does not need high precision in an average

10

cluster load estimation, we should not set k to a high value. According to our
simulations, if the network is in a low degree of the inter-cluster load balancing, k
is set to 4. If it is in a high degree of the inter-cluster load balancing, k is set to 1.
In this way, the estimation of the average cluster load is in the interval [0.85·Load,
1.15 · Load] with high probability, where Load is the average cluster load of the
entire network in practice.

4.1.3. Principle of inter-cluster load balancing
Since the number of messages in each cluster cannot be controlled directly, we

achieve the adjustment of the number of messages by controlling the number of
metadata in each cluster indirectly. In MHP2P, a supernode caching mechanism
can avoid hot issues, such that the number of metadata in each cluster is propor-
tional to the number of messages on the whole. In other words, the more metadata
a cluster has the more messages it processes. This is because if a cluster has more
metadata, it should have a higher probability to be retrieved, and also cause more
messages to maintain metadata.

In the upper layer Chord ring, each supernode of clusters is required to send
its load balance request to its neighbors from time to time. Let Loadavr denote
the average load of all clusters in the Chord ring and Lr denote the requesting
cluster’s load at present. If Lr < Loadavr, the requesting cluster is a light load
cluster; if Lr = Loadavr, it is a moderate cluster; if Lr > Loadavr, it is a heavy
load cluster; and further if Lr ≥ γ · Loadavr with a threshold value γ, it is a very
heavy cluster. To balance loads among clusters, the basic idea is: a) to move some
loads of a heavy load cluster to a light load one; and b) split a cluster with very
heavy load into two whenever a supernode is requesting.

(a) Moving strategy

To move loads reasonably between clusters, we set a threshold value Vm such
that a light cluster r can acquire some loads from a heavy one x if Lr < Vm · Lx
or a heavy one x can release some loads to a light neighbor cluster r if Vm · Lx ≥
·Lr. Roughly speaking, the distance from a cluster to its predecessor cluster in
a counterclockwise direction can be treated as its load. Therefore, if a light load
cluster intends to acquire extra load from a heavy successor cluster, it needs to
move in a clockwise direction closer to its successor cluster while if a heavy load
cluster plans to release some loads to its light predecessor cluster, it needs to move
in a counterclockwise direction closer to its predecessor cluster so as to change
the distribution of metadata between a cluster and its successor cluster.

In order to balance loads precisely, on one hand, we need to know the percent-

11

age of loads of a cluster to be released; on the other hand, we need to estimate the
exact distance a cluster will move clockwise or counterclockwise. For instance, if
a cluster is requested to have equal load with its successor cluster, the load of the
heavier cluster can decrease β (β ∈ [0, 0.5)) times of its load by moving clock-
wise or counterclockwise through a small amplitude. This is an effective load
transfer between neighbor clusters. If β is 0.2, a load transfer can make a heavier
cluster decrease 20 percentage of its load. In MHP2P, if two adjacent clusters are
ClusterA and ClusterB, and their loads LoadA and LoadB satisfy:

LoadB ≥
LoadA
1− 2 · β

(3)

ClusterA can obtain some metadata to decrease β times of LoadB. In this case,
we set Vm = 1 − 2 · β. Since the supernode does not know every ID of the
metadata in its cluster, we cannot determine the exact length a cluster should move
on the Chord ring with low cost. Thus, we assume that IDs of metadata are evenly
distributed in each address space of the cluster. In this way, we can estimate the
Length a cluster should move by

Length =
(LoadB − LoadA)× LengthB

2× LoadB
(4)

To fully clarify the load transfer between two adjacent clusters, we have two
cases, where ClusterB is assumed to be the successor of ClusterA:

Case1: LoadB ≥ LoadA
1−2·β , ClusterA moves clockwise through

(LoadB − LoadA)× LengthB
2× LoadB

on the Chord ring, whileClusterB transfers the corresponding Chord ring regions
of metadata to ClusterA.

Case2: LoadA ≥ LoadB
1−2·β , ClusterA moves counterclockwise through

(LoadA − LoadB)× LengthA
2× LoadA

on the Chord ring, whileClusterB transfers the corresponding Chord ring regions
of metadata to ClusterA.

(b) Splitting strategy

12

If load Lr of a requesting cluster satisfies Lr ≥ γ · Loadavr with a threshold
value γ (γ ≥ 2), its load is too heavy. In this case, a splitting strategy is employed
[21]. To do so, a new cluster node called y is created in the counterclockwise
direction with a suitable distance from the cluster r, such that some of Lr can be
moved to the new cluster y. As for how to split a cluster, it is out of scope of this
paper. Please refer to [21] for details.

The basic idea of the inter-cluster load balancing is to split clusters and balance
the load among neighbor clusters (the successor and predecessor of a cluster). In
this way, we reduce the load imbalance among clusters according to the individual
topology of the MHP2P upper layer network.

4.1.4. Analysis of inter-cluster load balancing
In the inter-cluster load balancing mechanism of MHP2P, the upper layer net-

work can achieve load balance within a narrow range of the Chord address space
by cluster moving and splitting. New nodes continually joining the clusters with
heavy load will lead to a high probability to split the latter. As the inter-cluster
load balancing proceeds, the number of clusters increases through the splitting
in the heavier load area of the upper layer Chord address space. Thus the load
balancing in the whole MHP2P upper layer network is achieved.

As the supernode of each cluster needs to collect the loads of other k · logN
clusters to estimate the average load of all clusters, it needs to send k · logN
additional messages to obtain load information of these k · logN clusters in every
cycle. Note that only one supernode is in charging a cluster at any time though
there may be a few supernode candidates within a cluster.

4.2. Intra-cluster load balancing
Intra-cluster load balancing is intended to solve the problem of load imbalance

in the MHP2P middle layer network by the supernode in each cluster to schedule
the loads in terms of computing power of its nodes.

4.2.1. Load rate definition in intra-cluster load balancing
According to our simulations, the load of each node mainly comes from flood-

ing query messages, metadata maintenance and network topology maintenance.
The load rate of a node can be defined as:

ratea =
loada

capacitya
(5)

13

However, for each node in the same cluster, various numbers of messages are
mainly from metadata maintenance. The number of metadata maintenance mes-
sages for a node is determined by the number of metadata items this node should
maintain. In MHP2P, the mechanism of the topology maintenance can guarantee
that each node in the cluster has roughly the same number of neighbors so as to
keep the balanced distribution of nodes in the flooding network. Moreover, we
use an improved flooding strategy based on RBFS (Random breadth-first search)
which can increase the randomness of the process in the flooding. These two
mechanisms can keep the flooding query messages and network topology mainte-
nance messages roughly the same for each node in the same cluster. Hence, the
load of each node can be adjusted by numbers of metadata items.

4.2.2. Principle of intra-cluster load balancing
To balance the loads among nodes within a cluster, the supernode maintains a

hash table H and a sorted link list L. Each record in L contains load rate, number of
metadata to be removed and time stamp of a heavy nodeA (rateA > α·rateavr) in
descending order while each record in H contains node ID, and a pointer pointing
to a relative record in L. Whenever a node requires to release some load ((rateA−
rateavr)·capacityA), the supernode makes a record in H and its relative record in
L. When a light load node B (rateB <(2 − α)·rateavr) requests to acquire some
load ((rateavr − rateB)·capacityB), the supernode checks list L and allocates
sufficient metadata from suitable heavy nodes to it, and then updates H and L.

4.2.3. Analysis of intra-cluster load balancing
In the intra-cluster load balancing scheme, we make full use of the feature that

there are several supernode candidates in each cluster. Because a supernode has a
better view of the whole cluster, with its help, a node with low load rate can find
the node with high load rate efficiently.

In order to keep the load information for a node with high load rate, a su-
pernode should manage a hashtable and sorted link list. The size of the list is
determined by the number of the nodes with high load rate. However, it does not
cost too heavy load for the supernode, because the total number of nodes in a clus-
ter is small. As the network evolves, the load is more and more evenly distributed,
and the number of nodes with high load rate decreases quickly.

5. Simulation results for load balancing

In this section, we analyze the very significant performance improvements
that are owing to the proposed algorithms by simulations. For fairness, a third-

14

Table 2: Simulation Environment

Environment parameters Default values
Networksize 216

Ratio of node arrival:departure 1%:1% 1%:3% 3%:1%
Number of metadata for each node 10

Node capacity distribution Pareto: shape 2

Simulation cycles 50

Table 3: Algorithm Parameters

Algorithm parameters Default values
α 1.4

β 25%

γ 2.0

k 4 in first 10 cycles, 2 in 11 to 20 cycles, 1 in last 30 cycles

party simulation engine PeerSim [25] is used. PeerSim provides an engine and
two simulation models: cycle and event-driven models. Table II lists parameters
of the simulation environment for our algorithms, and the values we set unless
otherwise specified.

We run each trial of the simulation for 50 cycles. According to statics of
Kademlia [26], the maximum number of nodes is three times the minimum num-
ber of nodes. Thus we set the proportion of nodes arrival to departure 1%:1%,
1%:3%, 3%:1% such that the number of nodes is kept the same, decreasing to
roughly one-third, or increasing to 3 times, in 50 cycles. Finally, in order to indi-
cate the reliability of the simulation results, each selected data point in our plots
represents the average simulation result over 5 trials. Under 220 nodes simulation
scale, each trial takes about 10 hours. Table 2 and 3 list the parameters of our
simulations, and the values we set unless otherwise specified.

5.1. Simulation of the inter-cluster load balancing algorithm
In simulations, we mainly calculate the ratio of the load of the cluster with

the heaviest load and average cluster load in order to determine whether the inter-
cluster load balancing algorithm can solve the problem that some clusters have
too heavy load. In order to determine whether the algorithm has effect on improv-
ing the load balance of the whole MHP2P upper layer network, we calculate the

15

relative standard deviation of the cluster load.

5.1.1. Simulations under different network sizes
Since the number of clusters and size of each cluster are both determined by

the size of the whole network, we do simulations under different network sizes
to determine whether the inter-cluster load balancing algorithm fits for MHP2P
under different numbers of clusters and sizes of clusters. The network size is from
214 to 220. Thus, the largest network size is more than one million nodes.

Fig. 2(a) shows that the inter-cluster load balancing algorithm can always keep
the ratio of the load of the heaviest load cluster to average cluster load below 2
under different network sizes. By contrast, the ratio without the inter-cluster load
balancing algorithm in MHP2P ranges from 3 to 7. In Fig. 2(b), the standard
deviation of the cluster load with the inter-cluster load balancing algorithm in
MHP2P is much smaller than that without it. In conclusion, the inter-cluster load
balancing algorithm can make loads in a balanced distribution among clusters
under different network sizes.

5.1.2. Simulations under different number of metadata items
As mentioned earlier, the metadata maintenance message is also an impor-

tant part of the total messages of an MHP2P network. When the network has a
different number of metadata items, the metadata maintenance messages are in
different proportions of the total messages. Thus we do this simulation to deter-
mine whether the inter-cluster load balancing algorithm has effect on the MHP2P
network with different proportions of the metadata maintenance messages. The
average number of metadata for each node is 5, 10, 15, 20 and 25.

Figs. 2(c) and 2(d) show that the inter-cluster load balancing algorithm can
not only sharply decrease the load of the heaviest load cluster but also improve the
degree of the load balance of the whole MHP2P network under different numbers
of metadata items. In fact, with 219 nodes scale, the average load and heaviest
load of a cluster is respectively 423 and 2811 items without using the algorithm
while 362 and 718 with the algorithm.

5.1.3. Simulations under different node request rates
Since different node request rates lead to different proportions of flooding

messages in total messages of an MHP2P network, this simulation is used to in-
dicate if the algorithm has effect on the MHP2P network under different numbers
of flooding messages. In the simulation, we vary the node request rate between
0.0125 and 0.05.

16

(a) The ratio of the heaviest cluster
load and average cluster load under
different network sizes.

(b) The standard deviation of cluster
loads under different network sizes.

(c) The ratio of the heaviest cluster
load to average cluster load under dif-
ferent numbers of metadata items.

(d) The standard deviation of the
cluster load number of metadata
items under different numbers of
metadata items.

(e) The ratio of the heaviest cluster
load to average cluster load under dif-
ferent node request rates.

(f) The standard deviation of the
cluster load numbers of metadata
items under different node request
rates.

Figure 2: Simulations for the inter-cluster load balancing

17

Figs. 2(e) and 2(f) show the ratio of the load of the heaviest load cluster to
average cluster load keeps below 1.5 and the degree of the load balance of the
whole MHP2P network is greatly improved with the inter-cluster load balancing
algorithm.

5.1.4. Simulations under different settings of parameters β and γ
In the inter-cluster load balancing algorithm, β is used to determine whether

a cluster can find a neighbor cluster to transfer some loads from it, while γ is
used to determine whether a cluster with heavy load can be split into two sub-
clusters. Therefore, their different settings may have different effects on the result
of the inter-cluster load balancing algorithm. In this case, we do simulations about
different settings of parameters β and γ in order to optimize their values. In sim-
ulations, when β is set to 0.5, it means the cluster will not move to promote the
load balance.

Fig. 3(a) - Fig. 3(f) show that the degrees of the cluster load balancing and
metadata movement are mainly determined by β, while γ will take effect, when
the value of β is so large that the cluster cannot find a neighbor cluster to transfer
its load. According to the results in Fig. 3(a) - Fig. 3(c), when the proportion of
nodes arrival to departure is set 1%:1%, meaning that MHP2P size is not subject to
quick changes, β can be valued within the interval [0.2,0.3], while γ can be valued
as 2.0. Compared with the value of β in [0.2,0.3], that in [0.1,0.2] improves the
small amplitude of the cluster load balancing by costing a large number of extra
metadata movement, and the value of β in [0.3,0.5] sharply decreases the degree
of the cluster load balancing. The value of γ is set to 2.0 which makes the cluster
with heavy load split timely without bringing any extra metadata movements on
the whole. The results in Fig. 3(d) - Fig. 3(f) indicates β can be valued within the
interval [0.2,0.4], while γ can be valued as 2.0 when MHP2P size is decreasing
quickly.

In Fig. 4(a) - Fig. 4(c), when the network size is growing quickly, the ratio
of the load of the heaviest load cluster to average cluster load and the standard
deviation of the cluster load do not have obvious relationship with the value of β
in [0.1,0.4]. In this case, the process of nodes joining heavier clusters can pro-
mote the better load balancing of the clusters. Hence, β can be set in the interval
[0.4,0.5), and γ can be set as 2.0.

According to the above simulation results, we can conclude that the inter-
cluster balancing algorithm can not only decrease the cluster load with heavy load
drastically, but also improve the degree of the cluster load balancing in the whole
MHP2P upper layer network.

18

(a) The relation among β, γ and the
ratio of the heaviest cluster load and
average cluster load when the net-
work size is not subject to quick
changes.

(b) The relation among β, γ and the
standard deviation of the cluster load
when the network size is not subject
to quick changes.

(c) The relation among β, γ and
the number of metadata movement
when the network size is not subject
to quick changes.

(d) The relation among β, γ and the
ratio of the heaviest cluster load and
average cluster load when the net-
work size is decreasing quickly.

(e) The relation among β, γ and the
standard deviation of the cluster load
when the network size is decreasing
quickly.

(f) The relation among β, γ and
the number of metadata movement
when the network size is decreasing
quickly.

Figure 3: Relation among parameters β, γ and the effectiveness of the algorithm for the inter-
cluster load balancing (I)

19

(a) The relation among β, γ
and the ratio of the heaviest
cluster load and average clus-
ter load when the network size
is increasing quickly.

(b) The relation among β,
γ and the standard devia-
tion of the cluster load when
the network size is increasing
quickly.

(c) The relation among β, γ
and the number of metadata
movement when the network
size is increasing quickly.

Figure 4: Relation among parameters β, γ and the effectiveness of the algorithm for the inter-
cluster load balancing (II)

5.2. Simulation of intra-cluster load balancing algorithm
In the simulation of the intra-cluster load balancing algorithm, we mainly cal-

culate the ratio of the highest load rate to average load rate as well as the relative
standard deviation of the load rate. The defined ratio is used to analyze whether
the algorithm can relieve the node with the high load rate while the relative stan-
dard deviation of the load rate is used to test whether the algorithm can improve
the degree of the load balancing in a cluster. Since there are many clusters in the
MHP2P network, the results of the ratio and relative standard deviation are the
average values of all clusters.

5.2.1. Simulations under different network sizes
In this simulation, different network sizes from 214 to 220 are used to determine

whether the algorithm is effective.
In Fig. 5(a), an MHP2P network with the intra-cluster load balancing algo-

rithm can keep the load rate of a node with the highest load rate about twice of
the average load rate, while the value of MHP2P network without the intra-cluster
load balancing algorithm can be more than 3 times in the worst case scenario.
Fig. 5(b) shows that the MHP2P network with the algorithm can also improve
the degree of load balancing among the nodes in the same cluster. The largest
network size in our simulation is in millions in order to indicate the scalability of
the intra-cluster load balancing algorithm.

20

(a) The ratio of the highest load rate
to average load rate under different
network sizes.

(b) The standard deviation of load
rates under different network sizes.

(c) The ratio of the highest load rate
and average load rate under different
numbers of metadata items.

(d) The standard deviation of load
rates under different numbers of
metadata items.

Figure 5: Simulations for the intra-cluster load balancing under different network sizes and under
different numbers of metadata

21

(a) The relation between α and
the ratio of the highest load
rate to the average load rate.

(b) The relation between α
and the standard deviation of
the load rate.

(c) The relation between α and
the number of metadata move-
ments.

Figure 6: Relation between parameter α and the effectiveness of the algorithm for the intra-cluster
load balancing

5.2.2. Simulations under different numbers of metadata items
In a cluster, different numbers of metadata items cause different load imbal-

ance problems. Hence, we simulate the intra-cluster load balancing algorithm
under different numbers of metadata items to indicate if the algorithm has any ef-
fect on the MHP2P network. In this simulation, the average number of metadata
items varies from 5 to 25.

Figs. 5(c) and 5(d) show that the intra-cluster load balancing algorithm can
work well under different numbers of metadata items. The algorithm can keep the
ratio of the highest load rate to average load rate below about 2.5, and the relative
standard deviation is much lower than the result without it.

5.2.3. Simulations under different settings of parameter α
Since the value of α determines the proportion of the nodes with high load

rate and the proportion of those with low load rate, α has a big effect on the result
of the intra-cluster load balancing algorithm. If it is too high, the degree of the
load balancing in a cluster is low; while if it is too low, the metadata movement
is too much. Hence, we do this simulation to optimize the setting of α. In the
simulation, α varies from 1.2 to 1.8.

Figs. 6(a) and 6(b) show that the ratio of nodes with the highest load rate to
the average load rate and standard deviation of load rate increase as α increases.
In Fig. 6(c), metadata movements decrease as α increases and this deceleration
slows. Further, when the network size is increasing, metadata movement is much

22

more than that when the network size is not increasing quickly. This is because
the growth of the network size leads to the growth of metadata, and a node also
needs to assign some metadata when it joins a cluster.

Fig. 6(b) shows that when α is 1.2, the relative standard deviation is still
greater than 0.2. Hence, if α is set to 1.2, it may cause the problem of too many
nodes with high load rate. In addition, this also increases the burden on the supern-
ode of a cluster. α should hence be set in interval [1.4,1.7], and can be selected
according to the requirement for the degree of the intra-cluster balance.

The result of the simulation shows that the intra-cluster load balancing algo-
rithm can also make the node with high load rate decrease its load rate by trans-
ferring some metadata to some nodes with low load rate. It improves the degree
of the intra-cluster load balancing greatly.

6. Conclusion

This paper presents a three-layer mobile hybrid hierarchical P2P model called
MHP2P as a cloudlet in MEC systems. An MEC server in the cloudlet can be
any device willing to offer service. MHP2P uses a Chord ring as the upper layer,
clusters as the middle one and mobile devices as the lower one. DHT and flood-
ing methods employed in our model make MHP2P have high stability, scalability
and efficiency. More importantly, inter-cluster and intra-cluster load balancing
schemes are provided to solve the problem of load imbalance in MHP2P. A large
number of experimental simulations are conducted and the results show that the
proposed schemes can significantly improve the degree of load balancing even
when the model size is in millions. In the future, we will further investigate more
mobile end-user based services such as gaming and VR as well as security prob-
lems with MHP2P model.

References

[1] N. Fernando, S. W. Loke, W. Rahayu, Mobile cloud computing: A survey,
Future generation computer systems 29 (1) (2013) 84–106.

[2] T. H. Noor, S. Zeadally, A. Alfazi, Q. Z. Sheng, Mobile cloud computing:
Challenges and future research directions, Journal of Network and Computer
Applications 115 (2018) 70–85.

[3] N. Bharati, S. Das, M. K. Gourisaria, A review on mobile cloud computing,
in: Intelligent and Cloud Computing, Springer, 2021, pp. 209–218.

23

[4] S. A. Hameed, A. Nirabi, M. H. Habaebi, A. Haddad, Application of mobile
cloud computing in emergency health care, Bulletin of Electrical Engineer-
ing and Informatics 8 (3) (2019) 1088–1095.

[5] Z. Rimale, E. Benlahmar, A. Tragha, K. El Guemmat, Survey on the use of
the mobile learning based on mobile cloud computing., International Journal
of Interactive Mobile Technologies 10 (3) (2016) 35–41.

[6] W. Cai, V. C. Leung, M. Chen, Next generation mobile cloud gaming, in:
2013 IEEE Seventh International Symposium on Service-Oriented System
Engineering, IEEE, 2013, pp. 551–560.

[7] X. Qiao, L. Luo, J. Yang, Z. Hu, Intelligent recommendation method of sous-
vide cooking dishes correlation analysis based on association rules mining,
International Journal of Performability Engineering 16 (9) (2020) 1443–
1450.

[8] H. Li, D. Li, W. E. Wong, D. Zeng, M. Zhao, Kubernetes virtual ware-
house placement based on reinforcement learning, International Journal of
Performability Engineering 17 (7) (2021) 579–588.

[9] M. Satyanarayanan, P. Bahl, R. Caceres, N. Davies, The case for vm-based
cloudlets in mobile computing, IEEE pervasive Computing 8 (4) (2009) 14–
23.

[10] Y. Cho, Y. Paek, E. Ahmed, K. Ko, A survey and design of a scalable mo-
bile edge cloud platform for the smart iot devices and it’s applications, in:
Advances in Computer Science and Ubiquitous Computing, Springer, 2016,
pp. 694–698.

[11] ETSI, Mobile-edge computing introductory techni-
cal white paper, White Paper, Mobile-edge Comput-
ing Industry Initiative. [Online]. Available: https://
portal.etsi.org/portals/0/tbpages/mec/docs/
mobile-edgecomputing-introductorytechnicalwhitepaperv1.

[12] Y. Mao, C. You, J. Zhang, K. Huang, K. B. Letaief, A survey on mobile
edge computing: The communication perspective, IEEE Communications
Surveys & Tutorials 19 (4) (2017) 2322–2358.

24

https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge computing - introductory technical white paper v1
https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge computing - introductory technical white paper v1
https://portal.etsi.org/portals/0/tbpages/mec/docs/mobile-edge computing - introductory technical white paper v1

[13] J. Ren, D. Zhang, S. He, Y. Zhang, T. Li, A survey on end-edge-cloud or-
chestrated network computing paradigms: Transparent computing, mobile
edge computing, fog computing, and cloudlet, ACM Computing Surveys
(CSUR) 52 (6) (2019) 1–36.

[14] K. Zhang, S. Leng, Y. He, S. Maharjan, Y. Zhang, Mobile edge computing
and networking for green and low-latency internet of things, IEEE Commu-
nications Magazine 56 (5) (2018) 39–45.

[15] M. Cui, Y. Fei, Y. Liu, A survey on secure deployment of mobile services in
edge computing, Security and Communication Networks 2021 (2021) 1–8.

[16] M. Mehrabi, H. Salah, F. H. Fitzek, A survey on mobility management for
mec-enabled systems, in: 2019 IEEE 2nd 5G World Forum (5GWF), IEEE,
2019, pp. 259–263.

[17] R. Roman, J. Lopez, M. Mambo, Mobile edge computing, fog et al.: A
survey and analysis of security threats and challenges, Future Generation
Computer Systems 78 (2018) 680–698.

[18] S. Lee, S. Lee, M.-K. Shin, Low cost mec server placement and association
in 5g networks, in: 2019 International Conference on Information and Com-
munication Technology Convergence (ICTC), IEEE, 2019, pp. 879–882.

[19] D. Satria, D. Park, M. Jo, Recovery for overloaded mobile edge computing,
Future Generation Computer Systems 70 (2017) 138–147.

[20] W.-Z. Zhang, I. A. Elgendy, M. Hammad, A. M. Iliyasu, X. Du, M. Guizani,
A. A. Abd El-Latif, Secure and optimized load balancing for multitier iot
and edge-cloud computing systems, IEEE Internet of Things Journal 8 (10)
(2020) 8119–8132.

[21] Z. Duan, C. Tian, M. Zhou, X. Wang, N. Zhang, H. Du, L. Wang, Two-layer
hybrid peer-to-peer networks, Peer-to-Peer Networking and Applications 10
(2017) 1304–1322.

[22] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, H. Balakrishnan, Chord: A
scalable peer-to-peer lookup service for internet applications, in: Proceed-
ings of the 2001 Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, SIGCOMM ’01, 2001, pp.
149–160.

25

[23] S. Voulgaris, M. Jelasity, M. Van Steen, A robust and scalable peer-to-peer
gossiping protocol, in: International Workshop on Agents and P2P Comput-
ing, Springer, 2003, pp. 47–58.

[24] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, D. Lewin,
Consistent hashing and random trees: Distributed caching protocols for re-
lieving hot spots on the world wide web, in: Proceedings of the twenty-ninth
annual ACM symposium on Theory of computing, ACM, 1997, pp. 654–
663.

[25] PeerSim, http://sourceforge.net/projects/peersim/.

[26] M. Steiner, T. En-Najjary, E. W. Biersack, A global view of kad, in: Pro-
ceedings of the 7th ACM SIGCOMM conference on Internet measurement,
ACM, 2007, pp. 117–122.

26

http://sourceforge.net/projects/peersim/

	1 Introduction
	2 A motivating example
	3 A novel cloudlet model
	3.1 MHP2P framework
	3.2 Architecture of upper layer
	3.3 Architecture of middle layer
	3.4 Architecture of lower layer
	3.5 Lookup service of MHP2P

	4 Load balancing in our model
	4.1 Inter-cluster load balancing
	4.1.1 Load definition in inter-cluster load balancing
	4.1.2 Average cluster load estimation
	4.1.3 Principle of inter-cluster load balancing
	4.1.4 Analysis of inter-cluster load balancing

	4.2 Intra-cluster load balancing
	4.2.1 Load rate definition in intra-cluster load balancing
	4.2.2 Principle of intra-cluster load balancing
	4.2.3 Analysis of intra-cluster load balancing

	5 Simulation results for load balancing
	5.1 Simulation of the inter-cluster load balancing algorithm
	5.1.1 Simulations under different network sizes
	5.1.2 Simulations under different number of metadata items
	5.1.3 Simulations under different node request rates
	5.1.4 Simulations under different settings of parameters and

	5.2 Simulation of intra-cluster load balancing algorithm
	5.2.1 Simulations under different network sizes
	5.2.2 Simulations under different numbers of metadata items
	5.2.3 Simulations under different settings of parameter

	6 Conclusion

