
This is a repository copy of High-Availability Clusters: A Taxonomy, Survey, and Future 
Directions.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/181882/

Version: Accepted Version

Article:

Somasekaram, Premathas, Calinescu, Radu orcid.org/0000-0002-2678-9260 and Buyya, 
Rajkumar (2021) High-Availability Clusters: A Taxonomy, Survey, and Future Directions. 
Journal of Systems and Software. 111208. ISSN 0164-1212 

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



High-Availability Clusters: A Taxonomy, Survey, and Future Directions

Premathas Somasekarama, Radu Calinescua, Rajkumar Buyyab

aDepartment of Computer Science, University of York, Deramore Lane, York, YO10 5GH, UK
bCloud Computing and Distributed Systems (CLOUDS) Lab, School of Computing and Information Systems, The University of Melbourne, Australia

Abstract

The delivery of key services in domains ranging from finance and manufacturing to healthcare and transportation is underpinned by

a rapidly growing number of mission-critical enterprise applications. Ensuring the continuity of these complex applications requires

the use of software-managed infrastructures called high-availability clusters (HACs). HACs employ sophisticated techniques to

monitor the health of key enterprise application layers and of the resources they use, and to seamlessly restart or relocate application

components after failures. In this paper, we first describe the manifold uses of HACs to protect essential layers of a critical

application and present the architecture of high availability clusters. We then propose a taxonomy that covers all key aspects of

HACs—deployment patterns, application areas, types of cluster, topology, cluster management, failure detection and recovery,

consistency and integrity, and data synchronisation; and we use this taxonomy to provide a comprehensive survey of the end-to-end

software solutions available for the HAC deployment of enterprise applications. Finally, we discuss the limitations and challenges

of existing HAC solutions, and we identify opportunities for future research in the area.

Keywords: Clustering, dependability, enterprise system, high availability, high availability clusters, reliability

1. Introduction

High-availability clusters (HACs), also called failover clusters,

are software-managed systems that support the reliable execu-

tion of complex enterprise applications (EAs) or of their key

layers1 and components. They play a major role in ensuring the

high levels of availability required of today’s mission-critical

EAs [2, 1, 3]. They comprise physical servers, storage, com-

munication and other hardware infrastructure, together with so-

phisticated HAC-management software. This software is re-

sponsible for continuously monitoring the protected EA layers

(e.g., the application server and database layers), and for seam-

lessly mitigating EA component failures through failover or

through automatically restarting, repairing or relocating failed

components. As such, HACs enable the delivery of essential

EA services with minimal downtime.

A key requirement for HACs is to ensure the continued op-

eration of the single-point of failure (SPOF) components of

the protected EA layers. Such SPOF components may include

databases, distributed transaction coordinators, software load

balancers, and storage. Due to the diverse high availability

(HA) needs of mission-critical EAs, HACs must comply with

a wide range of additional requirements. These requirements

differ significantly from one EA to another. For example, enter-

prise resource planning (ERP) EAs facilitate transactions (e.g.,

online transaction processing), and therefore must be deployed

on HACs capable of ensuring the atomicity, consistency, isola-

tion and durability (ACID) requirements associated with trans-

action processing [3, 4]. In contrast, enterprise analytics EAs

1We use the term layer for a logical component of an application, and the

term tier to denote a physical structure, as recommended in [1].

(e.g., online analytical processing) do not have these strict ACID

requirements, since they tend to operate with read-only data,

while transactional EAs are typically read-write intensive [5].

Moreover, the focus of the analytical EAs is to manage large

data sets in multiple steps (e.g., staging, transformation, pro-

cessing, and reporting), and this is typically reflected in the ar-

chitectural layers and the components that are part of such lay-

ers [6, 7, 8]. Hence, the SPOF components of analytical EAs

differ from those of transactional EAs. Therefore, the HACs

used to protect such solutions vary significantly.

Further HAC requirements arise from the need to monitor and

maintain the “health” of the cluster itself. An essential monitor

called a heartbeat [9, 10] is required to periodically check the

health of individual cluster nodes (i.e., servers) so that the ap-

propriate failover procedure can be initiated when node failures

are detected. At cluster level, a quorum system [4, 11] is needed

for scenarios where the cluster ends up divided into cluster par-

titions that can no longer communicate with each other. In these

scenarios, a voting protocol is enacted to select a single partition

that will continue to run the EA. In this way, quorum systems

prevent the occurrence of a split-brain [1, 3], i.e. a situation in

which multiple partitions attempt to use the EA resources at the

same time, potentially corrupting important EA data [9].

This diversity in HAC uses and requirements has led to sig-

nificant research on the techniques underlying the operation of

HACs. At the same time, the ability of HACs to run critical EAs

with minimal downtime prompted the development of multiple

end-to-end HAC solutions. Our article provides a taxonomy

and a survey of this large body of work. The taxonomy clarifies

and formalises the often overlapping or conflicting terminology

Preprint submitted to Journal of Systems and Software December 22, 2021



and classifications used by HAC researchers and developers.

The survey comprises two parts. The former part, covered when

we define the taxonomy, represents an extensive coverage of the

HAC research landscape. This part offers insights into the capa-

bilities and limitations of the techniques used to achieve HA for

critical EAs. The latter part covers end-to-end HAC solutions,

supporting the developers and users of these solutions.

Addressing HAC limitations and extending the applicability of

HACs to new computing paradigms is an active field of re-

search. Recent advances in areas such as machine learning

[12, 13] and self-adaptive systems [14] provide new avenues

for addressing current HAC challenges, while recent technolo-

gies such as containerisation [15, 16] require the development

of new types of HACs. A discussion of these new directions for

HAC research and solutions is also provided in the article. This

is the first taxonomy and in-depth survey that focus on HACs.

While a few previous studies proposed taxonomies for avail-

ability in the cloud [17, 15] and dependable and secure com-

puting [18], these taxonomies are complementary to our work,

as they do not consider essential HAC characteristics such as

heartbeat, quorum, topology and type of cluster.

The contributions of our article are organised as follows. Sec-

tion 2 explains how HACs are used to protect different layers

of critical EAs, and introduces a generic HAC architecture and

key HAC terminology. Section 3 presents the HAC taxonomy

and the techniques underpinning core HAC operations such as

monitoring, heartbeat, quorum, failure detection, and compo-

nent failover. Section 4 uses the taxonomy to survey end-to-end

EA HAC solutions available commercially or from open-source

projects. Section 5 discusses HAC limitations, open challenges,

and research opportunities. Lastly, Section 6 concludes the ar-

ticle with a brief summary.

2. Uses and Architecture of High-Availability Clusters

2.1. Key Concepts and Terminology

The ISO/IEC 25010 standard defines availability as the ‘degree

to which a system, product or component is operational and

accessible when required for use’ [19]. Availability is calcu-

lated as the ratio between the time when a system is opera-

tional and the total time over which the system was observed.

Equivalently, availability can be computed as the ratio between

the mean time between failures, MTBF, and the sum of the

mean time between failures and the mean time to recover af-

ter failures, i.e., the mean time to repair, MTTR : availability =

MTBF/(MTBF +MTTR) [20, 21].

Component failures lead to downtime (i.e., periods when the

system is not operational or accessible), and to a decrease in

availability. As such, HACs are responsible for reducing both

the frequency and the duration of failures, and thus their impact

on the availability of the protected EAs. Discharging the first

responsibility involves monitoring specific EA components, to

identify and resolve faults before they lead to errors, and er-

rors before they trigger failures, i.e., violations of requirements

observable to EA users [20].

A fault can occur in any resource (i.e., atomic component) of

an EA, and the critical resources are usually combined into one

or several SPOFs (or SPOF groups). If such a resource fails ir-

recoverably, it will lead to the failure of its associated SPOF as

well. When an SPOF fails, it may bring down an entire appli-

cation. Achieving high availability requires that the SPOFs of

an application are entirely or partially eliminated, or masked.

Consequently, HACs discharge their second responsibility by

relocating SPOF-related resources to a secondary server after

irrecoverable failures. In this way, they mask the failures of

resources, and thus of application SPOFs.

In this context, HACs employ a threefold strategy for failure

management:

1. HACs avoid EA downtime, even in the presence of fail-

ures of individual resources. To achieve this, HACs reini-

tialise or restart resources after faults and errors (increas-

ing MTBF) and after failures (reducing MTTR).

2. HACs promote the failure management to a resource group

level if the failure at a resource level cannot be resolved

locally. This leads to a failover of the concerned resource

group to another node. A resource group can also be

reinitialised on the same node if there are no available

secondary nodes. A resource-group failover is faster than

a complete system failover. Therefore, the likely out-

come is that the failover does not cause downtime.

3. If there are dependencies between the resource groups

and after critical failures, a complete system failure may

occur. In this event, the complete system is failed over to

another node.

In the first scenario, components are restarted, whereas in the

other two scenarios components are first stopped and then started,

in a specific order determined by their interdependences.

2.2. Enterprise Application Layers

EAs such as ERPs are transaction-intensive and require state-

ful communication. Moreover, data consistency and data in-

tegrity are vital for such applications. Additionally, modern

EAs are highly integrated, which means that data corruption

in one application may lead to data corruption in other inte-

grated systems. Therefore, data corruption and data loss must

be prevented even when failures occur. To identify and achieve

HA holistically for an EA, it needs to be broken down into a

set of essential building blocks that are referred to as layers.

Critchley [4] proposes a layered architecture in describing an

IT environment. Somasekaram [22] suggests a similar approach

of separating the layers of an IT solution for outsourcing pur-

poses.

When all the layers of an EA are identified, an appropriate so-

lution for ensuring the HA of each layer can be devised. Mul-

tiple solutions are typically possible for each layer, including

the use of a HAC. As such, different EA critical layers can

each be protected by a separate HAC. Alternatively, a single

HAC can be employed to protect several critical layers of an

EA. In either case, any EA layer not protected by HAC(s) may

2



require other types of HA solutions (e.g., redundancy or fault

tolerance). In the special case of applications with only one

critical layer (e.g., firewalls), HA can be ensured through using

a single-layer HAC [23, 1, 24].

Based on the solutions that can ensure their availability [4, 22,

25, 26, 27, 28, 29, 30, 31, 32, 33], the components of an EA

can be organised into the nine layers from Table 1. For each

layer, the table shows the typical role(s) that the layer can play

within an EA, the solutions available for ensuring its availabil-

ity, and whether an application HAC (i.e., a multi-layer HAC)

is among these solutions—providing protection for the whole

layer or only for its client resources. As indicated in this table,

an application HAC can protect the application server, appli-

cation core, and database layers of an EA, as well as the client

resources associated with the EA network and storage layers.2

In contrast, a HAC is not typically used to protect the operat-

ing system, and the virtual machine (VM) or server layers of

the EA (i.e., layers 4–6 from Table 1), as a failover always in-

volves relocating the application environment to a different VM

or server, respectively. The protection of the data centre layer is

also beyond the scope of a HAC. However, the HAC still needs

to monitor critical elements from layers 4–6 in order to identify

critical issues such unacceptably high levels of CPU utilisation

for a server.

A few research initiatives have addressed the challenges of achiev-

ing HA solutions for multiple EA layers from Table 1. Bajohr

et al. [25] have devised an HA framework for Springer Verlag’s

Online Conference Service. Their framework combines differ-

ent solutions for several layers of this multi-tier applications, in-

cluding an N+M HAC (the terms are explained in the topology

section of our taxonomy) for application servers (layer 1), and a

master-slave configuration for the database (layer 3). Similarly,

Sun et al. [51] present an HA architecture for a multi-tier appli-

cation in which multiple HA solutions are combined to enable

HA for the application. However, most research to date has fo-

cused on HACs for single EA layers. For instance, Cheng et al.

[52] developed an application cluster service (APCS) scheme

comprising separate methods that support state recovery and

failure management, respectively. APCS assumes that the state

of a shared-storage database layer does not change, and there-

fore focuses on the protection of the application layer of a three-

tier architecture. In many other approaches, the layer protected

by different types of HA solutions is the database layer [53],

as in the case of Riley et al.’s HA cloud for research comput-

ing [54]. Built using the OpenNebula cloud computing plat-

form, this solution employs an active-active HA MariaDB clus-

ter (layer 3) to support the storage of cloud objects.

In summary, modern EAs require a combination of HA solu-

tions to achieve the required levels of end-to-end availability.

More often than not, the infrastructure components of EAs have

2The network and storage EA layers are part of the EA infrastructure, and

present both a server view and a client view. As an example, a storage system

in itself is part of the server view, while its individual disks associated with a

server or with a virtual machine become part of the client view, and thus need

to be protected by the application HAC.

their own HA setups, and thus HACs typically focus on ensur-

ing the availability of the actual applications.

2.3. HAC Architecture

Figure 1 shows the high-level architecture of a generic HAC

operating on n ≥ 2 nodes distributed across one or multiple

locations (i.e., data centres). The HAC is responsible for the

management of an EA whose resources are depicted organised

into m ≥ 1 resource groups, out of which only the resource

groups on the primary node 1 are active. The HAC uses three

dedicated private networks—a cluster network for its commu-

nication across cluster nodes, a quorum network to connect all

nodes to a quorum device (i.e., a facilitator of the quorum ser-

vice), and a heartbeat network whose role is explained later in

this section. To HAC modules deployed on each cluster node

[9, 10, 55] are described below, using the terminology sum-

marised in Table 2.

I. Cluster management is the core HAC module, responsible

for overseeing the operation of the other modules, and including

the following sub-modules:

1. Cluster data, comprising the data stores managed by a

cluster, and shared by all nodes.

• Configuration data comprises static data (e.g., HAC

configuration parameters).

• Runtime data consists of dynamic data (e.g., cur-

rent status of the cluster components).

2. Communication, which manages the communication be-

tween the HAC modules on the same node and between

the cluster nodes, and the heartbeat communications.

• Cluster communication (also known as intra-cluster

or inter-node communication) deals with communi-

cation between cluster nodes.

• Heartbeat is an essential health monitor that checks

the health of member nodes, notifying the HAC when

the heartbeat of a particular node fails [3, 10]. Dur-

ing such an event, the HAC consults with a quorum

to ensure that there are enough votes to continue to

run the cluster. If it is the active node that has failed,

this will result in a failover, provided that the cluster

can reach a quorum [9].

• Node communication (also known as intra-node com-

munication) manages communication within a node.

3. Resource management, responsible for managing two

main groups of EA resources:

• Base resources, which include key components such

as CPUs and disks.

• Application resources, which are resources specific

to the HAC-protected applications.

II. Failure detection and recovery is the HAC module respon-

sible for managing failovers and recoveries, and includes the

following sub-modules:

1. Monitoring, which monitores the EA resources and noti-

fies other HAC components (e.g., resource management)

about any problems.

3



Table 1: Enterprise application (EA) layers with possible high availability (HA) solutions

No Layer Typical Role(s) within the EA Possible HA solution(s) HAC†

1 application server (e.g.,

web servers [34, 35, 36])

key tier in multi-tier EAs, e.g., pre-

sentation layer

use multiple instances with load bal-

ancing [9, 37]

optional

2 application core (e.g.,

ERP central [38, 39]

coordination of distributed trans-

actions, application servers

use application HAC [39, 1, 40] yes

3 database (e.g., Oracle,

DB2, HANA [1, 41])

databases to support the main ap-

plication

high-availability features provided

by database, such as replication

and mirroring [1, 42, 40] which can

be used with application HAC

yes

4 operating system (e.g.,

Linux, UNIX)

operating environments redundant server environment no

5 virtual machine (VM) VM (e.g., virtualisation platform) VM cluster [43] (a HAC can be com-

bined with a VM cluster [44])

no

6 server server hardware redundant servers and fault toler-

ance

no

7 network (e.g., private,

public networks)

local area network (LAN), virtual

LAN (VLAN)

redundant network devices, fault

tolerance, hardware HACs (e.g., for

routers and load balancers) [29, 45,

46]

only client

resources

8 storage (e.g., the different

type of storage systems)

storage area network (SAN),

NAS, direct attached storage

(DAS) [3]

redundant devices, fault tolerance,

storage HAC [3, 26, 47]

only client

resources

9 data centre (e.g., essen-

tial data centre compo-

nents)

supporting utilities such as UPS,

power distribution unit (PDU) [48],

cloud operating systems [49], and

backup infrastructure

redundancy by multiple sites, and

redundant data centre equipment,

such as UPS and fault tolerance for

components, HA for the individual

data centre components [29, 50]

no

†High availability of layer can be ensured by an application HAC

Node 1

Cluster management

Communication

Heartbeat

Resource management

Application Base

Monitoring Failover

Failure detection and recovery

Recovery Quorum

Consistency 

and integrity

Cluster data

Configuration

Runtime

Node n

Resource group 1 Resource group 1

Resource group m Resource group m

Heartbeat network

QuorumQuorum network

Cluster network

Cluster management

Communication

Heartbeat

Resource management

Application Base

Monitoring Failover

Failure detection and recovery

Recovery Quorum

Consistency 

and integrity

Cluster data

Configuration

Runtime

...

...

Figure 1: Architecture of a high availability cluster (HAC) with n ≥ 2 nodes.

2. Failover, which is responsible for moving resource groups

to a secondary node. Depending on the failure type, a

failover can be at resource group or system (i.e., com-

plete application) level. The latter involves moving all

resource groups that belong to an application [3, 4].

3. Recovery, which decides whether failures need to be re-

solved at resource, resource group or node level by con-

sidering their criticality and resource dependencies. When

4



Table 2: HAC terminology

Term Description

Resource A logical or physical component of an EA layer (e.g., an IP address used by a database, or an

application component) that is managed as an atomic entity by a HAC, and is either fully operational

or unavailable. Resources have interdependencies that can be described by a hierarchical map

[9, 10, 3].

Resource

group

A set of logically related resources that can be relocated to a secondary node as one entity. As

such, each resource can only belong to one resource group. An EA may comprise numerous

resource groups, each of which may represent a significant part of the EA, such as a database

[1, 9, 10].

Split-brain A condition that occurs when a cluster ends up divided into partitions that perform conflicting

operations on the same resources, typically causing data corruption [3, 56].

Amnesia A condition that occurs when cluster nodes operate with different configurations, e.g., because

nodes that are rebooted resume operation with an older configuration. If such nodes are to become

primary, a problem is created because they will run with an out-of-date configuration [57].

Switchover The manual migration of resources from one node to another [4].

Shared

storage HAC

A HAC whose cluster members have access to the same storage. However, when it comes to EAs,

typically only one node at a time can allocate the shared storage resources, so that data integrity

is not affected [9].

Dependency Resources and resource groups have dependencies that must be taken into account during a

failover and the subsequent restart of services. These dependencies can be modelled using a

acyclic directed graph termed a dependency configuration [9].

a failure cannot be resolved, the failover sub-module is

notified, so that failover can be initiated.

III. Consistency and integrity is the HAC module that ensures

consistency and integrity across all cluster nodes through the

following sub-modules:

1. Fencing, which is a protection mechanism that isolates

a resource or node that experienced failures, removing

its ability to connect to any of the critical EA resources

[4, 58].

2. Quorum, which is a voting system for determining which

partition is allowed to run a cluster when a split of the

cluster occurs [4, 10, 59]. The partition that has the quo-

rum is considered quorate, and can be used to run the

cluster without causing a split-brain.

These terms are described in greater detail in the taxonomy sec-

tion below.

3. Taxonomy of High-availability Clusters

Our taxonomy applies to single-layer HACs and multi-layer

HACs, which it organises into the eight top-level classes shown

in Figure 2. The first four classes capture how HACs are de-

ployed (deployment patterns), which EA layers are protected

by HACs (application areas), how this protection is achieved

(type of cluster), and how the HAC nodes are structured and

interconnected (topology). The next two classes reflect how

HACs manage the resources of the protected EA (cluster man-

agement) and perform detection of and recovery from failures

of these resources (failure detection and recovery). Finally, the

last two classes indicate how the HACs preserve the consistency

of the EA data and the integrity of the cluster (consistency and

integrity), and how the EA data are synchronised across cluster

nodes (data synchronisation).

The taxonomy aims to achieve a balance between: (a) consid-

ering virtualized resources explicitly where their use makes a

significant difference in how a HAC aspect is implemented or

operates (e.g., shared-storage or network); and (b) keeping tax-

onomy classes and subclasses non-prescriptive about the use

of virtualised or physical resources where this choice has lim-

ited impact (e.g., for monitoring, fencing, heartbeat or quo-

rum).

Given the significant industrial relevance of HACs, we devel-

oped the HAC taxonomy based not only on research papers but

also on a wide range of technical guidebooks [1, 3, 4, 59, 60,

61, 62], technical reports [63, 64], white papers [65, 66, 67, 68],

HAC product documentation [39, 69, 40, 70, 71, 72, 73] and

best practices [36, 44, 74, 75].

3.1. A: Deployment Pattern

The deployment pattern of a HAC represents the platform where

the HAC solution is deployed. As shown in Figure 3, we dis-

tinguish between the deployment environment—which case be

public cloud, or can be on-premise, fog or edge IT infrastructure

of the organisation using the HAC, and the type of host used for

the cluster—which can be physical, virtual or container.

The deployment pattern decides, along with business require-

ments and technical capabilities, what cluster type can be im-

plemented for an application area. Table 3 describes the re-

lationship between deployment patterns, application areas, and

the rest of the taxonomy. A cluster type, on the other hand,

decides how an application area can be protected and the sub-

sequent topology and related configuration. An example of

this is as follows: if the deployment pattern is a set of virtual

servers in a single data centre, it will not be possible to deploy

topologies such as metro or continental (described under Type

of cluster). Thus each HAC solution comes with deployment

restrictions (e.g., whether it can be deployed in a public cloud

or not).

5



High availability cluster

A: Deployment 
patterns

B: Application 
areas

C: Type of 
cluster

D: Topology
E: Cluster 

management

F: Failure 
detection and 

recovery

G: Consistency 
and integrity

H: Data 
synchronisation

Figure 2: Top-level classes of the HAC taxonomy.

Deployment patterns

Environment

Public cloud On-premise Fog Edge

Host

Physical Virtual Container

Figure 3: Deployment patterns.

Cloud environments impose restrictions that can cause prob-

lems for a HAC because many of the infrastructure elements

that a HAC needs to monitor and manage may not be avail-

able for a cloud deployment. However, a distinction needs to

be made between private (i.e., on-premises) clouds and pub-

lic clouds because private clouds offer much more flexibility,

and functionalities may be identical to an on-premises physi-

cal environment. Furthermore, the roles and responsibilities of

different stakeholders play an essential role when deploying a

HAC in a cloud. Table 4 describes the roles and responsibilities

of customers and cloud providers for private clouds and for the

service models available in public clouds [76, 77, 78], showing

that multiple stakeholders may need to collaborate to support

the different layers of a HAC in a public cloud.

Both the fog and edge computing paradigms have the poten-

tial to improve response times for EAs. However, ensuring HA

could be a challenge considering the limited infrastructure com-

ponents available; some of them are required for implementing

HACs (e.g., shared storage) in these deployment environments

[79, 80]. Moreover, the deployment hosts can also change, such

as using containers to host an application, in which case a HAC

must understand the implementation in order to deliver the re-

quired HAC functionalities. A HAC requires continuous mon-

itoring for the protected application and the operating environ-

ment to detect failures and resolve them at a granular level. For

example, suppose that an application is deployed in a container

using the deployment environment edge. The HAC must then

ensure that the key resources of the application deployed in the

container can be monitored and that the HAC can collaborate

with the responsible container orchestration system to ensure

that failure mitigation actions can be performed. This requires

the HAC and orchestration system to collaborate and support

each other. We discuss this in detail in Section 4.4.

3.2. B: Application Areas

Application areas are the different IT solutions that can be pro-

tected by HACs, and a list of typical applications areas is pre-

sented in Figure 4. Considering the application area has dual

purposes: (1) to identify if HACs can support the multiple lay-

ers that an application is composed of; and (2) to address all

areas that are part of an IT solution, so that HA requirements

for those areas can be achieved. For instance, the application

area enterprise system may require other related areas, such as

application server, database, server, network, and storage to

be included to ensure that the enterprise system is protected

across all critical layers. Some layers can be protected by an

application HAC while others may require a different set of op-

tions which may include application area specific HACs (pre-

sented in Table 1) [33]. Moreover, application areas with fewer

layers may need to protect fewer components [81]. For in-

stance, a HAC in the context of a distributed system (e.g., high-

performance computing—HPC) may need to protect fewer com-

ponents than an EA HAC. In case of an HPC, a head node

(principal node) is identified as a SPOF. Thus, a HAC can be

deployed to protect the head node [82]. Therefore, the applica-

tion areas of a solution are determined dynamically during an

implementation phase, and the numbers of protected resources

will change with the type of primary application to be pro-

tected.

Several recent projects have implemented HACs that support

multiple application areas, as also discussed in Section 2.2. Xiong

et al. [53] present a HAC for a relational database in a multi-

cloud environment which supports the requirements of both HA

and Disaster Recovery (DR). Engelmann et al. [83] have ex-

perimented with a HAC to protect the head nodes of an HPC

environment. Addressing complex systems that consist of mul-

tiple layers, hence also several application areas, is a challenge.

Wang et al. [32] address the challenge by proposing an HA so-

lution for a comprehensive medical system which consisted of

several layers hence also multiple application areas. The pro-

posed solution used a multitude of HACs to enable HA across

the different layers.

3.3. C: Type of Cluster

The type of cluster plays a vital role in selecting the right topol-

ogy and related configuration for a HAC. An important charac-

teristic is the distance between nodes, and therefore the num-

ber of sites (e.g., data centres). The type could be chosen to

meet business requirements, such as business continuity or DR.

6



Table 3: Connection between deployment patterns, application areas and the rest of the taxonomy

Deployment Patterns Application Areas Rest of the Taxonomy

Objectives Where to deploy the solution? What application or application

components need to be protected?

How should the solution be set up to meet

the requirements?

Examples data centre locations, public cloud,

virtual server, container

enterprise system, NAS, network

appliance (e.g., firewall), storage

system

cluster type, topology, replication,

mirroring

Table 4: Roles and responsibilities for service models in a public cloud, and for on-premises deployment

No Layers On-premises IaaS PaaS SaaS

1 Application server C C C AP

2 Application core C C C AP

3 Database C C C AP

4 Operating system C C CP CP

5 Virtual machine C CP CP CP

6 Server C CP CP CP

7 Network C CP CP CP

8 Storage C CP CP CP

9 Data centre C CP CP CP

Key: IaaS – Infrastructure as a Service; PaaS - Platform as a Service; SaaS – Software as a Service;

C – Customer; AP – Application provider; CP – Cloud provider (who may also be application provider

for the SaaS service model SaaS)

A DR solution requires at least two data centres with a suffi-

cient distance between them and a related configuration. When

a HAC solution is explicitly deployed to support DR, it has

to comply with restrictions (e.g., low network latency between

data centres). Moreover, supplementary mechanisms must be

used to guarantee data integrity during failovers. Therefore, the

type of cluster should be treated as the starting point for HAC

selection, along with the two top-level taxonomy classes pre-

sented previously. There are four types of clusters, as shown

in Figure 5 and Table 5. Based on a rule of thumb derived

from [3, 1, 65, 84, 85], we assumed a communication speed

of 3 ms per 160 km to calculate network latency. The distances

described in the table may differ due to the use of different tech-

nologies. Moreover, the different HAC solutions can also come

with specific recommendations.

The limitations presented in Table 5 are due to the different

classes of DR that can be supported for the different types of

HAC [1, 62], which in turn are related to the distance between

the data centres. For example, the DR class “data centre net-

work failure” can be supported by the campus, metro and conti-

nental cluster types. However, a DR class of flooding in the area

can only be supported by metro or continental. On the other

hand, the continental cluster type can support all DR classes,

including the most severe ones, such as an earthquake in the re-

gion. Therefore, the most severe DR classes are only supported

by the continental cluster type.

C.1: Local. A local HAC is hosted in one data centre and

uses one storage system, usually shared. When there are two

data centres, the distance between data centres is often less

than one km [58]. In such case, there exist two options. Op-

tion 1 is to distribute the HAC nodes across two data centres,

with all nodes utilising shared storage from one of the data cen-

tres. Option 2, on the other hand, uses two storage systems in

the two data centres, with the HAC becoming a shared-nothing

cluster. However, because data integrity is crucial for EAs, ei-

ther replication or mirroring must be enabled to synchronise

data between the two data centres. The two-data centre setup

with replication or mirroring is also a feasible solution for other

types of cluster. Since there is usually one data centre associ-

ated with a local cluster, the setup is not compliant with DR

requirements.

C.2: Campus. A campus cluster is usually deployed across

two or more data centres, and the distance between the data

centres is less than 30 km [86, 58]. Since a campus HAC has

a redundant setup for data centres and related components, it

can comply with DR requirements (e.g., it can handle DR sce-

narios such as a data centre failure). However, the distance re-

quirement between data centres means that businesses may opt

for other types of HACs which are optimised for longer dis-

tances. Nevertheless, campus clusters can support longer dis-

tances when combined with other HAC types, becoming hybrid

clusters — for instance, multiple interconnected campus clus-

ters with one campus cluster functioning as the primary. This

setup enables failover locally for most incidents but will trig-

ger a failover to a different site only when a DR scenario takes

place at the primary site.

C.3: Metro. In a metro cluster, the nodes are distributed across

a distance of up to 300 km. Although there is no definite cut-

off for this distance, the restrictions come from the techniques

that are employed to synchronise data [85, 87]. For example,

in some cases, the distance can be extended to 400 km by em-

ploying Wave Division Multiplexors (WDM) [88].

C.4: Continental. When cluster nodes are geographically dis-

7



Application areas

Enterprise 
system

Distributed 
system

Application 
server

Web server Database File server Server NAS
Network 
appliance

Storage 
system

Others

Figure 4: Application areas of HACs.

Table 5: Type of clusters and potential configurations

Type of HAC Distance

(in km)

Network

Latency (ms)

Data

Centres

Storage

Systems

Disaster Recovery Support

Local ≤1 ≤1 ≥1 ≥1 No

Campus ≤30 <1 ≥1 ≥1 Limited due to short distance

Metro ≥30 <5 ≥2 ≥2 Limited due to distance

Continental ≥300 >5 ≥2 ≥2 Yes

Type of 
cluster

Local Campus Metro Continental

Figure 5: Type of cluster.

persed, usually at a distance of more than 300 km, the clus-

ter is characterised as a continental cluster. [89]. A continen-

tal cluster can also be referred to as a global cluster or geo-

cluster.

3.4. D: Topology

The topology (or redundancy model [90]) of a HAC represents

the way in which the HAC nodes are structured and linked. The

topology of a HAC (Figure 6) depends on multiple character-

istics of its nodes, on the roles of these nodes (primary or sec-

ondary), and on its communication devices, networks, storage

systems, and supporting tools (e.g., quorum devices).

D.1: Symmetric. In a symmetric topology, all cluster nodes

can be utilised concurrently: there is no standby node.

D.1.1: Active-active. While symmetric active-active describes

that all nodes are utilised, there have been research efforts to

implement variations of the topology to address the specific

needs of distributed systems. Engelmann et al. [91, 92] im-

plemented a prototype with a symmetric active-active topol-

ogy that operated on more than two nodes to provide HA for

an HPC. The prototype employed two replication mechanisms,

internal and external, using reliable and totally ordered mes-

sage delivery. The internal replication provided synchronisa-

tion for the HPC file system metadata service, while the exter-

nal replication supported the same for the HPC job and resource

manager [92]. The evaluation of the prototype showed that the

availability could be improved significantly as more nodes were

added to the cluster. Therefore, depending on how applica-

tions are hosted on such HACs, we distinguish between sym-

metric application-based and symmetric server-based topolo-

gies.

D.1.1.1: Application-based. In a symmetric application-based

topology, an application is active on all available cluster nodes.

This topology requires application support because managing

transactions across multiple nodes is only possible by using ad-

ditional mechanisms, such as distributed lock management. A

component of an application, for instance, a database, may pro-

vide these mechanisms, which can then be combined with a

HAC solution [69]. For example, IBM Purescale supports par-

allel access to IBM DB2 databases [41], and Oracle provides

active-active concurrent access support for Oracle databases us-

ing the Oracle Real Application Clusters [51, 70, 93].

D.1.1.2: Server-based. A symmetric server-based topology is

frequently referred to as an active-active topology, and this im-

plies that multiple applications are hosted on all server nodes

of a cluster; hence, the servers are fully utilised [40]. Since

all servers are utilised, the topology is considered active-active.

When a failover takes place for one or more applications, they

failover to one or more of the available servers, implying that a

standby node is not required.

D.1.2: N-to-N. In the symmetric N-to-N topology, multiple ap-

plications share the same set of N servers, like for the symmet-

ric server-based topology. Upon failure of a primary node for

an application, the application is failed over to one of the pre-

defined member nodes of the cluster [94]. The new server will

then host both the application that has failed over, and the pre-

viously running application [40]. The topology supports failing

over multiple applications to multiple nodes.

D.2: Asymmetric. An asymmetric topology is an active-passive

configuration in which one node is active while one or more

nodes are in a passive or a standby mode [95].

D.2.1: Active-passive. An active-passive topology is the typi-

cal asymmetric topology consisting of a two-node cluster setup

in which one node is active while the other node is passive or

standby. This topology is sometimes referred to as 2N redun-

dancy [64]. Today’s HACs make a distinction between the dif-

ferent layers of an application. In protecting a layer 3 compo-

nent (i.e., database), a HAC can either manage it by employing

a database-specific extension (agent) or utilising replica or mir-

8



Topology

Symmetric

Active-
active

Application-based Server-based

N-to-N

Asymmetric

Active-
passive

N-to-1 N+1 N+M

Figure 6: HAC topology.

roring features that are offered natively by the database [96].

Most database vendors provide a replica or mirroring option to

set up standby databases of primary databases [97], and this

configuration can effectively be integrated with a HAC. The

prerequisite in such a case is that the HAC has support for the

specific feature so that the HAC can recognise and support it as

part of its operations.

Several variants of the active-passive topology exist, depend-

ing on the set up for a standby database and for the secondary

node [41, 4, 1], as shown in Table 6. While the standby modes

from this table are often used with databases, other applica-

tion layers may also employ a similar configuration. For exam-

ple, a layer two component (i.e., application core), employs the

active-warm (or warm) standby mode due to the limited need

for data synchronisation. However, a common setup by a HAC

is to employ either active-hot (or hot) standby or active-warm

because otherwise failover time and MTTR will increase and,

as a consequence, availability will go down. The primary rea-

son for using the active-cold (or cold) standby or active-warm

standby is cost, as using an active host node is associated with

higher costs. The standby modes are usually not explicitly sup-

ported by modern HAC solutions; instead, the different standby

modes of databases and related features that are supported are

specified [41, 1]. Moreover, the standby modes are frequently

used to refer to the modes of the data centres, particularly in the

context of establishing DR for a system [99].

D.2.2: N-to-1. In an N-to-1 topology, multiple applications are

supported by one dedicated standby node. Hence the name N-

to-1 [94, 40]. If a node fails, the application is failed over to

the standby node and made available there temporarily. How-

ever, while the application is active on the standby node, there

will be no HA for that application until the primary node is

back online. Another aspect of an N-to-1 topology is that such

a standby node must be able to host all N applications simul-

taneously. Hence, sufficient capacity must be available on the

standby node.

D.2.3: N+1. In an N+1 topology, one passive (spare) node sup-

ports multiple active applications, similarly to the N-to-1 topol-

ogy. However, unlike the N-to-1 topology, the N+1 topology

employs a rotation scheme for failovers [40]. This means that,

during a failover, an application is failed over to the standby

node, but the failed node, once the problems are resolved, effec-

tively becomes the standby node. Hence, any node in the cluster

can become a standby node. A variant of the N+1 topology that

uses 2+1 nodes (with two active nodes and one node operat-

ing as a standby or backup) has been referred to as asymmetric

active-active in the context of HACs for HPC [100].

D.2.4: N+M. The N+M topology refers to HACs that comprise

N active nodes and M passive nodes in the cluster, and is called

an N+N topology when the number of passive nodes equals

the number of active nodes. The topology is employed when

one passive node is not sufficient, and M> 1 passive nodes are

required for failovers [90, 101].

3.5. E: Cluster Management

The cluster management module of a HAC is responsible for

managing the resources, resource groups, nodes, heartbeats,

cluster data, and failovers of a cluster, directly or through other

modules. The characteristics used to distinguish between dif-

ferent types of HAC cluster management are shown in Figure 7

and described below.

E.1: Cluster data. Two types of cluster data are relevant to

HACs: configuration and runtime. Configuration data contains

configuration details of a HAC while runtime data stores status

of the cluster components. Cluster data can be stored in three

types of repositories: disk, file and memory.

A repository can be either local or shared. However, a pre-

requisite for a repository is that it is accessible by all cluster

nodes. Hence, if a repository is local, a replication mechanism

is used to replicate it between the nodes at regular intervals.

However, in some cases, when persistent files are employed,

the replication is a manual activity. Both in-memory and file

repositories are local. However, there are differences in what

cluster data type they support. Configuration data is static and

is commonly stored in files, while an in-memory repository

is generally used to store runtime data to capture changes in

real-time. This means there is a rigorous requirement for in-

memory repositories to replicate data to other nodes. Therefore,

a designated process governs the synchronisation of the runtime

data, for instance, Designated Coordinator (DC) in the case of

a Pacemaker-based HAC [10, 58]. The coordinator ensures that

one master repository exists in the primary node while a copy

of it, a replica, is distributed across all the member nodes. A

shared repository (e.g., disk or file share), on the other hand,

stores both configuration and runtime data. In many cases, a

quorum repository, which is shared, can support the require-

ments. Cluster data in a repository is organised using an infor-

mation model. For instance, a Cluster Information Base (CIB)

9



Table 6: Active-passive topology variants

Standby

Mode

Recovery

Time

Data Synchronisation

Method

Description

Active-

Cold

Hours Backup/restore A secondary node is installed and configured but brought up

only when the primary node is down. Subsequently, the

related services are started, as well [98].

Active-

Warm

Minutes Mirroring, shared

storage

The secondary node is installed and configured and is running.

Related application services are started upon failure of the

primary node.

Active-

Hot

Seconds Mirroring,

replication, shared

storage

The secondary node is fully installed and configured, and

services are also started. The secondary node takes over

responsibilities immediately upon failure of the primary node.

Cluster management

Cluster 
data

Configuration

Disk File

Runtime

Disk File Memory

Communication
Resource 

management

Type

Base 
resource

Application

Agent-based

Application Database

Method

Policy-based Rule-based

Figure 7: Cluster management.

uses an XML- based object model to represent both configu-

ration and runtime data. However, there are no standardised

information models for dealing with cluster data, and, as such,

HACs use different information models. Open Service Avail-

ability Framework (OpenSAF), for example, employs Informa-

tion Model Management (IMM), and objects represent the two

types of data: configuration and runtime [61].

E.2: Communication. HACs can use different communication

types and methods (Figure 8).

E.2.1: Type. A communication type describes the different

kinds of communications that a HAC employs and is split fur-

ther into three subclasses: heartbeat, node and cluster.

E.2.1.1: Heartbeat. A heartbeat is a form of intra-cluster com-

munication. However, it is separated in the taxonomy to high-

light its importance and use of additional resources, such as a

dedicated network. The type and content of heartbeat messages

differ from solution to solution. In some cases, a heartbeat mes-

sage could be a simple ping or a keepalive to provide the status

of a cluster node [102, 95]. Heartbeat communication use a

LAN-based or a disk-based method [3, 40, 58, 103].

E.2.1.1.1: LAN-based heartbeat communication uses a Trans-

mission Control Protocol/Internet Protocol (TCP/IP) network

[3, 1]. Since heartbeat is a key component of a HAC, the rec-

ommendation for business-critical solutions is to set up a ded-

icated network, such as a virtual LAN, to facilitate heartbeat

communication [3, 40, 103]. With this approach, the heartbeat

traffic is not disturbed or delayed by other kinds of traffic in a

network, which could be the case if the network is shared. Fur-

thermore, adding redundancy to a heartbeat network by using

multiple networks is also a good option so that a single network

does not become a SPOF.

E.2.1.1.2: Disk-based heartbeat uses a shared disk and also the

SAN fabric as a means to facilitate communication [103]. In

some cases, LAN-based and disk-based heartbeat types can be

combined to create a full heartbeat service. If a heartbeat mech-

anism is not employed, an alternative and robust mechanism is

required to detect node failures. Cheng et al. [52] propose a

HA solution that employs a module that can detect whether a

node is sick or not and subsequently forecast the time of fail-

ure. This renders the heartbeat setup to be nonessential in such

cases. However, there is no information regarding how such a

solution works when there are many nodes in a cluster.

E.2.1.2: Node communication is referred to as intra-node and

deals with communication within a cluster node. The node

communication uses internal communication schemes, for in-

stance, inter-process communication (IPC) within a server. Two

types of such communication exist in HACs: user interface and

resource management.

E.2.1.2.1: User interface communication refers to the differ-

ent means to connect to the cluster on a particular node, in-

cluding Graphical User Interfaces (GUIs) for cluster adminis-

10



Communication

Type

Heartbeat

LAN-
based

Disk-
based

Node

User 
interface

Resource 
management

Agent Base resource

Cluster

Configuration Runtime

Method

Multicast

Atomic Virtual synchrony

Broadcast Unicast
IP 

socket

Figure 8: Cluster communication.

tration.

E.2.1.2.2: Resource management communication can belong

to two subclasses: base resource and agent. Base resource de-

scribes the communication between the cluster resource man-

agement and those resources that are available as a standard

(e.g., IP, CPU of a server). An agent describes the communi-

cation between the cluster resource management and the agents

that are responsible for managing application-specific resources

(e.g., database, EA components) [104, 40].

E.2.1.3: Cluster communication, also termed intra-cluster, inter-

node (or resource group) communication, describes communi-

cation between cluster nodes. For a HAC, internal cluster com-

munication is crucial. It is required for continuous communi-

cation between nodes regarding changes in configuration, the

health status of nodes, quorum status, and failure notification.

Furthermore, since cluster communication is often a basis for

making necessary decisions by a cluster, the requirement for

cluster communication is that it is enabled using an atomic (or-

dered) and reliable messaging scheme. Even though several

HAC solutions use different types of cluster communication, a

strict definition can be used to distinguish the two main types:

runtime and configuration. Thus, cluster communication deals

primarily with the synchronisation of cluster configuration and

cluster runtime data (e.g., the status of the nodes).

E.2.2: Method. The types of communications utilise different

transmission methods, and these methods can employ different

protocols, such as UDP and TCP. Some HAC solutions employ

custom protocols to meet the HAC-specific requirements, and

an example is the Transparent Inter-Process Communication

(TIPC) protocol, used by OpenSAF [61, 105]. The methods

are further divided into four subclasses: multicast, broadcast,

unicast, and IP socket.

E.2.2.1: Multicast. Multicast enables transmission from one

node to multiple nodes. Thus, it can be characterised as a one-

to-many (1:m) method. The receivers are usually a group of

nodes, which means that a subset of cluster nodes can also be

addressed [106, 107, 3].

E.2.2.1.1: Atomic. Atomic multicast (or total order multicast)

implies that all nodes receive the same message in their sent

order [108].

E.2.2.1.2: Virtual synchrony. Virtual synchrony is an atomic

multicast technology that supports reliable inter-process mes-

saging. Corosync, the open-source communication protocol,

employs the Totem Single-Ring Ordering and Membership (TOTEM)

protocol, which is an example of implementation of virtual syn-

chrony [104]. Engelmann et al. [109] present a multi-node

HAC solution for HPC that employs virtual synchrony to sup-

port state machine replication between the nodes in a symmetric

active-active topology.

E.2.2.2: Broadcast. This method supports one-to-all (1:n) trans-

missions. While multicast supports transmission to a group of

nodes, broadcast transmits to all nodes [106, 1].

E.2.2.3: Unicast. This method facilitates transmission between

two nodes, and it is characterised as a one-to-one (1:1) trans-

mission [3, 106].

E.2.2.4: IP socket. An IP socket can also be used in some cases

to facilitate communication between cluster nodes [106, 110].

However, the majority of the HACs do not support this method

but rely on other methods.

Typically, cluster communication employs either multicast or

broadcast, although unicast is also used in some cases. On the

other hand, heartbeat communication employs either unicast or

multicast [3]. The different communication types and methods

may have limitations in cloud, fog and edge deployment en-

vironments. For example, routing a private IP address across

subnets may not be possible in these environments, although

such routing is required to failover from one subnet to another

in a two-node cluster hosted in two data centres [111, 112]. A

solution could be to use an overlay network technique, which

provides a network, e.g., an auxiliary network, on top of the

main network, allowing routing across subnets [113], thus en-

abling seamless failovers.

E.3: Resource management. Resources are structured hier-

archically to form a resource group, and links between the re-

sources define the relationships between the resources [3].

E.3.1: Type. HACs can manage two types of resources: base

resources and applications (Figure 7).

11



E.3.1.1: Base resource. A base resource is a standard building

block (e.g., IP address, file system) [4, 40, 58, 69]. A HAC

can manage base resources without requiring additional tools.

Hence, a distinction is made between base and application re-

sources. While managing base resources is supported by all

HAC solutions to different degrees, application support must

be provided explicitly.

E.3.1.2: Application. Application management is the capabil-

ity to manage application-specific functionalities and features.

Since each application must be handled individually, an exten-

sion to a HAC is usually required [4, 114, 115]. Such addition is

provided in the form of either an extension or an agent.

E.3.1.2.1: Agent-based. Agents manage two main types of ap-

plications: application and database. Application agents deal

with managing several application-specific layers (e.g., appli-

cation core of an ERP as in layer 2). Database agents manage

database-specific components (layer 3). The application agent

functionality connects application-specific (this includes both

types: database and application) configuration and procedures

with the resource management module of a HAC and supports

functionalities including [114, 115]:

• Monitoring application-specific components

• An application-specific configuration, which can recog-

nise the architecture of the application components

• Complying with application-specific dependencies

• Logging

• Procedures – to stop and start related application compo-

nents in a specific order

• Supporting Application Programming Interfaces (APIs)

or specification by the application vendor

However, not all HAC solutions can support all applications, as

each will require separate lifecycle management. When an ap-

plication changes, for instance, when it is upgraded, the HAC

application agent may also need to be updated to reflect the

changes. Likewise, when the HAC solution is upgraded, the

application agent may also need to be updated. Thus, support-

ing a large number of application agents could be connected

to much effort. Furthermore, such support may be subject to

licensing conditions, and HAC vendors could treat individual

application support as an extension to license terms.

E.3.2: Method. Two main methods are used when manag-

ing resources: policy- and rule-based. Policy-based resource

management uses policies to configure conditions, and, when a

particular condition is satisfied, appropriate action is triggered

[55, 40, 115]. On the other hand, rule-based resource manage-

ment uses one or more rules to make decisions and act upon

them [3].

3.6. F: Failure Detection and Recovery

Failure detection implies detecting failures by monitoring and

analysing monitoring output [116]. If the monitoring identifies

a status change in a resource or a resource group, it invokes

recovery management to initiate a recovery. If the recovery is

not successful, the recovery manager may initiate a failover of

a resource group or even a system; therefore, failover is part of

recovery management. Figure 9 depicts the top-level class with

its subclasses.

F.1: Monitoring. HAC failure detection and recovery moni-

toring can be further organised into subclasses depending on its

area, type and method. The area describes the monitored do-

mains, while the type of monitoring addresses monitoring from

a configuration point of view. In most cases, HACs can pro-

vide support for specific monitoring metrics; however, if there

is no support, a custom approach where HAC users define their

own monitoring metrics is adopted. The monitoring scope may

also vary and can range from the simple state monitoring of

a resource to the monitoring of a resource in a detailed man-

ner [3, 1, 40, 103, 72]. Several research initiatives refer to the

monitoring aspect of HACs as means to detect failures. Cheng

et al. [52] present a state-based internal monitoring approach

for the experimental cluster APCS+PEV, while Leangsuksun

et al. [55] employ threshold-based monitoring for the cluster

HA-OSCAR.

F.1.1: Area. The monitoring areas that a HAC can support play

an important role in the overall solution. This is because mon-

itoring is the process that collects details regarding monitored

elements from different areas and delivers that data to the clus-

ter management to make appropriate decisions. The areas that a

solution can support can roughly be split into three subclasses:

server, cluster, and application.

F.1.1.1: Server. Server-specific metrics focus on critical and

non-critical monitoring elements of an operating system and a

server level. Examples of metrics are CPU utilisation and mem-

ory utilisation [40, 69, 103, 117].

F.1.1.2: Cluster. Cluster monitoring implies that monitoring is

enabled, even for the internal components of a HAC, including

cluster-related processes and objects [117, 118, 40]. This ap-

proach enables a HAC to distinguish between failures of clus-

ter and application elements, thus preventing making incorrect

decisions.

F.1.1.3: Application. Application monitoring is usually admin-

istered by an application-specific agent or an extension that is

specifically designed to support a particular application and its

architecture. This implies that an application agent is aware of

the internals of the application [93, 115].

F.1.2: Type. A monitoring type describes how the state of

the resources is measured. There are two types of monitoring:

state- and threshold-based.

F.1.2.1: State-based monitoring uses the state of a resource as a

monitoring metric, and the states can be as simple as “up” and

“down,” or the monitoring can be more elaborate and contain

more states [40, 58, 103, 115].

12



Failure detection and recovery

Monitoring

Area

Server Cluster Application

Type

State-
based

Threshold-
based

Method

Poll Push
Event-
based

Failover

Reactive Proactive

Recovery 
level

Resource Group Node

Prediction Simulation

Figure 9: Failure detection and recovery.

F.1.2.2: Threshold-based monitoring uses a set of threshold val-

ues related to metrics [119]. As such, alerts with different sever-

ity levels can be generated, depending on which threshold is ex-

ceeded. While the threshold-based type gives the flexibility to

configure monitoring at a granular level, it also adds complexity

as the HAC must interpret all the different values and severity

levels and act accordingly. One advantage is that a HAC will

have more data that can be analysed, and decisions can be made

at a granular level.

Even though state-based monitoring is the common type of mon-

itoring, both monitoring types (and others) are sometimes com-

bined. For example, OpenSAF HACs combine threshold-based

monitoring with a type called watermark monitoring. The thre-

shold-based monitoring is used to monitor system resources,

while the watermark monitoring is employed to register the

highest and lowest utilisation per configured resource [64].

F.1.3: Method. There are mainly three methods for monitor-

ing, and they are push, poll, and event-based. Polling implies

that the monitoring module of HAC and agents poll for state

changes of resources periodically [119, 15]. On the other hand,

push implies monitoring data is pushed to the monitoring mod-

ule or agents [15, 119]. Such a setup will require additional

enablers to interact with resources and push monitoring data

to HAC agents. Polling is the most common method of mon-

itoring [15], and it usually employs synchronous communica-

tion. However, this procedure is associated with a specific over-

head. Therefore, other methods are studied by both industry

and academia, and a technique that applies an event-based de-

sign is viewed as less resource-demanding. One type of event-

based monitoring employs an intermediate module that inter-

faces with an operating system to capture instantaneous noti-

fications relevant, for instance, the state change of a process.

It passes that to an appropriate module of a HAC. An exam-

ple of such a setup is the Intelligent Monitoring Framework

(IMF) by Veritas [40]. The IMF has a monitoring feature in-

tegrated into an operating system for a particular resource so

that state changes are captured instantaneously, and a relevant

HAC agent is alerted. However, this approach requires specific

development towards an operating system for a particular set of

resources. Thus, IMF is not available for all types of resources

but is being released gradually for different applications. An-

other recent development is to enable a HAC to interact with

the monitoring feature of an operating system directly [103],

which means that the HAC needs only a slim variant of the

monitoring module. The downside of this approach is that the

HAC becomes highly dependent on the operating system and

its developments.

F.2: Failover. Failover management includes procedures for

failover and failback, and all such actions are usually policy-

driven. Policy-based indicates that policies can be associated

with events so that the appropriate policies are triggered when-

ever a related event occurs [120]. Policies can be used, for ex-

ample, to determine the target node for failover. Furthermore,

policies can encode application-specific requirements, such as

the order for starting up or shutting down resources. Failover

management can further be split into two subclasses: reactive

and proactive [121].

F.2.1: Reactive. A reactive measure uses policies to ensure the

correct failover actions. There are two types of policies: static

and dynamic. A static policy is created during the implementa-

tion or when applying manual changes, while a dynamic policy

is created automatically by HACs to enforce policies based on

runtime failure cases [122].

F.2.2: Proactive. A proactive measure assumes that a predic-

tive model is employed to ensure that a failover can be initi-

ated based on predictions [121]. The predictions can, in turn,

use policies to trigger the required actions [55]. However, the

proactive approach could be a challenge in HAC environments

that deal with complex EAs because all relevant layers must be

addressed in such cases while evaluating the HAC behaviour.

Therefore, all active HAC solutions employ only the reactive

mechanism.

F.3: Recovery level. The threefold strategy to manage failures

is implemented using three recovery procedures: resource, re-

source group, and node (system) level [1, 40].

F.3.1: Resource. A resource-level recovery deals with recov-

ery attempts on a resource level, implying re-initialisation of a

failed resource while adhering to the dependency rules between

resources. However, if this step fails, the failure is propagated

to a resource-group level [1].

F.3.2: Group. A group-level recovery attempts to failover the

entire resource group to a secondary node. However, if there

13



are no available secondary nodes, an attempt to reinitialise the

resource group within the same node can also be initiated. If a

resource group have dependencies on other resource groups, it

may lead to a node (system) recovery [1].

F.3.3: Node. A node-level (system) recovery deals with fail-

ing over the resource groups to a secondary node. Moreover,

a resource or resource group failure can also have a cascading

effect due to dependencies, and, in such cases, it might lead to

recovery on a node level. Since the previous node is labelled as

"failed," policies may prevent any resources from being started

there until that node is repaired [1].

F.4: Prediction. Prediction in the context of HACs implies

that prediction approaches are used to provide prediction at the

different levels to improve the operations of HACs. One such

example is to predict resource failures; however, current HACs

do not commonly employ prediction. Some research initiatives

explore the area of predicting failures, but often within a lim-

ited scope. An example of such an initiative is the HA-OSCAR

project which assesses prediction by evaluating hardware com-

ponent failures [55]. The research team used a Hardware Plat-

form Interface (HPI), as specified by the Service Availability

Forum, to identify hardware events and, subsequently, to anal-

yse such data in order to provide predictions [55]. Similarly,

Lee et al. [123] propose a stochastic prediction model for node

failure or a node-switch interconnected system failure of HA-

OSCAR head nodes. Leangsuksun et al. [2] have also ex-

plored a failure-repair model for predicting the availability of

HA-OSCAR cluster by using Stochastic Reward Nets (SRNs).

While many of the prediction models use HA-OSCAR as the

platform, some initiatives explore other platforms. For exam-

ple, Cheng et al. [52] have used a module for a custom cluster

solution that detects sick nodes and subsequently uses a predic-

tion method to forecast the time-to-failure of nodes.

Both Veritas InfoScale Availability and Oracle Clusterware pro-

vide functionalities to simulate failures and observe potential

paths to failovers [40, 124]. However, the objective of the sub-

class prediction is to ensure that the wealth of information that

HACs produce can be incorporated to predict failures or opti-

mise failovers. An example of such an approach could be using

prediction to optimise the quorum voting process by dynami-

cally evaluating scenarios.

F.5: Simulation. A simulated cluster or cluster simulation is a

feature to run cluster simulations to study the potential failover

and recovery paths when failure is simulated at a resource, mul-

tiple resources, resource groups, or a system level. Simulating

failures and studying the cluster behaviour is becoming increas-

ingly important for the configuration and optimisation of com-

plex HAC solutions. The feature can be provided: (1) as part

of HAC software; (2) as a separate tool; and (3) as part of the

system management software.

Most HAC solutions provide a simulation feature with vary-

ing capabilities, and many simulators can be executed with-

out interfering with the running cluster solutions. OpenSAF

provides a simulated cluster (method 1) with the source code

distribution. The resulting five-node simulated cluster can be

brought up quickly to evaluate the cluster and perform func-

tional and API tests. Further examples of simulated clusters

include the simulator functionality provided by the ClusterLab

stack (method 1), which can be used to simulate failures to

study the potential failover paths. The simulator feature con-

tinues to add more features to enable HACs to deliver optimal

services. Red Hat Enterprise Linux HA Add-On provides a

command-based tool (method 1) to simulate recovery scenar-

ios. Veritas provides a standalone simulator (method 2) for

the Veritas cluster server (VCS) to simulate and test different

failover situations and use the results to optimise the cluster

configuration [40]. IBM PowerHA SystemMirror for AIX de-

livers an advanced graphical cluster simulator as part of the

IBM Systems Director, which is used to manage systems (method

3) [125]. The simulator supports creating and saving simulated

cluster topologies. It enables conducting experiments with dif-

ferent configuration options, and one of the saved simulations

can then be used to deploy the cluster when all the required

components are in place.

3.7. G: Consistency and Integrity

Figure 10 presents the top-level class consistency and integrity

and its subclasses. A HAC employs measures, such as a clus-

ter lock or quorum, to preserve the data integrity of cluster re-

sources and, most importantly, the clustered application by pre-

venting harmful situations, for instance, split-brain and amne-

sia.

G.1: Cluster lock. Cluster lock is a technique used to lock

cluster resources to a particular node, thus preventing other

nodes from claiming the same resources. While a quorum-

based approach could also be viewed as a cluster lock, a dis-

tinction is made to separate a quorum from a cluster lock. A

cluster lock is a technique that does not employ a quorum-based

approach but uses other means, such as a software-based lock

mechanism. In the case of HACs, a distributed cluster lock is

one such option, and an example is OpenSAF, which uses a

global lock service to manage shared resources and ensure that

only one node can access the resources at any given time [61].

Such configurations are deemed quorum-less.

G.2: Quorum. A HAC quorum serves two purposes: 1) main-

taining cluster consistency by storing configuration and runtime

data (e.g., cluster data) [126], and 2) managing a voting sys-

tem required in the event of a cluster partition. For the latter

purpose, the quorum hosts a voting mechanism in which every

healthy and active node has a vote [127, 4]. Furthermore, the

quorum also has a vote, a potential decider, hence the alterna-

tive name tiebreaker. Other names that are used to refer to the

quorum mechanism are arbitrator, witness and voting system

[1]. When a partition of a cluster occurs after the failure of one

or more nodes, a quorum is gathered to decide which partition

should have the quorum. To reach a quorum, a partition must

have a majority of votes [128]. The quorum service casting its

vote can ensure that one of the partitions achieves this majority.

14



Consistency and integrity

Cluster lock Quorum

Device realisation

Server Disk File share

Mode

Server Node Disk File share

Dynamic quorum Isolation

Fencing

Resource Node

Shutdown

Figure 10: Consistency and integrity.

Ultimately, the majority cluster is allowed to run the cluster. If a

quorum cannot be reached, the surviving nodes will shut down

to ensure cluster consistency. The quorum collaborates closely

with the heartbeat mechanism, as the heartbeat is the method

used to identify unhealthy nodes. Additionally, the quorum or a

similar service is required for fencing, as the two often collab-

orate to determine a quorum and subsequent fencing.

A quorum consists of a device and a process [4, 10, 84]. A

device describes where quorum elements are stored, and a de-

vice facilitates the process, which uses an algorithm to calcu-

late votes to achieve a quorum. The process employs a mode

to determine what policy to use when performing the quorum

voting.

G.2.1: Device realisation. Three types of devices can be used

by a HAC: server, disk, and file share. A quorum server is a ser-

vice that runs on a server that is usually hosted outside a clus-

ter configuration [4]. The cluster is subsequently configured to

connect to the quorum server. A disk-based quorum is based on

a disk, which can be either local or shared [1, 4]. A file share

uses a shared file location, and it can be ideal for geographically

distributed HACs since member nodes do not have access to a

shared disk [73]. The prerequisite for all quorum devices is that

they support concurrent access by all cluster members.

G.2.2: Mode. Four modes are possible: server, node, disk and

file share. The modes and the devices are an integral part of

the quorum solution. However, the supported combination of

devices and modes are specific to the different HAC solutions.

The mode server uses the device server, and the device Disk

is used by the mode Disk. Similarly, the device File share is

used by the mode File share. While the devices disk and File

share imply that they are storage points that are managed by the

quorum process, a quorum server indicates an advanced device

type. The mode node is implemented implicitly. Hence, it does

not require any additional devices but uses the number of avail-

able nodes to decide, and the arrangement is referred to as the

‘majority node’ mode.

A quorum can be set up in different ways, and, in some cases,

the several modes of a quorum can be combined. For exam-

ple, Windows Server Failover Clustering (WSFC) supports a

combination of devices and modes, as detailed in Table 7 [73].

However, the same combination is not always supported by

other HAC solutions, and an example of this is that the Service-

guard HAC does not recommend combining a quorum server

with a quorum disk [84]. There are new quorum device types

introduced to meet the advances in IT. For example, Microsoft

has introduced recently a new quorum device called cloud wit-

ness, and the purpose is to support a server-based quorum in

the Azure cloud, which could be ideal for cloud-based solutions

[129].

The standard for all explicit quorum devices is that they are

placed outside a HAC to avoid creating a quorum device as a

SPOF. Moreover, redundancy of quorum is also preferred be-

cause the quorum is a critical HAC functionality. For this rea-

son, most current HAC solutions support a dynamic reconfigu-

ration procedure for quorum devices, which enables adding or

removing quorum devices without impacting the running clus-

ters. While quorum is crucial for a two-node cluster, it can also

be opted out using a different mechanism. Furthermore, when

a cluster has more than two nodes, an explicit quorum device

could become optional because that cluster can survive the fail-

ure of a single node. However, a configuration using the mode

node is still required to achieve a quorum. The research in this

area focuses on enabling probabilistic approaches. For instance,

Malkhi et al. [130] have explored a probabilistic approach to

address both benign server failures and arbitrary (Byzantine)

ones.

G.3: Dynamic quorum. While a quorum deals with static

votes, a dynamic quorum calculates the number of votes and

adjusts the quorum dynamically upon the failure of one or more

nodes [129]. Thus, if a node is unavailable, it will effectively

be out of the quorum voting process. This gives more flexibility

to continue running a cluster even when other nodes fail. For

example, dynamic quorum enables WSFC to run a cluster when

only one node and a quorum device are available [131].

G.4: Isolation. HACs may “isolate” a particular node from the

rest of the cluster, i.e., prevent it from allocating any resources.

The objective of node isolation is to preserve data integrity by

employing several mechanisms, such as putting a fence around

a node (fencing) or shutting down a node.

G.4.1: Fencing. There are two types of fencing, node-level and

15



Table 7: Quorum implementation with Windows server failover cluster (WSFC)

Combination of Modes Devices

Realisation

Formula for Number of

Nodes

Purpose

Majority Node Node only

(implicit device)

n = 2k + 1 (odd

numbers)

Survive failures of (n − 1)/2

nodes.

Node and Disk

Majority

Node and disk n = 2k (even numbers) Survive failures of n/2

nodes when disk is

available.

Node and File Share

Majority

Node and file

share

n = 2k (even numbers) Survive failures of n/2

nodes when file share is

available.

No Majority: Disk Only Disk only - Survive failures of n − 1

nodes when disk is

available.

resource-level [4, 40, 58, 103]. The common implementation is

to employ the node-level fencing [40, 58, 103].

G.4.1.1: Resource. Resource-level fencing isolates one or more

critical resources and, by doing so, renders a node unusable be-

cause the node cannot allocate resources. Resource-level fenc-

ing can be based on a SAN switch, allowing only one node to

connect to the SAN-based storage or SCSI. SCSI-based fencing

often uses a SCSI-3 option called persistent reservation, which

means there can be only one SCSI-3 persistent reservation per

disk at any given time, making it an efficient method for iso-

lating disks [40, 58, 103, 132]. Since resource-level fencing is

based on storage input/output (I/O), it is sometimes called I/O

fencing [133].

G.4.1.2: Node. On the other hand, node-level fencing acts at

a node-level and isolates or quarantines the node completely

[134]. In some cases, the node can be shut down instead, but

the fencing functionality still manages the operation. Further-

more, the state of the fenced node is effectively changed so

that it is no longer recognised as an active node by the clus-

ter. Thus, the isolated node is not participating in any cluster

operations.

G.4.2: Shutdown. A node shutdown is different from the shut-

down procedure managed by the fencing functionality because

it operates outside the fencing mechanism. This can be achieved

by a HAC module that interacts with operating systems or servers

using industry-standard specifications. Examples of APIs based

on specifications are: Intelligent Platform Management Inter-

face (IPMI) and vendor-specific embedded technology, such as

Integrated Lights-Out (iLO) by HPE [58, 64, 117, 135].

3.8. H: Data Synchronisation.

Data synchronisation refers to the means, technologies and meth-

ods used to synchronise data between cluster nodes. The dif-

ferent layers of EAs require that data are synchronised to en-

sure consistency across all cluster nodes. Although a diverse

range of synchronisation methods can be employed at the dif-

ferent layers, the overall responsibility for all layers managed

by HACs lies with the HACs because they are responsible for

failover management and ensuring data integrity. HACs may

employ additional tools or features that come with the applica-

tion components to facilitate data synchronisation. Hence, we

identify three principal areas of data synchronisation:

1. Client-state (i.e., session state replication) deals mainly

with client connectivity (e.g., sessions), which means the

client state of an application running on a primary node

is synchronised with other cluster nodes [136, 137, 138].

Subsequently, a failover can occur seamlessly and with-

out losing any connection data or affecting any active

connections. Hence, other nodes can continue to support

the connections instead. Client-state synchronisation is

widely employed in HAC for the application area net-

work appliances (e.g., firewalls) [139, 24, 45, 140].

2. Cluster-state employs different methods to synchronise

the state of a cluster, and it can be considered as an intra-

cluster activity. For instance, OpenSAF uses a check-

point service to record the state of an application or a ser-

vice. Subsequently, states are replicated to a standby ap-

plication or service that is hosted on the secondary node

[61]. A more advanced approach is a State Machine Repli-

cation (SMR) which creates replicas of client and pro-

cess states to one or more nodes deterministically [141],

which can even support more comprehensive solutions

such as databases [142, 96]. An example of SMR con-

cerning a HAC is an implementation of a HAC for HPC,

which employed SMR to synchronise states between nodes

in a symmetric active-active topology [83]. A variation of

SMR is Replicated State Machine (RSM) employed by

VCS to synchronise the resource status across all nodes

[40].

3. Application-state, on the other hand, implies that the data

of an application that a HAC protects are synchronised to

one or more nodes to support a possible failover. Hence,

data synchronisation in this taxonomy refers implicitly to

application-state synchronisation. Such synchronisation

can occur at different levels, such as on an application or

a file system level.

The top-level class data synchronisation is shown in Figure 11.

It is further divided into two storage technologies, shared stor-

age and shared-nothing. They both can be connected to a sub-

16



Data synchronisation

Shared storage Shared nothing

Replication

Type

Application-
based

Array-
based

Cluster-
based

Host-
based

Method

Synchronous Asynchronous

Mirroring

Synchronous Asynchronous

Figure 11: Data synchronisation.

class of file systems which, in turn, can influence the configu-

ration of a HAC. An example of file systems related to shared

storage is presented in Figure 12. Both cluster and distributed

file systems support concurrent access and are ideal for sharing

data between multiple nodes [143]. A distributed file system

can be deployed on the top of either shared storage or shared-

nothing, and some file systems can be deployed on both. For

example, IBM Spectrum Scale (formerly the General Parallel

File System (GPFS)) file system can be deployed using both

storage technologies [144].

H.1: Shared storage. HAC solutions use several forms of

shared storage. However, requirements for such implementa-

tion usually come from business requirements, such as support-

ing DR or geographically dispersed user groups. While shared

storage might be ideal for the cluster types local and campus,

metro and continental clusters require a different solution due to

extended distances between nodes. Shared-nothing is an option

in such cases. A hybrid approach is also possible, which means

that shared storage and shared-nothing can support a combina-

tion of a local cluster (or campus) and continental cluster, as

discussed in the topology section.

H.2: Shared-nothing. This setup assumes that there is no

shared storage. Instead, each cluster node is connected to sepa-

rate storage, which could either be SAN-based or based on local

storage (e.g., Direct-attached storage (DAS)) [3, 1, 4]. How-

ever, EAs must explicitly support these kinds of setups. More-

over, there are also challenges with accessing shared storage in

new and emerging technologies. For example, shared storage

is limited in the public cloud, fog and edge computing environ-

ments [145]; hence, it becomes difficult to set up a HAC using

shared storage. In such cases, replication between the individ-

ual storage units is required, and this has led to the new term

SANless (SAN-Less) [146]. There are two techniques associ-

ated with the synchronisation of data in a shared-nothing setup:

replication and mirroring.

H.2.1: Replication. Replication describes the process of repli-

cating from a primary node to other nodes so that data is syn-

chronised and consistent across all participating nodes [3, 1, 4,

40]. Since there are different kinds of replications in HACs,

we group them by type and method. The type describes the

replication approaches, while the method specifies the execu-

tion technique.

H.2.1.1: Type. Four types of HAC replication are possible:

application-based, array-based, cluster-based, and host-based.

Application-based replication is set up at an application level,

and it uses replication features that are provided natively by an

application [47]. One of the nodes will be active in such a setup,

while other nodes will be either warm standby or hot standby.

To include an application in a HAC, explicit support for the

application-specific replication feature by the HAC is required.

Databases employ application-based replication to synchronise

with standby databases [53, 147, 69, 148]. Array-based repli-

cation is set up on a storage system level to enable synchroni-

sation between two storage systems (e.g., SAN- or NAS-based)

[4, 47]. Additional software may be required to facilitate array-

based replication. In cluster-based replication, the replication

functionality is within a HAC and entirely administrated by the

HAC [117, 149]. It means that the solution is independent of

the operating environment or any other tool; instead, it relies on

a high-speed network connection. Host-based replication uses

software tools on a host (server or nodes) to perform replication.

An example is using a Linux logical volume manager (LVM)

to set up replication between two logical volumes across two

nodes [4, 85]. Tools that operate on an operating system level

and are similar to host-based replication can also be included

in this category [132]. For instance, Gómez et al. [150] use a

software-based Distributed Replicated Block Device (DRBD)

solution to enable replication between two volumes at a block-

level in a virtual cluster setup.

H.2.1.2: Method. HACs can perform the replication synchro-

nously or asynchronously.

Synchronous replication waits until a write is completed and an

acknowledgement is received from the other replication end,

guaranteeing consistency between the two replication points

[4]. From a transaction viewpoint, synchronous replication can

support all the ACID properties. Therefore, no data loss is usu-

ally associated with it [151, 97]. However, synchronous repli-

cation is challenging with extended distances. Nevertheless,

modern techniques may offer solutions. For instance, Schmidt

[1] means that connections up to a distance of 100 km can be

achieved by using dark fibre. This results in latencies of 0.5

µs, which is adequate for synchronous replication. On the other

17



Shared storage

File systems

ext4 ZFS

Cluster file systems

OCFS2 VxCFS

Distributed file systems

NFS IBM Spectrum Scale

Figure 12: File systems related to shared storage. Key: ext4 – Fourth extended file system, ZFS – Z File System, OCFS2 – Oracle Cluster File System, vxCFS –

Veritas Cluster File System, NFS – Network File System, IBM Spectrum Scale – A distributed file system, formerly called the General Parallel File System (GPFS)

hand, asynchronous replication does not wait until the writing

is completed but gets an acknowledgement as soon as data is re-

ceived at the second point [4, 148]. As such, it may not comply

with the ACID properties entirely, which, in turn, may result in

data loss.

Different factors influence the selection of a method, and some

of the critical factors are [3, 4]: the distance between two nodes;

the volume of data transported between nodes; type of data;

frequency (continuous or burst); business requirements, such

as DR. There is a network latency recommendation for syn-

chronous replication, as it implies real-time mirroring, while

asynchronous replication does not have the same kind of rigor-

ous requirement [4, 97].

H.2.2: Mirroring. In some cases, the terms replication and mir-

roring are used interchangeably. For example, a host-based mir-

roring of a file system can also be referred to as file system

replication. However, in other cases, a few differences can be

observed; for instance, mirroring may differ by not having a

running instance on the standby node [4, 1]. Mirroring can be

performed synchronously or asynchronously [3, 4, 1].

Synchronous mirroring ensures that the mirroring process waits

until a write is completed and committed on the standby node

and an acknowledgement is sent back. This method secures

consistency of data between two nodes. An asynchronous mir-

roring process, on the other hand, does not wait until a write is

ended on the secondary node. This approach may result in data

loss when the primary node fails abruptly.

4. Survey of High-availability Clusters

4.1. Selection of HACs for the Survey

We selected the relevant HACs for our survey using a system-

atic approach that comprised the following six steps.

Step 1. Identification of HACs that support enterprise appli-

cations (EAs). Our survey focused on HACs that can protect

EAs. However, only a limited number of HACs support EAs

due to the complex composition of EAs, which are multi-tiered

and multi-layered. We identified likely candidate HACs using

comprehensive research reports [63, 156] and articles [55, 91,

157, 158], resulting in 23 candidate HAC solutions.

Step 2. Identification of relevant EAs and databases. In this

step, we gathered information for assessing the applicability

of each HAC solution to distinct layers of enterprise applica-

tions. To this end, we used relevant research and analysis re-

ports, e.g. [159, 160, 161], to identify the databases and EAs

listed next to questions Q1 and Q2 from Table 8.

Step 3. Elimination of HACs not supported by EA vendors. In

this step, we used the lists of supported HACs released regu-

larly by enterprise application vendors, e.g. [162, 163], to check

which HAC solutions are supported (and sometimes certified)

by these EA vendors. “Supported” HAC solutions are solu-

tions that fulfil the requirements of the application vendor for

a specific application, with the added implication that support

channels have been established between the vendors.

We assessed the candidate HAC solutions using the following

criteria to narrow down the list:

1. Does the HAC solution being assessed focus on only spe-

cific IT solutions (such as HPC or Hadoop)?

2. Is the HAC solution no longer active, implying that the

product lifecycle has ended or the research project that

developed it has ended?

3. Is the information available to analyse the HAC solution

properly insufficient?

4. Are EAs supported by the HAC solution, or is it the case

that the information available cannot be used to conclude

whether EAs are supported or not?

We eliminated all the candidate solutions for which one or sev-

eral of these questions were answered affirmatively. As a re-

sult, six HAC candidates were removed in this step, and we

proceeded with the remaining 17 candidates. We made an ex-

ception for two of the candidate HAC solutions for the reasons

described below:

• OpenSAF does not provide enterprise support directly.

Nevertheless, we retained OpenSAF because of its sta-

bility as a HAC [164, 165]. Besides, application support

can be developed individually with OpenSAF, meaning

that an OpenSAF HAC can be used to support enterprise-

class databases and applications.

• Similarly, the ClusterLabs stack does not suport enter-

prise applications on its own. However, we retained the

ClusterLabs stack because it provides the core compo-

nents for two other selected solutions, SUSE Linux En-

terprise High Availability Extension and Red Hat High

Availability Add-On. This implies that customisation and

further developments are possible using it.

18



Table 8: Selection questions

No Question Evaluation Parameters

Q1 Support for enterprise class databases? SAP ASE, DB2, HANA, Informix, MySQL, Oracle,

PostgreSQL, SQL Server, Teradata

Q2 Support for EAs? Oracle Siebel Customer relationship management

(CRM), Oracle†, SAP† , Others†, WebSphere

Q3 Multi-tier support for EAs? X-Yes, N-no, ?-no information

Q4 Enterprise support provided? 24x7x365

Q5 Application features can be supported by further

developments?

X-Yes, N-no, ?-no information

Q6 Support for disaster recovery? X-Yes, N-no, ?-no information

Q7 Support for virtualization? X-Yes, N-no, ?-no information

Q8 Cloud support? X-Yes, N-no, ?-no information

Q9 Support for enterprise operating environments? AIX, HP-UX, IBM i, Linux, Solaris, Windows

Q10 Support for multiple platforms? Power, SPARC, x86

Q11 Support for large-scale clusters? Number of nodes

Q12 Support for multiple topologies? Active-active, application-based, server-based, N-to-N,

active-passive, N+1, N+M, N-to-1

Q13 Support for availability level? Minimum 99.9%

Q14 Active lifecycle management? X-Yes, N-no, ?-no information

† - any of the business suite EAs (e.g., ERP)

Table 9: Eliminated HAC solutions in the six-step approach for selecting HACs for survey

Product Reason(s) for Elimination

Apache Mesos [152] focus on specific IT solutions (HPC)

DxEnterprise [153] lack of EA support; insufficient information available to evaluate the solution properly

everRun [154] lack of EA support; insufficient information available to evaluate the solution properly

HA-OSCAR [155] no longer active

Kimberlite [55] no longer active

Linux FailSafe [55] no longer active

Step 4. Retention of only HACs that support automatic failover.

We used this filter to retain only the HAC solutions that sup-

port automatic failover, which is crucial for an EA to minimise

downtime. All 17 candidates support automatic failover; hence,

all were retained.

Step 5. Design of additional questions for the selection and

evaluation of HACs. In this step, we created the questions to

evaluate the HACs. The queries reflected the typical require-

ments of EAs [166], and the objective was to select those HACs

that could respond to most of the questions positively. The set

of questions is listed in Table 8.

Step 6. Selection of the set of HAC solutions for the survey. We

selected all the HAC solutions that can support EAs and fulfil

the additional criteria from the questions Q1–Q14 in Table 8,

where a positive response for any of the “evaluation parame-

ters” from questions Q1, Q2, Q9, Q10 and Q12 was deemed

sufficient to consider that a HAC solution met the criterion as-

sociated with that question. The result of the HAC selection is

presented in Table 10, which comprises 17 HAC solutions for

which we obtained positive responses to all queries and prod-

ucts, while noting the following exception:

• DR support (question Q6) for the following solution was

unclear or not available: ApplicationHA, Clusterware 12c,

Primecluster, RSF-1, SafeKit and WSFC.

For completeness, we also provide, in Table 9, a list of the six

HAC solutions considered initially but eliminated in Step 3 of

our selection approach. For each of these solutions, Table 9 also

provides a summary of the reasons for its elimination from the

survey.

4.2. HAC Analysis Methodology

We used a hybrid methodology for the analysis of the 17 HAC

solutions from Table 10. As a first step, we created a compre-

hensive spreadsheet and an online questionnaire covering our

entire HAC taxonomy, which we used as a basis for the sur-

vey. In the second step, we populated the spreadsheet entries for

17 HACs by analysing product documentation, technical white

papers, case studies, books, and articles as a primary analysis

method. We noticed several inconsistencies between the differ-

ent materials for the same edition and version of a HAC solu-

tion. To resolve these inconsistencies, we crosschecked the re-

sults by using a diverse set of materials (e.g., reference guides,

technical manuals and documentation) whenever inconsisten-

cies were observed. Finally, as a secondary method, we pre-

pared an email that described what we were trying to achieve.

We sent it to all the vendors of selected HACs, particularly to

the experts responsible for the HAC products. After two weeks,

we sent a reminder to those who did not reply to our original

invitation; a second reminder was sent after an additional two

weeks. After six weeks, we collected the data provided by the

vendors and transferred it to a spreadsheet.

19



Table 10: Evaluation of selected HAC solutions (X – Yes; N – No; ? – No information)

Question No A
p

p
li

ca
ti

o
n

H
A

C
lu

st
er

w
ar

e

E
X

P
R

E
S

S
C

L
U

S
T

E
R

X

In
fo

S
ca

le
A

v
ai

la
b

il
it

y

O
p

en
S

A
F

C
lu

st
er

L
ab

s
st

ac
k

P
o
w

er
H

A
S

y
st

em
M

ir
ro

r

P
R

IM
E

C
L

U
S

T
E

R

R
ed

H
at

H
ig

h
A

v
ai

la
b

il
it

y
A

d
d

-O
n

R
S

F
-1

S
af

eK
it

S
er

v
ic

eg
u

ar
d

S
IO

S
P

ro
te

ct
io

n
S

u
it

e

S
o

la
ri

s
C

lu
st

er

S
U

S
E

L
in

u
x

E
n

te
rp

ri
se

H
ig

h
A

v
ai

la
b

il
it

y
E

x
te

n
si

o
n

T
iv

o
li

S
y

st
em

A
u

to
m

at
io

n
fo

r
M

u
lt

ip
la

tf
o

rm
s

(S
A

M
P

)

W
in

d
o
w

s
S

er
v
er

F
ai

lo
v
er

C
lu

st
er

in
g

(W
S

F
C

)

Q1 X X X X X X X X X X X X X X X X X

Q2 X X X X X X X X X X X X X X X X X

Q3 X X X X X X X X X X X X X X X X X

Q4 X X X X N N X X X X X X X X X X X

Q5 X X X X X X X X X X X X X X X X X

Q6 ? ? X X X X X ? X ? ? X X X X X ?

Q7 X X X X X X X X X X X X X X X X X

Q8 X X X X X X X X X X X X X X X X X

Q9 X X X X X X X X X X X X X X X X X

Q10 X X X X X X X X X X X X X X X X X

Q11 X X X X X X X X X X X X X X X X X

Q12 X X X X X X X X X X X X X X X X X

Q13 X X X X X X X X X X X X X X X X X

Q14 X X X X X X X X X X X X X X X X X

Despite assurance from multiple vendors, we managed to ob-

tain a response from only one vendor, High Availability for the

HAC RSF-1. Subsequently, we transferred all collected data to

the spreadsheet for conducting further analysis.

4.3. HAC Survey Results

We used the taxonomy to establish the characteristics of the 17

end-to-end HAC solutions selected for the survey. The outcome

of the survey is presented in Table 11, starting with general in-

formation about each HAC solution (i.e., version and vendor)

in the second and third row. The remaining rows from the table

present the main results of the survey, organised in the same

way as our HAC taxonomy. The results are analysed in Sec-

tion 4.4.

The surveyed HAC solutions usually consist of multiple edi-

tions with varying features, some of which are subject to ad-

ditional licensing. Our survey covers only advanced editions

that include most of the features. As even advanced editions

do not support all the features when different operating systems

and platforms are considered, we provide details about the lim-

itations relating to the individual HACs where applicable (as

footnotes at the end of Table 11).

As discussed, a HAC vendor may enforce further constraints

by stating explicitly what version and edition of an EA are sup-

ported. Likewise, an EA vendor may list what HACs are sup-

ported by a particular EA version and edition. Many combina-

tions of EA version, database version, HAC version and edition,

operating system version, and platform make it challenging to

crosscheck every single combination. Therefore, only the rele-

vant EAs and databases are included in Table 11.

4.4. Analysis of the Survey Results

The distribution of the operating system and platform support

for the surveyed HACs is shown in Figure 13 grouped by the

operating system. Linux is the dominating operating system,

and 15 solutions support Linux, out of which 12 support SUSE

Linux on an x86-based platform, seven support SUSE Linux

on Power-based platforms. Similarly, Red Hat Linux supports

13 HACs on the x86 platform and seven on the Power plat-

forms. Oracle Linux is supported by 8 HAC solutions on x86

platforms, while only two support it on the SPARC platform.

Solaris operating system is supported by seven HACs on the

SPARC platform, while only four support Solaris on the x86

platform. Seven solutions support windows, and the platform is

always x86. Five HACs support AIX on power, and only two

HACs support HP-UX on the IA64 platform. Lastly, the rare

environment is the IBM i operating system on the Power plat-

form, which is only supported by one HAC solution.

The surveyed HAC solutions can be divided into two groups.

The first group, comprising 14 of the 17 surveyed solutions,

comprises the HACs marked with a star ‘*’ in Table 12.

20



Table 11: Outcome of the survey

Taxonomy A
p
p
li

ca
ti

o
n
H

A
1

C
lu

st
er

w
ar

e

E
X

P
R

E
S

S
C

L
U

S
T

E
R

X

In
fo

S
ca

le
A

v
ai

la
b
il

it
y

O
p
en

S
A

F

C
lu

st
er

L
ab

s
st

ac
k

P
o
w

er
H

A
S

y
st

em
M

ir
ro

r
1

P
R

IM
E

C
L

U
S

T
E

R

R
ed

H
at

H
ig

h
A

v
ai

la
b
il

it
y

A
d
d
-O

n

R
S

F
-1

2
3

S
af

eK
it

S
er

v
ic

eg
u
ar

d

S
IO

S
P

ro
te

ct
io

n
S

u
it

e

S
o
la

ri
s

C
lu

st
er

S
U

S
E

L
in

u
x

E
n
te

rp
ri

se
H

ig
h

A
v
ai

la
b
il

it
y

E
x
te

n
-

si
o
n

T
iv

o
li

S
y
st

em
A

u
to

m
at

io
n

fo
r

M
u
lt

ip
la

tf
o
rm

s
(S

A
M

P
)

W
in

d
o
w

s
S

er
v
er

F
ai

lo
v
er

C
lu

st
er

in
g

(W
S

F
C

)

Version 6
.2

1
2
c

3
.3

7
.3

.1

5
.1

7
.0

7

2
.3

.2

7
.2

.1

4
.5

7
.0

3
.9

.1
0

7
.2

A
.1

2
.2

0
2
4

9
.2

4 1
2

4
.1

2
0
1
6

Vendor V
er

it
as

O
ra

cl
e

N
E

C

V
er

it
as

S
A

F
o
ru

m

C
lu

st
er

L
ab

s

IB
M

F
u
ji

ts
u

R
ed

h
at

H
ig

h
-A

v
ai

la
b
il

it
y

E
v
id

ia
n

H
P

E

S
IO

S

O
ra

cl
e

S
u
S

E

IB
M

M
ic

ro
so

ft

A: Deployment Patterns27

OS and platform

AIX on Power X
1

X4 NS X NS NS X NS NS NS NS22 NS NS NS NS X NS

HP-UX on IA64 NS X NS NS NS NS NS NS NS NS NS X NS NS NS NS NS

IBM i on Power NS NS NS NS NS NS X NS NS NS NS NS NS NS NS NS NS

Oracle Linux on SPARC NS NS NS NS X?8 X NS NS NS NS NS NS NS NS NS NS NS

Oracle Linux on x86_64 X
1

X4 X X X X NS NS NS X NS NS X NS NS NS NS

Red Hat Enterprise Linux

on Power

NS NS X NS X?8 X X NS X X NS NS NS NS NS X NS

Red Hat Enterprise Linux

on x86_64

X
1

X X X X X NS X X X X X X NS NS X10 NS

Solaris on SPARC X
1

X NS X NS NS NS X NS X NS NS NS X NS X NS

Solaris on x86_64 NS X NS X NS NS NS NS NS X NS NS NS X11 NS NS NS

SUSE Linux Enterprise

Server on Power

NS NS X NS X?8 X X NS NS X NS NS NS NS X X NS

SUSE Linux Enterprise

Server on x86_64

X
1

X X X X X NS X NS X NS22 X X NS X X10 NS

Windows X
1

X X X NS NS NS NS NS NS X NS X NS NS NS X

Support for virtualized

environments

X X X X X X X X X X X X X X X X X

Supported virtual solutions

(E-Xen, H-Hyper-V,

K-KVM, O-Others,

V-VMware)

E,

H,

K,

O,

V

O E,

H,

V

H,

K,

O,

V

K,

O,

V,

X

E,

H,

K,

V

O9 K,

O,

V

K ? H H,

K,

V

E,

H,

K,

V

O E,

K

K,

O,

V

H,

V

Maximum number of nodes

per cluster

? 64
5

32 128 100 32 16 16 16 64 ? 16/32
25

32 8/16
26

32 32/

13014
64

B: Application Areas (EA

category, B-

Business-critical, T-telecom

(carrier-grade))

B B B B T,

B

B B B B B B B B B B B B

C: Type of cluster

C.1: Local X X X X X X X X X X X X X X X X X

C.2: Campus X X X X X X X X X X X X X X X X X

C.3: Metro ? X X X x X X NS? X X? NS? X X X X x X

C.4: Continental ? NS? X X x X X NS? X NS NS? X X? X X x NS?

D: Topology

D.1: Symmetric

D.1.1: Active-active

D.1.1.1: Application-based NS X X7 X7 X7 X7 X7 X7 X7 X7 X7 X7 X7 X7 X7 ? X7

D.1.1.2: Server-based X X X X X? X X X X X X X X X X X X

D.1.2: N-to-N X? ? X X X X X? X? ? NS ? X? X X X ? X

D.2: Asymmetric

D.2.1: Active-passive X X X X X X X X X X X X X X X X X

D.2.2: N-to-1 X? ? X X X X X ? X X X X X X X ? NS

D.2.3: N+1 ? ? X X X X X? ? ? X ? X? X? X X ? NS?

21



D.2.4: N+M ? ? X X X X X? ? ? X X X? X? X X ? NS?

E: Cluster management

E.1: Cluster data

E.1.1: Configuration

(D-Disk or file share,

F-File, M-memory)

D,F F F F F F D,F F F D,F F F D,F F F F F

E.1.2: Runtime (D-Disk or

file share, F-File,

M-memory)

D,

M?

F,

M?

F,

M?

F,

M?

F,

M?

F,

M

D,F,M?F,

M?

F,

M?

D,

M?

F,

M?

F,

M?

D,M? F,

M?

F,

M?

F,

M?

F,

M?

E.2: Communication

E.2.1: Type

E.2.1.1: Heartbeat X16 X X X NS X X X X X X X X X X X X

E.2.1.1.1: LAN-based X X X X NS X X X X X X X X X X X X

E.2.1.1.2: Disk-based ? NS X NS NS NS X NS NS X NS NS? NS? X NS X NS?

E.2.1.2: Node

E.2.1.2.1:User interface X X X X X X X X X X X X X X X X X

E.2.1.2.2: Resource

management

E.2.1.2.2.1: Agent X X X X X X X X X X X X X X X NS NS

E.2.1.2.2.2: Base resource X X X X X X X X X X X X X X X X X

E.2.1.3: Cluster

E.2.1.3.1: Configuration X X X X X X X X X X X X X X X X X

E.2.1.3.2: Runtime X X X X X X X X X X X X X X X X X

E.2.2: Method

E.2.2.1: Multicast X? X ? NS? X X X ? X X NS? X NS? X X ? X?

E.2.2.1.1: Atomic ? ? ? NS? X X ? ? X ? ? ? ? ? X ? ?

E.2.2.1.2: Virtual

synchrony

NS NS NS NS ? X NS NS X NS NS NS NS NS X NS NS

E.2.2.2: Broadcast ? ? ? X X X X X X ? X X X X X X X

E.2.2.3: Unicast ? ? ? X X X X ? X X X X ? ? X ? ?

E.2.2.4: IP socket NS NS NS NS NS NS NS NS NS X NS NS X NS NS NS NS

E.3: Resource management

E.3.1: Type

E.3.1.1: Base resource X X X X X X X X X X X X X X X X X

E.3.1.2: Application X X X X x X X X X X X X X X X X x

E.3.1.2.1: Agent-based X X X X X X X X X X X X X X X NS NS

E.3.1.2.1.1: Application (C-

Siebel CRM, O-Oracle,

S-SAP, T-Others

W-WebSphere)

C,

S,

T

C,

O,

S,

T

S,

T,

W

O,

S

T12 O,

S

O,

S,

T,

W

S,

T

O,

S,

W

O,

S,

T

T O,

S

S,

W

C,

O,

S,

W

O,

S,

W

S C,

O,

S,

T,

W
15

E.3.1.2.1.2: Database

(A-SAP ASE, D-DB2,

H-HANA, I-Informix,

M-MySQL, O-Oracle,

P-PostgreSQL, S-SQL

Server, T-Teradata)

D,

M,

O,

S

M,

O

A,

D,

H,

M,

O,

P,

S

A,

D,

H,

O,

S

M
12

D,

M,

O,

P

D,

H,

O

O A,

D,

M,

O,

P

A,

D,

I,

M,

O,

P

O,

M,

P,

S

A,

D,

H,

O,

P

A,

D,

I,

M,

O,

P,

S

A,

M,

P,

O

D,

H,

I,

M,

O,

P

D,

H,

O

A,

D,

M,

O,

P,

S
15

E.3.2: Method

E.3.2.1: Policy-based X X X X X X X X X NS X X X X X X X

E.3.2.2: Rule-based ? ? ? ? ? X ? ? ? X ? ? ? ? ? ? X?

F: Failure detection and

recovery

F.1: Monitoring X X X X X X X X X X X X X X X X X

F.1.1: Area

F.1.1.1: Server X X X X X X X X X X X X X X X X X

F.1.1.2: Cluster X X X X X X X X X X X X X X X X X

F.1.1.3: Application X X X X X X X X X X X X X X X X X8

F.1.2: Type

F.1.2.1: State-based X X X X X X X X X X X X X X X X X

F.1.2.2: Threshold-based ? X X X X NS? NS? X NS X NS? ? X ? NS? NS? X

F.1.3: Method

F.1.3.1: Poll X X X X X X X X X X X X X X X X X

F.1.3.2: Push NS NS ? NS ? NS ? ? NS? NS NS ? NS? NS NS NS? ?

F.1.3.3: Event-based X2 NS? NS? X ? NS NS X NS NS NS NS NS NS NS NS NS

F.2: Failover

F.2.1: Reactive X X X X X X X X X X X X X X X X X

F.2.2: Proactive NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS

F.3: Recovery level

F.3.1: Resource X X X X X X X X X ? ? X X X X X X

F.3.2: Group X X X X X X X X X ? X X X X X X X

F.3.3: Node X X? X X X X X X X X X X X X X X X

F.4: Prediction NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS NS

F.5: Simulation NS? X X X X X X NS? X NS NS? X NS? NS? X X NS?

G: Consistency and

integrity

G.1: Cluster lock NS ? X NS X NS NS X X ? ? X X NS NS X NS

G.2: Quorum ? X NS X NS X X X20 X NS NS X X X X X X

G.2.1: Device realisation

G.2.1.1: Server ? NS NS X NS X NS X X NS NS X X X X X X

22



G.2.1.2: Disk ? X NS NS NS NS? X NS X NS NS NS NS X X X X

G.2.1.3: File share NS NS NS NS NS NS X21 NS NS NS NS NS NS X NS X X

G.2.2: Mode

G.2.2.1: Server ? NS NS X NS X NS X X NS NS X X X X X X

G.2.2.2: Node NS NS NS ? NS ? ? ? ? NS NS ? ? ? ? ? X

G.2.2.3: Disk ? X NS NS NS NS? X NS X NS NS NS NS X X X X

G.2.2.4: File share NS NS NS NS NS NS X NS NS NS NS NS NS X NS X X

G.3: Dynamic quorum ? ? NS X NS X X X X NS NS X ? X X X X

G.4: Isolation

G.4.1: Fencing NS X NS X NS X X X X X NS X X X X ? NS

G.4.1.1: Resource NS NS? NS X NS X X X X X NS X X X X ? NS?

G.4.1.2: Node NS X NS X NS X ? ? X X X19 ? X ? X ? NS

G.4.2: Shutdown NS X X NS X x13 X X X X NS X X X? NS? X NS

H: Data synchronization

H.1: Shared storage X X X X X X X X X X ? X X X X X X

H.2: Shared-nothing X X X X X X X X X X X X X X X X X

H.2.1: Replication X X x X X X X X X X X X X X X X x

H.2.1.1: Type

H.2.1.1.1:

Application-based

X6 X6 X6 X6 ? X6 X6 X6 X6 X6 X6 X6 X6 X6 X6 X6 X6

H.2.1.1.2: Array-based x x x x x x x x x ? ? x x x x ? x

H.2.1.1.3: Cluster-based NS NS X NS NS NS NS NS NS NS X NS X18 NS NS NS NS

H.2.1.1.4: Host-based x17 x x X x X X X X ? NS X X X X ? x

H.2.1.2: Method

H.2.1.2.1: Synchronous X X X X X X X X X ? X X X X X X X

H.2.1.2.2: Asynchronous X X X X X X X X X ? X X X X X X X

H.2.2: Mirroring x x x x ? x x x x x x x x x x ? x

H.2.2.1: Synchronous x x x x ? x x x x x x x x x x ? x

H.2.2.2: Asynchronous x x x x ? x x x x x x x x x x ? x

Key: ? – No information; X – Supported; NS – Not supported; X? – Supported (not explicitly stated in the documentation, but this

interpretation has been made by analysing the documentation); x – Supported together with additional components, and an example

is replication support by the operating system volume manager; NS? – Not supported (not explicitly stated in the documentation,

but this interpretation has been made by analysing the documentation.

1 Supported only on virtualized environments.
2 Intelligent monitoring framework.
3 Replication or mirroring support by additional tools is included.
4 Supported on both virtual and physical environments.
5 64 nodes are supported for the hub, while leaf nodes can support many more.
6 Replication is provided natively by an application, but a HAC must support the feature.
7 If an application supports parallel deployments.
8 OpenSAF provides a generic development package; it can be ported to other UNIX and Linux flavours.
9 LPARs: 2 logical partitions (LPARs) on IBM PowerVM
10 Supported on System x hardware that is based on the x86 platform.
11 Supported only on Oracle’s x86 platforms.
12 The implementer can develop application support.
13 Fencing by STONITH (Shoot the Other Node in the Head).
14 The maximum number of nodes on Linux is 32, and, for AIX, it is 130.
15 Application vendors provide application support for WSFC.
16 Usually, guest heartbeat is passed to a host.
17 Replication features of a virtual machine can also be used.
18 Replication feature is provided by the product DataKeeper, which is part of the SIOS Protection Suite.
19 Fencing as a concept is not employed, but, instead, the node with the problem is put into a waiting state..
20 The solution uses a quorum technique called cluster integrity.
21 Implies repository disk.
22 Supported by SafeKit 7.1.3.
23 The vendor provided most details.
24 Version for Linux. Current version for HP-UX is A.11.20.
25 The maximum number of supported nodes for Linux is 32, while for HP-UX, it is 16.
26 The maximum number of supported nodes on Solaris on x86 is 8, and Solaris on SPARC supports 16.
27 None of the surveyed HACs support container-based technologies.

Note: Although the operating system version is not stated, it is the most recent version at the time this survey was carried out (The survey was conducted mainly between October 2018

and June 2019. The survey was updated during July 2021, September 2021 and then October 2021).

Each of these HACs functions as middleware, which means that

it creates an additional layer on the top of an operating environ-

ment. The HACs from the second group, which comprises the

remaining three solutions, are tightly integrated with an oper-

ating system and make use of the features that are offered by

an operating environment. The latter type of HAC functions as

part of an operating environment, operating in the kernel mode

and directly interacting with operating system functionalities.

While such features can make a HAC more efficient, they may

also create problems with modularity and portability, and that

is why, for example, such HAC solutions only support specific

operating systems. Furthermore, the lifecycle management of

such a HAC solution also becomes the operating system’s life-

cycle management. WSFC has already embraced this approach,

and it is entirely integrated with the Windows server operating

system.

Major software and hardware vendors have their HAC solu-

tions. However, some of them are supported only by the oper-

ating environment and platform from the vendor. An example

of this is WFCS, which is only available on the Windows server

enterprise edition. On the other hand, some independent ven-

23



7

7

4

12

7

13

7

8

2

1

2

5

Windows on x86_64

Solaris on SPARC

Solaris on x86_64

SUSE Linux Enterprise Server on x86_64

SUSE Linux Enterprise Server on Power

Red Hat Enterprise Linux on x86_64

Red Hat Enterprise Linux on Power

Oracle Linux on x86_64

Oracle Linux on SPARC

IBM i on Power

HP-UX on IA64

AIX on Power

W
in

d
o

w
s

S
o

la
ri

s
L

in
u
x

IB
M

 i
H

P
-U

X
A

IX

Figure 13: Platform and operating system support of the surveyed high availability clusters (HACs) grouped by operating system.

Table 12: The surveyed HACs, versions and vendors

Surveyed HAC Vendor Surveyed HAC Vendor

ApplicationHA 6.2* Veritas RSF-1 3.9.10* High-Availability

ClusterLabs stack 2.3.2* ClusterLabs SafeKit 7.2* Evidian

Clusterware 12c* Oracle Serviceguard A.12.20* HPE

EXPRESSCLUSTER X 3.3* NEC SIOS Protection Suite 9.2* SIOS

InfoScale Availability 7.3.1* Veritas Solaris Cluster 4 Oracle

OpenSAF 5.17.07* SA Forum SUSE Linux Enterprise High Availability Extension 12* SUSE

PowerHA SystemMirror 7.2.1 IBM Tivoli System Automation for Multiplatforms (SA MP) 4.1* IBM

PRIMECLUSTER 4.5* Fujitsu Windows Server Failover Clustering (WSFC) 2016 Microsoft

Red Hat High Availability Add-On 7.0* Red hat

* = solution that functions as middleware

dors specialise in HAC products, and these vendors can support

multiple operating systems and platform combinations. Typi-

cally, such HACs belong to the middleware group.

Cloud deployment has also come to play an important role. In

the early days of cloud computing, a separate development of

HAC was considered. This led to the development of specific

HAC solutions, such as ApplicationHA by Veritas and vSphere

App HA by VMware. However, a better approach is to port

existing solutions to the cloud environment, which made devel-

oping cloud-specific HAC solutions unnecessary. An such, so-

lutions like App HA by VMware were discontinued. However,

HACs in the public cloud comes with limitations. For exam-

ple, using shared storage is a challenge. On the other hand, this

has contributed to developing enhancements to enable deploy-

ing HACs in the cloud. One such enhancement is the so-called

storage-less or SANless HAC, which allows HACs to operate

without shared storage. Moreover, the transition to cloud ser-

vices models, such as SaaS, PaaS, and IaaS, changes the way

HACs are deployed and managed. Likewise, roles and respon-

sibilities for managing a HAC with the different service models

also change.

Furthermore, the introduction of multi-clouds can also compli-

cate a HAC deployment, not least from a roles and responsi-

bilities perspective. Somasekaram highlights the issues with

roles and responsibilities of HA and DR solutions in the con-

text of outsourcing [22]. He argues that the issues are valid

even for the cloud environment because the cloud is regarded

as outsourcing, and cloud providers are usually responsible for

multiple layers (e.g., network and storage). At the same time,

other suppliers manage the rest of the layers.

24



Similar to the challenges described for the deployment envi-

ronment public cloud and host virtual, the emerging deploy-

ment environments fog and edge also face challenges [167, 79].

When used with the host virtual, the challenges are the same as

the public cloud. On the other hand, when the host container

is used in all deployment environments, ensuring high avail-

ability for stateful applications hosted in containers becomes

a challenge. Containers run as a process in user space, and

this may restrict the implementation of HAC features that re-

quire running in kernel space [168]. Moreover, containers typ-

ically support a single application or a service in a container

which means a HAC cannot deploy agents in the same con-

tainer to manage the application resources [169]. To overcome

this limitation, the commonly implemented container orches-

tration system Kubernetes provides a sidecar option (i.e., a sep-

arate container), which enables deployments of HAC-related

components there. The sidecar container runs along with the

container that hosts the application. Using this approach, com-

mercial vendors started proving HACs for containers. InfoS-

cale availability (formerly Cluster Server—VCS) for containers

from Veritas is one such HAC for Kubernetes. This HAC pro-

vides monitoring, integrated I/O fencing, arbitration and shared

storage using a Container Storage Interface (CSI) plugin [169]

to ensure that the HAC can deliver HA for the application. The

solution requires at least two private networks to enable cluster

communication and one public network to facilitate heartbeat

communication. There are also research projects that explore

the use of existing HACs such as Pacemaker/Corosync [170]

and OpenSAF [171] to support container-based applications.

Latency over long distances has traditionally been a major prob-

lem for HACs. However, the technology has evolved and tech-

niques are currently available to reduce latency considerably,

enabling the setting up of HACs across substantial distances.

Atomic broadcast and multicast (total order messaging) are of-

ten associated with fault-tolerance in distributed systems; hence,

there are persuasive arguments to employ it even for HAC com-

munication [64]. However, it is only employed by some of the

HACs today.

On the whole, prediction is absent from the surveyed HAC so-

lutions. Most solutions employ a poll-based monitoring mecha-

nism that is often state-based, meaning that only the states of the

resources are monitored. Moving towards industry-standards

has also been observed in some areas, such as when using the

IPMI to shut down nodes as part of isolating a problematical

node. The SCSI-3 interface is widely employed to isolate on a

resource level, and often as part of fencing. The quorum con-

cept is commonly employed so that a cluster can take action

upon a situation that leads to the partitioning of a cluster.

In conclusion, the current HAC solutions for EAs are domi-

nated by commercial vendors (15 out of the 17 surveyed solu-

tions). This is unsurprising because customers look for HAC

solutions for their business-critical applications, and, as such,

proper support is paramount. However, this also means that

the vendors conduct most of the research. There are, how-

ever, some open-source initiatives, and two active initiatives are

OpenSAF and ClusterLabs stack (Pacemaker/Corosync). The

open-source initiatives often focus on Linux, and there have

been different projects to develop a consistent HAC solution for

Linux. While such efforts have been split into other projects or

discontinued, some of the components are still active, and the

current open-source cluster solutions are a combination of vari-

ous initiatives. The main components of the current setup of the

ClusterLabs stack are Corosync, Pacemaker, DRBD, STONITH,

and a diverse range of application agents, which are packaged

under a ClusterLabs stack. OpenAIS was an initiative to sup-

port implementing Application Interface Specification (AIS) de-

veloped by the Service Availability Forum (SA Forum), and

Corosync originated from that initiative. Pacemaker is a cluster

resource manager (CRM) tool that originates from the Linux-

HA project.

Application agents follow the standard API established by the

Open Cluster Framework (OCF), which helps standardise the

application resource management. Both SuSe Linux Enterprise

HA Extension and Red Hat Enterprise Linux HA add-on use

Pacemaker, Corosync, the OCF concept and many other open-

source components. OpenSAF, on the other hand, focuses on

the telecommunications sector, where there is a need to sup-

port very high availability for carrier-grade servers that operate

in the telecommunication infrastructure. However, there have

been initiatives to deploy OpenSAF in a range of environments,

such as the cloud. For example, Kanso et al. [164] proposed an

OpenSAF based deployment in the cloud, but it too focuses on

telecom applications. The challenge with open-source initia-

tives is to secure proper support, which is crucial for EAs. On

the other hand, Red Hat and SuSe provide such support even

though they have developed their HACs using mainly open-

source components. It must be noted that there have been sev-

eral projects related to the development of HACs, both commer-

cial and open-source, over the years. However, many of them

are no longer active, and examples include FailSafe by Silicon

Graphics (SG) in the commercial area, while HA-OSCAR rep-

resents an open-source equivalent.

5. Future Directions

We have identified several limitations, challenges and opportu-

nities as part of constructing the HAC taxonomy from Section 3

and conducting the survey from Section 4. The limitations and

challenges are from an implementation perspective and an op-

erations viewpoint, while opportunities can improve the overall

HAC solutions. Using the identified limitations, challenges and

opportunities, we discuss future research directions.

5.1. Limitations

The HAC limitations presented in this section apply to a major-

ity of the HAC solutions that we have studied, with limitations

L1, L5, and L7 common for all solutions.

L1. Standardisation. Standardisation of the HA domain, its

components, and related processes is missing. For example, the

25



terminology used by HAC solutions differs considerably. Stan-

dardisation could improve research approaches and could en-

able better discussions and research quality. Furthermore, the

lack of standardisation makes it challenging to develop stan-

dard APIs that can function with multiple solutions to support

specific functionalities, for instance, application-specific agent

development. We have addressed this lack of standard terminol-

ogy using consistent terminology while constructing the taxon-

omy and performing the subsequent survey.

L2. Virtual environments. The separation between host and

guest in virtualised environments complicates some of the func-

tionalities of HACs, such as coordinated monitoring of two op-

erating environments, guest and host, which must be correlated

when hosting a critical application. If such a setup is not in

place, a guest HAC may not be aware of the host at all. If

there are problems in the host which impact all the guests hosted

there, the guest HAC may not be able to recognise the problems

[172], which could potentially impact the application. Like-

wise, if the guest application experiences problems, the host

may not react since it is unaware of any issues except when

hardware resource utilisation significantly increases. Kanso et

al. [164] highlighted the problem with a guest HAC that is not

aware of the host environment. Some HAC solutions promote a

solution by running additional components on the host that also

interact with the guest HAC. However, there is no uniformity

for deploying such components because they may differ based

on the virtual environment, such as VMWare or kernel-based

VM (KVM). In KVM, additional tools are typically required on

the host, while VMware comes with a set of accessories that can

be used instead so that no additional means are required. Some

HAC solutions, such as ApplicationHA on KVM, employ a sep-

arate HAC installation on a host machine. For example, Appli-

cationHA on the guest can interact with the host HAC. This

setup can support monitoring of the host and enable the use of

features that are not otherwise available in the guest environ-

ment due to restrictions. However, a heterogeneous virtual en-

vironment with different operating environments for hosts and

guests may also complicate the cross-deployment of a HAC

as each operating system, platform, and virtual environment

comes with restrictions.

L3. Cloud environment limitations. Both private and pub-

lic clouds come with limitations. In such a cloud environment,

particularly in an IaaS model, customers have access to a guest

environment (e.g., VMs). To support an EA, a HAC will require

access to some host elements well. In addition, the host envi-

ronment must be monitored as well as part of a holistic HAC

approach, which may mean deploying additional tools, as de-

scribed in L2, on the host. The limitations of a cloud environ-

ment may require changes in the architecture of the HAC, hence

also the protected application [17].

L4. Public cloud limitations. In addition to what is described

in L2 and L3, the public cloud has some additional infrastructure-

related restrictions, which are usually different from those of a

private cloud. For example, shared storage is not typically sup-

ported [31]. Hence any shared-storage-based HAC must find

an alternative solution that implies that shared-disk-based quo-

rums cannot be employed. Further, there could be additional

restrictions impacting the core functionality of a HAC, such as

multicast or broadcast communication not being allowed [31],

which would impact the HAC’s ability to communicate. Again,

this means alternative solutions must be identified and imple-

mented by adding new tools and procedures, which may, in

turn, add more complexity to a solution. Moreover, if an appli-

cation is deployed in a virtual environment, additional restric-

tions, described in L2, apply. For instance, the deployment of

additional HAC tools on a host, as explained in L2, is usually

not possible as hosts are managed entirely by cloud providers

in such settings (L3).

L5. Rating of errors. Often a severity rating is not used for er-

rors on a resource level, which means that all errors are treated

equally. Adding severity levels would help distinguish between

the different types of errors and by the different modules of

HACs (e.g., monitoring, failure management) so that actions

can be taken accordingly. In addition, multilevel severity would

help to improve the recovery process so that, in some cases, er-

rors can be disregarded, indicating that such errors do not result

in a complete failover.

L6. Standardisation of error, failure, and event message

representation. The current approach is very much individ-

ualised to different HAC solutions, implying no standard struc-

ture for log messages. This makes it hard to develop a general

solution to analyse log messages (e.g., for analytical purposes).

Furthermore, several modules of a HAC (e.g., monitoring, fail-

ure management) may write the same error messages with the

same timestamp when a resource fails, making it challenging to

mine the log for distinct error messages. Moreover, log sources

can also vary as some HAC solutions may employ more than

one log source. The difference presents a challenge in mining

data from log sources, as it will require one or more data ex-

traction interfaces for each HAC solution.

L7. Rating of resource and resource group dependencies.

Resource and resource group dependencies are not always rated,

which means that the same failover and recovery policies are

applied to all dependencies, regardless of the strength of the de-

pendencies. The dependency rating describes how the failure of

a resource can impact another resource through a dependency

connection and on what level, which can ultimately influence

the mitigation action.

L8. Application monitoring. Even though many of the current

HAC solutions employ application monitoring, application-spe-

cific errors (e.g., hang situations), are not usually captured. Fur-

thermore, application-related errors are often difficult to moni-

tor with a HAC. This may require additional modules and steps,

such as logging in to an application, to detect such failure.

Hence, the current situation is that an application may be com-

pletely unresponsive, yet it is still regarded as running by a

HAC. Therefore, such errors do not trigger any action until

the problem is reported by the users of the application. Con-

sequently, this will also result in incorrect values for MTTR

and MTBF since no accurate time of failure is available, thus

26



providing unreliable figures for availability.

5.2. Challenges

Challenges are associated with functionalities or features that

can be implemented to improve the effectiveness of HACs, but

that are difficult to realise due to limitations and other con-

straints.

C1. Roles and responsibilities. HACs work closely with op-

erating environments and infrastructure components to provide

the required HAC functionalities, such as heartbeat, monitor-

ing, fencing, and quorum. While the roles and responsibilities

of the experts in charge of setting up a HAC change with the dif-

ferent cloud service models [173], it is unlikely that one team

can manage a complete HAC implementation and operations.

Instead, multiple teams and even organisations must work to-

gether to support HAC implementation and operations. More-

over, a heterogeneous virtual environment further complicates

the setup because at least two operating systems will be asso-

ciated with host and guest, which means different teams are

usually designated to support the host and guest environments.

This means that there must be a support process that links all

the different teams together according to a well-defined roles

and responsibilities matrix. Moreover, the related support pro-

cesses, for instance, change and incident management, must be

designed accordingly.

C2. Lifecycle management. The combination of many ap-

plication agents, HAC components, VMs, operating systems,

and platforms complicates the lifecycle management of HACs.

While having a standard across architecture components (in-

cluding agents) can reduce the number of combinations, this

is extremely difficult to achieve. In particular, in virtual en-

vironments, lifecycle management must take into account other

elements, such as host and guest operating environments on var-

ious VMs, which adds further complexity, as described in L2.

The number of combinations may prompt more threads of life-

cycle management. For example, when an EA vendor releases

an update to the application, a HAC vendor must also make sure

to release an update of the HAC or agent to support the changes

in the application.

C3. Client-state synchronisation. Client-state synchronisa-

tion for EAs is a difficulty. However, if achieved by a HAC,

it can improve availability significantly because it can trans-

fer user sessions in the event of a failover, which means that

no user data is lost. When a failover takes place, all user in-

put that is not saved is lost. When the failover is complete,

users can log in again to establish new sessions and start their

work from scratch. If an EA supports thousands of users, this

means losing countless hours of work. On the other hand, if a

client-state synchronisation can be achieved, it will preserve all

connections and sessions, saving considerable time. It is also

likely that, with faster failovers using client-state synchronisa-

tion, users will not even notice that a failover has taken place.

Instead, they will be able to continue working as if nothing has

happened. However, state synchronisation for an EA is a sig-

nificant challenge because it requires replicating user connec-

tions, user sessions, user context, session context, user work,

and global and local variables. While solutions with a limited

scope, such as a firewall, widely employ client-state synchroni-

sation, these are difficult to adopt for the much more complex

settings of EAs. Since the problem is about preserving user

sessions and related data, in many cases, an applications server

layer may also need to be synchronised, as they are the front-

ends for user communication in a multi-tier system. Further-

more, applications with a sizable workload require substantial

time to stop and start application components in a specific or-

der. Some portion of that time is consumed on ending user ses-

sions gracefully during the stop and establishing non-user (e.g.,

batch) sessions at the start. However, client-state synchronisa-

tion may reduce that time significantly since user data would be

already synchronised across the HAC members.

5.3. Opportunities

We have identified a set of opportunities that can improve HAC

solutions considerably, typically by overcoming HAC limita-

tions from Section 5.1. For instance, introducing probabilis-

tic and statistical methods as detailed in opportunity O5 below

requires that ratings of errors and dependencies are in place.

Hence, the exploitation of opportunity O5 requires solutions to

limitations L5 and L7.

O1. Architecture components. HAC solutions employ dif-

ferent architecture components, and therefore having a stan-

dard and modular architecture will help standardise these com-

ponents. This assumes that such an architecture will consist

of standard modules, and that a HAC solution can choose to

implement only a subset of modules, but it can always refer

such modules to the standard modules. A set of specifications

can support defining the roles of the modules and even provide

means to develop interfaces (e.g., APIs). Solutions that are de-

veloped using the APIs can potentially be used with multiple

HAC solutions. Moreover, the approach would aid in simpli-

fying and interpreting architecture components while enabling

the development of approaches for new and emerging technolo-

gies (e.g., containerisation), standard testing, and benchmark-

ing.

O2. Evaluation of historical data. HACs produce a large vol-

ume of data, and such data can be invaluable when analysing

past events and mitigations. These data are generated mainly

through logging of events, failures, recoveries, and failovers.

Historical data, together with current data, can be analysed to

identify patterns, enabling proactive approaches to ensuring high

availability. Therefore, evaluation of past data and current data

can be used to predict failures of a repeating nature and other

related failures.

O3. Reliable cluster communication protocols. The relia-

bility of cluster communication can be increased significantly

by employing protocols with atomic features such as TOTEM

[104]. These features are only supported by a few HAC solu-

tions today. Employing a standard protocol will also enhance

development in the areas, as more people can be involved in

27



the development, which means that issues can be addressed

quickly.

O4. Monitoring. Most HAC solutions use a poll-based moni-

toring method, which is linked to performance problems [40]. If

the polling frequency increases, it will improve the monitoring

data quality because more up-to-date data will then be avail-

able. However, there is an additional overhead associated with

frequent polling of many resources, which could be resource-

demanding. Furthermore, detecting application-specific errors

might also present some challenges as described in L8. The

monitoring functionality of a HAC may not detect such cases

since HACs often focus on monitoring state changes of a re-

source or a resource group. Therefore, relevant monitoring

models should be evaluated to improve the data quality while

reducing the performance overhead. The current monitoring

type is mostly state-based. However, a different option might

be to use a standard API to interact with the operating environ-

ments so that the enhanced monitoring features of the operating

systems can be utilised. Though this approach may still require

an application-specific development, it can be simplified by us-

ing standard APIs, as discussed in L1 and O1.

O5. Incorporation of probabilistic and statistical methods.

Such methods are not employed currently, but they can improve

effectiveness significantly and reduce downtime by analysing

data, checking behaviours and providing predictions. In addi-

tion, such methods will also improve the quality of the service

for HACs and their components, in general, and promote a more

robust proactive approach than currently employed by mostly

reactive mechanisms. One example of such an improvement

is introducing statistical analysis to enable the management of

quorum services more intelligently.

O6. Analytical services. Analytical services will help iden-

tify patterns in the behaviour of HACs and their components

while also providing a consolidated view of total downtime and

causes. Analytical services can also incorporate data from mul-

tiple sources so that data can be combined to provide reliable

analysis and even produce predictions on potential failures. An

example is that if some HAC components manifest intermit-

tent failures before complete failure, patterns can be analysed

to estimate the subsequent failure or an eventual complete fail-

ure.

O7. Benchmark. A standard benchmarking approach that can

measure availability at a granular level will improve the per-

formance measurements of HACs, while also enabling more a

natural comparison between different solutions.

O8. Security. HAC security is a rarely concern. However,

unauthorised access to the services of a HAC means effectively

that the protected application is also jeopardised because a HAC

has typically complete control of the operations of the pro-

tected application. Security is of particulat concern in cloud

environments with shared responsibilities (C1), since multiple

teams assume responsibility for the different layers, which may

present new vulnerabilities without a proper security model in

place. Moreover, operating a HAC solution in a public cloud

may also introduce new vulnerabilities [174], mainly when new

and alternative solutions must be introduced due to restrictions,

as described in L4.

6. Conclusions

In this article, we presented a comprehensive taxonomy and a

two-part survey of high-availability clusters. The first part of

the survey, delivered while describing the elements of the tax-

onomy, provides an overview of the HAC research landscape.

The second part employs the taxonomy to survey end-to-end

HAC solutions developed to support enterprise applications. Fi-

nally, we detailed HAC limitations, challenges and opportuni-

ties identified while constructing the taxonomy and conducting

the two-part survey. Using these, we discuss future research di-

rections for high-availability clusters. In particular, an adaption

of fully functional HACs for cloud-deployed enterprise appli-

cations can significantly improve the availability of these appli-

cations. Similarly, exploiting historical data through the use of

probabilistic approaches to predicting future failures and other

relevant events can improve the effectiveness of HACs. Last

but not least, HAC support for client-state synchronisation has

the potential to deliver zero downtime for an important range of

failures affecting enterprise applications.

References

[1] K. Schmidt, High availability and disaster recovery: concepts, design,

implementation, Vol. 22, Springer Science & Business Media, 2006.

[2] T. Liu, H. Song, et al., Availability prediction and modeling of high

mobility OSCAR cluster, in: 2003 Proceedings IEEE International Con-

ference on Cluster Computing, IEEE, 2003, pp. 380–386.

[3] E. Marcus, H. Stern, Blueprints for high availability, John Wiley & Sons,

Indianapolis, Indiana, 2003.

[4] T. Critchley, High availability IT services, Auerbach Publications, 2014.

[5] Y. Mansouri, A. N. Toosi, R. Buyya, Data storage management in cloud

environments: Taxonomy, survey, and future directions, ACM Comput-

ing Surveys (CSUR) 50 (6) (2018) 91.

[6] C. Vercellis, Business intelligence: data mining and optimization for

decision making, John Wiley & Sons, 2011.

[7] Y. Demchenko, C. De Laat, P. Membrey, Defining architecture com-

ponents of the big data ecosystem, in: Collaboration Technologies and

Systems (CTS), 2014 International Conference on, IEEE, 2014, pp. 104–

112.

[8] H. Hu, Y. Wen, T.-S. Chua, X. Li, Toward scalable systems for big data

analytics: A technology tutorial, IEEE access 2 (2014) 652–687.

[9] D. M. Ranade, Shared Data Clusters: Scaleable, Manageable, and

Highly Available Systems (Veritas Series), Vol. 9, John Wiley & Sons,

2003.

[10] W. Vogels, D. Dumitriu, K. Birman, R. Gamache, M. Massa, R. Short,

J. Vert, J. Barrera, J. Gray, The design and architecture of the microsoft

cluster service-a practical approach to high-availability and scalability,

in: Fault-Tolerant Computing, 1998. Digest of Papers. Twenty-Eighth

Annual International Symposium on, IEEE, 1998, pp. 422–431.

[11] K. P. Birman, Guide to Reliable Distributed Systems: Building High-

Assurance Applications and Cloud-Hosted Services, Springer Science

& Business Media, 2012.

[12] K. P. Murphy, Machine Learning: A Probabilistic Perspective, The MIT

Press, 2012.

[13] X. Gu, H. Wang, Online anomaly prediction for robust cluster systems,

in: IEEE International Conference on Data Engineering, IEEE, 2009,

pp. 1000–1011.

[14] R. Calinescu, D. Weyns, S. Gerasimou, M. U. Iftikhar, I. Habli, T. Kelly,

Engineering trustworthy self-adaptive software with dynamic assurance

cases, IEEE Trans. Software Eng. 44 (11) (2018) 1039–1069.

28



[15] P. T. Endo, M. Rodrigues, G. E. Gonçalves, J. Kelner, D. H. Sadok,

C. Curescu, High availability in clouds: systematic review and research

challenges, Journal of Cloud Computing 5 (1) (2016) 16.

[16] W. Li, A. Kanso, A. Gherbi, Leveraging linux containers to achieve high

availability for cloud services, in: Cloud Engineering (IC2E), 2015 IEEE

International Conference on, IEEE, 2015, pp. 76–83.

[17] M. Nabi, M. Toeroe, F. Khendek, Availability in the cloud: State of the

art, Journal of Network and Computer Applications 60 (2016) 54–67.

[18] A. Avizienis, J.-C. Laprie, B. Randell, C. Landwehr, Basic concepts and

taxonomy of dependable and secure computing, IEEE transactions on

dependable and secure computing 1 (1) (2004) 11–33.

[19] ISO/IEC 25010:2011, Systems and software engineering — Systems

and software Quality Requirements and Evaluation (SQuaRE) — Sys-

tem and software quality models, 2011.

[20] I. Koren, C. M. Krishna, Fault-Tolerant Systems, 1st Edition, Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 2007.

[21] P. P. O’Connor, A. Kleyner, Practical reliability engineering., 5th Edi-

tion, John Wiley & Sons, Ltd, New York, 2012.

[22] P. Somasekaram, A Component-based Business Continuity and Disaster

Recovery Framework, Master’s thesis, Uppsala university (jun 2017).

URL http://uu.diva-portal.org/smash/get/diva2:1108197/

FULLTEXT01.pdf

[23] P. N. Ayuso, R. M. Gasca, L. Lefèvre, Demystifying cluster-based fault-

tolerant firewalls, IEEE Internet Computing 13 (6) (2009) 31–38.

[24] Check Point Software Technologies Ltd, ClusterXL Administration

Guide R80.10 (2018).

URL https://downloads.checkpoint.com/dc/download.htm?ID=54804

[25] M. Bajohr, T. Margaria, High service availability in MaTRICS for the

OCS, in: International Symposium On Leveraging Applications of For-

mal Methods, Verification and Validation, Springer, 2008, pp. 572–586.

[26] L. G. Zhu, D. Z. Han, S. Z. Zhou, C. S. Xie, High availability cluster

with combining nas and ISCSI, Proceedings of the 2006 International

Conference on Machine Learning and Cybernetics 2006 (August) (2006)

4455–4460.

[27] G. L. Santos, P. T. Endo, G. Goncalves, D. Rosendo, D. Gomes, J. Kel-

ner, D. Sadok, M. Mahloo, Analyzing the IT subsystem failure impact

on availability of cloud services, in: Proceedings - IEEE Symposium on

Computers and Communications, 2017, pp. 717–723.

[28] D. A. B. Fernandes, L. F. B. Soares, J. V. Gomes, M. M. Freire, P. R. M.

Inácio, Security issues in cloud environments: a survey, International

Journal of Information Security 13 (2) (2014) 113–170.

URL http://link.springer.com/10.1007/s10207-013-0208-7

[29] L. A. Barroso, U. Hölzle, The datacenter as a computer: An introduc-

tion to the design of warehouse-scale machines, Synthesis lectures on

computer architecture 4 (1) (2009) 1–108.

[30] R. Dukaric, M. B. Juric, Towards a unified taxonomy and architecture of

cloud frameworks, Future Generation Computer Systems 29 (5) (2013)

1196–1210.

[31] Amazon Web Services Inc, SAP on Amazon Web Services High

Availability Guide (2016).

URL https://d0.awsstatic.com/enterprise-marketing/SAP/sap-on-aws-

high-availability-guide.pdf

[32] H. Wang, H. Wang, J. Shen, Architectural design and implementation of

highly available and scalable medical system with ibm websphere mid-

dleware, in: Proceedings. 17th IEEE Symposium on Computer-Based

Medical Systems, IEEE, 2004, pp. 174–179.

[33] Z. Wen, Y. Liang, G. Li, Design and implementation of high-availability

PaaS platform based on virtualization platform, in: 2020 IEEE 5th

Information Technology and Mechatronics Engineering Conference

(ITOEC), IEEE, 2020, pp. 1571–1575.

[34] R. Buyya, et al., High performance cluster computing: Architectures

and systems (volume 1), Prentice Hall, Upper SaddleRiver, NJ, USA 1

(1999) 999.

[35] SAS Institute Inc., SAS 9.4 Intelligence Platform: Overview, Second

Edition (2017).

URL http://documentation.sas.com/api/docsets/biov/9.4/content/biov.

pdf

[36] Oracle Corporation, Operating SAP Landscapes on Oracle Engineered

Systems Using ITIL Best Practices (2013).

[37] Oracle Corporation, Oracle Fusion Middleware: High Availability

Guide (2017).

URL https://docs.oracle.com/middleware/12212/lcm/ASHIA/title.htm

[38] H. Lyu, P. Li, R. Yan, H. Qian, B. Sheng, High-availability deployment

for large enterprises, in: 2016 International Conference on Progress in

Informatics and Computing (PIC), IEEE, 2016, pp. 503–507.

[39] Oracle Corporation, Solaris Cluster Data Service for Oracle E-Business

Suite as of Release 12.2 Guide Oracle Solaris Cluster Data Service for

Oracle E-Business Suite as of Release 12.2 Guide (2016).

URL https://docs.oracle.com/cd/E56676_01/pdf/E60641.pdf

[40] Veritas Technologies LLC, Cluster Server 7.3 Administrator’s Guide -

Linux (2017).

URL https://origin-download.veritas.com/resources/content/live/

DOCUMENTATION/SFDC/000126860/en_US/vcs_admin_73_lin.pdf

[41] S. Bartkowski, C. De Buitlear, A. Kalicki, M. Loster, M. Marczewski,

A. Mosaad, J. Nelken, M. Soliman, K. Subtil, M. Vrhovnik, et al., High

availability and disaster recovery options for DB2 for Linux, UNIX, and

Windows, IBM Redbooks, 2012.

[42] U. F. Minhas, S. Rajagopalan, B. Cully, A. Aboulnaga, K. Salem,

A. Warfield, Remusdb: Transparent high availability for database sys-

tems, The VLDB Journal—The International Journal on Very Large

Data Bases 22 (1) (2013) 29–45.

[43] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, A. Warfield,

Remus: High availability via asynchronous virtual machine replication,

in: Proceedings of the 5th USENIX Symposium on Networked Systems

Design and Implementation, San Francisco, 2008, pp. 161–174.

[44] VMware Inc., SAP Solutions on VMware vSphere Guidelines Summary

and Best Practices (2015).

[45] Palo Alto Networks Inc., PAN-OS 8.0 Admin Guide (2018).

URL https://www.paloaltonetworks.com/content/dam/pan/en_US/

assets/pdf/technical-documentation/80/pan-os/pan-os-admin/pan-

os.pdf

[46] M. Sheghdara, J. Hassine, Automatic retrieval and analysis of high avail-

ability scenarios from system execution traces: A case study on hot

standby router protocol, Journal of Systems and Software 161 (2020)

110490.

[47] H. Saxena, J. Pound, A cloud-native architecture for replicated data ser-

vices, in: 12th {USENIX}Workshop on Hot Topics in Cloud Computing

(HotCloud 20), 2020.

[48] C. Zhang, A. G. Kumbhare, I. Manousakis, D. Zhang, P. A. Misra,

R. Assis, K. Woolcock, N. Mahalingam, B. Warrier, D. Gauthier, et al.,

Flex: High-availability datacenters with zero reserved power, in: 2021

ACM/IEEE 48th Annual International Symposium on Computer Archi-

tecture (ISCA), IEEE, 2021, pp. 319–332.

[49] G. B. Heimovski, R. C. Turchetti, J. A. Wickboldt, L. Z. Granville, E. P.

Duarte Jr, FT-Aurora: A highly available IaaS cloud manager based on

replication, Computer Networks 168 (2020) 107041.

[50] D. Rosendo, D. Gomes, G. Leoni Santos, L. Silva, A. Moreira, J. Kel-

ner, D. Sadok, G. Gonçalves, A. Mehta, M. Wildeman, et al., Availabil-

ity analysis of design configurations to compose virtual performance-

optimized data center systems in next-generation cloud data centers,

Software: Practice and Experience 50 (6) (2020) 805–826.

[51] Z. Sun, H. Jin, J. Yong, S. Al-Ismaili, C. Li, J. Shen, A High Avail-

ability Application Service Platform for nuclear power enterprises, 2016

IEEE 20th International Conference on Computer Supported Coopera-

tive Work in Design (CSCWD) (2016) 613–618.

[52] F. T. Cheng, S. L. Wu, P. Y. Tsai, Y. T. Chung, H. C. Yang, Ap-

plication cluster service scheme for near-zero-downtime services, Pro-

ceedings - IEEE International Conference on Robotics and Automation

2005 (April) (2005) 4062–4067.

[53] H. Xiong, F. Fowley, C. Pahl, A database-specific pattern for multi-cloud

high availability and disaster recovery, in: Communications in Computer

and Information Science, Vol. 567, 2016, pp. 374–388.

[54] J. Riley, J. Noss, W. Dillingham, J. Cuff, I. M. Llorente, A high-

availability cloud for research computing, Computer 50 (6) (2017) 92–

95.

[55] C. Leangsuksun, T. Liu, T. Rao, S. Scott, R. Libby, A failure predictive

and policy-based high availability strategy for linux high performance

computing cluster, in: The 5th LCI International Conference on Linux

Clusters: The HPC Revolution, Citeseer, 2004, pp. 18–20.

[56] K. Birman, R. Van Renesse, W. Vogels, Adding high availability and

autonomic behavior to web services, in: Proceedings of the 26th Inter-

national Conference on Software Engineering, IEEE Computer Society,

29



2004, pp. 17–26.

[57] Oracle Corporation, Solaris Cluster Concepts Guide (2014).

URL https://docs.oracle.com/cd/E39579_01/pdf/E39575.pdf

[58] SUSE LLC, Administration Guide SUSE Linux Enterprise High

Availability Extension 12 SP3 (2017).

URL https://www.suse.com/documentation/sle-ha-12/pdfdoc/sle-ha-

12-sp3.zip

[59] D. Quintero, V. Balappa, S. Bodily, D. De, S. Casali, J.-G. Dengel,

M. Dhandapani, M. Hoshino, J. Kiran, K. Langer, P. Sergio, L. Queiroz,

M. Radford, A. Socoliuc, N. K. Tu, IBM PowerHA SystemMirror 7.1.2

Enterprise Edition for AIX, IBM Redbooks, 2013.

URL https://www.redbooks.ibm.com/redbooks/pdfs/sg248106.pdf

[60] D. M. Ranade, Shared Data Clusters: Scaleable, Manageable, and

Highly Available Systems (VERITAS Series), John Wiley & Sons, Ltd,

New York, 2002.

[61] M. Toeroe, F. Tam, Service availability: principles and practice, John

Wiley & Sons, 2012.

[62] S. Snedaker, Business Continuity and Disaster Recovery Planning for IT

Professionals, 2nd Edition, Syngress Publishing, 2013.

[63] IDC Corporation, Clustering Solutions for Achieving High Availability

for Diversifying Platforms: The Future in Advanced Best Practices,

Tech. rep., IDC Corporation, Massachusetts (2016).

URL https://www.nec.com/en/global/prod/expresscluster/materials/

203586_EN_IDC_NEC_HA_White_Paper.pdf

[64] Service Availability Forum, Service Availability Forum Service Avail-

ability Interface (2011).

URL http://devel.opensaf.org/SAI-Overview-B.05.03.AL.pdf

[65] Veritas Technologies LLC, A guide to understanding volume replicator,

Engineering White Paper, Symantec (2006).

[66] Red Hat, Inc., Deploying Highly Available SAP NetWeaver-based

Servers Using Red Hat Enterprise Linux HA add-on with Pacemaker

(2014).

URL https://access.redhat.com/sites/default/files/attachments/rh-

pacemaker-sap-whitepaper.pdf

[67] Novell, Inc., SAP Applications Made High Available on SUSE Linux

Enterprise Server 10 (2014).

URL https://www.b1-systems.de/fileadmin/content/whitepaper/

Technical_Guide_SLES_HA_for_SAP.pdf

[68] SUSE LLC, SAP on SUSE linux enterprise (2012).

URL https://www.suse.com/media/white-paper/sap_on_sle.pdf

[69] Oracle Corporation, Oracle Database High Availability Overview

(2017).

URL https://docs.oracle.com/en/database/oracle/oracle-database/12.2/

haovw/index.html

[70] Veritas Technologies LLC, Storage Foundation for Oracle RAC 7.3

Administrator’s Guide - Linux (2017).

URL https://origin-download.veritas.com/resources/content/live/

DOCUMENTATION/SFDC/000126863/en_US/sfrac_admin_73_lin.

pdf

[71] IBM Corporation, Administering PowerHA SystemMirror (2018).

URL http://public.dhe.ibm.com/systems/power/docs/powerha/721/

hacmpadmngd_pdf.pdf

[72] Fujitsu Limited, Primecluster: Installation and Administration Guide

4.5 (2017).

URL http://software.fujitsu.com/jp/manual/manualfiles/m170002/

j2s21672/01enz200/j2s2-1672-01enz0.pdf

[73] Microsoft Corporation, Failover Cluster Step-by-Step Guide: Configur-

ing the Quorum in a Failover Cluster (2011).

URL https://docs.microsoft.com/en-us/previous-versions/windows/it-

pro/windows-server-2008-R2-and-2008/cc770620(v=ws.10)

[74] Microsoft Corporation, High availability for SAP NetWeaver on Azure

VMs on SUSE Linux Enterprise Server for SAP applications (2020).

URL https://docs.microsoft.com/en-us/azure/virtual-machines/

workloads/sap/high-availability-guide-suse

[75] Microsoft Corporation, Cluster an SAP ASCS/SCS instance on a

Windows failover cluster using a cluster shared disk in Azure (2017).

URL https://docs.microsoft.com/en-us/azure/virtual-machines/

workloads/sap/sap-high-availability-guide-wsfc-shared-disk

[76] F. Liu, J. Tong, J. Mao, R. Bohn, J. Messina, L. Badger, D. Leaf,

NIST cloud computing reference architecture, NIST special publication

500 (2011) (2011) 1–28.

[77] Microsoft Corporation, Shared Responsibilities for Cloud Computing

(2017).

URL https://gallery.technet.microsoft.com/Shared-Responsibilities-

81d0ff91

[78] Amazon Web Services Inc., Shared Responsibility Model (2018).

URL https://aws.amazon.com/compliance/shared-responsibility-model/

[79] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakan-

lahiji, J. Kong, J. P. Jue, All one needs to know about fog computing

and related edge computing paradigms: A complete survey, Journal of

Systems Architecture 98 (2019) 289–330.

[80] T. Qiu, J. Chi, X. Zhou, Z. Ning, M. Atiquzzaman, D. O. Wu, Edge

computing in industrial internet of things: Architecture, advances and

challenges, IEEE Communications Surveys & Tutorials 22 (4) (2020)

2462–2488.

[81] F. Magnanini, L. Ferretti, M. Colajanni, Scalable, confidential and sur-

vivable software updates, IEEE Transactions on Parallel and Distributed

Systems (2021).

[82] K. Uhlemann, C. Engelmann, S. L. Scott, JOSHUA: Symmetric Ac-

tive/Active Replication for Highly Available HPC Job and Resource

Management, in: 2006 IEEE International Conference on Cluster Com-

puting, IEEE, 2006, pp. 1–10.

[83] C. Engelmann, S. L. Scott, C. Leangsuksun, X. He, Symmetric ac-

tive/active high availability for high-performance computing system ser-

vices: Accomplishments and limitations, in: 2008 Eighth IEEE Inter-

national Symposium on Cluster Computing and the Grid (CCGRID),

IEEE, 2008, pp. 813–818.

[84] Hewlett Packard Enterprise Development L. P., Designing Disaster Re-

covery HA Clusters using Metrocluster and Continentalclusters (2011).

URL https://support.hpe.com/hpesc/public/docDisplay?docId=emr_na-

c02814903

[85] IBM Corporation, IBM PowerHA SystemMirror for AIX: Geographic

Logical Volume Manager (2017).

URL http://public.dhe.ibm.com/systems/power/docs/powerha/722/

hacmpgeolvm_pdf.pdf

[86] I. Shankar, A. Mishra, Enhanced cluster failover management, US Patent

8,484,510 (Jul. 9 2013).

[87] Oracle Corporation, Oracle Solaris Cluster 4.3 Geographic Edition

Overview (2016).

URL https://docs.oracle.com/cd/E56676_01/pdf/E56739.pdf

[88] Oracle Corporation, Oracle Solaris and Oracle Solaris Cluster: Extend-

ing Oracle Solaris for Business Continuity (2010).

URL http://www.oracle.com/technetwork/server-storage/solaris-

cluster/documentation/solaris-cluster-businesscontinuity-168285.pdf

[89] Hewlett Packard Enterprise Development L. P., Understanding and De-

signing Serviceguard Disaster Recovery Architectures (2012).

URL https://support.hpe.com/hpsc/doc/public/display?docId=emr_na-

c03604629

[90] A. Kanso, M. Toeroe, F. Khendek, Comparing redundancy models for

high availability middleware, Computing 96 (10) (2014) 975–993.

[91] C. Engelmann, Symmetric active/active high availability for high-

performance computing system services, Ph.D. thesis, Department of

Computer Science, University of Reading, UK (2008).

URL http://www.christian-engelmann.info/publications/

engelmann08symmetric3.pdf

[92] X. He, L. Ou, C. Engelmann, X. Chen, S. L. Scott, Symmetric ac-

tive/active metadata service for high availability parallel file systems,

Journal of Parallel and Distributed Computing 69 (12) (2009) 961–973.

[93] Oracle Corporation, Solaris Cluster Data Service for Oracle Real Appli-

cation Clusters Guide (2016).

URL https://docs.oracle.com/cd/E56676_01/pdf/E57757.pdf

[94] S. Distefano, F. Longo, M. Scarpa, Availability assessment of ha standby

redundant clusters, in: 2010 29th IEEE Symposium on Reliable Dis-

tributed Systems, IEEE, 2010, pp. 265–274.

[95] Y. Bouizem, N. Parlavantzas, D. Dib, C. Morin, Active-standby for

high-availability in faas, in: Proceedings of the 2020 Sixth International

Workshop on Serverless Computing, 2020, pp. 31–36.

[96] A. Magalhaes, J. M. Monteiro, A. Brayner, Main memory database re-

covery: A survey 54 (2) (2021). doi:10.1145/3442197.

URL https://doi.org/10.1145/3442197

[97] T. Pohanka, V. Pechanec, Evaluation of replication mechanisms

on selected database systems, ISPRS International Journal of Geo-

30



Information 9 (4) (2020) 249.

[98] G. Levitin, L. Xing, Y. Dai, Cold vs. hot standby mission operation cost

minimization for 1-out-of-n systems, European Journal of Operational

Research 234 (1) (2014) 155–162.

[99] T. A. Nguyen, D. S. Kim, J. S. Park, Availability modeling and analy-

sis of a data center for disaster tolerance, Future Generation Computer

Systems 56 (2016) 27–50.

[100] C. Leangsuksun, V. Munganuru, T. Liu, S. Scott, C. Engelmann, Asym-

metric active-active high availability for high-end computing, in: Pro-

ceedings of 2nd International Workshop on Operating Systems, Pro-

gramming Environments and Management Tools for High-Performance

Computing on Clusters (COSET-2), 2005.

[101] G. E. Gonçalves, P. T. Endo, M. Rodrigues, D. H. Sadok, J. Kelner,

C. Curescu, Resource allocation based on redundancy models for high

availability cloud, Computing 102 (1) (2020) 43–63.

[102] Z. Hou, Y. Huang, S. Zheng, X. Dong, B. Wang, Design and imple-

mentation of heartbeat in multi-machine environment, in: 17th Interna-

tional Conference on Advanced Information Networking and Applica-

tions, 2003. AINA 2003., IEEE, 2003, pp. 583–586.

[103] IBM Corporation, PowerHA SystemMirror concepts (2016).

URL http://public.dhe.ibm.com/systems/power/docs/powerha/721/

hacmpconcepts_pdf.pdf

[104] S. C. Dake, C. Caulfield, A. Beekhof, The corosync cluster engine, in:

Linux Symposium, Vol. 85, Citeseer, 2008.

[105] J. Maloy, Tipc: Providing communication for linux clusters, in: Linux

Symposium, Vol. 2, 2004, pp. 347–356.

[106] A. B. Forouzan, Data communications & networking (sie), Tata

McGraw-Hill Education, 2007.

[107] D. Dolev, D. Malki, The transis approach to high availability cluster

communication, Communications of the ACM 39 (4) (1996) 64–70.

[108] X. Défago, A. Schiper, P. Urbán, Total order broadcast and multicast

algorithms: Taxonomy and survey, ACM Computing Surveys (CSUR)

36 (4) (2004) 372–421.

[109] C. Engelmann, S. L. Scott, C. Leangsuksun, X. B. He, Symmetric ac-

tive/active high availability for high-performance computing system ser-

vices., JCP 1 (8) (2006) 43–54.

[110] SIOS Technology Corp., SIOS Protection Suite for Windows (2018).

URL http://cdn.manula.com/user/1870/10540_11235_en_1504797428.

pdf

[111] Veritas Technologies LLC, Veritas InfoScale 7.4.3 Solutions in Cloud

Environments (2020).

URL https://www.veritas.com/support/en_US/doc/145798412-

145798468-1

[112] SUSE LLC, SAP HANA High Availability Cluster for the AWS Cloud -

Setup Guide (v15) (2021).

URL https://documentation.suse.com/sbp/all/pdf/SLES4SAP-hana-sr-

guide-PerfOpt-15_AWS_color_en.pdf

[113] M. Waldvogel, R. Rinaldi, Efficient topology-aware overlay network,

ACM SIGCOMM Computer Communication Review 33 (1) (2003)

101–106.

[114] Veritas Technologies LLC, Symantec High Availability Agent for SAP

NetWeaver Installation and Configuration Guide (2013).

URL https://sort.veritas.com/agents/download_docs/8304/vcs_

sapnetweaver_install

[115] IBM Corporation, Smart Assists for PowerHA SystemMirror (2017).

URL http://public.dhe.ibm.com/systems/power/docs/powerha/721/

smartassist_pdf.pdf

[116] H. Yang, Y. Kim, Design and Implementation of Fast Fault Detection

in Cloud Infrastructure for Containerized IoT Services, Sensors 20 (16)

(2020) 4592.

[117] NEC Corporation, EXPRESSCLUSTER X 3.3 for Linux Reference

Guide (2017).

URL https://www.nec.com/en/global/prod/expresscluster/en/support/

Linux/L33_RG_EN_06.pdf

[118] NEC Corporation, EXPRESSCLUSTER X 3.3 for Windows Reference

Guide (2017).

URL https://www.nec.com/en/global/prod/expresscluster/en/support/

Windows/W33_RG_EN_06.pdf

[119] J. S. Ward, A. Barker, Observing the clouds: a survey and taxonomy of

cloud monitoring, Journal of Cloud Computing 3 (1) (2014) 24.

[120] M. Q. Hiep, H. Yang, Y. Kim, Dynamic policy management system for

high availability in a multi-site cloud, in: 2020 International Conference

on Information and Communication Technology Convergence (ICTC),

IEEE, 2020, pp. 359–362.

[121] I. Kaitovic, M. Malek, Impact of failure prediction on availability: Mod-

eling and comparative analysis of predictive and reactive methods, IEEE

Transactions on Dependable and Secure Computing 17 (3) (2018) 493–

505.

[122] A. Beekhof, Pacemaker 1.1 Configuration Explained An A-Z guide to

Pacemaker’s Configuration Options (2017).

URL http://clusterlabs.org/pacemaker/doc/en-US/Pacemaker/1.1/

pdf/Pacemaker_Explained/Pacemaker-1.1-Pacemaker_Explained-en-

US.pdf

[123] Y.-J. Lee, H.-Y. Kim, C.-H. Lee, A stochastic availability predic-

tion model for head nodes in the ha cluster, in: 22nd International

Conference on Advanced Information Networking and Applications-

Workshops (aina workshops 2008), IEEE, 2008, pp. 157–161.

[124] Oracle Corporation, Oracle Clusterware Administration and Deploy-

ment Guide (2017).

URL https://docs.oracle.com/en/database/oracle/oracle-database/12.2/

cwadd/clusterware-administration-and-deployment-guide.pdf

[125] D. Quintero, S. Bodily, D. Martin-Corben, R. Prathap, K. Singh, A. Tha-

judeen, W. Zanatta, I. Redbooks, IBM PowerHA SystemMirror for AIX

Cookbook, IBM Redbooks, 2015.

[126] C. Gomes, E. Tavares, M. N. d. O. Junior, B. Nogueira, Cloud stor-

age availability and performance assessment: a study based on NoSQL

DBMS, The Journal of Supercomputing (2021) 1–21.

[127] M. Naor, A. Wool, The load, capacity, and availability of quorum sys-

tems, SIAM Journal on Computing 27 (2) (1998) 423–447.

[128] X. Wang, H. Sun, T. Deng, J. Huai, On the tradeoff of availability and

consistency for quorum systems in data center networks, Computer Net-

works 76 (2015) 191–206.

[129] Microsoft Corporation, Failover Clustering in Windows Server (2018).

URL https://docs.microsoft.com/en-us/windows-server/failover-

clustering/failover-clustering-overview

[130] D. Malkhi, M. K. Reiter, A. Wool, R. N. Wright, Probabilistic quorum

systems, Information and Computation 170 (2) (2001) 184–206.

[131] Microsoft Corporation, Behavior of Dynamic Witness on Windows

Server 2012 R2 Failover Clustering (2016).

URL https://blogs.technet.microsoft.com/askcore/2016/03/21/behavior-

of-dynamic-witness-on-windows-server-2012-r2-failover-clustering-

3/

[132] L. Zhu, J. Lin, A scsi3 persistent reservation synchronization solution

for iscsi targets cluster hosting ceph rbd with active/active connections,

in: 2020 IEEE 4th Information Technology, Networking, Electronic

and Automation Control Conference (ITNEC), Vol. 1, IEEE, 2020, pp.

1785–1793.

[133] K. W. Preslan, A. P. Barry, J. Brassow, M. Declerck, A. Lewis, A. Man-

thei, B. Marzinski, E. Nygaard, S. Van Oort, D. Teigland, et al., Scalabil-

ity and failure recovery in a linux cluster file system., in: Annual Linux

Showcase & Conference, 2000.

[134] T. Lumpp, J. Schneider, J. Holtz, M. Mueller, N. Lenz, A. Biazetti,

D. Petersen, From high availability and disaster recovery to business

continuity solutions, IBM Systems Journal 47 (4) (2008) 605–619.

[135] Y.-L. Lee, S. N. Arizky, Y.-R. Chen, D. Liang, W.-J. Wang, High-

availability computing platform with sensor fault resilience, Sensors

21 (2) (2021) 542.

[136] D. Rossi, E. Turrini, Analyzing the impact of components replication in

high available j2ee clusters, in: Joint International Conference on Auto-

nomic and Autonomous Systems and International Conference on Net-

working and Services-(icas-isns’ 05), IEEE, 2005, pp. 56–56.

[137] A. van der Linde, J. Leitão, N. Preguiça, Practical client-side replica-

tion: weak consistency semantics for insecure settings, Proceedings of

the VLDB Endowment 13 (12) (2020) 2590–2605.

[138] S. H. Mortazavi, M. Salehe, B. Balasubramanian, E. de Lara,

S. PuzhavakathNarayanan, Sessionstore: A session-aware datastore for

the edge, in: 2020 IEEE 4th International Conference on Fog and Edge

Computing (ICFEC), IEEE, 2020, pp. 59–68.

[139] J. Noble, D. Maxwell, K. X. Hourihan, R. Stephens, Check Point NG

VPN-1/FireWall-1: Advanced configuration and troubleshooting, Syn-

gress (Canada), 2003.

[140] P. Fondo-Ferreiro, F. Gil-Castiñeira, F. J. González-Castaño, D. Candal-

31



Ventureira, A software-defined networking solution for transparent ses-

sion and service continuity in dynamic multi-access edge computing,

IEEE Transactions on Network and Service Management 18 (2) (2020)

1401–1414.

[141] L. H. Le, C. E. Bezerra, F. Pedone, Dynamic scalable state machine

replication, in: 2016 46th Annual IEEE/IFIP International Conference

on Dependable Systems and Networks (DSN), IEEE, 2016, pp. 13–24.

[142] F. Pedone, R. Guerraoui, A. Schiper, The database state machine ap-

proach, Distributed and Parallel Databases 14 (1) (2003) 71–98.

[143] Y. Shi, J. Zuo, Y. Guo, Y. Lu, Distributed file system multilevel fault-

tolerant high availability mechanism, in: Proceedings of the 2020 Inter-

national Conference on Cyberspace Innovation of Advanced Technolo-

gies, 2020, pp. 431–438.

[144] IBM Corporation, IBM Spectrum Scale Concepts, Planning, and Instal-

lation Guide (2017).

URL https://www.ibm.com/support/knowledgecenter/STXKQY_4.2.1/

com.ibm.spectrum.scale.v4r21.doc/pdf/a7604417.pdf

[145] R. Rani, N. Kumar, M. Khurana, A. Kumar, A. Barnawi, Storage as

a service in fog computing: A systematic review, Journal of Systems

Architecture (2021) 102033.

[146] SIOS Technology Corp., SANless Cluster Software (2017).

URL https://us.sios.com/products/sios-datakeeper/what-is-a-sanless-

cluster/

[147] J. Lee, S. Moon, K. H. Kim, D. H. Kim, S. K. Cha, W.-S. Han, Par-

allel replication across formats in SAP HANA for scaling out mixed

OLTP/OLAP workloads, Proceedings of the VLDB Endowment 10 (12)

(2017) 1598–1609.

[148] Y. Lu, X. Yu, L. Cao, S. Madden, Epoch-based commit and replication

in distributed OLTP databases, Proceedings of the VLDB Endowment

14 (5) (2021) 743–756.

[149] SIOS Technology Corp., SIOS Protection Suite for Linux Documenta-

tion (2017).

URL http://docs.us.sios.com/Linux/9.2/LK4L/AllTechDocs/index.htm

[150] A. Gómez, L. Carril, R. Valin, J. C. Mouriño, C. Cotelo, Fault-tolerant

virtual cluster experiments on federated sites using bonfire, Future Gen-

eration Computer Systems 34 (2014) 17–25.

[151] R. Kanagavelu, B. S. Lee, R. F. Miguel, L. N. Mingjie, et al., Software

defined network based adaptive routing for data replication in data cen-

ters, in: 2013 19th IEEE International Conference on Networks (ICON),

IEEE, 2013, pp. 1–6.

[152] R. DelValle, P. Kaushik, A. Jain, J. Hartog, M. Govindaraju, Electron:

Towards efficient resource management on heterogeneous clusters with

apache mesos, in: 2017 IEEE 10th International Conference on Cloud

Computing (CLOUD), IEEE, 2017, pp. 262–269.

[153] DH2i., DxEnterprise (2020).

URL https://dh2i.com/dxenterprise/

[154] Stratus Technologies., everRun (2020).

URL https://www.stratus.com/solutions/platforms/everrun/

[155] I. Haddad, C. Leangsuksun, S. L. Scott, HA-OSCAR: the birth of highly

available OSCAR, Linux Journal 2003 (115) (2003) 1.

[156] D. Prior, A. MacNeela, I. Brown, J. Krischer, D. Scott, J. Green-

Armytage, Enterprise guide to gartner’s high-availability system model

for SAP, Gartner, December (2001).

[157] R. Rabbat, T. McNeal, T. Burke, A high-availability clustering architec-

ture with data integrity guarantees, in: Third IEEE International Confer-

ence on Cluster Computing (CLUSTER’01), IEEE Computer Society,

2001, pp. 178–178.

[158] S. Corsava, V. Getov, Intelligent architecture for automatic resource al-

location in computer clusters, in: Proceedings International Parallel and

Distributed Processing Symposium, IEEE, 2003, pp. 8–pp.

[159] Gartner Inc., Magic Quadrant for Operational Database Management

Systems, Tech. rep., Gartner, Inc., Stamford (2017).

[160] Gartner Inc., Market share analysis: ERP software, worldwide, 2017,

Tech. rep., Gartner, Inc., Stamford (2017).

[161] Gartner Inc., Market Share Analysis: Customer Relationship Manage-

ment Software, Worldwide, 2016, Tech. rep., Gartner, Inc., Stamford

(2016).

[162] SAP SE, Certified HA-Interface Partners - SAP Application Server

High Availability Interface Certification (2018).

URL https://wiki.scn.sap.com/wiki/display/SI/Certified+HA-

Interface+Partners

[163] IBM Corporation, Supported cluster management software (2018).

URL https://www.ibm.com/support/knowledgecenter/SSEPGG_11.1.0/

com.ibm.db2.luw.admin.ha.doc/doc/r0051388.html

[164] A. Kanso, Y. Lemieux, Achieving high availability at the application

level in the cloud, in: 2013 IEEE 6th International Conference on Cloud

Computing (CLOUD), IEEE, 2013, pp. 778–785.

[165] M. Khan, M. Toeroe, F. Khendek, Comparing pacemaker with OpenSAF

for availability management in the cloud, in: Edge Computing (EDGE),

2017 IEEE International Conference on, IEEE, 2017, pp. 106–111.

[166] U. Franke, Optimal it service availability: Shorter outages, or fewer?,

IEEE Transactions on Network and Service Management 9 (1) (2011)

22–33.

[167] J. Singh, P. Singh, S. S. Gill, Fog computing: a taxonomy, systematic

review, current trends and research challenges, Journal of Parallel and

Distributed Computing (2021).

[168] F. Ramos, E. Viegas, A. Santin, P. Horchulhack, R. R. dos Santos, A. Es-

pindola, A machine learning model for detection of docker-based app

overbooking on kubernetes, in: ICC 2021-IEEE International Confer-

ence on Communications, IEEE, 2021, pp. 1–6.

[169] Veritas Technologies LLC, Veritas InfoScale 7.4.3 Support for Kuber-

netes - Linux (2020).

URL https://www.veritas.com/support/en_US/doc/145798412-

145798468-1

[170] L. A. Vayghan, M. A. Saied, M. Toeroe, F. Khendek, Microservice

based architecture: Towards high-availability for stateful applications

with kubernetes, in: 2019 IEEE 19th International Conference on Soft-

ware Quality, Reliability and Security (QRS), IEEE, 2019, pp. 176–185.

[171] Y. Alahmad, A. Agarwal, T. Daradkeh, High availability management

for applications services in the cloud container-based platform, in: 2018

IEEE/ACS 15th International Conference on Computer Systems and Ap-

plications (AICCSA), IEEE, 2018, pp. 1–8.

[172] S. Loveland, E. M. Dow, F. LeFevre, D. Beyer, P. F. Chan, Leveraging

virtualization to optimize high-availability system configurations, IBM

Systems Journal 47 (4) (2008) 591–604.

[173] J. R. Vacca, Cloud computing security : foundations and challenges, 1st

Edition, CRC Press, 2016.

[174] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka,

J. Molina, Controlling data in the cloud, in: Proceedings of the 2009

ACM workshop on Cloud computing security - CCSW ’09, ACM, 2009,

p. 85.

32


	Introduction
	Uses and Architecture of High-Availability Clusters
	Key Concepts and Terminology
	Enterprise Application Layers
	HAC Architecture

	Taxonomy of High-availability Clusters 
	A: Deployment Pattern
	B: Application Areas
	C: Type of Cluster
	D: Topology
	E: Cluster Management
	F: Failure Detection and Recovery
	G: Consistency and Integrity
	H: Data Synchronisation.

	Survey of High-availability Clusters 
	Selection of HACs for the Survey
	HAC Analysis Methodology
	HAC Survey Results
	Analysis of the Survey Results

	Future Directions
	Limitations 
	Challenges
	Opportunities

	Conclusions

