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Abstract

Recent trends in the engineering of software-intensive systems increasingly promote the adoption of computa-

tion at the edge of the network, in the proximity of where sensing and actuation are performed. Applications

are executed directly in IoT devices deployed in the physical environment, possibly with the aid of edge

servers: there, interactions are essentially based on physical proximity, and communication with the cloud

is sporadic if not absent.

The challenge of monitoring the execution of such system, by relying on local interactions only, naturally

arises. We address this challenge by proposing a rigorous approach to distributed runtime monitoring for

space-based networks of devices. We introduce the past-CTL logic, an extension of past-LTL able to express

a variety of properties concerning the knowable past of an event. We formally define a procedure to derive,

from a past-CTL formula, monitors that can be distributed on each device and whose collective behaviour

verifies the validity of the formula at runtime across space and time. This is achieved by relying on the field

calculus, a core programming language used to specify the behaviour of a collection of devices by viewing

them as an aggregate computing machine, carrying out altogether a distributed computational process. The

field calculus is shown to be a convenient language for our goals, since its functional composition approach

provides a natural way of translating in a syntax-directed way properties expressed in a given logic into

monitors for such properties. We show that the monitor process executing in each single device runs using

local memory, message size, and computation time that are all linear in the size of the formula (1 bit per

temporal connective). This matches the efficiency of the best available previous results for (non-distributed)

monitors derived from past-LTL formulas. Finally, we empirically evaluate the applicability of the approach

to sample problems in distributed computing, through simulated experiments with monitors written through

a C++ library implementing the field calculus programming constructs.
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1. Introduction

Runtime verification is a computing analysis paradigm based on observing a system at runtime (to check

its expected behaviour) by means of monitors generated from formal specifications [1]. Distributed runtime

verification is runtime verification in connection with distributed systems: it comprises both monitoring

of distributed systems and usage of distributed systems for monitoring. Being a verification technique,5

additionally, runtime verification promotes the generation of monitors from formal specifications, so as to

precisely state the properties to check as well as providing formal guarantees about the results of monitoring.

Distribution is hence a particularly challenging context in verification, for it requires to correctly deal with

aspects such as synchronisation, faults in communications, possible lack of unique global time, and so on [2].

Additionally, the distributed system whose behaviour is to be verified at runtime could emerge from modern10

application scenarios like the Internet-of-Things (IoT), Cyber-Physical Systems (CPS), Edge Computing

(EC) or large-scale Wireless Sensor Networks (WSN). In this case additional features are to be considered,

like openness (the set of nodes is dynamic), large-scale (a monitoring strategy may need to scale from few

units up to thousands of devices), and interaction locality (nodes may be able to communicate only with a

small neighbourhood). So, in the most general case, distributed runtime verification challenges the way in15

which one can express properties on such dynamic distributed systems, can express flexible computational

tasks, and can reason about compliance of properties and corresponding monitoring behaviour.

In this paper we considered distributed runtime verification for systems where a significant portion of

computations is performed at the edge of the network, namely, where computational devices have a (possibly

changing) physical position and space, and interact locally, with devices in the proximity. As a notable20

example, used throughout the paper (among others thoroughly discussed in Section 4), we will refer to a

synthetic logical network comprising nodes of different nature (cloud, fog, and edge), sporadically issuing

requests (of a few types) and then waiting for a corresponding response. In this context, we will show how

significant properties of the system can be expressed and monitored.

Developing on our preliminary findings reported in [3], in this paper we argue that a promising approach25

to address the challenges of distributed runtime verification for these kinds of system [4] can be rooted on the

computational paradigm of aggregate computing [5], along with the field calculus language [6]. Aggregate

computing promotes a view of a distributed system as a conceptually single computing device, spread

throughout the (physical or virtual) space in which nodes are deployed, that has been shown to be a good

match for the IoT.30

At the paradigm level, aggregate programming promotes the specification (construction, reasoning, pro-

gramming) of global-level computational behaviour, where message exchange across individuals is essentially

abstracted away through a declarative style to express interactions. At the modelling level, the field cal-

culus can be leveraged, which expresses computations as transformations of computational fields (or fields
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for short), namely, space-time distributed data structures mapping computational events (occurring at a35

given position of space and time) to computational values (the results of computation at that event). As an

example, a set of temperature sensors spread over a building forms a field of temperature values (a field of

reals), and a monitor alerting areas where the temperature was above a threshold for the last 10 minutes is

a function from the temperature field to a field of booleans.

We see aggregate computing also as suitable for heterogeneous architectures such as edge computing,40

where both physical and logical neighbourhood relationships may hold between the terminal (IoT) devices

and edge devices, and within or between the other network tiers beyond the edge up to a potentially

centralised cloud instance. Its features naturally address challenges that are particular to such contexts [7]:

mobility of devices, decentralization and fault tolerance, and interoperability and heterogenity.

First, aggregate computing copes by design with mobility: On the one hand, it is agnostic to changing45

network performance and changing neighbours; On the other hand, it can easily be made aware of such no-

tion by accessing sensors on performance data or including timestamps and clock-synchronization explicitly

in all or some messages. Second, aggregate computing is also by nature decentralised: there is no central

authority or aggregator per se, and any aggregation requires explicit design on top of broadcast-based com-

munication: the absence of point-to-point connections and an abstraction from actual message transmission50

leads to a fault tolerant design by construction, as missing or delayed messages or network partitioning are

indistinguishable from normal operation. Finally, interoperability and heterogeneity across platforms is —

as in many software systems — solved by abstracting the communication layer.

The convenience of aggregate computing for distributed monitoring lies then in its compositionality

mechanism, that is fully functional. Hence it induces a compositional translation (the translation of a55

phrase is determined by combining the translations of its subphrases) of properties expressed in a given

logic into a fully-distributed field calculus program whose execution is actually a distributed monitor for

such property. Most specifically, phrases are replicated across all nodes, hence an instance of the property

is checked by every node of the system altogether.

In this paper we focus on past-CTL logic, a logic able to express properties concerning the knowable60

past of an event. Such properties include the eventual behaviour of participants in the network, interpreted

based on which information has been gathered into an event from the past, and this is shown, through a

variety of examples, to give forms of predictive capability. We show that the derived monitors match the

optimal efficiency of previous results for past-LTL in a non-distributed setting [8]. Hence, this translation

showcases how the field calculus can support distributed verification in a high-level compositional way, and65

paves the way for integration of future extensions of the logic.

The proposed approach aims to target highly-distributed systems where cloud-like support is sporadic

or not available, or cannot be successfully exploited, making the monitoring of formulas with future modal-

ities infeasible. In such contexts, using field calculus programming (which comes with fully implemented
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tools such as FCPP [9] http://fcpp.github.io, a C++ internal DSL and simulator, Protelis [10]70

http://protelis.github.io, a Java external DSL, ScaFi [11] https://scafi.github.io, a Scala in-

ternal DSL), in combination with past-CTL-based distributed runtime verification as proposed in this paper,

can still allow to reasonably monitor interesting properties of distributed systems, as we show by examples

and simulations. The main contribution of the present paper is twofold:

• The introduction of past-CTL, a modal logic for expressing temporal properties of a distributed system,75

inspired by the well-known temporal logics CTL and past-LTL.

• The proposal of a formal, detailed method to automatically translate formulas of past-CTL into fully

distributed monitoring systems expressed by aggregate computing, which can be practically deployed

and executed.

The remainder of this paper is organised as follows: Sect. 2 provides the necessary background on field80

calculus; Sect. 3 illustrates how the field calculus can be used to implement distributed monitors; Sect. 4

applies our novel solution to sample problems in aggregate computing; Sect. 5 discusses related work and

Sect. 6 concludes.

2. A Recollection of the Field Calculus

The field calculus [6] is a minimal universal [12] language to express aggregate computations over dis-85

tributed networks of (mobile) devices, each asynchronously capable of performing simple local computations

and interacting with a neighbourhood by local exchanges of messages. Field calculus provides the necessary

mechanism to express and functionally compose such distributed computations, by a level of abstraction that

intentionally neglects explicit management of synchronisation, message exchanges between devices, position

and quantity of devices, and so on—these aspects are however dealt with “under the hood”, namely, at the90

operational semantics level. In the field calculus, a program P is periodically and asynchronously executed

on every device, according to a cyclic schedule executed by each device δ with period Tδ:

1. the device perceives contextual information formed by data provided by sensors, local information

stored in the previous round, and messages collected from neighbours since the previous round (older

messages get discarded after a certain timeout), the latter in the form of a neighbouring value φ—95

essentially a map from neighbour device identifiers δ to values `;

2. when a round starts, the device evaluates the program P considering as input the contextual information

gathered as described above (as formalised by the operational semantics);

3. the result of local computation is a data structure that is stored locally, is broadcast to neighbours,

and produces output values (possibly fed to actuators).100
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Figure 1: Sample event structure split into events in the causal past of ε (ε′ < ε, circled solid red), events in the causal future

(ε < ε′, solid green) and concurrent (non-ordered, hollow black). Events are sorted by the device on which they occur.

By repetitive execution of such computation rounds, across space (where devices are located) and time

(when devices execute), a global behaviour emerges [13] at the overall network-level of interconnected devices,

modelled as a single aggregate machine equipped with a neighbouring-based topology relation. Typically,

the neighbouring relation reflects spatial proximity, but it could also be a logical relationship, e.g., con-

necting master devices to slave devices independently of their position, and the like. The data abstraction105

manipulated by the “aggregate computing machine” is hence a whole distributed space-time value Φ, which

maps individual computation events ε (space-time points where and when a device sends messages at the

end of a computation round) to data values v. The set of events, constituting the domain of fields, is then

structured according to a neighbouring notion, dictating when an event can influence (by message-passing)

another.110

2.1. Event Structures

The causal relationship between events may then be formalised by the classical notion of event structure

[14], which we will use in the following sections to interpret temporal logic formulas about distributed

computations.

Definition 2.1 (Event Structure). An event structure E = 〈E, , <〉 is a countable set of events E together115

with a neighbouring relation ⊆ E ×E and a causality relation <⊆ E ×E, such that the transitive closure

of  forms the irreflexive partial order < and the set {ε′ ∈ E | ε′ < ε} is finite for each ε (i.e., < is locally

finite).1

Note that the transitive closure condition on  also implies that  is asymmetric and irreflexive.

Figure 1 provides a sample event structure showing how, given an event ε, these relations partition events120

1The definition of event structure is usually given just in terms of the causality relation. We have also included the

neighbouring relation since it is able to capture message passing details, which are needed to interpret most distributed

programs.
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into “causal past” (events from which information can potentially be carried to ε in a message), “causal

future” (those to which information from ε can be carried) and “concurrent” (events informationally isolated

from ε) subsets.

Since < is uniquely induced by , we omit it whenever convenient, or use its weak form ≤.2 Notice that

since < is required to be irreflexive,  has to be an acyclic relation, thus inducing a directed acyclic graph125

(DAG) structure on E. In fact, E can be thought of as a DAG with a “neighbouring” relation (modelling

message passing) and a “reachability” relation (modelling causal dependence).

Event structures completely abstract away from the information about which device or devices might be

performing an actual computation at each event, focussing on which data may be available at every compu-

tational step, no matter on what device the computation may be happening. Thus a series of computations130

on the same device (whether it is fixed or mobile) are to be modelled by a sequence of events ε1, . . . , εn such

that εi  εi+1, in which message passing is implemented simply by keeping data available on the device for

subsequent computations.

We do not make any assumptions on how a particular event structure come into being: each device

may for example have changed its spatial position through actuators or external factors (which may have135

been reflected in particular position- or accelerator-sensor readings on its timeline), derived values may have

evolved over time due to computation and communication, which could, but does not have to, have been

implemented through field calculus programs.

Any sequence of computation events and message exchanges between them can be represented as an

event structure, however, not all event structures are physically realisable by a distributed system following140

the computational model described at the beginning of this section. The subset of realisable event structures

is characterised by the following definition.

Definition 2.2 (LUIC Augmented Event Structure). An augmented event structure is a tuple E = 〈E, 

, <, d〉 such that 〈E, , <〉 is an event structure and d : E → D is a mapping from events to the devices

where they happened. We define:145

• next : E 7→ E as the partial function3 mapping an event ε to the unique event next(ε) such that

ε next(ε) and d(ε) = d(next(ε)), if such an event exists and is unique (i.e., next(ε) is the computation

performed immediately after ε on the same device d(ε)); and

• 99K⊆ E ×E as the relation such that ε 99K ε′ (ε implicitly precedes ε′) if and only if ε′  next(ε) and

ε′ 6 ε.150

We say that E is a LUIC augmented event structure if the following coherence constraints are satisfied:

2The weak form of a partial order is defined as x ≤ y iff x < y or x = y.
3With A 7→ B we denote the space of partial functions from A into B.
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• Linearity: if ε  εi for i = 1, 2 and d(ε) = d(ε1) = d(ε2), then ε1 = ε2 = next(ε) (i.e., every event ε

is a neighbour of at most another one on the same device);

• Uniqueness: if εi  ε for i = 1, 2 and d(ε1) = d(ε2), then ε1 = ε2 (i.e., neighbours of an event all

happened on different devices);155

• Impersistence: if ε  εi for i = 1, 2 and d(ε1) = d(ε2) = δ, then either ε2 = nextn(ε1) and

ε  nextk(ε1) for all k ≤ n, or the same happens swapping ε1 with ε2 (i.e., an event reaches a

contiguous set of events on a same device);

• Computation immediacy: the relation  ∪ 99K is acyclic on E (i.e., explicit causal dependencies

< are consistent with implicit time dependencies 99K).160

The first two constraints are necessary for defining the semantics of an aggregate program (denotational

semantics in [6, 15]). The third reflects that messages are not retrieved after they are first dropped (and

in particular, they are all dropped on device reboots). The last constraint reflects the assumption that

computation and communication are modelled as happening instantaneously. In this scenario, the explicit

causal dependencies imply additional time dependencies ε 99K ε′: if ε′ was able to reach next(ε) but not ε,165

the firing of ε′ must have happened after ε.

The event structure in Figure 1 satisfies the LUIC constraints with the represented device assignment.

Interpreting this structure in terms of physical devices and message passing, a physical device is instantiated

as a chain of events connected by  relations (representing evolution of state over time with the device

carrying state from one event to the next), and any  relation between devices represents information170

exchange from the tail neighbour to the head neighbour. As a matter of fact, this is a very flexible and

permissive model: there are no assumptions about synchronisation, shared identifiers or clocks, or even

regularity of events (though of course these things are not prohibited either).

Though rather abstract, the notion of (augmented) event structure is well-suited to ground a semantics

for space-time computations, intended as “elaborations of distributed data in a network of related events”:175

the causality ordering of events abstracts time, while the presence of concurrent events abstract spatial

dislocation. We refer to [6] for the definition of a denotational semantics of the field calculus based on

augmented event structures and for a formal account of its relation with the operational semantics of the

field calculus presented below.

Definition 2.3 (Space-Time Values). Let V be a denumerable universe of allowed computational values180

and E be a given LUIC augmented event structure. A space-time value Φ in E is an annotation of the graph

E with labels in V, that is, a tuple Φ = 〈E, f〉 with f : E → V, taking E as the set of events in E.

Space-time values model data spatially distributed across devices and temporally distributed across time:

in this way, time-evolving inputs, sensor information (e.g., time clock, temperature) and intermediate results
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of computations (which are naturally time-dependent) are easily represented, attaining maximal generality185

while ensuring composability of behaviour. These quantities can be manipulated by distributed computations

(i.e., consumed as inputs) and can also be created by them (i.e., produced as outputs). Thus, an aggregate

computer is a “collective” device manipulating such space-time values, modelled as a space-time function.

Definition 2.4 (Space-Time Function). Let V(E) = {〈E, f〉 | f : E → V} be the set of all possible space-

time values in a augmented event structure E. Then, an n-ary space-time function in E is a partial map190

f : V(E)n 7→ V(E).

The definition of a space-time function f requires every input and output space-time value to exist in

the same augmented event structure E. However, it does not specify how the output space-time values are

obtained from the inputs, and in fact not all space-time functions f are physically realisable by a program,

as f may violate either causality or Turing-computability (see [12] for further details).195

The specification of a space-time function can be either done at a low-level (i.e. through local interac-

tions), in order to define programming language constructs and general-purpose building blocks of reusable

behaviour, or at a high-level (i.e. by composition of other space-time functions with a global interpretation)

in order to design collective adaptive services and whole distributed applications—which ultimately work by

getting input fields from sensors and process them to produce output fields to actuators. However, in aggre-200

gate computing a distributed program P always has both the local and global interpretations, dually linked:

the global interpretation as a space-time function (obtained through a denotational semantics [6, 15]), and

the local interpretation as a procedure performed in a firing (defined by the operational semantics presented

below).

2.2. Syntax and Operational Semantics205

The syntax of the fragment of the field calculus that fits the needs of this paper is given in Figure 2—

we refer to [6, 16] for a complete presentation of the syntax, type system and operational semantics of

field calculus: in the following, we present only what is strictly needed for the remainder of this paper.

The overbar notation e is a shorthand for sequences of elements, and multiple overbars are intended to be

expanded together, e.g., e stands for the sequence of expressions e1, . . . , en and δ 7→ ` stand for the map210

δ1 7→ `1, . . . , δn 7→ `n (that associates device identifiers δ to local values `). The keyword share is the main

peculiar construct of the field calculus, responsible of both interaction and field dynamics; while def and if

correspond to the standard function definition and the branching expression constructs.

A program P consists of a list of function definitions F, each written as “def d(x1, . . . , xn) {e}”, followed

by a main expression e that is the one executed at each computation round (as well as the one representing215

the overall field computation, in the global viewpoint). An expression e can be:

• A variable x, used e.g. as formal parameter of functions.
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P ::= F e program

F ::= def d(x) {e} function declaration

e ::= x
∣∣ f(e)

∣∣ v ∣∣ if(e){e}{e}
∣∣ share(e){(x)=>e} expression

f ::= d
∣∣ b function name

v ::= `
∣∣ φ value

` ::= c(`) local value

φ ::= δ 7→ ` neighbouring field value

Figure 2: Syntax of the field calculus language.

• A value v, which can be of the following two kinds:

– A local value `, with structure c(`) or simply c when ` is empty (defined via data constructor c

and arguments `), can be, e.g., a Boolean (true or false), a number, a string, or a structured220

value (e.g., a pair pair(true,5)).

– A neighbouring (field) value φ that associates neighbour device identifiers δ to local values `, e.g.,

it could be the neighbouring value of distances to neighbours—note that neighbouring field values

are not part of the surface syntax, they are produced at runtime by evaluating expressions, as

described below.225

• A function call f(e), where f can be of two kinds: a user-declared function d (declared by the keyword

def, as illustrated above) or a built-in function b, such as a mathematical or logical operator, a data

structure operation, or a function returning the value of a sensor.

• A branching expression if(e1){e2}{e3}, used to split a field computation in two isolated sub-networks,

where/when e1 evaluates to true or false: the result is computation of e2 in the former area, and e3230

in the latter.

• A share expression e = share(e1){(x)=>e2}, which incorporates message passing and local state

evolution. The result of such expression is obtained by:

– Gathering the results ` obtained by neighbours δ for the whole expression e in their last rounds

into a neighbouring field value φ = δ 7→ `.235

– Such φ may also contain a value for the current device δ = δi for some i (if it is not the first

round it executes e). If not, the result ` of evaluating e1 is used as value for the current device δ

and incorporated into φ := δ 7→ `, δ 7→ `.

9



– Expression e2 is then evaluated by substituting φ to x, obtaining the overall value `′ for e.

– Value `′ is broadcast to neighbours, allowing them to use it in constructing their following neigh-240

bours’ observation φ as described above.

This construct is designed for structuring device interaction, but can also be used for evolving a state

locally, if the variable x appears in e2 within the built-in operator locHood(φ), which extracts the

value φ(δ) relative to the current device δ from a neighbouring field value φ. Note that the evaluation

by a device δ of a share-expression within a branch of some if(e1) expression, is affected only by the245

neighbours of δ that, during their last computation cycle, evaluated the same value for the guard e1,

since these are the only ones that computed that share expression thus sharing a value for it with δ.

Example 2.5. As an example illustrating the constructs of field calculus, first consider the expression:

share (false) { (old) => f || anyHood(old) }250

where f is some captured variable, and anyHood is a built-in operator collapsing a field φ = δ 7→ b of Boolean

values b into the disjunction of its constituent values
∨
b. When this expression is evaluated for the first

time, no messages are available from neighbours, hence the gathered φ is comprised only of the value of e1

for the current device: φ = δ 7→ false. As φ is substituted for old, we compute anyHood(φ) which is false,255

and finally f || false which is f. When this same expression if evaluated later on, φ may contain messages

from neighbours. If any one of them is true, anyHood(φ) will be true and so will the whole share expression.

If none of them is true, the value of the whole expression will be again equal to f. This distributed behaviour

can be understood as computing whether f has ever been true by gossiping whether this is the case across

neighbours. As such, this expression can be conveniently encapsulated into the following function definition:260

def gossip-ever(f) { share (false) { (old) => f || anyHood(old) } }

As discussed above, function gossip-ever takes a boolean field f and whenever it holds a true value in

a device, this gets propagated throughout the network by gossiping.265

The built-in functions and data constructors used in this paper are listed in Figure 3 together with their

types and formal interpretations—all of these operators are natively available in existing implementations

of the field calculus, including FCPP (used in the case studies presented in Section 4). In this paper,

we use types bool (Boolean values), field[bool] for neighbouring fields built from values of type bool,

pair[bool, bool] for pairs of Boolean values, and types (T) → T for functions. In the remainder of this270

paper, we also use [e1, e2] as short for pair(e1, e2).
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Constructors:

true, false = ()→ bool >, ⊥

Built-ins:

! = (bool)→ bool ¬

||, && = (bool, bool)→ bool ∨, ∧

<=, == = (bool, bool)→ bool ≤, =

pair = (bool, bool)→ pair[bool, bool] (p, q) 7→ [p, q]

fst, snd = pair[bool, bool]→ bool [p, q] 7→ p (resp. q)

locHood = (field[bool])→ bool φ 7→ φ(δ)

anyHood = (field[bool])→ bool φ 7→
∨
{φ(δ′) | δ′ ∈ dom(φ)}

allHood = (field[bool])→ bool φ 7→
∧
{φ(δ′) | δ′ ∈ dom(φ)}

Figure 3: Types and interpretations of the data constructors and built-in functions used throughout this paper. We use δ to

denote the current device of the current event, and notation dom(φ) to denote the domain δ of a function φ = δ 7→ `.

ψ ::= ⊥
∣∣ > ∣∣ q ∣∣ (¬ψ)

∣∣ (ψ ∧ ψ)
∣∣ (ψ ∨ ψ)

∣∣ (ψ ⇒ ψ)
∣∣ (ψ ⇔ ψ) logical op.∣∣ (Yψ)

∣∣ (AYψ)
∣∣ (EYψ)

∣∣ (ψ Sψ)
∣∣ (ψASψ)

∣∣ (ψESψ) temporal op.∣∣ (Pψ)
∣∣ (APψ)

∣∣ (EPψ)
∣∣ (Hψ)

∣∣ (AHψ)
∣∣ (EHψ)

Figure 4: Syntax of past-CTL.

3. Monitoring of Past-CTL Properties in Field Calculus

In this section, we introduce a temporal logic (past-CTL) designed for reasoning about properties of

(augmented) event structures, which can be translated in field calculus in order to allow efficient recursive

computation of the truth value of such formulas, assuming that every participant is evaluating the same275

property from their perspective with regard to any quantifiers. This logic will be based on atomic propositions

(observables in a particular state), which we assume to be backed by implicit Boolean space-time values.

This will allow us not to consider a mix of temporal operators and (boolean) field calculus expressions, but

rather completely encapsulate the latter in the abstract propositions.

Sect. 3.1 introduces the syntax of past-CTL, while Sect. 3.2 provides its formal interpretation on an280

augmented event structure. Sect. 3.3 introduces a translation of past-CTL into field calculus, coherently

with the formal interpretation, and Sect. 3.4 concludes discussing the applicability of past-CTL and its

limited future prediction capabilities.

3.1. Past-CTL Syntax

Figure 4 presents the past-CTL syntax, following the syntax of past-LTL operators in literature (see285

e.g. [17]) and extending them as CTL extends LTL. This logic is almost identical to traditional CTL, with
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two main differences:

• temporal operators are interpreted in the past (and thus their names are changed accordingly), along

paths of message exchanges in an event structure, composed of events that all happened in the past

(and are not alternative realities);290

• there are un-quantified versions of the operators along with quantified versions, which refer to the

linear past on a same device (and thus behave as past-LTL operators).

Formulas in past-CTL can be interpreted in augmented event structures (see Sect. 2.1), giving a definite

truth value for each event (and thus producing a space-time value), as we shall see in Sect. 3.2. The operators

have the following informal meaning:295

• similarly to CTL, path quantifiers A and E refer to the fact that the corresponding formula holds in

every (resp. some) path of messages, starting from an initial event of a device and ending in the current

event; whereas the absence of path quantifiers refers to the fact that the corresponding formula holds

in the special path of messages connecting the events happened in the current device;

• operator Y “yesterday” postulates that ψ held in the previous event on the considered path (on the300

same device for Y, on every other device for AY, in another device for EY);

• operator S “since” postulates that its second argument held in some past event in the considered path,

and its first argument has held since then;

• operator P “previously” postulates that ψ held in some past event on the considered path;

• operator H “historically” postulates that ψ held in every past event on the considered path.305

The list of operators presented above is redundant. A minimal set of operators is ¬,∨,Y,AY,S,AS,ES,

the others being expressible as:

• EYψ := ¬AY¬ψ;

• Pψ := >Sψ (similarly for AP, EP with AS, ES);

• Hψ := ¬P¬ψ (similarly for AH, EH with EP, AP).310

Example 3.1. (AH(r ⇒ (Y(¬r S q)))) is a valid past-CTL formula, with the informal meaning “it is always

and everywhere the case, that if r holds then in the previous round r was false since a past round where

q was true”. In the following we shall apply usual operator precedence conventions (assuming temporal

operators to bind tighter than logical ones), in order to write the same formula as AH(r ⇒ Y(¬r S q)).

Referring to the scenario on request/response matching over a logical layered network (described in315

the introduction), we can imagine r to correspond to a response and q to correspond to a request. In this
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context, the formula can be interpreted as “every response corresponds to a preceding request”: in particular,

r ⇒ Y(¬r S q) holds in an event with a recent trace of the kind r,¬r, . . . ,¬r, q.

3.2. Semantic Interpretation on Augmented Event Structures

Given a past-CTL formula ψ, an augmented event structure E, and a Boolean space-time value Φq in320

it for each propositional symbol q occurring in ψ, we can interpret ψ in E obtaining a space-time value

Φ = EJψK, such that EJψK(ε) is defined by causal recursion on ε as follows.

• EJ>K(ε) = >, and EJqK(ε) is Φq(ε);

• EJ¬ψK(ε) = ¬EJψK(ε) and EJψ1 ∨ ψ2K(ε) = EJψ1K(ε) ∨ EJψ2K(ε);

• EJYψK(ε) = EJψK(ε′) where ε′ is the event preceding ε on the same device (if it exists, EJYψK(ε) = ⊥325

otherwise);

• EJAYψK(ε) =
∧
ε′ ε EJψK(ε′) (i.e., ψ is true in each preceding event ε′);

• EJψ1 ASψ2K(ε) holds iff for every path ε1  . . .  εn = ε such that ε1 has no neighbours, EJψ2K(εi)

holds for some i and EJψ1K(εj) holds for each j = i+ 1 . . . n;

• EJψ1 ESψ2K(ε) holds iff it exists a path ε1  . . .  εn = ε such that EJψ2K(ε1) holds and EJψ1K(εi)330

holds for i = 2 . . . n;

• EJψ1 Sψ2K(ε) holds iff it exists a path ε1  . . .  εn = ε of events all occurring on the same device

δ = d(ε),4 such that EJψ2K(ε1) holds and EJψ1K(εi) holds for i = 2 . . . n.

Semantics of derived operators can be inferred accordingly.

Example 3.2. The semantics of formula ψ := AH(r ⇒ Y(¬r S q)) is:

EJψK(ε) =
∧
ε′≤ε

EJr ⇒ Y(¬r S q)K(ε′) =
∧
ε′≤ε

[Φr(ε
′)⇒ EJY(¬r S q)K(ε′)]

=
∧
ε′≤ε

Φr(ε
′)⇒

∨
ε′′ ε′

d(ε′′)=d(ε′)

EJ¬r S qK(ε′′)



=
∧
ε′≤ε

Φr(ε
′)⇒

∨
ε′′ ε′

d(ε′′)=d(ε′)

∨
ε1 ε2... εn=ε

′′

d(εi)=d(εj) ∀i,j

Φq(ε1) ∧
∧
i≥2

¬Φr(εi)



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def Y(f) { snd(share([false,false]){(old) => [f, locHood(fst(old))]}) }

def AY(f) { snd(share([true, true ]){(old) => [f, allHood(fst(old))]}) }

def EY(f) { snd(share([false,false]){(old) => [f, anyHood(fst(old))]}) }

def S(f1, f2) { share (false) {(old) => f2 || (f1 && locHood(old))} }

def AS(f1, f2) { share (false) {(old) => f2 || (f1 && allHood(old))} }

def ES(f1, f2) { share (false) {(old) => f2 || (f1 && anyHood(old))} }

def P(f) { share (false) {(old) => f || locHood(old)} }

def AP(f) { share (false) {(old) => f || allHood(old)} }

def EP(f) { share (false) {(old) => f || anyHood(old)} }

def H(f) { share (true) {(old) => f && locHood(old)} }

def AH(f) { share (true) {(old) => f && allHood(old)} }

def EH(f) { share (true) {(old) => f && anyHood(old)} }

Figure 5: Encoding of past-CTL operators as field calculus functions.

3.3. Automatic Translation in Field Calculus335

Past-CTL operators can be encoded as field calculus functions, taking the Boolean value of their sub-

formulas as arguments. Figure 5 shows a possible implementation for them, assuming that:

• fst, snd are operators extracting the first and second element of a pair;

• anyHood is as in Example 2.5;

• allHood is a built-in operator collapsing a field φ of Boolean values into the conjunction of its con-340

stituent values
∧
φ;

• locHood is a built-in operator collapsing a field φ into the value φ(δ) held by φ for the current device

δ.

Using these functions, past-CTL formulas can be straightforwardly translated into field calculus, as shown

in Figure 6. We translate atomic propositions q into built-in function calls getting their value from some345

external environment. We translate logical operators into their corresponding built-ins, assuming that

false < true, as in common programming languages such as C/C++ or Python. Temporal operators are

translated by calling the corresponding functions.

Example 3.3. The translation of formula AH(r ⇒ Y(¬r S q)) is AH(r <= Y(S(!r, q))).

4We recall that d(ε), according to the definition of augmented event structure, corresponds to the device where ε happened.
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J>K = true Jψ1 ∨ ψ2K = Jψ1K || Jψ2K

J⊥K = false Jψ1 ∧ ψ2K = Jψ1K && Jψ2K

JqK = q() Jψ1 ⇒ ψ2K = Jψ1K <= Jψ2K

J¬ψK = !JψK Jψ1 ⇔ ψ2K = Jψ1K == Jψ2K

JYψK = Y(JψK) Jψ1Sψ2K = S(Jψ1K, Jψ2K)

JAYψK = AY(JψK) Jψ1ASψ2K = AS(Jψ1K, Jψ2K)

JEYψK = EY(JψK) Jψ1ESψ2K = ES(Jψ1K, Jψ2K)

JPψK = P(JψK) JHψK = H(JψK)

JAPψK = AP(JψK) JAHψK = AH(JψK)

JEPψK = EP(JψK) JEHψK = EH(JψK)

Figure 6: Straightforward compositional translation of past-CTL into field calculus.

We recall that the field calculus programs obtained from past-CTL formulas can be straightforwardly350

encoded in one of the DSLs (FCPP, Protelis and ScaFi, mentioned in Sect. 1) that implement its

programming model and then deployed and executed on a network of devices.

It is worth observing that the translation is fully compositional, and resembles the syntax of a non-

distributed monitor, even though it is executed in a fully distributed manner thanks to the peculiar field

calculus execution model and semantics. Compositionality also allows to easily handle extensions of the logic,355

as additional operators would just translate into additional rows in the translation table. Furthermore, com-

putational complexity matches that of the best known monitors for past-LTL formulas in a non-distributed

setting [8].

Theorem 3.4 (From past-CTL to field calculus). The translation in Figure 6 is correct, computes in

space/time which is linear in the size of the formula (in each event), and exchanges 1 bit for every S,P,H360

operator and 2 bits for every Y operator.5

Proof. Let ψ be composed from sub-formulas ψ1, . . . , ψn (0 ≤ n ≤ 2) and proceed by structural induction on

formulas. The translation of ψ consists of a function call, where the body computes in constant space/time

from the argument values, that are obtained from the translations of ψi which compute in linear space/time

by inductive hypothesis. It follows that the overall space/time required is also linear. Furthermore, if ψ is365

not built from a temporal operator, its direct translation does not involve message-exchanging constructs. If

it is built from a S,P,H operator, it consists of a single message-exchanging construct (here: share) sharing

a single Boolean value (1 bit). If it is built from a Y operator, it also consists of a single message-exchanging

construct, which however shares a pair of two Boolean values (2 bits).

5Optimizations in order to exchange 1 bit for every Y operator are possible, but require additional field calculus constructs,

thus we decided to omit them for presentation simplicity.
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If ψ is built from a traditional logic operator, correctness is trivial. If ψ = Yψ1, the translation of ψ370

calls a function, which takes the second element of a pair consisting of the current value EJψ1K(ε) of ψ1 (by

inductive hypothesis) together with the value the first element had in the previous event on the same device,

that is the previous value of ψ1 on the same device. If ψ = AYψ1, the translation of ψ is taking the second

element of a pair which consists of EJψ1K(ε) together with the conjunction of the values EJψ1K(ε′) the first

element had in previous events. A similar argument applies for EY.375

If ψ = ψ1 Sψ2 and EJψ2K(ε) is true, then EJψK(ε) is true and so is the translation. If it is not, then

ψ1 has to be true on previous events on the same device, since a preceding event where ψ2 held. This is

equivalent to asking that ψ1 holds in the current event, and ψ held on the preceding event, which in field

calculus corresponds to f1 && locHood(old). Similar arguments apply for AS,ES.

Remark 3.5. Theorem 3.4 shows that the field calculus translation provided is asymptotically optimal, since380

some past-CTL formulas cannot be computed with sub-linear time or space, nor with message size lower

than 1 bit per temporal connective. Such a family of formulas is, for example,
∧
i∈N EP qi where qi are

independent atomic propositions. A computation in sub-linear time cannot possibly check every qi and thus

cannot be correct. Furthermore, it is necessary for every event to message whether each qi has ever become

true, otherwise some past information would be lost making it impossible to reconstruct the correct answer.385

3.4. Practical Use of Persistent Past-CTL Properties

Past-CTL logic states properties about the past of a given event in space and time. Like traditional

semantics of CTL, our semantics is defined for a state (event) by checking derived properties on preceding

states and combining them into a verdict for that state. The decision to check a logical property for one

state, some states or all states of an event structure is up to the end-user. However, as we are considering an390

event structure that is evolving at runtime and hence cannot make this choice explicitly, we re-interpret a

formula as stating properties about what we know so far of the future of a system: our mechanism implicitly

checks a given property on every state, conceptually “restarting” evaluation of the overall (initial) formula

from each new state. We say that a formula is persistent in the sense that it is checked again and again,

based on potentially new information.395

A main concern for runtime verification are safety or liveness properties (“something bad never happens”

/ “something good eventually happens”), and through our choice of a past-time logics we have cemented our

viewpoint into the past, clearly defining on which observations we want to base our evaluation. However,

from the perspective of an agent starting up, taking such a property and (only) evaluating it in the initial

state (like the root of a Kripke structure) where it does not have a past yet or did not yet receive any400

information from neighbours clearly does not make sense. Instead, we want to know the verdict for every

state that an agent goes through.
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Some of the properties will be monotonic, in the sense that an intermediate verdict fixes all future

verdicts, either through quantification across neighbours (A/E) or over the past (P/H).

For instance, assume that we are interested in whether a certain property ϕ is ever true in any point405

of space and time. In an event infinitely far in the future, this could be checked through EPϕ. The same

formula can be interpreted in a “present” event as computing whether ϕ has already become true (> result),

or not yet (⊥ result) based on the limited knowledge so far. Similarly, if we want to check whether a certain

assumption ϕ is violated, we could monitor it through AHϕ, interpreting its result on events as either good

so far (>) or violation detected (⊥).410

The predictive capabilities of past-CTL formulas are mostly restricted to the interpretation of their

outermost connective, and are thus more limited compared to those of a full-fledged future logic, which is

sometimes able to perform inferences in order to detect events ahead of time. However, that increase in

predictive capability comes with a higher computational cost; and in many practical scenarios the improve-

ment is not large enough (if at all present) to justify the additional costs. In the following section, we will415

inspect some such examples.

3.5. Integration of Field Calculus Monitors and External Applications

Thus far, we have discussed how to express relevant properties of a distributed system in past-CTL and

how to generate distributed Field Calculus programs for monitoring such properties. However, when the

system to be monitored is itself made of software, or is wrapped in a software system, it becomes fundamental420

to integrate it with the generated monitors. In this section we briefly consider some lines for realizing such

integration.

Network API

Edge/IoT 
application

Adapter

FCPP

FC specs

Sensors

Figure 7: Architecture / Integration

Let us first consider a C/C++ distributed application. Fig. 7 gives a high-level view of how formulas
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in FC are checked by the FCPP runtime in parallel to a running application. The FCPP runtime needs,

on one hand, to access to the sensor data wrapped in the application, and on the other hand an adapter425

to access the network, either in the form of physical access to e.g. Ethernet, 5G, . . ., or a software defined

network.

At the source code level, first of all the application must import the FCPP library and integrate the

generated formulas (as we have done for the sample applications described in Section 4). Notice that no

knowledge on aggregate computing is required: only an informal understanding of temporal logics, so that430

the programmer can express the formulas he needs to monitor (everything else is fully automated). The

network adapter code is provided by implementing a transceiver interface for the underlying platform, i.e.

os::uid (the unique id of the devices on the network) and os::transceiver (functions to send and receive

data on the network). Then, the monitor code can be run as a net object in its separate thread as in the

following.435

#include "lib/fcpp.hpp"

namespace fcpp {

440

namespace os {

device_t uid() { ... } // unique identifier

struct transceiver { ... }; // os interface for send-receive of packets

}

445

struct P {}; ... // propositional variables

struct M {}; ... // monitored formulas

MAIN() {

bool p = node.storage(P{}); ... // access propositions450

bool m = ... // compute monitors (past-CTL formulas)

node.storage(M{}) = m; .. // write monitors’ results

}

using net_type = component::monitor<455

component::tags::program<main>, component::tags::exports<bool>,

component::tags::tuple_store<P, bool ... M, bool ...>

>::net;

}460

int main() {

using namespace fcpp;

net_type network{common::make_tagged_tuple<>()};

std::thread monitor_thread(network.run);465

... // main application code

}

When the main application code needs to provide sensor data to the monitor, it can access the storage
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of the current monitor node to set the current values of the propositional variables that act as inputs in470

the property being monitored, and then release a new round of communication among the monitor nodes.

Similarly, to access the current value of the monitored property, it is sufficient to read it from the node

storage:

typename net_type::lock_type l;475

auto& node = net.node_at(os::uid(), l);

node.storage(P{}) = ...

node.trigger();

m = node.storage(M{})

... // react to violations of the property480

The integration of JVM-based applications (e.g., Java, Scala, Kotlin) with the past-CTL monitors is

conceptually similar to the one just described for C++, except that the Scafi library should be used in place

of FCPP.

Finally, a software system based on any technology can be integrated with FCPP monitors by writing485

an ad-hoc, small middleware C++ system that, on one hand, wraps the Field Calculus monitors and, on

the other hand, exchanges messages with the monitored system exploiting inter-process communication

mechanisms such as message queues, pipes, or even files.

4. Sample Applications

In this section, we present sample applications of past-CTL logic to the monitoring of distributed systems490

coming from various settings: service discovery (Sect. 4.1), swarm control (Sect. 4.2), disaster management

(Sect. 4.3), and smart home scenarios (Sect. 4.4). All the simulations have been performed within the

FCPP language and simulator [9] and are available online.6 In every scenario, we assumed the computation

frequency of devices to be about 1Hz (with 10% standard deviation), and plotted the percentage of false

values for monitored formulas across devices in the network over time. The scenarios involve both static495

sensors or logical devices, units on humans moving at a walking speed of 1.4m/s [18], and drones flying with

a top speed of 15m/s (54km/h), which is an average limit for commercial UAVs.

4.1. Service Discovery

We consider a network with three types of nodes: cloud nodes located on a small central circle; fog nodes

located on an inner circle at some distance from the cloud; and edge nodes located on an outer circle further500

away from the cloud. Proposition rqi is true iff the current node has just requested a service of type i, and

proposition rsi is true iff the current node has just received a response for its type-i request.

Consider the following global properties, where N is the set of possible request types:

6https://github.com/Harniver/past-ctl-monitoring
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1. timeout: every request of type i should be followed by a suitable response (i.e., of type i) from some

other node within n time instants. In a negative form, we can express it as:

¬EP(no reply(rqi, rsi, n))

where no reply is defined as:7

no reply(rq, rs, n) =

rq if n = 0

¬rs ∧Y no reply(rq, rs, n− 1) otherwise.

Note that we are actually defining as many properties as the number of request types N .

2. spurious: a response of any type i ∈ N should be received only if a corresponding request was issued

at some previous time instant. In formulas:∧
i∈N

AH(rsi ⇒ Y(¬rsi S rqi))

This formula has already been considered in Examples 3.1 - 3.3. Notice that here we consider a single505

formula for all the types i ∈ N (external ∧ ranging on i ∈ N).

3. double req: nodes issue requests one at a time, i.e., they wait for a response before issuing another

request. Again in a negative form, and considering a single formula for all i ∈ N , we can express it as:∧
i∈N
¬EP(Y((¬rsi S rqi) ∧ rqi))

We evaluated this scenario in a logical environment, depicted in a 2D plane for presentation purposes

(see Figure 8 for a snapshot), where network nodes are as follows: 5 central cloud nodes, all connected to

each other; 20 intermediate fog nodes, each connected with 2 or 3 cloud nodes; and 50 edge nodes each

connected with 3 or 4 fog nodes. Note that neither fog nodes, nor edge nodes can communicate with their510

peers. The network topology of cloud and fog nodes is static, while every edge node appears and disappears

at a random time after the beginning of the simulation.

Nodes move back and forth between two states: computing (white nodes) and pending request (coloured

nodes). The transition from computing to pending request happens when the node sends a request rqi; the

opposite transition happens when the node receives a response rsi.515

The type of the current request is represented by the colour of the node: yellow, green, red, and fuchsia

for types 1 to 4 (white nodes do not have a pending request). As the node spends time waiting for a response,

its sides become darker. The simulator has different (average) response times for the different request types,

with the time for type 1 being the highest, and the others progressively lower. As expected, the monitors of

7It should be clear that the recursive definition of no reply is easily expressed in past-CTL once n has been fixed.
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Figure 8: Screenshot of a simulated network. Coloured nodes have a pending request (colour based on request type, darker

sides for older requests), square nodes if the monitor is failed.

the timeout properties detect a timeout for type 1 earlier than for types 2 and 3, while no timeout for type520

4 is detected in the simulation horizon; this is illustrated by Figure 9, which plots, for each request type,

the rate of nodes that know that the timeout property has been violated. Note that, in Figure 8, the shape

of nodes that know about a timeout violation changes from sphere to cube.

In order to test the monitoring of the spurious property above, we have injected the possibility for a

node to receive a reply not matching the type of its last request. In particular, the solid black line in the525

graph of Figure 9 shows that the violation of the spurious property is quickly propagated to all the nodes

after time 40.

Similarly, for testing the monitoring of the double req property, we have injected the possibility for a

node to occasionally issue a second request before receiving a response. The dashed orange line in the graph

of Figure 9 shows that the violation of the double req property is quickly propagated to all the nodes at a530

time close to 100.

4.2. Drones Recognition

Suppose that N areas need to be handled by drones in some way (perform a recognition, spray substances,

and similar). Proposition qi for i = 1 . . . N is true iff the current drone is now handling area i. The properties

below are formulated in terms of those observables, and how drones actually move or communicate are535

external factors for the purpose of our example. The existential quantifiers also neatly encode that at the
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Figure 9: Monitors evolution in time.

same point in time, different drones may have different views of the global system. Consider the properties:

• Every area gets eventually handled by a drone (true means success, false means “not yet”):
∧
i∈N EP qi.

Observe the requirements that this property imposes on the underlying event structure: if e.g. we

would like to use this property as a criterion for distributed termination, we have to make sure that540

we implement a system where eventually every drone will somehow see the past of every other drone.

• No drone is handling an area that it knows to be already handled (true means “ok so far”, false means

failure). In other words, it never happens that a drone is handling an area that it knows to be already

handled:
∧
i∈N AH¬(qi ∧ EY(EP qi)).

The first property can be understood as liveness, while the second as safety.545

We evaluated this scenario in an open 3D environment 1000m × 1000m × 100m large (see Figure 10

(left) for a snapshot), subdivided into four square areas each with a communication tower at its middle

(brown/red cubes). 50 drones swept the area to perform random tasks (green cubes are drones heading to

a destination, yellow ones are handling their goal), interleaved by recharging (blue) and waiting for tasks

(grey) periods. We assumed that drones and towers followed an edge-like connection topology: towers were550

all connected with each other, and drones were connected to the one or two towers that were close enough

to them.

The four towers issued “handling”-requests at a random time between 0s and 200s, instructing the closest

waiting drones to reach them. Shortly after having issued the request, every tower’s request was served and

the corresponding handling monitor (liveness) quickly started becoming true in every node in the network555

(see Figure 10 (right), showing the evolution in time of the percentage of nodes evaluating the monitors to
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Figure 10: Screenshot of a simulated drone area (bottom), monitors evolution in time (top). Brown cubes are communication

towers (red if asking service), others are drones (green-moving, yellow-handling, blue-recharging, grey-idling).

⊥). Due to a fault in the algorithm, a second drone reached and handled tower 2 at t = 80, causing the

corresponding safety monitor to quickly become false in every device of the network. The safety monitors

of the other three areas remained true for the whole simulation time, since no other re-servicing occurred.

Notice that an individual breakdown of the propositions composing the monitor through boolean oper-560

ators allows for an easier understanding of the precise behaviour of the system. This is particularly true if

a proposition is composed from a liveness and safety property together: the conjunction of such properties

may be continuously false, and we could not tell apart situations in which liveness has not been reached yet,

from situations in which liveness has been reached only while breaking safety requirements.
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4.3. Crowd Safety565

Previous works [5] present field-calculus solutions to the problem of safe crowd dispersal for disaster

management. Armed with our new formalism, we can now specify the property that every agent does not

enter back into the unsafe area after having evacuated from the unsafe area. The all-quantification here is

implicit, as we assume that every agent is evaluating the same property, and only considering its own past.

For this example, we assume a sensor (or field-calculus function) safe in every agent, and an indicator for

whether an evacuation alert has been given, and the device should suggest to move from an unsafe area to

safety. We specify that whenever in safety during an alert, we do not regress. As such, we do not use any

branching-time features, and we can specify the property as:

ϕ1 := H(Y(safe ∧ alert)→ (safe ∨ ¬alert)).

It is easy to see how the truth value of this property may evolve. Starting out in an unsafe location, the

overall verdict remains true even once safety is reached. It is also obvious that the verdict may switch to

false depending on external factors, such as the agent moving or the unsafe area encroaching the agent.

In a next step, we could then lift that monitor to an observer which specifies that everyone in the past

cone of events has reached safety without intermittently getting into danger again. We achieve this by

switching out the linear-time past operator H to the branching-operator AH:

ϕ2 := AH(Y(safe ∧ alert)→ (safe ∨ ¬alert)).

Note that the verdict true then may become invalidated for agents that learn from/come in contact with

agents which themselves observed violations of this property over time.570

We evaluated this scenario in a simulated 500m× 500m area (see Figure 11 (left) for a screenshot). We

randomly choose 5 potential incident points (black cubes, that switch to red during an incident) and 100

people randomly walking through the area; the colour of the cubes representing people varies from green

to blue (when they are safe) and from red to yellow (when they are not safe), depending on the distance

from an incident. A person is safe when she is more than 50m from the incident. The distance from the575

incident is not directly sensed by the people, but is computed through a distributed Field Calculus function

that only assumes knowledge of the distance of a person from her neighbours. Units on people were able

to communicate within a 50m range, while incident points had an higher communication range (100m with

people, 200m among them).

During the simulation, an incident happens in each of the 5 points, at a random time from 0 to 300s,580

and lasts for a random duration from 0 to 100s. Note that in this way incidents can, and in fact often do

in practice, overlap with each other. Finally, an alert is perceived by people when they are within a 100m

radius from an incident. The reaction of a person being unsafe is to immediately start moving towards her

neighbour that is further away from the incident, until she is at least 10m outside the unsafe area, i.e., 60m
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Figure 11: Screenshot of a simulated incident area (bottom), monitors evolution in time (top). Incident points are black cubes

(red during incidents), peoples’ colour varies from green to blue (if safe) and from red to yellow (if unsafe) depending on

distance. Cubes are larger where the monitor has failed.

from the incident. Then, she goes back to random walk, which is an important factor for making it possible585

to violate local safety.

After the first incident at about 60s, few people violate formula ϕ1 of local safety. However, such a

violation quickly spreads to most other people so that the indicator of global safety failure almost immediately

reaches 100% (Figure 11 (right), blue dashed line); this means that most or all of the people know that

someone has behaved unsafely, i.e., entered the unsafe area after being in a safe place. The local safety failure590

indicator only increases when, during the five incidents, specific persons behave unsafely, and involves less

than 10% of the people by the end of the simulation. Note that the introduction of the all-paths quantifier

in this example creates the impression of a global observer, yet we have to recall that all preceding branches

are derived from the event structure, and not every agent may be in contact with everyone else.
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4.4. Smart Home595

Finally, we consider a smart home scenario borrowed from a preliminary work on using field calculus for

runtime verification [3, Sect. 4.2], and hypothetically situated in a large building where multiple sensors are

connected through a multi-hop network. Assume that we want to check that an electronic system (e.g. a

room light) is active whenever some people have been present in the immediate vicinity in the close past.8

Consider the predicates:600

• s is true if the current device is responsible of an electronic system;

• a is true if s is true and the system is active;

• p is true if the current device is detecting the presence of people.

The required property may be expressed as AHφs where φs = s→ (p↔ a), however, that would not

accommodate for any (even small) response delay for the system. If we want to ensure that a is true iff p is

true now and in the previous round (resp. with false), then we can change the property to AHφw where:

φw = s→ (p ∧Y p→ a) ∧ (¬p ∧Y¬p→ ¬a).

We evaluated this scenario in a simulated building floor comprising eight 6m × 6m rooms, each with a

central light, around a 24m×3m corridor with four lights (see Figure 12 (left) for a screenshot). We populated605

the building with 12 people (pink cubes), randomly walking to a different room through the corridor after

stops of 40s in average (according to an exponential distribution), and assumed a short connection range

of 3m modelling a low-power Bluetooth system. Lights turned on (yellow) or off (grey) according to the

presence of people within the connection range (predicate p), with a 5% chance of a delayed reaction during

an on/off switch, and a lower 0.3% spurious reaction during rounds in which p was steady. Due to these610

error probabilities, the local strong (φs) and weak (φw) monitors became occasionally false on individual

lights during the simulated time (small spikes in the graph). After the first error signalled by φs at about

1s in the simulation, the global monitor AHφs started becoming false; with the spreading of its value across

the network being limited by the low connectivity of the network. A similar situation happened with φw

and AHφw at about 27s. The screenshot represents an intermediate state, where some devices are aware of615

the failure (larger cubes) while other still are not yet.

5. Related Work

5.1. Aggregate Computing

The problem of finding suitable programming models for ensemble of devices has been the subject of

intensive research—see e.g. the surveys [19, 15]): works as TOTA [20] and Hood [21] provide abstractions620

8In [3], the property considered a single light active whenever people were present somewhere in the building.

26



time

fa
il

0 10 20 30 40 50 60 70 80 90 100 110
0

0.2

0.4

0.6

0.8

1

local strong monitor local weak monitor
global strong monitor global weak monitor

Figure 12: Screenshot of a simulated building floor (bottom), monitors evolution in time (top). Lights are higher cubes (grey

if off, yellow if on), lower cubes are people (larger cubes where the monitor has failed).

over the single device to facilitate construction of macro-level systems; GPL [22] and others are used to

express spatial and geometric patterns; Regiment [23] is an information system used to stream and summarise

information over space-time regions; while MGS [24] and the fixpoint approach in [25] provide general

purpose space-time computing models. Aggregate computing and the field calculus have then been developed

as a generalisation of the above approaches, with the goal of defining a programming model with sufficient625

expressiveness to describe complex distributed processes by a functional-oriented compositional model, whose

semantics is defined in terms of gossip-like computational processes.

Hence, aggregate computing [5] aims at supporting reusability and composability of collective adaptive

behaviour as inherent properties. Following the inspiration of “fields” of physics (e.g., gravitational fields),

this is achieved by the notion of computational field (simply called field) [20], defined as a global data630

structure mapping devices of the distributed systems to computational values. Computing with fields means

deriving in a computable way an output field from a set of input fields. This can be done at a low-level, to

defined programming language constructs or general-purpose building blocks or reusable behaviour, or at
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a high-level to design collective adaptive services or whole distributed applications—which ultimately work

by getting input fields from sensors and process them to produce output fields to actuators.635

The field calculus [6] is a minimal functional language that identifies basic constructs to manipulate fields,

and whose operational semantics can act as blueprint for developing toolchains to design and deploy systems

of possibly myriad devices interacting via proximity-based broadcasts—see e.g. the FCPP, Protelis and

ScaFi DSLs. The field calculus have been used to formally prove distributed systems properties of resiliency

to environment changes [26, 27, 13] and to device distribution [28], which makes it particular suitable for640

distributed runtime verification.

5.2. Distributed Runtime Verification

Runtime verification is a lightweight verification technique concerned with observing the execution of a

system with respect to a specification [1]. Specifications are generally trace- or stream-based, with events

that are mapped to atomic propositions in the underlying logic of the specification language. Popular645

specification languages include variations on the Linear Time Logic (LTL), and regular expressions, which

can be effectively checked through finite automata constructions. Events may be generated through state

changes or execution flow, such as method calls.

In distributed runtime verification, this concept is lifted to distributed systems, to meet applications in

areas like: (i) observing distributed computations and expressiveness (specifications over the distributed650

systems), (ii) analysis decomposition (coupled composition of system- and monitoring components), (iii)

exploiting parallelism (in the evaluation of monitors), (iv) fault tolerance and (v) efficiency gains (by opti-

mising communication) [2].

Naturally, such lifting also affects the specification language. Bauer and Falcone [29] show a decentralised

monitoring approach where disjoint atomic propositions in a global LTL property are monitored without a655

central observer in their respective components. Communication overhead is shown to be lower than the

number of messages that would need to be sent to a central observer.

Sen et al. introduce PT-DTL [30] to specify distributed properties in a past time temporal logic. Sub-

formulas in a specification are explicitly annotated with the node (or process) where the subformula should

be evaluated. Communication of results of subcomputation is handled by message passing. A future time660

logic with explicit annotations (and a three-valued logic) based on the same idea has been presented in [31].

The above approaches assume a total communication topology, i.e., each node can send messages to

everyone in the system, although causally unrelated messages may arrive in arbitrary order. Given the

dynamic nature of IoT and edge scenarios, such a fixed distribution of verification sub-tasks is not possible

in our approach, and the hierarchical structure does not further our aim of making each node an instance665

of the monitor.
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As any other software engineering technique, also runtime verification in general has been applied in

some form to IoT and edge computing. Tsigkanos et al. [32] conduct a case-study in monitoring edge-based

systems with temporal MFOTL specification in a similar explicit hierarchical setup. Unlike our approach,

their network configuration is static and each tier evaluates its own specification, and specifications explicitly670

refer to subformulas on other tiers. The latter distinction is only minor: our single field calculus specification

would guard subformulas for the tier they apply to, and at the same time solve the problem of keeping

signatures across formulas in sync.

Inçki et al. [33] specify expected behaviour in an IoT system through message sequence charts and then

derive a monitor over traces that is centrally checked with a complex event processing tool. Unlike our675

solution, their approach relies on having network sniffers observing messages in each node and sending

events to the central monitor.

We position ourselves in the following in the design space of distributed and decentralised runtime ver-

ification (see Francalanza et al. [2]): we assume that every agent, as a constituent of the whole system,

executes independently and occasionally synchronises or communicates with other agents via the underlying680

communication platform. Going with the analogy of taking an agent as a process in Francalanza’s terminol-

ogy, we consider any two processes as remote to each other. A local trace of events corresponds to a sequence

of sets of values for observables, as defined through the sensors of an agent, or derived values from those.

Since agents may appear or disappear over time from the overall system, traces from different processes

are not aligned in time in the sense that for a particular index/position in each trace, these events did not685

necessarily happen at the same time. Although the event structure may give the impression of a post-hoc

view, the evaluation strategy that we have proposed is decidedly online: the field calculus expressions that

evaluate branching expressions rely on communication with neighbouring agents (at that point in time).

Monitoring is performed by computation entities, identified by monitors M , that check properties of the

system under analysis by analysing the traces. Similar to processes each monitor is hosted at a given location690

and may communicate with other monitors. As every agents is executing the same field calculus program,

and hence the same monitor, our proposed approach brings a conceptual simplification. Namely, despite the

distributed setting it resembles more the traditional setup of runtime verification: from the perspective of

the programmer there is a single monitor and a single trace is evaluated—though this monitor is deployed

and executed on a network of distributed devices and this trace contain events from different devices.695

Moreover, being based on the field calculus, our approach is intrinsically resilient—cf. the discussion at

the end of Sect. 5.1. Namely, it self-adapts to changes in the network topology. So, it automatically handles

failures, which usually make distributed systems harder to manage: a non-responsive node (through a crash

or through intermittently unavailable communication) only affects others through its lack in participation

in evaluation of field expressions, which may affect the verdicts computed by its neighbours. We do not700

explicitly consider faulty sensors or message corruption, but leave this to integrity measures e.g. on the
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communication layer.

The absence of a global verdict, and instead having a per-node instantiation also puts us at odds with

respect to another recent classification effort of distributed and decentralised runtime verification[34, 35].

Such work considers challenges and approaches to monitor decomposition, placement and control (which705

does not apply here), and fault tolerance, for which we have made the case in the introduction that our

approach presents a natural solution to. Many of the known issues in distributed runtime verification do not

arise in our approach, due to the conceptual restriction of having to run the same monitor on every node.

6. Conclusion and Future Work

We provided a compositional translation of properties expressed in past-CTL logic into field calculus710

programs for monitoring them, proving that the translated monitor runs using local memory, message size

and computation time that are all linear in the size of the formula (1 bit per temporal connective), matching

the efficiency of previous result for past-LTL in a non-distributed setting [8]. We then provided sample

applications from different scenarios of edge computing (disaster management, swarm control, smart home),

validating the monitor effectiveness by simulation under faults and changes, and arguing that past-CTL715

logic is reasonably expressive for properties of distributed systems.

In future work, we plan to extend this evaluation to scenarios based on real GPS traces, possibly ex-

panding existing case studies in built environments [36], also considering the use of past-CTL properties in

conjunction with runtime reflection [1], where a property is annotated with a desired action (such as acti-

vation of an actuator) when it is activated, in order to manipulate the behaviour of agents for controlling720

the overall system evolution.

Furthermore, parallel studies have been investigating the usage of field calculus for monitoring SLCS

spatial logic formulas [37]. Despite aiming towards a similar purpose, this work shares very little with the

present one: the two logics have no modal operators in common, and the models for interpreting them are

incompatible. While past-CTL formulas are interpreted in event structures, SLCS formulas are interpreted725

in graphs (sets of nodes and vertices) without a temporal component, which are intended to represent the

status of an evolving network in a particular instant. Even though time is abstracted away in the model of

SLCS formulas, it still plays an implicit role, since the computation of the value of such formulas requires

some time to converge and adjust. Expanding on a recent preliminary discussion on this topic [38], in future

work we plan to formalise the impact of time on SLCS formulas, giving an interpretation of them in event730

structures and thus allowing its merger with past-CTL, obtaining a full-fledged spatio-temporal logic.

Finally, we plan to investigate whether a distributed continuation operator could be devised to allow the

monitoring of a future LTL-like logic in field calculus, in order to address settings where stronger prediction

capabilities are needed and resources are not tightly constrained.
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