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ABSTRACT
Bug localization is a recurrent maintenance task in software development. It aims at identifying rele-
vant code locations (e.g., code files) that must be inspected to fix bugs. When such bugs are reported
by users, the localization process become often overwhelming as it is mostly a manual task due to
incomplete and informal information (written in natural languages) available in bug reports. The re-
search community has then invested in automated approaches, notably using Information Retrieval
techniques. Unfortunately, reported performance in the literature is still limited for practical usage.
Our key observation, after empirically investigating a large dataset of bug reports as well as workflow
and results of state-of-the-art approaches, is that most approaches attempt localization for every bug
report without considering the different characteristics of the bug reports. We propose DIGBUG as a
straightforward approach to specialized bug localization. This approach selects pre/post-processing
operators based on the attributes of bug reports; and the bug localization model is parameterized in
accordance as well. Our experiments confirm that departing from “one-size-fits-all” approaches, DIG-
BUG outperforms the state-of-the-art techniques by 6 and 14 percentage points, respectively in terms
of MAP and MRR on average.

1. Introduction
Bugs are prevalent in software development processes.

Extensive testing and code reviews help detect and address
many of these before the software system is released. How-
ever, many bugs persist in the code even after the software
has been shipped. These bugs are later discovered by end-
users who report them to the development team. During the
entire lifetime of a project, large numbers of bug reports may
overwhelm the available resources of the development team.
For example, Apache Hive [1] project has recorded more
than 22k bug reports in its 12 years of existence.

Users fill in bug reports and, in most cases, are written
in natural language. These reports may be provided by inter-
nal or even external developers; and more often authored by
software users. A bug report describes an occurrence of un-
expected behavior of the software. The report may contain
additional artifacts such as stack traces or logs that provide
information about a crash within the software. Upon receiv-
ing a bug report, an effort must be undertaken to localize the
relevant snippet of code that leads to unexpected behavior.
In general, bug localization based on textual reports focuses
on identifying the relevant buggy file within the code repos-
itory.
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However, this process of bug localization is inherently
complex due to the large and ever-growing code repository
combined with the time taken to perform this process man-
ually. Automating bug localization is thus viewed as an im-
portant endeavor for the cost and time efficiency of the de-
velopment and maintenance process [2].

The software engineering community have attempted to
address the bug localization problem, mainly by viewing it as
an information retrieval (IR) problem: a bug report is viewed
as an input query while the collection of source code files
within the code repository is treated as the search space; rel-
evant files are then matched, and a ranked list of suspicious
files is presented to the development teams. Several differ-
ent IR methods [3, 4, 5] have been leveraged for this task by
state-of-the-art approaches [3, 4, 6, 7, 8, 9, 10, 11, 12, 13].

In the last decade, many approaches have been proposed
to improve the application of IR techniques. Generally, these
approaches attempt to leverage additional information such
as similarity to bug reports associatedwith revision history [10],
consideringmore fine-grained attributes (e.g., the distinction
between method names [14], stack traces tokens [15], and
the natural language tokens [16]), different algorithms (e.g.,
vector space model [17] and latent semantic indexing [4]).

Unfortunately, as concluded in a recent study by Lee et
al. [18], the performance of the state-of-the-art research is
still rather limited. Generally, for any given project, the state-
of-the-art approach provides results that are below 70% in
terms of Mean Average Precision (MAP) and Mean Recip-
rocal Rank (MRR). Recent attempts to improve these results
include the approach of ‘Divide & Conquer’ by Koyuncu et
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al. [8] that investigated the impact of dividing bug reports
into groups to improve the performance of localization. An-
other study by Panichella et al. [19] showed the impact on
performance when considering the removal of special char-
acters, identifier splitting.

We study the importance of the pre/post-processing op-
erators (e.g., tokenization, stopword removal, stemming, and
presence of code entities) that must be applied explicitly to
different bug reports to achieve the best localization perfor-
mance with a standard IR method. Applying different con-
figurations of bug localization techniques has been studied
by Thomas et al. [20]. Their study, however, still focuses
on the ‘one-configuration-fits-all’ strategy rather than con-
sidering attributes of different reports and applying different
configurations depending on the different attributes. Sim-
ilarly, the study by Binkley et al. [21] focused more on the
impact of choosing different query configurations to improve
the performance.

In this work, we propose DIGBUG as an IR-based bug lo-
calization technique, which learns to apply specific pre/post-
processing operators to different groups of bug reports based
on their characteristics. Our hypothesis here is that different
operators are effective depending on the attributes of a bug
report. These attributes include ‘having an attachment?’,
‘written by a developer or a user’, ‘containing a stack trace’.
Our preliminary study (Section 3) partially confirms the hy-
pothesis. Based on the result of the preliminary study, we
design DIGBUG, which applies different combinations of pre
/post-processing operators to each bug report according to its
attributes.

We evaluate the performance ofDIGBUG against the sub-
jects fromBench4BL [18], themost significant available bench-
mark for bug localization. As a result, DIGBUG achieves a
better performance if the combination of pre/post-processing
operators is selected specifically for the attributes and char-
acteristics of the subject. Overall, building on a simple clas-
sical VSM-based approach, the evaluation results show that
DIGBUG outperforms the state-of-the-art IRBL techniques
up to 6 and 14 percentage points in MAP and MRR, respec-
tively.

The contributions of our approach can be summarized as
follows:

• We motivate the study by investigating the role of pre/
post-processing operators and identify the combina-
tion of operators that provide better performance for
different subjects. This already implies that we have
to consider different operators for different character-
istics and motivate the main approach’s hypothesis.

• We build a tool named DIGBUG, an IR-based bug lo-
calization technique that selects a best-performing pre/
post-processing operator combination based on the char-
acteristics of incoming bug reports. The operators are
applied before (i.e., pre-processing), and after (i.e.,
post-processing) any IR technique performs localiza-
tion.

• We evaluate the performance of DIGBUG on one [18]
of themost significant benchmark designed for bug lo-

calization. The evaluation measures MAP and MRR
against the state-of-the-art bug localization benchmark.
The results show that DIGBUG can locate bugs with
high accuracy and outperform the existing state-of-
the-art techniques.

The remainder of the paper is organized as follows. Sec-
tion 2 presents background details on IR-based bug localiza-
tion such as pre/post-processing operators and performance
metrics. In Section 3, we conduct a preliminary study on in-
vestigating the varying impact of the common operators in
bug localization that forms the RQ1 in this study. The de-
tails of our approach are introduced in Section 4. We raise
further research questions (i.e., RQ2 and RQ3), evaluate the
tool, and discuss its results in Section 5. After discussing re-
lated work in Section 6, we conclude our work in Section 7.

2. Background & Motivation
2.1. Bug Localization & IRBL

Bug localization is a software maintenance task that pin-
points the location of suspicious code within the program
that is potentially responsible for defects or issues. In many
cases, the information about these defects and issues comes
in bug reports created by users and developers who have dis-
covered them. These bug reports comprehensively describe
the context of a particular bug within the software that users
and developers discover. The bug reports consist of textual
sentences and paragraphs; instead, they also consist of dif-
ferent metadata and attributes, including code-related enti-
ties, log files detailing the issues, and information about af-
fection version of the software. An example of a bug re-
port can be seen in Figure 1 that consists of (1) summary
(the title of the report), (2) metadata (e.g., type and prior-
ity), and (3) description. It specifies attributes such as code
entity (e.g., GenericMessage, invokeListener), reporter (on
the right-hand side), and stack trace in the description.

(1)

(2)

(3)

Figure 1: Example of bug reports excerpted from https://jira.

spring.io/browse/AMQP-660.

On receipt of such bug report, there are two lines of tech-
niques available to localize the bug: spectrum-based fault lo-
calization (SBFL) [22, 23, 24, 25] and information retrieval
based bug localization (IRBL) [26, 27, 28, 7, 6, 29]. The for-
mer line of techniques can be applied only when test cases

2

https://jira.spring.io/browse/AMQP-660
https://jira.spring.io/browse/AMQP-660


associated with the bug are given as they use coverage in-
formation (i.e., spectra). Based on the information, SBFL
techniques provide a ranked list of suspicious locations (gen-
erally, specific lines or blocks in a program). IRBL, on the
other hand, takes textual information from bug reports to fig-
ure out suspicious locations (often files). These approaches
leverage techniques derived from natural language process-
ing such as Latent Dirichlet Allocation (e.g., [30]), Vector
SpaceModel (e.g., [31]), Latent Semantic Analysis (e.g., [32]),
and Clustering (e.g., [33]).

Generally, many bug reports are submitted without any
test case [34], due to which IRBL techniques are widely ap-
plied for bug localization. In addition, it is lightweight and
scalable, and it relies mainly on static information such as
bug reports and source code. One of the key intuitions be-
hind IRBL is the existence of common tokens in bug reports
and source code. For example, users who submit a bug re-
port often mention a specific functionality or an error mes-
sage. This information is in the form of tokens that are likely
to be matched with tokens found in source code files. Many
bug reports contain stack traces (e.g., the trace mentioned
in the example bug report) and code entities (e.g., method
and class names like invokeListener in the example bug re-
port) that increase the accuracy in detecting the location of
defects. This task is also regarded as identifying feature lo-
cations [35], in which the input query is a set of tokens from a
bug report, the data source is the text (tokens) in source code
files, and the output is a subset (or ranked list) of source code
files in a subject.
2.2. Pre/Post-processing operators for IRBL

Bug localization with information retrieval techniques
requires the raw input data (source code files and bug re-
ports) to be pre-processed that includes reducing noise, ex-
tracting attributes, and improving the resultingmodel. There-
fore, IRBL approaches need to apply relevant pre-processing
operators on the inputs [20]. Similarly, some post-processing
operators (e.g., filters for irrelevant test files and re-order the
ranked list of suspicious files with specific information) may
be leveraged to adjust further the outputs yielded by the IR
ranking system.

In this work, we focus on the pre/post-processing opera-
tors that are listed in Table 1 as they are commonly adopted
in recent IRBL studies. In our work, we apply the default
pre-processing (i.e., preBasic, the basic pre-processing op-
erator for tokenization commonly used for natural language
processing (NLP) tasks [36, 37]) that is applied by all the
techniques in the literature. Along with the basic operator,
stop word removal (SWR) and stemming (STM) are widely cho-
sen by several IRBL techniques [38, 39, 40, 41, 42]. Drop-
ping out special characters (SPC) and splitting on camel case
(CMC)1 are common operators to process, in particular, the
text in programs. For our study, we consider a single post-
processing operator (CE), which prioritizes source fileswhose
name appears as code entities (such as Custom variable name,

1Note: Underscore splitting is similar to this operator but we address
CMC in this work since experiment subjects are written in Java.

Table 1
Pre/Post-processing operators used in this study.

Pre-processing operators
Name Description

preBasic Tokenizing words by white space, tab, and new line charac-
ters.

SWR Removing the stop words (e.g., “I” and “She”).
STM Stemming to find the root of each words (e.g., “consultant”

and “consulting” → “consult”).
SPC Cleaning up special characters and keywords (e.g., “/” → “”

(empty string)).
CMC Splitting camel cases (e.g., “JavaClass” → “Java Class”).

Post-processing operator
CE Extracting code entities (e.g., Custom variable name,

Method name, Class name) from the bug reports or related
attachments after parsing it, then emphasising a high rank
on this, if one exists.

Method name, Class name) in the bug reports. This operator
is implemented following the insights highlighted in recent
bug localization approaches [27, 6, 29]. After the retrieval
process, CE of the bug report can be checked/matched from
the Code Entity database. We designed it assuming we store
all the source code tokens already in practice. It relies on the
weights upon the number of entities found in the report. The
higher the number of detected code entities, the lower is the
weight assigned to it in the ranking process.
2.3. Performance Metrics

Bug localization techniques are generally evaluated by
comparing the localization estimations against ground truth
data, inferred by considering details from the fix patched de-
veloped for a set of resolved, and thus closed bug reports:
files that are impacted by these patches are considered as bug
locations. The assessment of localization performance is
usually conducted by consideringMAP andMRR as they are
two representative performance metrics for most IR-based
bug localization approaches (e.g., [43, 18, 27]).
• Precision: More accurately referred to as Precision@k, is

the metric that represents an estimation of how many files
are correctly recommended within the given top k files. It
is expressed as follows:

P(k) = # of buggy files in top k
k

(1)
• Average Precision (AP): This aggregates precision val-

ues of several positively recommended files for a single
bug report. The average precision of a given report is
computed by:

AP =
N
∑

i=1

P(i) ⋅ pos(i)
# of positive instances (2)

where N is the number of ranked files by a given IRBL
technique, i is a rank in the list of recommended files.
pos(i) indicates whether the i-th file in the ranked list is
a buggy file (i.e., pos(i) ∈ {0, 1}). For example, AP= 0.5
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represents that an IRBL technique can make correct rec-
ommendations with 50% of probability within top k rec-
ommendations.

• Mean Average Precision (MAP): The MAP is computed
by taking the mean value of AP for a set of bug reports
rather than a single one:

MAP = 1
M

M
∑

j=1
AP(j) (3)

whereM is the number of given reports. AP(j) is the av-
erage precision of the j-th report. If MAP=p, at least one
file is likely to be a correct recommendation for every 1

pfile in the ranked list.
• MeanReciprocal Rank (MRR): This computes themean

value of the position of the first buggy file in the ranked
list given by an IRBL technique, following this equation:

MRR = 1
M

M
∑

i=1

1
f -ranki (4)

where M is the number of all bug reports and f -rankimeans the position of the first buggy file in the ranked list
for the i-th bug report. For example, assuming MRR=
0.5, an IRBL technique can locate at least one correct
file to fix within top two recommendations (i.e., 1

MRR =
1
0.5 = 2).

3. Preliminary Study
We hypothesize that all pre/post-processing operators

are neither necessary nor effective on all inputs (i.e., bug
reports and source code), and thus should not be uni-
formly applied by IRBL techniques. However, in most
of the existing IRBL studies, all the pre/post-processing op-
erators selected in the study are applied blindly. We claim
that each input from a different project (subject) may have
specific characteristics, and the results of applying each pre/
post-processing operator could have varying impacts on the
performance of IRBL.

Wemotivate the need for a selective approach by investi-
gating the varying impact of the common operators listed in
Section 2.2. The key indicator of impact is the performance
of a straightforward approach to bug localization. Therefore,
the objective of this preliminary study is to show how differ-
ent combinations of the operators affect the results of IRBL.
To conduct this study, we sample a subset of subjects from a
bug localization benchmark (cf. Section 3.1 for details) and
apply all possible combinations of operators with a baseline
IR technique (cf. Section 3.2 for details).
3.1. Subjects

For this preliminary study, we select four mid-sized (in
terms of the number of bug reports) projects, MATH, SHDP,
LDAP, and SWS, from theBench4BL [18] benchmark. Bench4BL

Table 2
Subjects used in our study, Bench4BL [18].

Group Subject # Source # Major # Bug
files (Max) versions reports

Apache

CAMEL 14,522 60 1,469
HBASE 2,714 70 836
HIVE 4,651 21 1,241

CODEC 115 9 42
COLLECTIONS 525 7 92
COMPRESS 254 15 113

CONFIGURATION 447 11 133
CRYPTO 82 1 8

CSV 29 3 14
IO 227 13 91

LANG 305 16 217
MATH 1,617 15 245

WEAVER 113 1 2

JBoss

ENTESB 252 3 47
JBMETA 858 5 26

ELY 68 3 25
SWARM 727 6 58
WFARQ 126 1 1
WFCORE 3,598 16 361
WFLY 8,990 11 984
WFMP 80 1 3

Spring

AMQP 408 33 108
ANDROID 305 2 11
BATCH 1,732 33 432

BATCHADM 243 4 20
DATACMNS 604 33 158
DATAGRAPH 848 4 60
DATAJPA 330 38 147

DATAMONGO 622 40 271
DATAREDIS 551 17 49
DATAREST 414 23 132

LDAP 566 5 53
MOBILE 64 3 11
ROO 1,109 15 714
SEC 1,618 42 541

SECOAUTH 726 7 101
SGF 695 19 107
SHDP 1,102 9 45
SHL 151 3 11

SOCIAL 212 4 15
SOCIALFB 253 5 15
SOCIALLI 180 1 4
SOCIALTW 153 5 8

SPR 6,512 12 130
SWF 808 20 134
SWS 925 25 174

Total 61,431 690 9,459

is a comprehensive, reproducible package of six state-of-
the-art techniques for bug localization that were executed
on a large dataset of 9, 459 bug reports collected from 46
Java projects. The four projects are selected since they have
enough bug reports but not too many to show the impact of
operator combinations on the bug localization performance.
We use the same benchmark to evaluate our approach as
shown in Section 5. The full list of subjects of Bench4BL
is listed in Table 2. It should be noted that for our experi-
ment we only consider the initial information from the bug
report i.e. we do not consider additional information and at-
tachment provided after the bug has been reported.
3.2. Study Design

Our preliminary study focuses on addressing the follow-
ing research question:

• RQ1: Do different operator combinations have differ-
ent impacts on the performance of bug localization?

To answer the RQ1, we apply every possible combina-
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Figure 2: Results (MRR) of four sampled subjects for every combination.

tion of pre-processing operators as shown in Table 1 on a
specific technique named BugLocator [26] to check if they
actually affect the bug localization approach. Among them,
preBasic is always turned on for any subject since the tok-
enization step is necessary for building input queries. We
then apply all the combinations of pre/post-processing oper-
ators (5 pre-processing and 1 post-processing) to every sub-
ject. We prepare 32 (=25) different combinations by alter-
natively activating and deactivating each different operator
with the other five operators. Each pre-processing operator
is applied to all the bug reports and source code files before
feeding them to bug localization techniques, while the post-
processing operator (if it is activated in the combination) is
applied after obtaining a ranked list of suspicious files.

To implement a bug localization pipeline, DIGBUG is
built based on the Vector Space Model (VSM) [31] to con-
duct IRBL. The choice of using this model is based on the
performance results [20] that classified VSMas the best among
all the IR-classification techniques including Latent Seman-
tic Analysis (LSI) and Latent Dirichlet Allocation (LDA).
VSM computes the similarity between tokens of an incom-
ing bug report and tokens of each source code file. While
existing techniques apply more advanced modelization tech-
niques (e.g., rVSM in BugLocator [26]), we use VSM as a
baseline technique in our study to focus on unequivocally
highlighting the impact of pre/post-processing operator com-
binations.

3.3. Results
One of the primary findings of our preliminary study is

that each combination of operators2 shows different perfor-
mances. To check the performance difference on the pro-
cessing operators, we applied different operators to an ex-
isting approach named BugLocator [26]. We applied all the
pre-processing operator combinations, and it already showed
a performance range from 38.2% to 39.9% forMAP and from
50.6% to 52.5% for MRR, respectively. This results indi-
cate that operator combinations has impact on existing tech-
niques even only with pre-processing combinations for over-
all results. Further experiment driven by the former found-
ing includes all the 32 (=25) operator combinations and we
apply them to sample subjects. For example, the localiza-
tion performance for the subject MATH, ranged from 38%
to 59% whereas the best one is achieved with SPC, SWR, STM,
and CE operators while the worst one is with SWR as shown in
Figure 2(a). To be explicit, the best operator combination of
the sample projects we have; MATH, SHDP, LDAP, SWS
are [SPC, SWR, STM, CE], [SPC, CMC, CE], [SPC, SWR, STM, CE], and
[SPC, CE] respectively. The results from other subjects are
similar to the one for MATH. In particular, the MRR value
of the best combination for SHDP has improved 33.3 per-
centage points (32.9% → 66.2%) against the worst one.

Similarly, in our baseline localization technique, it achieves
the best performance for MATH when all the operators ex-

2In our results, the preBasic indicates the results from VSM without
any pre/post-processing involved in.
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Table 3
MAP and MRR for sample subjects (single version matching [18] for projects).

Subject BugLocator [26] BRTracer [7] BLUiR [6] AmaLgam [29] BLIA [28] Locus [27] Pre-study
MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR

MATH 0.1563 0.2173 0.1586 0.2274 0.1952 0.2413 0.2122 0.2627 0.1765 0.2394 0.1895 0.2251 0.4376 0.5882
SHDP 0.4433 0.6279 0.4652 0.6734 0.3899 0.5184 0.3897 0.5184 0.4654 0.6222 0.4633 0.5826 0.4835 0.6617
LDAP 0.4401 0.6344 0.4875 0.7197 0.4681 0.6251 0.4681 0.6251 0.4824 0.6665 0.3857 0.5058 0.5238 0.7286
SWS 0.4002 0.5400 0.4211 0.5872 0.3811 0.4886 0.3811 0.4886 0.3969 0.5456 0.4177 0.5680 0.4317 0.5898
Average 0.3600 0.5049 0.3831 0.5519 0.3586 0.4684 0.3628 0.4737 0.3803 0.5184 0.3641 0.4704 0.4692 0.6421

cept CMC are activated. However, for SWS, the best perfor-
mance is retrieved when SPC along with CE is activated. The
operator combination of SPC, SWR, and CE performs better for
MATH, LDAP, and SWS. In contrast, in the case of SHDP,
such combination performs 9.5% less in terms of MRR. This
confirms our hypothesis that the “one-combination-fits-all”
strategy is not the best option for performance.

Table 3 shows the results of our preliminary study com-
paring with other IRBL tools for the four sampled subjects.
Except for the MRR of SHDP, our approach outperforms all
the existing techniques. Overall, this preliminary study re-
ported an average improvement of up to 11.0% and 17.4%
for MAP and MRR, respectively.3
Our preliminary study results indicate that considering
different operator combinations significantly affects the
bug localization performance on the subjects. This an-
swers our RQ1.

Based on the results of this study, we motivate the fol-
lowing hypothesis: different combinations of operators
may lead to a better bug localization if we can identify
the relationships between the characteristics of subjects
and operators. Here, the challenge is how to find the best
performing operator combination for each subject. In the
above preliminary study, the unit of the subject is coarse-
grained (i.e., project), but it is also able to search for the
best combination for a finer-grained subject (i.e., bug report).
This forms the basis of our motivation to study the possible
operator combination that performs best for a subject. To
this end, we describe our tool DIGBUG that selects the best
combination of operators for different bug reports in Sec-
tion 4.
4. DIGBUG —Operator Selector for IRBL

This section describes DIGBUG, a tool for selecting a
combination of pre/post-processing operators used in IRBL.
Based on the motivation discussed in Section 3, this tool
first identifies the characteristics of the incoming bug report.
These characteristics allow the tool to apply the correct com-
bination of operators for a bug report. Finally, the tool com-
pares the similarity between the bug reports and source code
files and provides a ranked list of suspicious code files.

DIGBUG consists of two phases as shown in Figure 3:
(1) Training4 and (2) Localization. The intuition here is that

3This is the results for preliminary study.
4This training process can be regarded as ‘searching’ rather than that

of machine learning since it tries every possible combination of operators.

Table 4
Features used for characterizing bug reports.

Code Entity Is any code entity available in the report?
Description Is a description provided?
Stack Trace Does the report contain any stack trace?

Developer or User Whether the report is submitted by a developer or user?
Attachment Does the report have an attachment?

it is possible to figure out the best performing combination
of pre/post-processing operators if we can characterize the
bug reports. Besides, we make two assumptions (1) the bug
reports can be characterized by their attributes such as the
presence of stack trace, attachment, and type of reporter, etc.
(2) the bug reports can be grouped by computing the simi-
larity between them based on the attributes.

In the training phase, the tool takes a set of bug reports as
training data, and extracts attributes from each report (Sec-
tion 4.1). The attributes characterize a bug report, and DIG-
BUG decides a bucket (Bk) where a bug report belongs, basedon its attributes. The tool searches for the best combination
of pre/post-processing operators (OCk) for each bucket by
applying every combination exhaustively.

The localization phase starts with an incoming bug re-
port, which is the input of bug localization. In this phase,
DIGBUG first extracts attributes of the report used to deter-
mine the bucket where the report belongs. Since the train-
ing phase already identified the best combination, the tool
applies the identified operator combination to the bug local-
ization of the report. The operators are used before (pre-
processing) and after (post-processing) applying any IRBL
technique to subjects (bug reports). In this work, we use
a baseline bug localization with VSM as described in Sec-
tion 3.2. As a result, DIGBUG gives a ranked list of suspi-
cious source code files corresponding to the incoming report.
4.1. Attribute Extraction

To characterize bug reports, DIGBUG uses five attributes
as shown in Table 4. These are all binary attributes andmake
32 combinations, which will correspond to each bucket later.
We select these attributes since they are already adopted by
existing techniques [27, 7, 28] to characterize bug reports
and improve the bug localization performance.

The extraction of the attributes follows the below heuris-
tics. Code Entity is positive if a bug report has any camel-
case word or parenthesis; and we have Code Entity database
to check since the source code should be already exists. If the
Nevertheless, we use the term ‘training’ since it depends on the training
data.

6



Bug reports 

Training

Extracting
features

Bucketing

B1

B2

Searching for 
the best operator 
combination

B1

B2

B3

OCx

OCy

OCz

Localization

Bug Report

Bucketing

Extracting
attributes Applying the

best operator
combination

OCy
Localization with 
the operators

a.java
b.java
c.java

Suspicious files

B1

B2

Bug reports
annotated with 
attributes

Buckets

Bucket-combination pairs

Annotated 
bug report 

Buckets

IRBL technique

Figure 3: Overall procedure for training and localization of DIGBUG.

description section of a bug report is not empty, theDescrip-
tion attribute is on for the bug report. Stack trace is positive
if any stack trace is given for a bug report. To accurately
extract the stack traces from the bug report, we utilized the
tool infoZilla [44]. infoZilla is a library that helps extract
structural data from unstructured data sources such as bug
reports. This tool is a well-known method to extract Stack
Traces with an accuracy of 98.5%.

To identify whether the submitter of a report is a devel-
oper or user, the tool looks up the revision history of the sub-
ject where the report belongs. If the submitter has committed
any changes to the subject, our tool regards the submitter as
a developer; otherwise, it is a user. The attachment informa-
tion can be directly accessed by looking up the metadata of
a bug report.
4.2. Bucketing

Based on the attributes of each bug report, DIGBUG clas-
sifies bug reports into 32 buckets as described in Section 4.1
(i.e., five binary attributes and their combinations). As shown
in Figure 3, each bucket (B1, B2,…) contains bug reports
with the same characteristics based on the five attributes. We
assume that an identical operator combination can treat bug
reports in a bucket.
4.3. Searching for the best-performing

combination
Once bug reports in training data are assigned to different

buckets, DIGBUG identifies the best operator combination
for each bucket by trying to apply all possible combinations
to the reports in a bucket exhaustively. We use MRR as the
metric to compare different combinations and figure out the
best one.

Algorithm 1 shows in detail the training phase of DIG-
BUG. As a function, the phase takes five input arguments
and produces a map (BC) that tells us which operator com-
bination performs best for a given bucket. The input argu-
ments are a set of bug reports (R) for a training purpose, a
set of available pre/post-processing operators (O), a function
f that extracts attributes from a bug report, and a bug local-
izer to be used for evaluating the performance of an operator
combination (oc ∈ 2O) for a given set of reports in a bucket.
As shown in the algorithm, DIGBUG first extracts attributes
of each bug report inR (Line 3) and then assigns them (Line
5) into different buckets (b ∈ B and |B| = 2k where k is
the number of attributes). After obtaining a set of operator
combinations (Line 7), the tool exhaustively searches for the
best operator combination for every bucket (Lines 10–16)
and returns the result (Line 17).

4.4. Localization
Once the pair of buckets and operator combinations are

trained, DIGBUG takes a newly submitted bug report and
provides the best combination of pre/post-processing oper-
ators for the report in the localization phase. Furthermore,
in this phase, the tool first extracts attributes from the in-
coming bug report to find its corresponding bucket and then
retrieves the best combination found in the training phase.
The retrieved combination is plugged into an IRBL tech-
nique. The operators in the combination are applied in the
pre/post-processing steps of the technique resulting in the list
of suspicious files.
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Algorithm 1: Training phase of DIGBUG.
Input: a set of bug reports (for training): R = {r1, r2,… , rn}
Input: a set of operators: O = {o1, o2,… , om}
Input: attribute extraction function: f ∶ R → {0, 1}k
Input: bug localizer: localizer ∶ R × 2O → P (S) where P (x) is

permutations of a set x and S is a set of source code files
in a subject.

Input: bucketing function: bk ∶ R × {0, 1}k → B
Output: a map of a bucket and an operator combination:

BC = {(bi, OCx), (bj , OCy),… , (bm, OCz)}

1 Function train(R, f )
2 // produce a map of report (ri ∈ R) and attribute tuple

(fi ∈ {0, 1}k).
3 Rf ∶= R.map{(ri, f (ri))} ;
4 // produce a map of report (ri ∈ R) and bucket (bj ∈ B).
5 Rb ∶= R.map{(ri → bk(Rf (r))};
6 // obtain all combinations of operators.
7 OC = C(O);
8 // output: bucket – operator combination map.
9 BC = ∅;
10 foreach ∀bi ∈ B do
11 // collect all bug reports belonging to bi.
12 Ri ∶= R.filter(Rb(r) == bi);
13 // find the best combination (‘MRR’ is a function

computing MRR values defined in Section 2.3).
14 OCbest ∶= argmax

ocj∈OC
{MRR
∀r∈Ri

{localizer(r, ocj )}};
15 // add the best combination of the given bucket.
16 BC ∶= BC + (bi → OCbest);
17 return BC;

5. Evaluation
This section describes the experimental setup, dataset for

training, and localization used to assess the performance of
DIGBUG and report its results. The aim is to investigate if the
selection of a particular operator combination impacts bug
localization performance when considering different bug re-
ports.
5.1. Experimental Setup

The outcome of our preliminary study and its results al-
low us to propose further research questions:

• RQ2: Is the best operator combination different for an
individual bucket decided by the characteristics?

• RQ3: Does our bucketing approach provide signifi-
cant improvement over the state-of-the-art?

In this evaluation, to implement the approach described
in Section 4, we use the following configuration. First, the
five operators (four for pre and one for post processing) listed
in Table 1 to generate the set of operator combinations (note
that preBasic is always activated as a baseline operator, and
thus it is not included in the generation of combinations).
Furthermore, the same configuration used for the bug report
is applied to the source code within the dataset. Second,
we leverage the same IR-technique (i.e., VSM) as with the
preliminary study described in Section 3 since our objective
is to focus on investigating the impact of operator selection
on bug localization. In practice, any IRBL technique can be
plugged into DIGBUG instead of the baseline localizer.

Table 5
Number of features used for characterizing bug reports.

Code Entity 5, 191
Description 9, 459
Stack Trace 1, 137

Reporter as Developer 2, 511
Reporter as User 6, 948

Attachment 6, 210

We address our RQ3 by considering the results of the
six popular IRBL techniques [26, 7, 6, 29, 28, 27], which
are reported in Bench4BL [18]. The results are obtained
with the following configuration (1) single version matching
and (2) test files included, which are listed in the literature
Bench4BL [18]. We take the same condition to make the
comparison fully fair. The former is selected for simplicity
sincemulti-versionmatching increases the complexity of the
evaluation. The latter is chosen as Bench4BL’s results sug-
gested [18].
5.2. Dataset

To evaluate our approach, we leverage two different datasets:
one from D&C [8] that has approximately 20K bug reports
for the training and the other from Bench4BL [18] for local-
ization (i.e., evaluation). The training phase was conducted
using different dataset due to the lack of the number of bug
reports for the test, and we devised as this cross-project set-
ting generalizes the approach. We leverage this step to segre-
gate/separate the buckets based on the attributes. This train-
ing allows generalizing the attributes for each bucket.

Training dataset: D&C dataset has 19, 600 bug reports
and furthermore contains additional subjects (e.g., Apache
WICKET [45]). This dataset is curated by considering only
bug reports since the Bench4BL dataset contains all the is-
sue reports, including bug reports and discarding every re-
port that is not completely paired with source code. The
bug reports that are considered in the dataset are the ones
marked as RESOLVED, FIXED or CLOSED. Because of the cura-
tion phase, D&C ends up having 4, 467 intersections (i.e.,
the same bug reports as from Bench4BL) of the bug reports.
We discard them from the training phase to generalize the
buckets and their corresponding operator combinations. Fi-
nally, we ended up having 15, 133 bug reports in the training
phase for our approach.

Dataset for localization To assess the approach, we use
the dataset that consists of bug reports and source code pairs
from Bench4BL [18]. The use of source code and bug re-
port pairs allows training for the retrieval of potential buggy
files. The dataset has 9, 459 bug reports in total and 61, 431
source code to index. We use all the 9, 459 bug reports to
predict the potential buggy source files in the localization
phase. Table 5 shows the numbers for each feature extracted
from the bug reports. We hypothesized that there are bug
reports that do not contain the body (i.e., description) since
we found several ones in practice (e.g., [46]). However, all
of the Bench4BL’s bug reports include descriptions. While
recent IRBL studies often use outdated datasets (so-called
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Table 6
Bucket – Operator combinations and the number of reports
per each bucket found in this study with the setup described
in Sections 5.1 and 5.2.

Index Bucket by Attributes Operator Combination # of Reports
1 code-entity, developer,

attachment, description,
stack-trace

SPC, CE 74

2 code-entity, developer, at-
tachment, description

SPC, CE 740

3 code-entity, developer, at-
tachment

N/A

4 code-entity, developer, de-
scription, stack-trace

SPC, CE 79

5 code-entity, developer, de-
scription

SPC, SWR, STM, CE 402

6 code-entity, developer,
stack-trace

N/A

7 code-entity, developer N/A
8 code-entity, user, attach-

ment, description, stack-
trace

SPC, CE 332

9 code-entity, user, descrip-
tion, stack-trace

SPC, SWR, STM, CE 194

10 code-entity, user, attach-
ment, description

SPC, SWR, STM, CE 2280

11 code-entity, user, attach-
ment

N/A

12 code-entity, user, attach-
ment, stack-trace

N/A

13 code-entity, user, stack-
trace

N/A

14 code-entity, user, descrip-
tion

SPC, STM, CE 1090

15 code-entity, user N/A
16 developer, attachment,

description, stack-trace
SPC, CMC, SWR 57

17 developer, attachment,
description

SPC, CMC, SWR 666

18 developer, description,
stack-trace

SPC 51

19 developer, description SPC, CMC 442
20 developer, stack-trace N/A
21 developer, attachment N/A
22 developer, attachment,

stack-trace
N/A

23 user, attachment, descrip-
tion, stack-trace

SPC, SWR, STM 222

24 user, description, stack-
trace

SPC 129

25 user, attachment, descrip-
tion

SPC, CMC, SWR 1839

26 user, description SPC, CMC, STM 869
27 user, attachment N/A
28 user N/A
29 developer N/A
30 code-entity N/A
31 attachment N/A
32 stack-trace N/A

“old subjects” [18]) to evaluate their techniques, we employ
Bench4BL since the corresponding study based on the bench-
mark shows that the latest subjects are more effective and
reliable to assess IRBL techniques.
5.3. Experimental Results

As a result of the training phase of our experiment, we
obtain a list of buckets that consist of the attributes of the
bug reports. Furthermore, it also results in the best operator
combination for individual buckets. A list of the attributes,
its operator combination, and the number of bug reports for
each bucket are presented in Table 6. In our result, there are
cases where the operator combinations are not available due
to the lack of corresponding attributes of the bug reports5.

We found that applying incorrect operator combinations
for a particular bucket leads to inaccurate localization. The

5For example, Index 32 of Table 6 as it cannot be a bug report with just
stack-trace inside it; Index 6 of Table 6 as there is no bug report with those
particular set of attributes within our dataset.

results imply that applying an operator CMC (i.e., CamelCase
splitting) on “code entity” would potentially change the en-
tity itself, leading towards lower accuracy for the localiza-
tion. A stack-trace is a list of the method calls captured in the
middle of the execution of the application. This stack-trace
is neither a natural language free-form text nor the standard
source code. We discovered that bug reports with only stack-
trace included should be treated with only the SPC operator.
This means other operators (i.e., SWR, CMC, STM) impediment
for the accurate localization since stack-trace likely consist
of information relevant for debugging, applying the opera-
tors would alter its meaning and context. For example, stack-
trace may have the keyword “..connections..” which, upon
application of STMwould change to “connect” thereby chang-
ing the context of the stack-trace. The operator SPC is con-
stantly being applied, and it indicates that special characters
(e.g., #, $ and %) need to be removed as they do not pro-
vide meaningful information for the localization. Another
attribute, such as the CE (code-entity), is applied to every
bucket with any form of code-entity present to extract prac-
tical terms from the code, such as the class names, method
names, and parameter types. As a direct result, each bug
report requires a different operator combination based on its
attributes for accurate IRBL performance. This supports our
main claim that a one-size-fits-all does not fit every bug re-
port.
RQ2 is addressed by the results that demonstrate bug re-
ports can be classified into different buckets by their at-
tributes, and the best operator combination is different for
an individual bucket.

Table 7 shows the aggregated MAP and MRR for all
the subjects described in Table 2. It shows that DIGBUG
achieves better results than the existing state-of-the-art tech-
niques. The improvements are up to 8.0% and 12.6% of
MAP and MRR, respectively for the aggregated results. It
also indicates that DIGBUG can achieve at least 3.5% and
4.4% improvement against the best-known results from Lo-
cus and BRTracer. Additionally, we use the Mann-Whitney
U test [47] to identify whether the differences are signifi-
cant. This statistical test is applied between DIGBUG and
each technique. If the result has a p-value lower than 0.01, it
is indicated by a single asterisk. If it is lower than 0.001, then
it is denoted with a double-asterisk. The test results clearly
show that the differences are mostly significant except for
those of the Locus [27].

Table 8 shows the results of our approach for all the eval-
uated subjects. The results in the table are project-independent,
unlike Table 7. In the majority of the cases, our approach
outperforms the six state-of-the-art techniques. On average,
DIGBUG provides improvements from 6.8% to 9.6% and 9.4%
to 14.9% for MAP and MRR, respectively. These results
show that application of different operator combinations brings
better localization results based on different buckets of bug
reports. Additionally, it indicates that the cross-project train-
ing and localization setting works where insufficient data is
available for the training.
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Table 7
Summary of MAP/MRR of IRBL techniques for the subjects (aggregated results).

BugLocator BRTracer BLUiR AmaLgam BLIA Locus DIGBUG
MAP 0.3052∗ 0.3330∗ 0.2881∗∗ 0.2906∗∗ 0.3014∗ 0.3289 0.3681
MRR 0.4223∗∗ 0.4690∗∗ 0.3869∗∗ 0.3899∗∗ 0.4155∗∗ 0.4430 0.5134

∗: p-value < 0.01, ∗∗: p-value < 0.001

Table 8
MAP and MRR for each subject listed in Table 2 (single version matching for projects).

Subject BugLocator BRTracer BLUiR AmaLgam BLIA Locus DIGBUG
MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR MAP MRR

CAMEL 0.3235 0.4621 0.3646 0.5270 0.3005 0.4188 0.3032 0.4210 0.3097 0.4451 0.3986 0.5571 0.3355 0.4816
HBASE 0.2993 0.4168 0.3463 0.4884 0.2818 0.3938 0.2820 0.3942 0.3094 0.4258 0.3084 0.4059 0.3678 0.5198
HIVE 0.2693 0.3670 0.3178 0.4521 0.2769 0.3914 0.2772 0.3916 0.2412 0.3312 0.3310 0.4580 0.2670 0.3921

CODEC 0.6227 0.8341 0.6333 0.8199 0.7011 0.8625 0.7011 0.8625 0.6914 0.8829 0.3519 0.4087 0.6574 0.8953
COLLECTIONS 0.2318 0.3327 0.2319 0.3457 0.2174 0.2659 0.2191 0.2659 0.2493 0.3606 0.2670 0.3090 0.5567 0.8532
COMPRESS 0.5637 0.7545 0.5747 0.7976 0.4874 0.6382 0.4816 0.6345 0.5797 0.7822 0.5872 0.7801 0.5377 0.7452

CONFIGURATION 0.0378 0.0480 0.0385 0.0530 0.0413 0.0502 0.0413 0.0502 0.0345 0.0476 0.0299 0.0430 0.6082 0.8143
CRYPTO 0.1622 0.2665 0.1711 0.3044 0.1982 0.3974 0.1982 0.3974 0.1588 0.3616 0.1118 0.3421 0.1686 0.3105

IO 0.7640 0.8574 0.7508 0.8809 0.6797 0.7332 0.6784 0.7309 0.7744 0.8489 0.4053 0.4322 0.5689 0.6826
LANG 0.5371 0.6446 0.5426 0.6441 0.5327 0.5783 0.5367 0.5810 0.5349 0.6423 0.5810 0.6181 0.7556 0.8936
MATH 0.1563 0.2173 0.1586 0.2274 0.1952 0.2413 0.2122 0.2627 0.1765 0.2394 0.1895 0.2251 0.4422 0.5971

WEAVER 0.6212 0.6666 0.6331 0.7500 0.6637 0.6666 0.6637 0.6666 0.5695 0.6666 0.4996 0.5500 0.7679 1.0000
CSV 0.6104 0.6677 0.6108 0.6784 0.6075 0.6369 0.6313 0.6845 0.4048 0.6429 0.6554 0.6970 0.7872 0.9167

ENTESB 0.0559 0.0511 0.0542 0.0624 0.0652 0.0775 0.0652 0.0775 0.0314 0.0638 0.0555 0.0704 0.0491 0.0682
JBMETA 0.2442 0.4387 0.2351 0.4312 0.1805 0.3233 0.1832 0.3258 0.2078 0.3698 0.2534 0.3639 0.2913 0.4601

ELY 0.0587 0.1506 0.0668 0.1587 0.1098 0.1962 0.1098 0.1962 0.0939 0.1667 0.1260 0.1667 0.1161 0.2118
WFARQ 0.5000 0.5000 0.3333 0.3333 1.0000 1.0000 1.0000 1.0000 0.1111 0.1111 0.5000 0.5000 1.0000 1.0000
WFCORE 0.3202 0.4444 0.3326 0.4687 0.2552 0.3392 0.2565 0.3402 0.2830 0.3834 0.3607 0.4607 0.3389 0.4414
WFLY 0.2283 0.3196 0.2572 0.3623 0.2099 0.2972 0.2104 0.2982 0.2118 0.2994 0.2562 0.3500 0.2628 0.3736
WFMP 0.4534 0.5833 0.2675 0.2398 0.6818 0.8333 0.6818 0.8333 0.5000 0.6667 0.6226 0.7778 0.8254 1.0000
SWARM 0.2936 0.3852 0.3326 0.4317 0.3412 0.3960 0.3412 0.3960 0.2708 0.3608 0.2651 0.3656 0.3664 0.4638
AMQP 0.4426 0.6205 0.4775 0.6754 0.4196 0.5691 0.4210 0.5694 0.4626 0.6661 0.4533 0.6229 0.4245 0.6447

ANDROID 0.3626 0.5121 0.3536 0.5904 0.3761 0.4747 0.3761 0.4747 0.3138 0.5076 0.0796 0.0698 0.3660 0.6894
BATCH 0.3186 0.4848 0.3284 0.5023 0.2805 0.3941 0.2933 0.4124 0.3158 0.4735 0.3664 0.5449 0.3721 0.5662

BATCHADM 0.3218 0.4325 0.3479 0.5011 0.3657 0.4806 0.3657 0.4806 0.4313 0.5724 0.4322 0.6252 0.4458 0.5869
DATACMNS 0.4565 0.5916 0.4683 0.6429 0.4581 0.5632 0.4581 0.5632 0.5133 0.6670 0.5244 0.6482 0.5134 0.6701
DATAGRAPH 0.1519 0.2384 0.1592 0.2497 0.1714 0.2788 0.1718 0.2788 0.1426 0.2577 0.1609 0.2578 0.0116 0.0690
DATAJPA 0.4822 0.6649 0.4892 0.6854 0.4769 0.6170 0.4767 0.6170 0.5311 0.7098 0.4769 0.6329 0.4975 0.6836

DATAMONGO 0.4582 0.6344 0.5095 0.6965 0.4519 0.5769 0.4519 0.5769 0.5212 0.6807 0.4861 0.6322 0.3783 0.5231
DATAREDIS 0.5353 0.7627 0.5561 0.8081 0.5801 0.7626 0.5813 0.7637 0.5717 0.8082 0.4999 0.7259 0.4493 0.6761
DATAREST 0.3492 0.5458 0.3939 0.6372 0.3550 0.5125 0.3584 0.5162 0.3651 0.5730 0.3802 0.5974 0.3956 0.5722

LDAP 0.4401 0.6344 0.4875 0.7197 0.4681 0.6251 0.4681 0.6251 0.4824 0.6665 0.3857 0.5058 0.5291 0.7335
MOBILE 0.6909 0.8864 0.7116 0.9545 0.9224 1.0000 0.9224 1.0000 0.7285 0.8939 0.5042 0.5862 0.7855 0.9545
ROO 0.1164 0.1628 0.1293 0.1821 0.0910 0.1283 0.0928 0.1297 0.1001 0.1422 0.1208 0.1811 0.3360 0.4353
SEC 0.3209 0.4237 0.3368 0.4438 0.3087 0.3736 0.3133 0.3788 0.3502 0.4496 0.3145 0.3857 0.4922 0.6300

SECOAUTH 0.1983 0.3659 0.2128 0.3965 0.1381 0.2620 0.1430 0.2714 0.1891 0.3522 0.1990 0.3683 0.3205 0.5542
SGF 0.4173 0.6546 0.4223 0.6850 0.3591 0.5973 0.3589 0.5970 0.3682 0.6174 0.4359 0.7245 0.4039 0.7026
SHDP 0.4433 0.6279 0.4652 0.6734 0.3899 0.5184 0.3897 0.5184 0.4654 0.6222 0.4633 0.5826 0.4745 0.6631
SHL 0.2533 0.4037 0.2621 0.4166 0.2827 0.4220 0.2828 0.4221 0.2836 0.4015 0.3251 0.4579 0.2992 0.5121

SOCIAL 0.6110 0.6937 0.5900 0.6726 0.1979 0.2245 0.2496 0.3000 0.5285 0.5689 0.6569 0.7029 0.5888 0.6541
SOCIALFB 0.5541 0.6416 0.6156 0.7401 0.4818 0.6167 0.4818 0.6167 0.4064 0.5301 0.5382 0.6929 0.4849 0.6234
SOCIALLI 0.4711 0.6250 0.6384 0.7083 0.3929 0.3958 0.4504 0.4166 0.2989 0.3208 0.4081 0.6875 0.5837 0.8750
SOCIALTW 0.7382 0.7937 0.6750 0.7292 0.3814 0.4271 0.5014 0.5833 0.5594 0.6188 0.5456 0.6250 0.9009 1.0000

SPR 0.3074 0.4684 0.3377 0.5165 0.2061 0.3284 0.2182 0.3386 0.2878 0.4319 0.0169 0.0241 0.3021 0.4721
SWF 0.3812 0.4758 0.3974 0.5060 0.3647 0.4579 0.3613 0.4548 0.4038 0.5015 0.4384 0.5502 0.3174 0.4548
SWS 0.4002 0.5400 0.4211 0.5872 0.3811 0.4886 0.3811 0.4886 0.3969 0.5456 0.4177 0.5680 0.4460 0.6093

Average 0.3821 0.5064 0.3922 0.5299 0.3767 0.4746 0.3836 0.4827 0.3644 0.4930 0.3649 0.4757 0.4603 0.6234

The highlighted values in purple ( n.nnnn ) and green ( n.nnnn ) background denote the highest MAP and MRR, respectively
for each project.
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For example, DIGBUG’s result for COLLECTIONS sub-
ject achieves up to 34% and 58.7% points against the worst
ones, while the result for the SOCIALTW subject shows im-
provements of 30% and 40% points in terms of MAP and
MRR, respectively. Note that other existing techniques of-
ten use a single set of pre/post-processing operators with-
out considering the different characteristics of each bug re-
port. Thus, some necessary tokens can be remove, or other
unnecessary tokens may not be filtered out during pre/post-
processing. Our bucketing approach can assign an appro-
priate set of the operators, and this may lead to better per-
formance. We can expect performance improvement with a
more precise bucketing technique.

The result for the subject DATAGRAPH shows that DIG-
BUG achieves the worst results as compared to others. We
manually investigate the reason for this and found that 12
out of the 60 bug reports contain code entities in them. A
more detailed check of the bug report reveals that the key-
word “QueryResult” often appears in them. As the subject is
related to the popular NoSQL language, it is natural for the
users to mention this keyword, thereby populating the bug
report with the keyword that generates noise for our dataset.
The key takeaway is to be careful when considering bug re-
ports that may contain such ‘noisy’ keywords.

It is well known that the presence of code entities (e.g.,
method or class names) within a bug report improves the
performance of the localization [27]. However, our results
fromDIGBUG provide new insights; for subjects such as EN-
TESB, SHL, SOCIALTW, WEAVER, applying the CE op-
erator does not significantly impact the performance. Fur-
thermore, the best performance for specific subjects such as
BATCHADM, CSV, and DATAGRAPH are retrieved when
the post-processing operator CE is deactivated.

Additionally, we observed that what issue reports are
successfully localized. Among a total of 9, 459 reports, 5, 184
(i.e., 54.80%) has code entities, and most of them are writ-
ten by developers to prioritize after pre-processing steps and
analysis. 82.99% (i.e., 4, 302 reports) of the corresponding
5, 184 reports are successfully ranked in at least the top 10.
This implies that code entities being provided by develop-
ers are helpful for better performance on bug localization as
stated in [27].
Addressing RQ3, the evaluation results indicate that ap-
plying different operator combinations to different buck-
ets improves the performance of bug localization over the
state-of-the-art techniques.

5.4. Threats to validity
As in any empirical assessment, our study bears some

threats to validity.
External validity: Our experiments examine only Java

subjects. However, the same process in the study can be ap-
plied to other subjects that are implemented in other pro-
gramming languages. Another threat to the validity of our
study is that our subjects are all based on an open-source de-
velopment model. The practice in the software industry may

involve projects with specific characteristics that may affect
the performance of the IRBL techniques with varying levels
of success. The evaluation of the approach has been con-
ductedwith “Single version” of each subject. Bench4BL [18]
already shows that considering multiple versions of subjects
can derive better performance. However, our goal is to show
the varying impact of the operator combinations (i.e., pro-
cessing strategy). Therefore, considering multi-version is
outbound of the approach. Although we applied the combi-
nations of the operators to the baseline (i.e., VSM) technique
and it outperforms the other techniques, it may retrieve dif-
ferent impact if we apply such operators on each technique.
It may depend on an experimental environment or specific
characteristics.

Internal validity: We use our implementations for the
different pre-processing operators, which may carry some
limitations. We also relied on the simple VSM baseline for
the comparison to determine the effect of pre/post-processing
operators. The latter, however, is commonly used in the lit-
erature, which mitigates the threat to validity. It should be
noted that the training process of DIGBUG could be time-
consuming and might require significant resources, but it is
a one-time cost. Although there would be changes towards
the software maintenance over time, the need for re-training
would be relatively low as the attributes required for DIG-
BUG would be retained.

If the number of buckets and possible combinations in-
crease, the computation cost would bemuch higher. It would
be easy to make the process parallel and the potential im-
provement in the localization phase can compensate for the
cost.
5.5. Discussion & Future work

Pre/post-processing operators: In this study, we use
data processing operators that are commonly used in state-
of-the-art bug localization techniques and well-known for
text retrieval. Figure 4 shows the MRR results for the sam-
pled buckets (Index# 2, 9, and 25 in Table 6) from our exper-
iment (shown in Tables 7 and 8 of Section 5). These buck-
ets classify the bug reports based on their attributes without
considering the subjects. When applying the different oper-
ator combinations to each bucket, the results vary for each
combination. As the results indicate, if an unsuitable op-
erator combination processes a bug report, it significantly
decreases the performance.

Categorization of bug reports: For the categorization
of the bug reports, we focused on the attributes of the avail-
able reports in most issue tracking systems. Our future work
includes discovering additional attributes from bug reports
that would potentially lead to a better categorization.

Information retrieval model: We use VSM (i.e., the
most basic one for IR-based bug localization) instead of other
complexmodels such as deep learning techniques. Although
the deep learning techniques may show better results, our
goal is to show that different operator combinations should
be applied depending on the characteristics of bug reports
and even subjects.
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Figure 4: Results (MRR) of three sampled buckets for every
combination.

Furthermore, deep learning based approaches still lag
compared to the time of the classical approaches. For in-
stance, Lam et al. [11] presented a simple deep learning ap-
proach that combines rVSM and DNNs (Deep Neural Net-
works) where they reported the time of a couple of minutes
to retrieve one prediction (i.e., results for a bug). When com-
pared to DIGBUG, it takes around 0.6 seconds on average for
retrieving one prediction. Additionally, the performance of
the former provides a limited improvement of 2.8% points
in terms of MAP against that of the LR [13], which is a
VSM-based approach that integrates functional decomposi-
tions, bug-fixing history, API descriptions, and code change
history for bug localization.

However, it will be worth comparing with approaches

such as DeepLoc [48] or DreamLoc [43] since such approach
also shows a significant improvement compared to an ap-
proach (i.e., BugLocator [26] and BRTracer [7]) in our ex-
periment, even though it used a different dataset than ours.
It will guide if our approach also has a significant impact on
learning-based approaches.

Classifying bug reports: Our study assumes that the
bug reports in the benchmark [18] are correctly classified as
“bug”. However, DIGBUG might not be effective if the clas-
sification is incorrect. Antoniol et al. [49] discovered that
many issue reports are labeled as “bug” even though they are
enhancements, refactoring/restructuring, and organizational
issues due to lack of better classification support. For exam-
ple, a simple organizational issue may contain stack traces
in a report. Thus, the classification accuracy may affect the
performance of DIGBUG.

Applying the operator combinations to different do-
mains or considering various features of the query (vo-
cabulary): While optimizing pre/post processing on VSM
improves the performance of bug localization, different IR
techniques might react differently to such processing. This
can be a worthwhile candidate for future research direction.
Additionally, expanding the vocabulary with acronym/ab-
breviation [50] from the bug report or checking the length
of the query (vocabulary) and apply those as one of the fea-
tures can be an interesting study to conduct in the future for
the field of bug localization.

6. Related Work
Rao et al. [5] undertook a comparative study on the dif-

ferent IRBL techniques. The conclusion of their study showed
that IRBL techniques are as effective as other fault localisa-
tion techniques. One particular conclusion of the study was
that complicated models (such as LDA) do not outperform
simpler models such as the VSM. Building up on this con-
clusion, DIGBUG employs the VSM to validate its approach.
Our work, DIGBUG employs VSM as well by following its
effectiveness from the literature [5, 26, 20].

Zhou et al. [26] proposed a revisedVSMmodel that takes
in additional parameters such as the different sizes of the
source files and comparing the similarity between a new bug
and previously fixed bugs. This revised model built on two
hypotheses: (1) larger source files are more likely to contain
bugs, and (2) a bug that was previously fixed can help locate
the relevant files for a similar new bug. A tool called Bu-
gLocator was developed that demonstrated an outperform-
ing result when compared to previous IRBL techniques.

Meanwhile, Hill et al. [51] undertook a study to inves-
tigate the impact of stemming within bug localization cor-
responding to different types of queries. Additionally, they
compared different stemming algorithms, and their results
proved that the efficiency corresponds to the length of the
query. DIGBUG using stemming (STM) as one of the Pre-
processing operators in its bug localization approach.

Later, Kim et al. [52] observed that many bugs reports
do not have sufficient information that is necessary to make
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a good prediction, which ultimately makes bug localization
unsuccessful. To address this issue, they mark such bug re-
ports as unpredictable and discard them to improve localiza-
tion performance. Furthermore, they proposed a two-phase
model that first checks the localizability and only considers
them predictable. The results show that using the predictive
two-phase approach, on average, a 70% likelihood.

Saha el at. [6] implemented BLUiR and improved the
results of the BugLocator by incorporating the structural in-
formation from the project source code. Their main obser-
vation was that source files are structured documents, and
code constructs such as the class name and method names
can improve localization for bug reports. The effectiveness
of this technique was evaluated against the BugLocator and
showed a significant improvement. Later Saha et al. [53] in-
vestigated whether IRBL approaches can work with source
code that is written in a programming language that is not
based on the concept of object-oriented programming. They
found that although IRBLwas effective for such source code,
the integration of program structure information did not help
provide better results.

Thomas et al. [20] investigated the consideration to be
taken in the configuration of the classifier. Their study in-
cludes understand the use of general parameters (e.g., “Bug
report representation”, “Entity representation”, “Pre-processing
steps”) and specific parameters for each of the technique (e.g.,
“Term weight”, “Similarity metric”, “Number of topics”).
The experimental results demonstrated that the configura-
tion of the IR-based classifier matters and one configuration
(i.e., the best one in the literature) improves results in al-
most all cases. According to the results of our study, we
provide insight that; the ‘one-configuration-fits-all’ strategy
is not appropriate for bug localization due to the variety of
attributes of bug reports.

Wang and Lo [54] decided to improve the precision per-
formance by combining multiple existing information (i.e.,
version history, similar bug reports, structural information).
Their tool, AmaLgam, only considers very recent version
history, uses the same bug prediction technique as Google
(i.e., BugLocator). Unlike Sisman and Kak [55], they as-
signed weights of contributions of each file by integrating
BugLocator and BLUiR. The proposed approach achieved
12% to 16% improvements against BugLocator and BLUiR
in terms of MAP.

While various information on bug reports and source code
were being considered, Wong et al. [7] observed that stack
traces from the input bug reports are important elements to
consider. They divided source code into segments based on
their similarity and analyzed the stack traces to localize the
correct files to fix. They compared their results against Bu-
gLocator that showed to outperform it. They also discovered
and reported that segmentation and stack trace analysis com-
plement each other for boosting performance.

Similarly, Lobster [56] employs stack traces by combin-
ing textual similarity between a bug report, a code element,
and the structural similarity between the stack trace with the
code elements.

To accurately rank the source code file, Ye et al. [13]
leveraged six features (i.e., Lexical Similarity, Collabora-
tive Filtering Score, Class Name Similarity, Bug-Fixing Re-
cency, Bug-Fixing Frequency, and Feature Scaling). The
ranking score of each source file is calculated as a weighted
combination of former features that are incorporating do-
main knowledge. At the same time, the weights are trained
previously by using the learning-to-rank technique. They
undertook the evaluation against the baselines (i.e., VSM
and Usual Suspect) and the state-of-the-art (i.e.., BugLoca-
tor, BugScout). The results showed correct recommenda-
tions within the top 10 ranked files for over 70% of the bug
reports in the Eclipse and Tomcat data, showing consider-
able improvements.

Some researchers continued investigations towards refin-
ing the complicated models. In the same, Youm et al. [28]
proposed a combinational approach named BLIA, that stat-
ically integrates the analytics approach by using texts and
stack traces from bug reports, AST, and code change histo-
ries. However, the results of BLIA showed that it could not
provide consistent results in ranking the correct files com-
pared to the state-of-the-art; MAP andMRRvalues are higher
than them for some subjects.

Wang et al. [57] undertook an empirical study to evaluate
the needs and the usefulness of IRBL. The study was based
on analytical investigation supplemented by a user study. The
results from the analytical study provided insights in regards
to the valuable information that is often missing from bug
reports that are needed for bug localization. Furthermore,
developers can be guided automatically to the target source
code files when high-quality bug reports are provided. This
implied the marginal impact of the IRBL. Although IRBL
has limited benefits yet, providing the list of suspicious files
may still help developers get to the correct files faster. The
user study results showed the fundamental importance of
user studies on the techniques to get practical insights.

Another empirical study [57] pinpointed that in some
cases, current IRBL techniques do not help developers in
improving the bug localization. To overcome this weakness,
Wen et al. [27] proposed Locus, which offers finer granular-
ity than file-level and provides important contextual clues
for localization. Unlike existing techniques, Locus retrieves
information from software changes instead of source code
tokens. Maximum 20.5% points respectively improve the
MAP and MRR on average comparing against the state-of-
the-art (e.g., BRTracer [7], BLUiR [6], and AmaLgam). Lo-
cus also successfully located the bug-inducing changeswithin
the top 5 for 41.0% of the bugs.

Wang and Lo [9] proposed AmaLgam+, which collects
and cares for five sources of information (i.e., version his-
tory, similar reports, structure, stack traces, and reporter in-
formation) and integrates them with a composer. AmaL-
gam+ outperforms with 4% improvement on average than a
prequel, AmaLgam, which outperforms the state-of-the-art.
Similarly, DIGBUG considers information from attributes such
as stack trace and the type of reporter from the given bug
report along with other attributes such as code entities, de-
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scriptions, and attachments.
Panichella et al. [19] deal with studying different approaches

for removing special characters, identifier splitting, stopword
removal, stemming, term weighting, IR engine, and similar-
ity measure on bug localization. As a result, they devised
an approach towards finding the best possible operators us-
ing genetic algorithms. Instead of our tool DIGBUG, they
worked on grouping bug reports by different configurations
rather than investigating the best operator combination for
each characteristic of bug reports.

Rahman and Roy [15] introduce BLIZZARD, which pre-
dicts buggy files by going through a query (i.e., bug report)
reformulation technique. It checks whether there are ex-
cessive program entities (i.e., stack trace, fully natural lan-
guage token-based, program elements) or not in the incom-
ing bug reports, then applies different reformulations. More-
over, it leverages TextRank (a graph-based term weighting
method) for developing the Trace Graphs instead of TF-IDF
to identify important keywords. The localization results re-
port that BLIZZARD can outperform the state-of-the-art,
and it also improves 22% and 20% more of noisy queries
and poor queries, respectively, others.

Many researchers have applied deep learning techniques
to bug location problems. Huo et al. [58] adopted the use
of the pairwise learning-to-rank approach to classifying the
bug reports and source code files into linked and non-linked
records. They proposed a new architecture (called Natural
Language And Programming Language CNN) that outper-
formed the other state-of-the-art bug localization models.
Later, Huo et al. [59] proposed using an extension to the
model called TRANP-CNN that leveraged cross-project in-
formation for bug localization. The model works by first
extracting features from bug reports and source code files
of source and target projects, then generated project-specific
predictions for new bugs by the extracted features. These
features allowed a higher accurate matching of the source-
code files with the new bugs for localization. Huo et al. [60]
also proposed another new architecture for the bug localiza-
tion problem using a combination of LSTM and CNN called
LS-CNN. The LS-CNN exploits the sequential nature of the
source code such as functional semantics of program and the
correlation between bug report and source code that identi-
fies the buggy files. LS-CNN combines LSTM and CNN for
the processing, where LSTM focuses on the extraction of se-
mantic features and handling dependencies between differ-
ent source code statements while the CNN captures the lo-
cal and structural information within statements. They com-
pared their proposed architecture against NP-CNN, CNN,
LSTM, and other state-of-the-art bug localization approaches
such as BugLocator [26] and HyLoc [61].

Researchers conduct similar approach (i.e., applying var-
ious configurations) on other domains. Monero et al [62] in-
vestigated the effects of various text retrieval configurations
and proposed an approach named QUEST to perform iden-
tification of artifacts based on the configuration that is most
suitable for a given query. Also, Mills et al. [63] evaluated
the application of automatic query quality prediction on soft-

ware artifacts. They found that their approach can predict
the results by evaluating the text in queries that increased
efficiency in time manner and efforts of the search.

7. Conclusion
Bug localization is an expensive and difficult task, es-

pecially for large software projects. However, the benefits
of an efficient bug localization technique can improve the
manner in which developers handle and address the bugs in
their projects. In reality, use of bug localization techniques
remains far from being used due to the issues.

In this paper, we proposed our key insight that it is more
viable to consider the attributes from the bug reports for an
IR-based bug localization technique. We present DIGBUG,
which builds on this insight by leveraging the attributes ex-
tracted from the bug reports to figure out the best-performing
pre/post-processing operators. Furthermore, we demonstrated
how the performance of bug localization is improved byDIG-
BUG. This was evaluated on the dataset fromBench4BL [18]
that allows us to compare the results against state-of-the-art
techniques. The results were evaluated on a total of 9, 459
bug reports as input for DIGBUG and showed an improve-
ment of 6 and 14 percentage points in MAP and MRR, re-
spectively.

Although ourwork shows a significant gain over the state-
of-the-art techniques, the results can be improved. For ex-
ample, it can apply different types pre/post-processing oper-
ators and/or attributes from bug reports. In addition, DIG-
BUG can be plugged into other IRBL techniques.

We provide a replication packagewith datasets and scripts
asDIGBUG, at https://github.com/FalconLK/DigBug-Dig-into-Bug.
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