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Abstract

Selenium WebDriver is a library that allows controlling web browsers (e.g.,

Chrome, Firefox, etc.) programmatically. It provides a cross-browser program-

ming interface in several languages used primarily to implement end-to-end tests

for web applications. JUnit is a popular unit testing framework for Java. Its

latest version (i.e., JUnit 5) provides a programming and extension model called

Jupiter. This paper presents Selenium-Jupiter, an open-source JUnit 5 exten-

sion for Selenium WebDriver. Selenium-Jupiter aims to ease the development of

Selenium WebDriver tests thanks to an automated driver management process

implemented in conjunction with the Jupiter parameter resolution mechanism.

Moreover, Selenium-Jupiter provides seamless integration with Docker, allow-

ing the use of different web browsers in Docker containers out of the box. This

feature enables cross-browser testing, load testing, and troubleshooting (e.g.,

configurable session recordings). This paper presents an example case in which

Selenium-Jupiter is used to evaluate the performance of video conferencing sys-

tems based on WebRTC. This example case shows that Selenium-Jupiter can

build and maintain the required infrastructure for complex tests effortlessly.
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Kloos), calario@it.uc3m.es (Carlos Alario-Hoyos), munozm@it.uc3m.es (Mario
Munoz-Organero)

Preprint submitted to Journal of Systems and Software February 5, 2024

ar
X

iv
:2

40
2.

01
48

0v
1 

 [
cs

.O
H

] 
 1

 F
eb

 2
02

4



Selenium WebDriver, JUnit, Docker

1. Introduction

Selenium WebDriver1 is a library that allows controlling programmatically

web browsers (such as Chrome, Firefox, Edge, or Opera). This library can be

used for multiple purposes related to browser automation (e.g., web scraping).

Nevertheless, it is primarily employed to test web applications and is considered

the de facto standard framework for end-to-end web testing, supporting a solid

automated testing industry worldwide [1].

SeleniumWebDriver allows controlling web browsers using different language

bindings such as Java, JavaScript, Python, C#, or Ruby. In end-to-end tests,

the Selenium WebDriver Application Programming Interface (API) calls are

typically embedded in test cases using a unit testing framework. A recent study

of the Selenium ecosystem identifies Java as the preferred language binding

and JUnit as the most frequently used testing framework for developing end-

to-end tests with Selenium WebDriver [2]. JUnit is one of the most popular

testing frameworks for the Java Virtual Machine (JVM), and one of the most

influential in software engineering [3]. JUnit 52 is the next generation of JUnit,

first released in September 2017. JUnit 5 provides a brand-new programming

and extension model called Jupiter [4].

This paper presents Selenium-Jupiter3, an open-source extension of JUnit 5

for Selenium WebDriver. Selenium-Jupiter aims to ease the development of end-

to-end tests on top of the Jupiter programming model. Selenium-Jupiter pro-

vides automated mechanisms to manage Selenium drivers (e.g., chromedriver,

geckodriver) transparently for developers. Besides, it allows using web browsers

in Docker containers effortlessly.

The remainder of this paper is structured as follows. Section 2 provides

1https://www.selenium.dev/
2https://junit.org/junit5/
3https://github.com/bonigarcia/selenium-jupiter
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a summary of the technological background supporting this work. Section 3

presents the motivation and objectives of Selenium-Jupiter. Then, Sections

4 and 5 describe its design and relevant features, respectively. To validate the

proposed approach, Section 6 presents the design and results of an example case

in which Selenium-Jupiter is used to carry out end-to-end performance testing

of videoconferencing web applications (WebRTC). Next, Section 7 discusses the

main outcomes and limitations of this work. Finally, Section 8 summarizes the

main conclusions and possible future work of this piece of research.

2. Background

2.1. Selenium WebDriver

Selenium is an open-source project devoted to providing browser automa-

tion. It was first released by Jason Huggins and Paul Hammant in 2004. The

first version of Selenium (known nowadays as Selenium Core) was a JavaScript

library that interpreted the so-called Selenese commands to impersonate user

actions in web applications [5]. Huggins and Hammant combined a scripting

layer with Selenium Core to create a brand new project called Selenium Remote

Control (RC). As shown in Figure 1-a, Selenium RC follows a client-server ar-

chitecture. Clients use a binding language (e.g., Java or JavaScript) to send

Selenese commands over HTTP to an intermediate proxy called the Selenium

RC server. This proxy injects Selenium Core as a JavaScript library on web

browsers launched on-demand, redirecting client requests to Selenium Core [6].

This approach was a pioneer for browser automation at that time. Nevertheless,

it suffered from significant limitations. First, and since it is based on JavaScript,

several actions cannot be automated (such as mouse movement or headless sup-

port, to name a few). Also, Selenium RC introduces a significant overhead that

impacts the performance of end-to-end tests.

In parallel, Simon Stewart created a new project called WebDriver in 2007.

In the same way that RC, WebDriver allows controlling web browsers using a

binding language. Nevertheless, WebDriver is based on the native support of
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Figure 1: Architecture of Selenium RC and Selenium WebDriver

each browser, and therefore, the performance and automation capabilities are

superior to those of RC. In 2009, Jason Huggins and Simon Stewart merged

Selenium and WebDriver in a new project called Selenium WebDriver (also

known as Selenium 2). This way, Selenium RC is nowadays discouraged in

favor of Selenium WebDriver [7]. As shown in Figure 1-b, it is necessary to

include an intermediate file (the so-called “driver”) to control a browser with

Selenium WebDriver. The driver (e.g., chromedriver for Chrome or geckodriver

for Firefox) is a platform-dependent binary file that receives commands from

the Selenium WebDriver API and translates them into some browser-specific

language. Initially, the communication between the Selenium script and the

drivers was done using JSON messages over HTTP in the so-called JSON Wire

Protocol [8]. Nowadays, this communication is standardized according to the

W3C WebDriver recommendation (also based on JSON messages over HTTP)

[9]. The JSON Wire Protocol has been discouraged in favor of W3C WebDriver

as of Selenium version 4 [2].

Another component of the Selenium project is Selenium Grid, created by

Philippe Hanrigou in 2008. Selenium Grid allows the execution of Selenium

WebDriver scripts in remote hosts. To that aim, Selenium Grid comprises a

central component called Selenium Hub and a group of nodes. The Hub (also

known as Selenium Server) accepts requests from Selenium WebDriver clients

and proxies these requests to the nodes. Nodes typically run on multiple oper-

ating systems and provide different browsers to be used in WebDriver scripts.
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2.2. JUnit 5

JUnit is a unit testing framework for Java created by Erich Gamma and

Kent Beck in 1997 [10]. JUnit has been considered as the de facto standard

framework for developing unit tests in Java. Thus, the underlying testing model

implemented in JUnit has inspired a family of unit testing frameworks in other

languages (e.g., C#, Perl, or Python, to name a few) in the so-called xUnit

family [11]. As of JUnit 4, the building blocks for developing JUnit test cases

are Java annotations. For instance, the annotation @Test is used to identify the

methods of a Java class used to exercise and verify a System Under Test (SUT).

Due to some relevant limitations in JUnit 4 (e.g., monolithic architecture or

impossibility to compose JUnit runners), a new major version (i.e., JUnit 5) was

released in 2017. In this new version of JUnit, Java annotations are again used to

declare test cases (i.e., @Test annotation) and also their lifecycle, i.e., the logic

executed before (annotations @BeforeAll and @BeforeEach) and after the tests

(annotations @AfterAll and @AfterEach). JUnit has been redesigned entirely

in version 5, following a modular architecture made up of three components. As

shown in Figure 2, the first component is called the JUnit Platform, and it is

a foundation component to execute tests in the JVM. The second component

is called Vintage and provides backward compatibility with legacy JUnit tests

(i.e., versions 3 and 4). The third component is called Jupiter and provides

a new programming and extension model to execute tests on top of the JUnit

Platform [4].

The extension model of Jupiter allows adding custom features to the default

programming model. To this aim, Jupiter defines an API in which developers

can extend different interfaces (called extension points) to provide custom func-

tionality. Table 1 provides a comprehensive summary of the main features of

the Jupiter extension API. Jupiter extensions are registered declaratively using

the annotation @ExtendWith or programmatically with @RegisterExtension.
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Table 1: Summary of the Jupiter extension API

Category Description Extension point(s)

Test

lifecycle

callbacks

Used to include custom logic

in different moments of the

test lifecycle

BeforeAllCallback,

BeforeEachCallback,

BeforeTestExecutionCallback,

AfterTestExecutionCallback,

AfterEachCallback, and

AfterAllCallback

Parameter

resolution

Used in those extensions that

require dependency injection

(i.e., parameters injected in

test methods or constructors)

ParameterResolver

Test

templates

Used to implement

@TestTemplate tests (repeated

depending on a given context)

TestTemplateInvocation-

ContextProvider

Conditional

test

execution

Used to enable or disable tests

depending on certain

conditions

ExecutionCondition

Exception

handling

Used to handle exceptions

during the test and its lifecycle

(i.e., before and after the test)

TestExecutionException-

Handler, and

LifecycleMethodExecution-

ExceptionHandler

Test

instance

Used to create and process test

class instances

TestInstanceFactory,

TestInstancePostProcessor,

and TestInstancePre-

DestroyCallback

Intercepting

invocations

Used to intercept calls to test

code (and decide whether or

not these calls proceed)

InvocationInterceptor
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Figure 2: Architecture of JUnit 5

2.3. Related work

A recent study about software testing identified Selenium as the most valu-

able testing framework nowadays, followed by JUnit and Cucumber [12]. Thus,

Selenium has been used extensively in the literature. For instance, the Smart-

Driver project [13] is a Selenium WebDriver extension based on the separation

of the following aspects: 1) Technical aspects associated with the user interface

and test logic, and 2) Business concerns related to the SUT. Another approach

related to Selenium WebDriver is proposed by Clerissi et al. [14], in which Sele-

nium WebDriver tests are automatically generated using textual or UML-based

requirements specification. Also, the standard specification to drive browsers

automatically by Selenium WebDriver (i.e., the W3C WebDriver recommen-

dation) is used as the foundation to carry out user impersonation as a service,

understood as advanced capabilities to build end-to-end tests on the top of cloud

infrastructure [15].
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Maintainability and flakiness were identified as the most common problems

related to end-to-end testing in a recent survey about the Selenium ecosystem

[2]. Software maintainability is the ease with which a software system can be

modified [16]. According to Leotta et al., the adoption of the Page Object

Model (POM) might help to make more robust tests while reducing the mainte-

nance efforts significantly [17]. POM is a design pattern in which web pages are

modeled using object-oriented classes to minimize code duplication. Another

approach for reducing the maintenance costs of Selenium WebDriver tests is

related to the proper selection of a web element location strategy (e.g., by iden-

tifier or XPath) [18]. In this arena, the automatic generation of locators based

on XPath is proposed to avoid fragility in Selenium [19][20]. Memon et al. define

test flakiness as “the inability to repeat execution in a reliable manner” [21]. In

other words, a test is said to be flaky when its outcomes are non-deterministic

(i.e., unreliable under the same conditions) [22]. There are different reasons for

flaky tests in Selenium WebDriver reported in the literature, including fragile

location strategies [20] or incorrect wait strategies (i.e., a configurable timeout

for locating web element availability or checking some conditions) [23].

Selenium WebDriver is primarily used to implement functional test cases of

web applications. This testing type aims to ensure the correctness of the SUT

and detect defects (bugs). Nevertheless, Selenium WebDriver can also be used

to verify non-functional requirements, such as performance [2]. In this case, the

main objective is to find system bottlenecks or verify that the SUT can operate

within the defined boundaries (load testing) [24]. As reported in Section 6, this

characteristic is used to carry out an example case of end-to-end performance

testing of WebRTC applications through SeleniumWebDriver. WebRTC is a set

of standard technologies that allow interchanging video and audio in real-time

using web browsers [25]. The usage of Selenium WebDriver to assess WebRTC

applications is a well-known use case in the literature. For instance, it has been

used to implement automated tests to evaluate the Quality of Experience (QoE)

of WebRTC applications [26][27][28]. QoE is the degree of satisfaction of the

user of an application or service [29].
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Another relevant technology in this piece of research is Docker. We have

witnessed a growing interest in Docker in the last decade since it enables a con-

venient process for developing and distributing software. Haque et al. present an

empirical study identifying practitioners’ perspectives on Docker technology by

mining Stack Overflow posts [30]. One of the topics under investigation related

to application development was web browsers in Docker containers. The findings

of this work reveal that developers investigate how to use Selenium WebDriver

when using Docker, asking questions like ”How do you set up selenium grid using

Docker on Windows?” or why WebDriver does not work in a particular plat-

form. Despite its potential utility, there are scarce research efforts to combine

Selenium WebDriver and Docker in the literature. One example is ElasTest4,

an open-source generic and extensible platform supporting end-to-end testing

of different application types (including web or mobile, among others) by lever-

aging the containers technology offered by Docker [31]. Another example is

CAdViSE5, a video streaming framework for load testing of web-based media

players using browsers in Docker containers [32].

3. Motivation

The general objective of this work is to provide a comprehensive program-

ming model for developing end-to-end tests for web applications using Selenium

WebDriver on top of JUnit 5. This contribution is entirely missing in the liter-

ature to the best of our knowledge and aims to solve several current challenges

in end-to-end testing.

As introduced in Section 2.3, improving the maintainability and flakiness

has been identified as the most relevant challenges in end-to-end testing in a

recent survey about the Selenium ecosystem [2]. In this paper, we propose the

adoption of fully automated driver management as a solution to mitigate these

problems.

4https://elastest.io/
5https://github.com/cd-athena/CAdViSE
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As explained in Section 2.1, Selenium WebDriver controls web browsers na-

tively thanks to some intermediate binary files called drivers. The management

(understood as the process of downloading, configuring, and maintaining) of

these drivers is typically carried out manually [2]. This manual process is prob-

lematic at several levels. First, it introduces an additional step that impacts the

development and maintenance costs of scripts based on Selenium WebDriver.

Second, the browser and driver versions are eventually incompatible due to

the automated update of modern web browsers (the so-called “evergreen” web

browsers). In other words, a manually-managed driver Selenium WebDriver

test is unreliable (i.e., flaky) due to the unequivocal version mismatch be-

tween browsers and drivers in the mid to long term. The users of Chrome

and chromedriver experience this problem when a decayed test fails with the

error message “this version of chromedriver only supports chrome version N ”

(being N the is the minimum version of Chrome supported by a particular ver-

sion of chromedriver). Figure 3 shows this fact, since the interest over time of

this search term on Google is directly related to Chrome updates incompatible

with previous versions of chromedriver [33].

Overall, driver management is a real issue Selenium WebDriver developers

face, and as depicted in Figure 3, they actively look for a solution when the in-

compatibility problem between browser and driver eventually breaks their tests.

In a recent survey about driver management in Selenium WebDriver [33], 76.3%

of respondents declared to adopt WebDriverManager6 (a Java library for auto-

mated driver management) to reduce the development cost of Selenium Web-

Driver by downloading the required driver automatically. In addition, 69.6% of

participants also declared that WebDriverManager decreases the maintenance

costs thanks to the automated update of these drivers. In light of these results,

we propose using a fully automated driver management process as a first step

in the implementation of the proposed programming model.

Another challenging aspect of end-to-end testing with Selenium reported in

6https://github.com/bonigarcia/webdrivermanager
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Figure 3: Worldwide relative interest of the search term ”this version of chromedriver only

supports chrome version” in Google Trends together with the release dates of Chrome during

2019 and 2020.

the survey published in [2] is the difficulty of developing specific tests, such as

load tests. Load testing tools, such as Apache JMeter, have been extensively

used to evaluate the performance of web applications. This kind of tool allows

sending multiple HTTP requests to a given URL endpoint while measuring the

response time [34]. This approach is not suitable when actual browsers are

required to generate the load. Section 6 provides an example case using an

example of these types of applications, i.e., videoconference services based on

WebRTC.

The proposed solution to overcome this challenge is the integration of Docker

in the Jupiter programming model. Docker is an open-source project that au-

tomates the deployment of Linux applications as portable containers [35]. This

technology can support Selenium WebDriver by providing a dockerized infras-

tructure for different types and versions of web browsers. In addition to load

testing, the automated management of web browsers using Docker containers

provides other relevant benefits, such as:

• Cross-browser testing. Cross-browser compatibility refers to the ability

11



to support web applications on different browsers identically [36]. Pa-

rameterized tests using Selenium WebDriver and Docker containers (i.e.,

reusing the same test logic with different web browsers) can be used to

implement comprehensive cross-browser tests.

• Mobile testing. Although Selenium WebDriver is used primarily to verify

web applications, it can easily be extended to test mobile applications. To

this aim, mobile browsers in Docker containers can be used.

The last challenge we aim to solve in this paper is troubleshooting (also

known as failure analysis) for Selenium WebDriver. Troubleshooting is the

process of gathering and analyzing data to discover the cause of a failure. This

process can be complex for Selenium WebDriver tests because the whole system

is tested through the User Interface (UI), and the underlying root cause of a

failed end-to-end test can be diverse (such as a fault in the client-side, server-

side, or the connection with external services, to name a few). To overcome this

problem, we propose to bring observability to Selenium WebDriver tests. The

term observability comes from the classical control theory by Kalman [37] and

refers to the ability to infer the internal state of a system through the collection

and analysis of its external outputs [38]. We propose different mechanisms to

implement observability in Selenium WebDriver tests. First, we use the Jupiter

extension model for monitoring failed tests. Then, we use instrumented Docker

containers for gathering data (e.g., session recordings) and configurable browser

screenshots when tests fail.

To summarize this section, table 2 recapitulates the challenges that motivate

this work, together with the proposed solution, some implementation details,

and the expected benefits.

4. Design

Selenium-Jupiter is an extension of the Jupiter programming model. There-

fore, its design is based on implementing different extension points of the Jupiter

12



Table 2: Summary of the end-to-end challenges addressed by Selenium-Jupiter

Challenge Proposal Implementation Expected benefits

Maintain-

ability and

flakiness

Automated

driver

management

Integration of

WebDriverManager

into the Jupiter

parameter resolution

mechanism

- Reduce development

and maintenance costs

- Reduce flakiness due

to incompatible driver

- Reduce test code

boilerplate

Difficult to

develop

end-to-end

tests

Automated

infrastructure

management

Integration of Docker

in Jupiter using Java

annotations and test

templates

- Ease cross-browser

testing

- Ease mobile testing

- Ease performance

testing

Trou-

bleshooting
Observability

Jupiter extension

model for monitoring

failed tests plus

instrumented Docker

containers for data

gathering

- Ease screenshotting,

remote access, and

session recording

- Enable configurable

browser reporting for

failed tests

13



Table 3: Extension points used by Selenium-Jupiter

Category Extension point(s) Main related features

Parameter

resolution
ParameterResolver

- WebDriver objects instantiation

- Automated driver management

- Docker containers initialization

Test

lifecycle

AfterTestExecution-

Callback,

AfterEachCallback,

and AfterAllCallback

- Browser disposal

- Stop and remove Docker

containers

- Monitoring failed tests

- Gathering browser data

(recordings and screenshots)

Test

templates

TestTemplateInvoca-

tionContextProvider

- Cross-browser testing

extension API (summarized in Table 1 of Section 2). Table 3 shows the exten-

sion points used by Selenium-Jupiter. The details of these aspects are explained

in the following subsections.

4.1. Parameter resolution

First, the parameter resolution mechanism provided by Jupiter is used in

Selenium-Jupiter. To this aim, Selenium-Jupiter implements the extension

point ParameterResolver of the Jupiter extension model. This way, the pa-

rameters defined in methods or constructors in test classes are instantiated by

Selenium-Jupiter. In particular, Selenium-Jupiter allows injecting instances of

the WebDriver class hierarchy to control different types of browsers. Table 4

shows a summary of the supported types by Selenium-Jupiter, together with

the browsers that can be controlled using these types.

When controlling local browsers, Selenium-Jupiter manages the required

driver before the instantiation of the declared parameter. Internally, the driver

14



Table 4: Types used for dependency injection in Selenium-Jupiter tests

Type Browser

ChromeDriver Google Chrome

FirefoxDriver Mozilla Firefox

EdgeDriver Microsoft Edge

OperaDriver Opera

SafariDriver Apple Safari

ChromiumDriver Chromium

InternetExplorerDriver Microsoft Internet Explorer

WebDriver or RemoteWebDriver Remote or dockerized browsers

List<WebDriver> List of browsers of a given type

management procedure is done automatically using WebDriverManager. This

process follows a driver resolution algorithm made up of several steps. First, the

local browser version to be controlled is detected dynamically (i.e., at runtime).

Then, this version is used to discover the compatible driver version. Finally, the

driver is downloaded from its online repository, is stored locally, and is used to

control the browser [33].

The driver management process is not required when using Docker containers

instead of local browsers since the proper driver is already included in the Docker

container. In this case, Selenium-Jupiter starts the container images pulled from

Docker Hub7. Selenium-Jupiter uses the following sets of open-source Docker

images:

• Stable versions of web browsers: Chrome, Firefox, Edge, and Opera.

These images are maintained by Aerokube8, a company aimed to provide

practical solutions for Selenium test infrastructure. These containers are

7https://hub.docker.com/
8https://aerokube.com/images/latest/
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instrumentalized with a Virtual Network Computing (VNC) server that

allows monitoring capabilities, such as remote access and session record-

ing.

• Beta and development web browsers: Using a fork of the Aerokube images

for the beta and development versions of Chrome and Firefox, maintained

by the company Twilio9.

4.2. Test lifecycle

Selenium-Jupiter enhances the test lifecycle by including custom logic after

the execution of each test. The extension point AfterTestExecutionCallback

is used for test monitoring. This way, before releasing the resources, Selenium-

Jupiter collects session recordings (when using Docker) or makes browser screen-

shots at the end of tests. These assets can be used for troubleshooting (i.e., fail-

ure analysis). Then, the extension point AfterEachCallback is used to release

the employed resources. Specifically, local browsers are closed, remote sessions

are terminated, and Docker containers are stopped and removed.

A particular feature of Selenium-Jupiter is called “single-session”. This fea-

ture allows reusing the same browser session by all the tests of a Java class. In

this case, the release procedure should be done after executing all tests (and

not after each test). For that, Selenium-Jupiter also implements the extension

point called AfterAllCallback.

4.3. Test templates

The last extension point implemented by Selenium-Jupiter is TestTemplate-

InvocationContextProvider. This extension point allows gathering some con-

text to invoke methods annotated with @TestTemplate. This context is named

“browser scenario” in the Selenium-Jupiter jargon, and it can be seen as a

browser collection to be used with the same test logic. The definition of a

browser scenario in Selenium-Jupiter is done in two ways: first, using a custom

9https://hub.docker.com/r/twilio/selenoid/
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Figure 4: Selenium-Jupiter setup in Maven and Gradle

JSON notation; second, using the Selenium-Jupiter API configuration capabil-

ities.

5. Features

Each release of Selenium-Jupiter is available on the public repository Maven

Central10. A build tool (such as Maven or Gradle) is typically used to declare

and resolve Java dependencies. For that, the project coordinates (groupId,

artifactId, and version) are specified. Figure 4 shows the required configu-

ration to use Selenium-Jupiter by test classes in a Maven and Gradle project. In

these snippets, the variable selenium-jupiter.version should be substituted

for a given Selenium-Jupiter version (the latest available in Maven central is

recommended by default).

The Selenium-Jupiter documentation11 provides a complete reference of the

Selenium-Jupiter features. The following subsections give a summary of these

features.

5.1. Local browsers

Selenium-Jupiter uses an Inversion of Control (IoC) pattern [39] for the

instantiation of WebDriver objects. In other words, developers using Selenium-

Jupiter do not need to create these objects explicitly. Instead, they need to

select the WebDriver types injected as test parameters and then use the injected

WebDriver instances in the test logic to control web browsers. Moreover, these

10https://search.maven.org/artifact/io.github.bonigarcia/selenium-jupiter
11https://bonigarcia.dev/selenium-jupiter/
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Figure 5: Comparison of Selenium WebDriver tests using local web browsers with: a) JUnit

4. b) JUnit 5 and Selenium-Jupiter

objects are adequately terminated after each test by Selenium-Jupiter. Figure

5 shows an example of this feature. On the one hand, Figure 5-a uses JUnit 4

and Selenium WebDriver to implement an end-to-end test. As can be seen in

this snippet, the driver management and WebDriver instantiation and disposal

are done manually in the test setup and teardown. On the other hand, Figure

5-b implements the same test logic with Selenium WebDriver, but this time

using JUnit 5 and Selenium-Jupiter. As can be seen, tests based on Selenium-

Jupiter have a lean implementation compared to a manual approach since the

boilerplate to set up and tear down WebDriver instances is not required with

Selenium-Jupiter. Boilerplate is the name given to those code sections included

repeatedly in different parts of a piece of software with little or no alteration

[40].

5.2. Remote browsers

Selenium-Jupiter provides a couple of custom annotations to control remote

browsers:

• @DriverUrl: URL of the machine hosting the browsers. This URL typi-

18



Figure 6: Selenium-Jupiter test controlling remote browsers

cally identifies a remote Selenium Hub or a cloud provider endpoint (e.g.,

Sauce Labs or BrowserStack).

• @DriverCapabilities: Key-value pairs that identify the remote browser,

such as browser name, browser version, or platform.

These annotations are defined at the parameter or field level. Figure 6

shows an example of this feature. First, Figure 6-a shows a test skeleton to

control a remote browser using the abovementioned annotations at parameter-

level. Then, 6-b shows another test skeleton to use a remote web browser on

SauceLabs. In this case, the annotations are declared at the field-level.

5.3. Docker browsers

Selenium-Jupiter provides the annotation @DockerBrowser to use browsers

in Docker containers in Selenium WebDriver tests. This annotation is declared

at parameter-level and allows to specify a RemoteWebDriver or WebDriver ob-

ject used to control web browsers in Docker containers. This feature allows

using a wide range of browser types and versions. Furthermore, it enables other

advanced testing capabilities, such as session recording, remote access using

the VNC protocol, and performance testing (declaring a browser List as test

parameter).
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Figure 7: Selenium-Jupiter tests using Docker

Figure 7 illustrates the usage of this feature. The first snippet (Figure 7-a)

shows a Java class in which two JUnit 5 tests are declared. These tests use

the latest version of Chrome and Firefox beta, respectively. Selenium-Jupiter

discovers these versions at runtime. To that aim, Selenium-Jupiter requests

Docker Hub and selects the proper container image. Figure 7-b shows another

skeleton example in which a fixed version of Opera is used. Also, Selenium-

Jupiter is configured to record and enable remote access to the session with

VNC. Next, Figure 7-c shows an example in which a Chrome mobile in an

Android device is controlled with Selenium WebDriver. Finally, Figure 7-d

shows a test example in which a list of Edge browsers is declared.

5.4. Test templates

Jupiter provides test templates for repeating the same test logic using cus-

tom information. As introduced in subsection 4.3, this information is given in

Selenium-Jupiter using a JSON notation or programmatically. Figure 8 shows
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Figure 8: Example of test template and browser scenario

a test template skeleton and browser scenario defined in JSON. In this exam-

ple, the browser scenario declares three session types, all of them using Chrome

in Docker, but with different versions: the stable (latest), the previous ver-

sion to the stable (latest-1), the beta versions (beta). The logic is repeated

three times when this test template is executed, per each browser defined in the

scenario.

5.5. Configuration

Selenium-Jupiter provides a comprehensive toolbox of configuration parame-

ters aimed to provide a custom setup of the provided features. Each parameter

has a single label. For instance, sel.jup.recording enables the recording

of Docker sessions, or sel.jup.recording.when.failure allows recording the

Docker session only in the case of a failed test. There are three different ways

to specify each configuration parameter. The order in which these methods are

prioritized is the following:

1. Using environment variables. The name for these environmental variables

is specified by converting the parameter label (e.g., sel.jup.recording)

to uppercase and replacing the dots with underscores (i.e., SEL JUP RECOR-

DING in the example before).

2. Using Java properties. In this case, the configuration label is used directly

to specify its value, for example, when invoking Maven or Gradle from the

command line (e.g., mvn test -Dsel.jup.recording=true).
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3. Using a Java API. Selenium-Jupiter provides a configuration manager that

allows setting up all the configuration parameters (Figure 7-b shows an

example of this configuration type).

5.6. Other features

This subsection provides a summary of other features provided by Selenium-

Jupiter, namely:

• Disabling test. As of version 4, Selenium-Jupiter allows conditionally skip-

ping tests using Java annotations. First, @EnabledIfBrowserAvailable

allows disabling a test when a browser (specified as annotation attribute)

is not available in the system. Second, @EnabledIfDockerAvailable dis-

ables tests when Docker is not installed. Finally, @EnabledIfDriverUrl-

Online allows skipping tests if the Selenium Server remote URL is offline.

• Options. Selenium WebDriver options are used to tune different aspects of

browsers (e.g., headless and incognito modes, to name a few). Selenium-

Jupiter provides a set of Java annotations to configure these options:

@Options (used to configure browser-specific options, such as ChromeOp-

tions or FirefoxOptions), @Arguments (to specify browser arguments),

@Preferences (to set browser advanced preferences), @Binary (to set the

location of the browser binary), and @Extensions (to specify browser ex-

tensions).

• Single session. Selenium-Jupiter provides a class-level annotation called

@SingleSession. It allows reusing the same browser session by all the

tests of a given class. In the default behavior, browsers are initialized

before each test and released after each test. @SingleSession changes

this behavior: browsers are initialized once at the test suite beginning and

disposed at the end of all tests.

• Screenshots. Selenium-Jupiter allows making screenshots for browser ses-

sions at the end of each test using configuration capabilities. These screen-

shots can be encoded as Base64 or stored as PNG images.
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• Generic driver. Selenium-Jupiter defines a “generic driver” as a test pa-

rameter of the type RemoteWebDriver or WebDriver. The specific kind of

this browser is later established using configuration capabilities.

• Custom driver. Selenium-Jupiter allows extending the supported drivers

by registering a custom WebDriver object. The type of this custom driver

is used later to declare test parameters following the usual programming

model.

• Integration with Jenkins. The artifacts produced by Selenium-Jupiter

(e.g., MP4 recording or PNG screenshots) can be attached to the web

interface of the open-source automation server Jenkins12. This feature is

enabled using configuration capabilities.

6. Example case

As of 2020, society has become more and more virtual due to the global

pandemic of the COVID-19. Hence, many people have been forced to adapt

rapidly to remote work [41]. WebRTC has become a critical technology in this

context since it supports web-based videoconference services using standard

technologies.

Videoconference services based on WebRTC typically use some intermediate

infrastructure to support the communication among the participants. SFU (Se-

lective Forwarding Unit) is a commonly adopted architecture for these WebRTC

videoconference services. In SFU, a centralized server (often named “media

server”) receives multiple video and audio streams from the participants, for-

warding those streams to the rest of the participants [34]. This centralized

workflow could be a bottleneck if it is not implemented and dimensioned cor-

rectly. For this reason, end-to-end performance testing is essential to evaluate

the scalability (i.e., the number of participants) and the quality experienced by

the final users (QoE).

12https://www.jenkins.io/
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As introduced in Section 3, generating load using HTTP-based tools like

Apache JMeter is not suitable for WebRTC since browsers implementing the

WebRTC stack are required for recreating the complete user workflow. In con-

trast, Selenium WebDriver could be an effective tool to carry out end-to-end

performance evaluation of WebRTC since it can drive browsers automatically.

This case study provides a practical application of Selenium-Jupiter. The

objective is to assess the end-to-end performance of different WebRTC video-

conference applications based on SFU. To that aim, Selenium WebDriver and

Selenium-Jupiter are used. The research questions (RQs) driving this example

case are the following:

• RQ1. How can Selenium WebDriver be used to evaluate the end-to-end

performance of WebRTC videoconference applications?

• RQ2. What are the benefits and limitations of using Selenium-Jupiter to

implement these kinds of tests?

6.1. Design

Nowadays, there are many videoconference systems based on WebRTC avail-

able on the Web. For simplicity and replicability, we selected SFU videoconfer-

ence systems that provide a public online demo. This way, the chosen target

applications are the following: Janus13, Jitsi14, and OpenVidu15.

A test case based on Selenium-Jupiter has been implemented to evaluate

each SUT. Each test follows the same structure. First, a local Chrome browser

starts (or setup, depending on the SUT) the videoconference. This browser is in

charge of compiling the WebRTC statistics (the so-called “WebRTC stats”16).

These stats provide a comprehensive collection of performance statistics for

each RTCPeerConnection (object of the WebRTC API used to represent the

13https://janus.conf.meetecho.com/
14https://meet.jit.si/
15https://openvidu.io/
16https://www.w3.org/TR/webrtc-stats/
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WebRTC connection between two peers) such as bitrate or packets lost, to name

a few. The built-in Chrome tool webrtc-internals is controlled with Selenium

WebDriver to gather this data in the local browser.

Next, the performance feature provided by Selenium-Jupiter is used to gen-

erate the rest of the participants. For that, a list of dockerized browsers is

used. The list size is a configurable parameter that determines the session load.

The Selenium-Jupiter annotation @Arguments is used to specify the following

Chrome arguments of each browser (local and dockerized):

• --use-fake-ui-for-media-stream: To avoid the need to grant permis-

sions to access the user media.

• --use-fake-device-for-media-stream: To feed the user media with a

built-in synthetic video provided by Chrome and used for testing.

Figure 9 shows the test structure to evaluate each SUT. This figure shows

the test method signature in which both the local and dockerized browsers

(using the arguments described above) are declared as parameters. Although

this test is specific for WebRTC applications, it illustrates some of the main

advantages of using Selenium-Jupiter. First, developers simply declare the type

of browser to be controlled with Selenium WebDriver, but they do not deal with

the required driver since this is done automatically and transparently. Second,

the browser is executed as a Docker container by specifying a Java annotation,

hiding the underlying complexity required to use these containers. Finally,

Selenium WebDriver tests can use numerous browsers by simply declaring a

Java list.

The test logic for the three SUT (i.e., Janus, Jitsi, and OpenVidu) follows

the same procedure, namely:

1. Open webrtc-internals in a second tab. This way, WebRTC stats are

gathered during the session time.

2. Enter room with local browser. This browser acts as the monitor for the

WebRTC session.
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Figure 9: Structure of the tests implemented in the example case

3. Enter room with rest of browsers. These browsers act as the load for the

WebRTC session. The selected size for this list is 9, and therefore, the

number of browsers used in the tests is 10 (one local plus nine dockerized

browsers). This limit is imposed by the free tiers of the evaluated SUTs.

Each new browser is connected to the WebRTC session following a config-

urable time rate. The default value for this rate is 5 seconds, and it allows

to simulate users joining a videoconference with a slight time difference.

4. Wait session time (to simulate conversation with all participants). After

checking different periods for the session duration (i.e., 30, 60, and 90

seconds), the selected default value for this session time was 60 seconds

since this interval is sufficient to observe the trend of WebRTC indicators.

5. Download WebRTC stats. The resulting dump file is downloaded using

the local browser.

6.2. Results

The resulting Selenium-Jupiter tests implemented in this example case have

been released in an open-source GitHub repository17. A dump file containing

the WebRTC stats is obtained after the execution of each test (using Janus,

Jitsi, and OpenVidu as SUT).

17https://github.com/bonigarcia/selenium-jupiter-webrtc
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Each file dump contains performance stats of the WebRTC peer connec-

tion between the local browser (where the data is gathered) and the rest of the

browsers (load). The connection with the first dockerized browser allows check-

ing the performance evolution while new peers join the videoconference. For

this reason, this connection is analyzed. Among all the performance indicators

available in the WebRTC stats, the following parameters of the reception side

are chosen:

• Bit rate: Total number of bytes received per second.

• Jitter delay: Jitter is defined as the latency variation on the packet flow

(since some packets might take longer to travel than others). The jitter

delay is the sum of time each packet exits in the jitter buffer [29].

• Freeze count: Total number of video freezes experienced by the receiver. A

frame is frozen when the time interval between two consecutively rendered

frames equals or exceeds a given threshold.

• Packet loss: Total number of packets lost for a peer connection, calculated

as defined in RFC 3550 [42].

We repeated this experiment fives times for each SUT, obtaining equivalent

results in each attempt. Figure 10 shows the results of each parameter during the

session time in a single experiment. The participants connect to the WebRTC

videoconference during the first part of the session. Since each new participant

is connected at a rate of 5 seconds, this part lasts the first 40 seconds of each

chart. Then, all the participants are connected to the room for another 60

seconds (i.e., until the second 100 in the charts).

Figure 10-a shows the received bit rate evolution (in KBps). The average

is 8.51 KBps in Janus, 18.05 KBps in Jitsi, and 30.52 KBps in OpenVidu. Al-

though the lower average corresponds to Janus, it remains in a more constant

range than Jitsi and Janus during experiment time. Figure 10-b presents the

results regarding jitter delay. This chart shows a monotonically increasing func-

tion for all SUTs. As expected, this growth is higher while more participants
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Figure 10: Performance results of the connection between the local and the first dockerized

browser
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join the session. At the end of the session, the jitter delay reaches its maximum

value: 256.65 ms for Janus, 58.76 ms for Jitsi, and 410.69 ms for OpenVidu. A

threshold of 75 ms is recommended to avoid distortions [43]. Jitsi is the only

application that does not surpass this threshold in this case study. Figure 10-

c illustrates the evolution in the freeze count in the video track. On the one

hand, both Janus (2 freezes) and Jitsi (3 freezes) experience fewer frozen frames.

On the other hand, there are more frozen frames in OpenVidu (a total of 13),

and besides, this effect starts earlier (at second 33 in this experiment). Finally,

Figure 10-d depicts the number of packet losses during the session time. This

picture shows that packet loss starts when all participants join the session (i.e.,

after the second 40). The final count of packets lost is 15 in Janus, 13 in Jitsi,

and 6 in OpenVidu.

6.3. Analysis

This example case shows a practical application of Selenium-Jupiter with a

specific technology: WebRTC. Regarding RQ1, we can conclude that WebRTC

stats are a meaningful mechanism to evaluate different performance metrics.

These stats can be easily gathered using Selenium WebDriver and the tool

webrtc-internals available in Chrome.

When coming to RQ2, one of the main benefits of Selenium-Jupiter in the

example case is the use of Docker. Thanks to this feature, a developer can choose

the type and number of required browsers for end-to-end tests by simply setting

selecting an enumerated type and a numeric value. Selenium-Jupiter makes the

provisioning of this infrastructure without any need for further setup. The main

drawback is related to the scalability of the approach. Since Selenium-Jupiter

uses a single Docker engine to handle browsers in containers, it is not feasible

to request a large number of containers. In the experiments, using an i7 quad-

core laptop with 16 GB of RAM, the maximum number of Chrome browsers in

Docker containers is around 100. This figure may be enough for most use cases,

although it may be insufficient for more intensive load tests. If more containers

are required (e.g., for stress testing), Selenium-Jupiter only escalates vertically,
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i.e., using more physical resources (RAM and CPU) in a single node.

7. Discussion

This paper contributes to the browser automation space by proposing a

programming model on the top of Selenium WebDriver and JUnit 5. This

programming model aims to give solutions for several of the relevant challenges

in end-to-end testing.

The presented example case provides hints about the benefits of using Sele-

nium-Jupiter in a particular use case: load testing of WebRTC applications.

This example case shows that the integration with Docker can be beneficial for

the development of end-to-end tests in different manners. First, it supports

cross-browser testing using a rich infrastructure for end-to-end tests, using a

wide variety of browsers types and versions in Docker containers. The latest

version of the abovementioned container images available in Docker Hub is dis-

covered at runtime. These characteristics ease the creation of advanced test

cases since the browser infrastructure is configured and updated automatically.

Moreover, this feature can be used to easily implement end-to-end load tests

(i.e., when using a large number of browsers).

7.1. Limitations

The scope of the experimental case presented in this paper is insufficient to

measure the potential advantages of Selenium-Jupiter objectively.

First, the development and maintenance costs promise to be lower using

an automated driver management process in Selenium-Jupiter. This fact could

be especially relevant in “evergreen” web browsers (e.g., Chrome, Firefox, or

Edge) since the rapid upgrade rate of these browsers poses a problem for Web-

Driver tests due to the eventual incompatibility between driver and browser.

Nevertheless, the experimental case described in this paper does not prove the

development and maintenance costs are lower in Selenium-Jupiter tests. There-

fore, this aspect requires further attention in future research.
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The second aspect that still needs additional validation is troubleshooting.

Selenium-Jupiter allows gathering browser screenshots in case of failure using

a rich configuration toolbox (through environmental variables, Java properties,

and a Java API). In addition, and thanks to instrumented Docker containers,

the browser session can be recorded or accessed remotely. These features are

promising, but some experimental research that backs their efficiency is still

missing. A possible continuation of this work would include surveying Selenium-

Jupiter developers to get a detailed overview of its usage. This survey might

help discover the real problems when using SeleniumWebDriver and the benefits

of using the programming model implemented in Selenium-Jupiter.

8. Conclusions

Selenium WebDriver is an open-source library that allows driving web brow-

sers using a language binding. It is used by thousands of companies worldwide

to support end-to-end testing. This paper presented Selenium-Jupiter, a JUnit

5 extension for using Selenium WebDriver from Java tests using a compre-

hensive programming model. The two most relevant innovations shipped with

Selenium-Jupiter are automated driver management and seamless integration

with Docker.

The example case presented in this paper illustrates how the Jupiter exten-

sion model used in conjunction with instrumented Docker containers facilitates

the development of complex test scenarios (e.g., end-to-end load testing for We-

bRTC applications). Nevertheless, some of the potential benefits of Selenium-

Jupiter (such as maintainability, flakiness, and troubleshooting) still require

further attention in future research. Finally, scalability is a significant limita-

tion of the presented approach. Selenium-Jupiter uses a single Docker engine to

execute containers. For this reason, the number of browsers served as contain-

ers is limited to the resources available in the host running the Docker engine.

To solve this limitation, we plan to support the use of a Docker cluster (e.g.,

through Kubernetes) in a future release of Selenium-Jupiter.
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