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Abstract

Internet of Things (IoT) has already proven to be the
building block for next-generation Cyber-Physical Systems
(CPSs). The considerable amount of data generated by
the IoT devices needs latency-sensitive processing, which
is not feasible by deploying the respective applications in
remote Cloud datacentres. Edge/Fog computing, a promis-
ing extension of Cloud at the IoT-proximate network, can
meet such requirements for smart CPSs. However, the
structural and operational differences of Edge/Fog infras-
tructure resist employing Cloud-based service regulations
directly to these environments. As a result, many research
works have been recently conducted, focusing on efficient
application and resource management in Edge/Fog com-
puting environments. Scalable Edge/Fog infrastructure is
a must to validate these policies, which is also challenging
to accommodate in the real-world due to high cost and
implementation time. Considering simulation as a key to
this constraint, various software has been developed that
can imitate the physical behaviour of Edge/Fog computing
environments. Nevertheless, the existing simulators of-
ten fail to support advanced service management features
because of their monolithic architecture, lack of actual
dataset, and limited scope for a periodic update. To over-
come these issues, we have developed multiple simulation
models for service migration, dynamic distributed cluster
formation, and microservice orchestration for Edge/Fog
computing in this work and integrated with the existing
1FogSim simulation toolkit for launching it as iFogSim2.
The performance of iFogSim2 and its built-in policies are
evaluated using three use case scenarios and compared
with the contemporary simulators and benchmark policies
under different settings. Results indicate that the proposed
solution outperform others in service management time,
network usage, ram consumption, and simulation time.
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1 Introduction

The Internet of Things (IoT) paradigm has drastically
changed the convention of interactions between physical
environments and digital infrastructures that sets the tone
of using numerous IoT devices including fitness trackers,
voice controllers, smart locks, and air quality monitors in
our daily activities. Currently, IoT devices are contribut-
ing 11.5 Zetta bytes to the total data generated around
the globe, which is experiencing an exponential rise each
year [1]. The recent adoption of Edge/Fog computing has
relaxed the requirements of harnessing Cloud datacentres
for different IoT-driven use cases. This novel computing
paradigm spans the computing facilities across the proxi-
mate network and enables smart health, smart city, Agtech,
Industry 4.0, and other IoT-enabled Cyber-Physical Sys-
tems (CPSs) to run the necessary application software
in the vicinity of the data source [2]. Thus, Edge/Fog
computing ensures the delivery of application services to
the requesting IoT-enabled CPSs with reduced data trans-
mission and propagation delay and lessens the possibility
of congestion within the core network infrastructure by
inhibiting the transfer of a large amount of raw data to
the Cloud datacentres.

The realisation of Edge/Fog computing environments pri-
marily depends on the integration of computing resources
such as processing cores, nano servers, and micro datacen-
tres with the traditional networking components, including
gateway routers, switches, hubs, and base stations [3, 4]. In
contrast to Cloud datacentres, such Edge/Fog computing
nodes are highly distributed. Similarly, the heterogeneity
in terms of resource architecture, communication stan-
dards, and operating principles predominantly exist among
these nodes. Because of such constraints, the centralised
Cloud-based resource provisioning and application place-
ment techniques have compatibility issues with Edge/Fog
computing environments and cannot be applied directly
to regulate the respective services [5, 6]. Identifying this
potential research gap, a significant number of initiatives
have been taken to develop efficient service management
policies for Edge/Fog computing. The research interest for
Edge/Fog computing has increased around 69% in the last
five years [7]. However, the newly developed service man-
agement policies for Edge/Fog computing environments
require extensive validation before enterprise adoption.

Real-world deployment is the most effective approach
to evaluate the performance of any service management



policy. However, since Edge/Fog computing environments
incorporate numerous IoT devices and computing nodes,
both in tiered and flatted order with vast amounts of batch
or streaming data and distributed applications, their real-
world implementation with such a scale is challenging. The
lack of global Edge/Fog service providers offering infras-
tructure on pay-as-you-go models like commercial Cloud
platforms such as Microsoft Azure and Amazon AWS fur-
ther forces researchers to set up real Edge/Fog computing
environments by themselves for costly policy evaluation.
Additionally, the implementation time for a real-world en-
vironment is significantly high, and the modification and
tuning of any entity or system parameters during the exper-
iments are tedious [8]. These constraints can be addressed
by simulating Edge/Fog computing environments. Not
only does simulation provide support for designing a cus-
tomized and scalable experiment environment, but it also
assists in the repeatable evaluation under different settings.

Although there exist several simulators for Edge/Fog
computing environments, a majority of them lack bench-
marks to validate other service management policies. They
merely use synthetic data without any functional ground,
which often direct to biased and erroneous performance
evaluation. Their monolithic architecture also refuses peri-
odic updates, resisting them to cope up with the advanced
features of genuine Edge/Fog computing nodes. Conse-
quently, they fail in imitating various complex scenarios
triggered by uncertain device mobility, resource constraints,
and heavy-weight computations. To meet such shortcom-
ings, a set of simulation models for mobility-aware applica-
tion migration, dynamic distributed cluster formation, and
microservice orchestration has been developed in this work.
The proposed models exploit real-world dataset and are
comprehensively mimics the capabilities of the state-of-the-
art Edge/Fog computing nodes and IoT devices. These
models are integrated with the existing iFogSim simulator
[9] and launched as iFogSim2 for widespread adoption as
benchmarks. The major contributions of our work are
listed below.

e A service migration simulation model that can operate
across multi-tier infrastructure and support simpli-
fied integration of real-world dataset. The launching
version uses EUA Dataset as the default and accom-
modates different device mobility models, including
pathway and random waypoint.

e A dynamic distributed cluster formation among multi-
tier infrastructure is proposed, where Edge/Fog nodes
in different tiers can provide services with a higher
quality of service. The cluster management is per-
formed in a distributed manner through which differ-
ent cluster formation policies can be simultaneously
integrated.

e An orchestration model for microservices deployed
across multi-tier infrastructure, which enables place-
ment policies to dynamically scale microservices
among federated Edge/Fog nodes to improve resource
utilisation. Different service discovery and load balanc-
ing policies can be integrated to simulate the dynamic
microservice behavior.

The rest of the paper is organized as follows. In Section
2, related researches are reviewed. Section 3 denotes how
the proposed simulation models are integrated with the
iFogSim simulator. The performance of proposed iFogSim2
simulator is evaluated in Section 4. Finally, Section 5
concludes the paper with future works.

2 Related work

Among the existing simulators for Edge/Fog computing,
the EdgeCloudSim software supports the nomadic move-
ments of the IoT devices [10]. Additionally, it considers the
static deployment and coverage area for the gateway nodes
and assumes the link quality between IoT and gateway
nodes remains always the same despite their distance. Sim-
ilarly, the FogNetSim++ simulator developed by Qayyum
et al. [11] can imitate different mobility models for IoT
devices, including random waypoint, mass mobility, and
linear mobility. It also provides the facilities to develop
customized mobility models as per the operating environ-
ment. The mobility support system of FogNetSim-++ is
loosely coupled with the core simulation engine, and thus
its extension requires the least modifications of the primary
libraries. However, both EdgeCloudSim and FogNetSim—++
lack abstractions for implementing microservice orchestra-
tion and dynamic clusterisation among multiple Edge/Fog
nodes. In [12], Jha et al. proposed another simulator
named IoTSim-Edge for modeling the characteristics of
IoT devices in the Fog computing environment. It rep-
resents IoT applications as a collection of microservices,
and the mobility model associated with IoTSim-Edge in-
corporates different attributes of IoT devices, including its
range, velocity, location, and time interval. This simulator
also facilitates users to implement their mobility model by
extending the core simulator programming interfaces but
barely highlights the clustering of the computing nodes.
Furthermore, Puliafito et al. [13] have recently developed
MobFogSim for simulating device mobility and application
migration in Fog computing environments. It is an ex-
tension of iFogSim that modifies the basic functionalities
of different iFogSim components with mobility features.
However, the mobility support system of MobFogSim only
deals with the IoT gateways and Cloud datacentres instead
of tiered Edge/Fog infrastructure and limits the scope for
creating clusters in Edge/Fog computing environments.
Mechalikh et al. [14] developed another simulator called
PureEdgeSim to evaluate the performance of Fog and Cloud
computing environments for different IoT-driven use cases.
The mobility support system of PureEdgeSim includes a
location manager, which is loosely coupled with the core
simulation engine. However, the default mobility-aware
application management policy of PureEdgeSim is complex
and difficult to customize. It also has limitations in forming
node clusters and augmenting microservice management
techniques. Conversely, Mass et al. [15] developed the
STEP-ONE simulator to imitate the operations of Fog-
based opportunistic network environments. STEP-ONE
extends the conventional ONE simulator with advanced
mobility and messaging interfaces and primarily focuses on
modeling simple business processes. Although STEP-ONE



incorporates support for the real-world dataset, it lacks
default policies for mobility management, node clustering,
and microservice orchestration. Likewise, in [16], Lera et
al. proposed YAFS simulator for Fog computing to design
and deploy various IoT applications with customized re-
source management policies. The mobility support system
of YAFS operates based on the sender-receiver relationship
between the Fog nodes that identifies the shortest path
during device movements. YAFS also defines logical rela-
tions among microservices through graphs and provides
interfaces for node clustering.

Furthermore, the IoTNetSim [17] simulator for Edge/Fog
computing environments developed by Salama et al. can
model different IoT devices and their granular details, in-
cluding energy profile. It supports the mobility of IoT
devices in three-dimensional space. Although IoTNetSim
is highly modular, it lacks benchmark policies for mobility-
driven service management and dynamic cluster formation.
Wei et al. proposed another simulator named SatEdgeSim
for evaluating the performance of service management poli-
cies in three-tier satellite edge computing environments
[18]. Considering the high mobility of satellite nodes, It
supports the dynamic alteration in network topology and
imitates the impact of communication distance on ser-
vice offloading delay. Although SatEdgeSim is modular,
it barely exploits the concept of microservice. Conversely,
the IoTSim-Osmosis simulator, developed by Alwasel et al.
targets the migration of workload to edge nodes based on
performance and security requirements. It considers the
IoT environment as a four-tier architecture and models the
applications in form of microservices. However, the simu-
lation components of IoTSim-Osmosis are tightly coupled
and constrained in imitating device mobility. ECSNeT -+
[19] is another simulator developed by Amarasinghe et al.
that mimics the execution of distributed stream processing
(DSP) applications in Edge/Fog computing environments.
It extends OMNeT++ /INET and provides multiple config-
urations for two real DSP applications with calibration and
deployment management policy. Nevertheless, ECSNeT++
lacks interfaces for supporting customized mobility of IoT
devices and forming dynamic clusters.

In comparison to most of the existing solutions, the
proposed iFogSim2 simulator simultaneously supports the
integration of real dataset for evaluating the performance
of different service management policies in Edge/Fog com-
puting environments and provides default techniques for
mobility management, node clustering, and microservice
orchestration, which can be adopted as benchmarks dur-
ing performance comparison. Additionally, the simulation
components of iFogSim2 are highly modular that eases its
customisation for imitating a wide range of service man-
agement scenarios in Edge/Fog computing environments.

3 iFogSim2 components

To address the prevailing limitations of the iFogSim sim-
ulator in supporting the migration of application, logical
grouping of Fog nodes, and orchestration of loosely-coupled
application services, three new components, namely Mobil-
ity, Clustering and Microservices have been implemented

and included in iFogSim2 (as shown in Fig. 1).

While simulating any use case through basic iFogSim,
its Controller class contains the object references of all
iFogSim core classes such as FogDevice, Sensor, Actuator
and AppModule. Through an Application object, the Con-
troller class can also access the Tuple class of iFogSim.
Therefore, in the newly developed three components, we
have inherited the Controller class separately, so that they
can be easily integrated with the core iFogSim simulator.
Additionally, the Controller class of iFogSim itself is a
subclass of SimEntity, which also helps bridge iFogSim2
with the core CloudSim 5.0 simulator. Besides, FogDevice
is updated with several parameters to support the integra-
tion of these new components. In the following subsections,
different iFogSim2 components are discussed in detail.

3.1 DMobility

The Mobility of IoT devices can affect the performance of
Edge/Fog computing, especially when they change access
points very frequently [21]. This event urges to migrate
the requested application service of the IoT devices from
one computing node (migration source) to another (mi-
gration destination) for ensuring the committed QoS. In a
logical multi-tier computing infrastructure like Edge/Fog,
such service migration operations depend on the following
aspects.

e The location of IoT devices.

e The timeline of movement or the mobility direction
and speed of the device.

e The identification of an intermediate node to which
the migration source can upload the corresponding
application service and the migration destination can
download; provided that there is no direct link between
the respective migration points.

Based on them, the performance indicators of the Edge/Fog
environment such as network delay, energy consumption,
and service delivery time can also vary significantly. There-
fore, taking these facts into account and aiming to as-
sist users in customizing them, we have developed several
classes in the Mobility component of iFogSim2. A detailed
description of these classes is given below.

DataParser: This class works as the interface for extend-
ing data from external sources to the proposed iFogSim2
components. Currently, it incorporates abstractions for
reading data from .csv files, which can be further extended
for other formats. However, while simulating mobility-
driven cases, iFogSim2 adopts the EUA Datasets which
contains the location information of a notable number of
Edge/Fog nodes deployed across Central Business District
(CBD) regions of major cities in Australia, including Mel-
bourne and Sydney.

To ensure granularity, we further customised the dataset
by segmenting the respective regions in multiple blocks
and selecting a particular node at the middle of each block
as the proxy server. All nodes but the proxy server within
a block act as the gateway for the IoT devices. As a means
of notations, proxy servers are specified as the tier-1 nodes
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Figure 1: Overview of iFogSim2 simulator

in iFogSim2 and assumed to be the immediate upper tier
contact for the gateways residing at the same block. In
this case, the gateways are referred to as tier-2 nodes. For
example, Fig. 2.a presents the location of tier-1 (marked in
blue) and tier-2 (marked in red) nodes deployed in the Mel-
bourne CBD. Finally, such a logical hierarchy of Edge/Fog
nodes has been ended by connecting the proxy servers of
all blocks to a Cloud datacentre serving as the tier-0 node.
To align with the characteristics of conventional network
topology, the location of these computing nodes is set to
be static. Furthermore, using a config.properties file, these
customised information are injected to the DataParser
class, which is easily modifiable as per the simulation use
cases.

Additionally, the DataParser class provides scope
for assimilating location information of multiple mobile
users/IoT devices individually so that respective appli-
cation services can be managed based on their distinc-

tive mobility pattern without affecting others. Currently,
two different types of mobility patterns namely DIREC-
TIONAL MOBILITY and RANDOM MOBILITY are
associated with the DataParser class through an object of
Reference class.

e DIRECTIONAL MOBILITY: This model refers to
the fixed speed acyclic movement of users/IoT devices.
To realise the DIRECTIONAL MOBILITY model,
we have at first identified a considerable number of
sequential coordinates lying at the same distances
across the Melbourne CBD for a user/IoT device (as
shown in Fig. 2.b). Later, based on those coordinates,
SimFEvents using CloudSim 5.0 are created to mimic
the movement of the respective user/IoT device. Dur-
ing simulations, the time interval between any two of
such movements is set to be equal for ensuring the
fixed speed of the user/IoT device. iFogSim2 pro-
vides a scope to tune this time interval as per the



test case requirements. Although this mobility model
provides the pedestrial presentation of users’/IoT de-
vices” movement, it is difficult and time-consuming
to generate for each individual. Therefore, iFogSim2
also incorporates the RANDOM MOBILITY model
for faster generation of users’/IoT devices’ movement
data.

o RANDOM MOBILITY: There are several random
mobility patterns to model the mobility behaviour
of users. The RandomMobilityGenerator class con-
tains requirements to generate and extend different
random mobility models according to various mobility
characteristics, such as users’ direction, speed, stop-
ping time in each position, and users’ sojourn time
in the communication range of each Edge/Fog node.
Currently, the RandomMobilityGenerator class imple-
ments two well-known random mobility models, called
random_ waypoint and random_ walk that can be used
to represent the mobility model of either users or even
Edge/Fog nodes, if required. Besides, in multi-user
scenarios, where multiple different random mobility
datasets are required, the RandomMobilityGenerator
class can be configured to generate different mobility
datasets for users. Furthermore, iFogSim2 users can
use the functions embedded in RandomMobility Gen-
erator class to generate mobility positions in their
desired Region of Interest (Rol). Fig. 2.c depicts a ran-
dom mobility pattern where the Rol is in Melbourne
CBD.

However, while parsing the location information of both
Edge/Fog nodes and users/IoT devices, the DataParser
class creates separate Location objects for each coordi-
nate. The block-wise information of the respective entities
(servers and mobile objects) can also be included in a
Location object. Furthermore, using these Location ob-
jects, DataParser can refer to the LocationHandler class
for sequencing the movement events of all mobile entities.

MobilityController: Conventionally, iFogSim requires a
test script where the overall simulation environment, includ-
ing the specifications of sensors, actuators, Fog nodes, and
applications are defined. These classes are also set to be
linked with the iFogSim simulation engine through a Con-
troller object. However, for simulating any mobility-driven
use cases, a synthesis of such iFogSim core classes and
the newly created mobility-specialised classes, including
DataParser and LocationHandler is required. Therefore,
in iFogSim?2, we have created a subclass of Controller class
named MobilityController and encapsulated the object ref-
erences of those specialised classes within it so that they
can collectively address the mobility-driven issues. Since
the Controller class itself is a subclass of SimEntity, Mo-
bilityController poses direct access to the SimFEvent class
of CloudSim 5.0. As a result, it allows the flexibility to
dynamically initiate the required sequential or parallel
events on different referenced objects of FogDevice and
AppModule for mobility management.

In iFogSim2, for initial placement of AppModules, the
MobilityController refers to an object of MobilityPlace-
mentMobile Edgewards class. This class replicates Module-
PlacementEdgewards of core iFogSim with an additional

feature that tracks the Fog node-wise deployment of ap-
plication modules/microservices for each mobile entity in
the simulation environment. Once the simulation starts,
MobilityController approaches to execute events, such as
launching of modules and management of resources as per
the initial placement. However, when it encounters any
mobility-driven event (e.g., changing of locations) as se-
quenced by the LocationHandler class, Mobility Controller
triggers a module migration operation. In this case, Mo-
bilityController executes the built-in MANAGEMOBILITY
procedure as noted in Algorithm 1. This procedure takes
the object reference mobile entity m and the SimFEvent trig-
gered timestamp ¢ as the arguments (line 1) and consists
of the following five phases. For a better understanding
of the algorithm, Java-based object-oriented notations are
used in the description.

e [nitialisation: In this phase, the required initialisation
for the mobility management operation is performed. At
first, using the Getter methods of MobilityController class,
the object referrals of DataParser, Reference and Location-
Handler are extended to the procedure (lines 2-4). Later,
the location Lf, of the mobile entity m at timestamp ¢
is determined through the mobileLocation method within
the DataParser class (line 5). This procedure also iden-
tifies the current upper tier contact p’ (noted as parent
Fog node) of m and its operating tier n using the Getter
methods within the mobile entity (lines 6-7). An additional
variable p is also formatted in the procedure to hold the
reference of m’s prospective new upper tier contact (due
to location change) residing at the closest distance (line
8). For realising this case, another variable § is set with

Algorithm 1 Mobility Management Logic

1: procedure MANAGEMOBILITY(m, t)
2: dP < getDataParserObject()

3: rF < getReferenceObject()

4 lH < getLocationHandlerObject()
5: LY, + dP.mobileLoction(m)

6: p < m.getParent()
7.
8

1 < m.getLevel()
: p < null
9: 8 + rf.getMaxDistance()
10: for f, := F,—1 do

11: Ly, <« dP.fogLoction(fu)

12: 8’ + lH.calculateDistance(Ly, , Lt,)
13: if &' < § then

14: d+ &

15: p < fu

16: if p’ # p then

17: A + p’.getPlacedModulesO f(m)

18: if p.inSameClusterOf(p') then

19: pushModules(p', p, \)

20: else

21: K < null

22: P < getNodesInPath(p, Cloud )
23: @’ + getNodesInPath(p’, Cloud )
24: for ¢ := ® do

25: for ¢’ := &’ do

26: if ¢ = ¢’ then

27: K4 @

28: break

29: pushModules(p’, k, A)

30: pushModules(k, p, A)

31: m.set Parent(p)

32: p.placeModules(m, A)

p' .terminate M odules(m, A)




v

£ Victoria Market S Victaria Market

0ld Melbourne Gaol
rily. closed

Queen Victoria Mdrkelo Queen Victaria MJIKEIQ

9
> ®
M
PAY QUAY
Mo L e
e hond < Melbourne ( _— ®.n
2oiR A5 Yana Rive! Cricket Ground DRkt Bl
__/ National Gu\\eryo . % i
Crown Melbourne () of Victoria MelbournzRark Crown Melbourne ()
emporarily closed W e emporarily closed W

(a)

National Gallery

(b)

viEWwwuI e vUSEU!

'Y

arlton
ardens
State Library Victoria

Victoria Market G(

D
(ot}
@ t
Queen Victoria Marke o ¥

! Soar L

Arts Centre L‘(HJ:;A.HH‘Q

National Gallery o . L oar Q
| L Q O Victora & Melbourne,Park
A\ _ D
(c)

B

Melbourne
Cricket Ground

4,
9 Melbourne Purko N
o m

L

Melbourne

yarra River Cricket Ground

of Victoria

Figure 2: (a) Block-wise Edge/Fog computing nodes, (b) Directional Movement of an user, and (¢) Random Movement

of an user in Melbourne Central Business District

a maximum distant value denoted in the Reference class
(line 9).

e New parent selection: Driven by the changing of lo-
cations, this phase determines the minimum-distant new
upper tier contact for the mobile entity m. For such an
operation, Algorithm 1 primarily considers F;_; as the
set of all upper tier Fog nodes corresponding to m and
identifies the location Ly, of each f, € F,,_; with the help
of DataParser object line (lines 10-11). Later, the distance
0’ from m and a candidate f, is calculated. In this case,
the calculateDistance method of LocationHandler class is
exploited that takes two location objects as arguments and
returns their haversine distance (line 12). Such exploration
also continues for other upper tier nodes, and the Fog node
that resides at a minimum distance from the mobile entity
m is marked as its new upper tier contact or parent node
p (lines 13-15).

e Intra-cluster module migration: According to Algo-
rithm 1, the migration of application modules occurs when
the current and new upper tier contact (p’ and p, respec-
tively) of the mobile entity m differs (line 16). To deal with
such a scenario, firstly, the application modules A deployed
in p’ corresponding to m are identified (line 17). Later,
it is checked whether both p’ and p belong to the same
Fog node cluster (line 18). If this condition is satisfied, p’
simply push the modules A to p using their shared cluster
communication links (line 19). Such a shifting of mod-
ules from one cluster node to another is referred to as the
intra-cluster module migration. Conversely, when p’ and p
do not share a common cluster, inter-cluster migration is
performed (line 20).

o Inter-cluster module migration: To start this approach,
Algorithm 1 firstly initialises a variable x which is ulti-
mately used to refer a common accessible point for both
p and p’ (line 21). For defining &, it also includes all Fog
nodes from p and p’ to Cloud in separate sets ® and @',
respectively (lines 22-23). Later, each Fog node ¢ € @
and ¢’ € ®' are explored and mutually compared (lines
24-25). During the exploration, if any candidate ¢ and ¢’
indicates to the same Fog node, that node is defined to
be x, and the exploration is immediately terminated (lines
26-28). Subsequently, the application modules are pushed
from p’ to k so that they can be further pushed to p’ and
migrated across clusters (lines 29-30).

e Update: In the last phase of Algorithm 1, necessary
updates in the simulation environment based on either
intra- or inter-cluster module migration are made. For

example, the current upper tier contact of mobile entity
m is set as p (line 31). Finally, the application modules A
corresponding to m start execution in p and p’ terminates
them.

Algorithm 1 is a sample illustration of managing mobil-
ity in iFogSim2. From line 10 to 15 of Algorithm 1, there
are O(|Fy—1|) iterations, where |F;,_;| denotes the number
upper tier Fog nodes to the mobile entity m. Additionally,
it has O(|®| - |®'|) iterations from line 24 to 28, where |P|
and |®’| define the number of nodes residing in the path
from p and p’, respectively. Such iterations helps MAN-
AGEMOBILITY procedure to function with polynomial time
complexity. Nevertheless, using the mobility-specialised
classes and respective methods of iFogSim2, further com-
plex and comprehensive mobility management policies can
be developed. In such cases, Algorithm 1 can also be used
as a benchmark.

3.2 Clustering

In highly integrated computing environments, Edge/Fog
and Cloud resources are being simultaneously considered
for service delivery. Such resources are inherently heteroge-
neous with complementary characteristics. Distributed fog
nodes usually have limited computing and storage resources
compared to Cloud resources, while they can be accessed
with higher bandwidth and less latency. Therefore, re-
source augmentation can greatly help resource-limited fog
resources to be used for resource-critical applications, espe-
cially computing and storage resources [22]. Accordingly,
a clustering mechanism to enable resource augmentation
among Fog resources is of paramount importance. Such a
clustering mechanism can also benefit multi-Cloud service
providers to communicate more efficiently together.

The Clustering component of iFogSim2 enables dynamic
coordination and cooperation among various nodes in a dis-
tributed manner. While each node can probe and register
their cluster members according to their specific cluster-
ing policy, the scheduling and other iFogSim2 features are
decoupled so that clustering can be used for both central-
ized and distributed scenarios, such as scheduling, mobility
management, and microservices.

ClusteringController, which is extended from Controller,
initiates the process of dynamic clustering among different
nodes. In order to adapt different scenarios, Clustering-
Controller can trigger the clustering mechanism on various
occasions, such as at the beginning of the simulation, af-



ter a specific simulation time, after a specific simulation
event, or any combinations of these criteria. Nodes re-
ceiving clustering messages in FogDevice can start their
clustering process. The FogDevice is updated with sev-
eral parameters to keep the list of cluster members (CMs),
bandwidth, and latency among CMs, just to mention a few.
It also contains a processClustering method which triggers
the clustering process based on the policy implemented in
Clustering. As each node runs the clustering process in a
distributed manner, different policies can be implemented
in Clustering.

The current clustering policy, implemented in Clustering
class, works based on the communication range and/or
latency among different nodes. In Edge/Fog computing en-
vironments, heterogeneous nodes, either wired or wireless
exist. So, clustering policies can use various metrics for
the creation of their clusters. The communication scope
of wireless nodes is usually estimated based on their com-
munication ranges. Therefore, for each type of Edge/Fog
node, a communication range is defined according to their
antenna’s characteristics. Moreover, each node has a geo-
graphical position, defined in the FogDeuvice. If a dataset
for the position of nodes is available, their geographical po-
sition can be parsed using DataParser. Accordingly, each
node based on its geographical position and communication
range can probe and create its list of CMs. Furthermore,
clustering can be performed based on the average latency
among each pair of nodes, regardless of whether these
nodes are wireless or wired. In such scenarios, a clustering
communication latency threshold is defined, through which
each node can dynamically create its CMs. Algorithm 2
represents an overview of Dynamic Distributed Clustering
(DDC). First, each Edge/Fog node retrieves the informa-
tion about the location of other Edge/Fog nodes (line 2).
The information of nodes’ positions can be obtained by
each node in different ways, such as from 1) a centralized
node 2) From a parent node in a hierarchical approach, or
3) GPS. Also, each Fog node is aware of the characteristics
of its immediate parent, children nodes, its communication
range, and acceptable communication latency (lines 3-6).
Next, the latitude and longitude information of the current
Edge/Fog node will be compared by all other available
Edge/Fog nodes and those who are in the communication
range of the current node will be added to the clustering list
of the current node, list{™ (lines 9-16). The calculateln-
Range function is responsible to calculate the distance of
the current node to other Edge/Fog nodes. The latency of
the current node to each CM will be estimated and stored
in mapCMToLatency (lines 17-18). If the communication
latency of CMs is a clustering factor (which is checked by
the If flag), the list of current CMs will be pruned to find
the CMs satisfying latency constraint (lines 19-25). Finally,
the list of CMs list{™ of the current Fog node alongside
their latency mappings mapCMToLatency will be returned
as the outputs (line 26).

3.3 Microservices

To harvest the full potential of the Edge/Fog comput-
ing paradigm, application development has migrated from
monolithic architecture towards microservice architecture.

Algorithm 2 Dynamic Distributed Clustering (DDC)
Logic

1: procedure MANAGECLUSTERING(f, ¢, loc, L)
2 LHI < loc.locationIn fo()
3 p < f.getParent()

4: n < p.getChildren()

5: & < f.getRange()

6: o < f.getLatencyThresh()
7 list;m < null

8: mapCMToLatency < {}
9: fo < lHI.get(f).lat
10: fy < lHI.get(f).long
11: for ' :=n do

12: fi < 1HI.get(f').lat

13: Jy < UHI.get(f").long

14: flag + calculateInRange(fxz, fy, fz, fy,0)
15: if flag then

16: list$™.add(f")

17: latency < checkLatency(f, f')

18: mapCMToLatency.get(f') < latency
19: if [f then

20: temp < list;m

21: for f/ := list§™ do

22: if mapCMToLatency.get(f') > o then
23: temp.remove(f’)

24: mapCMToLatency.remove(f’)

25: list?m < temp

26: return list?m, mapCMToLatency

Microservices are designed as small and independent com-
ponents responsible for carrying out a well-defined business
function, enabling them to be moved between Edge/Fog
and Cloud tiers easily [23, 24]. Multiple loosely coupled
microservices coordinate together to build applications.
Because of these characteristics, microservices can scale
up and down independently based on the workload and re-
source availability of Edge/Fog nodes. Thus, microservice
orchestration is a crucial process that combines distributed
microservices to create workflows.

The Microservices component of iFogSim2 provides or-
chestration support to maintain seamless coordination be-
tween application microservices deployed across Edge/Fog
and Cloud resources. To provide microservice orchestra-
tion, iFogSim2 models two main features: service discovery
and load balancing, which help simulation of the dynamic
nature of microservices within Edge/Fog computing envi-
ronments.

MicroserviceFogDevice, which is created by extending
FogDevice makes it possible for Edge/Fog nodes to perform
client-side service discovery and load balancing to enable
decentralized orchestration among microservices. Once a
request is generated in the form of a Tuple by a consumer
microservice deployed on a node, it uses ServiceDiscovery
to retrieve locations of the service provider and apply
LoadBalancer logic to determine destination node to route
the created tuple. To support routing of the tuples when
multiple instances of the same microservice are available on
multiple Edge/Fog nodes, routing of the tuples is modelled
based on the destination node id of the tuple which is set
after executing the load balancer logic.

LoadBalancer and ServiceDiscovery are initialized as
members of the MicroserviceFogDevice. The default imple-
mentation of the load balancer logic in iFogSim?2 is based



on Round Robin Load Balancing where requests are dis-
tributed equally among microservice instances. The users
of the iFogSim2 can incorporate different load balancing
logic to simulate the microservice behavior by implementing
LoadBalancer interface. ServiceDiscovery stores microser-
vice to node mapping which can be dynamically updated at
any point of time during the simulation using SimFEvents.

MicroservicesController which is extended from Con-
troller initiates microservice-based application placement
and orchestration. To this end, it initializes the LoadBal-
ancer and ServiceDiscovery objects within each Fog node
of the simulation environment and generates routing data
to be used by Edge/Fog node to perform node id based
routing of data tuples generated by modelled applications.
Default implementation contains Shortest Path Routing
with flexibility for the user to incorporate different routing
protocols. MicroservicesMobilityClusteringController ex-
tends MicroservicesController and integrates it with the
Mobility component of iFogSim2 to provide mobility sup-
port for microservice applications. It is also integrated with
the Clustering component of iFogSim2 to enable dynamic
clustering among Edge/Fog nodes that host microservices.
Moreover, this controller implements dynamic updating of
service discovery information with user mobility-induced
microservice deployment and routing data updates due to
user movements.

Microservice PlacementLogic is the base class to imple-
ment the microservice application placement policy. Users
of the iFogSim2 can extend this class to implement their
placement policies. As its outputs MicroservicePlacement-
Logic provides two mappings:

1. Microservice to node mapping, which indicates
where each microservice of the application gets de-
ployed.

2. Service discovery information per node, which
is calculated based on the microservice to node map-
ping. This ensures that all nodes hosting a client
microservice is aware of the locations of the service
instances, that are accessed by the said microservice.

Algorithm 3 provides an overview of Scalable Microser-
vice Placement Logic (SMP), which is the default microser-
vice placement policy available in iFogSim2. It is an edge-
ward placement algorithm for microservices, which focuses
on horizontally scaling microservices among Edge/Fog
nodes of the same cluster before moving towards upper-tier
nodes of the Edge/Fog hierarchy. First, the placement
policy identifies leaf to root paths (P) considered for place-
ment (line 5) and initializes the mapPtoNextNode with the
first eligible node in each path for the placement process
(line 6). Leaf to root paths are calculated based on the phys-
ical topology created by all available Edge/Fog nodes (F').
Each path in P starts with a user/IoT device and traverses
upward within the Edge/Fog hierarchy until it reaches the
Cloud. For the microservice application, the next eligible
microservice for placement is determined by traversing
its DAG representation (line 7). A microservice becomes
eligible for placement if all predecessor microservices are
mapped to nodes. Afterward, the policy iteratively tries
to place eligible microservices onto the next eligible node

Algorithm 3 Scalable Microservice Placement (SMP)
Logic

1: procedure MANAGEMICROSERVICEPLACEMENT(F, a)
2 mapNodeToulnst < {}

3 mapNodeToSD <+ {}

4: Mplaced < {}

5: P + getLeafToRootPaths(F)

6: mapPtoNextNode < getNextNode(P)

7 m < getNextMicroservice(a, Mpiqced)

8: while m is not null do

9: for p:= P do

10: f < mapPtoNextNode.get(p)

11: if resources?“““ > resources;y? then
12: placeModule(f,m)

13: mapNodeT oplInst.get(f).add(m)

14: f.update Resources Avail ()

15: else

16: notPlacedPaths.add(p)

17: for p := notPlacedPaths do

18: f < mapPtoNextNode.get(p)

19: F' + f.getCMs()

20: placed + false

21: for f':=F’ do

22: if resources?}’“” > resources,,? then
23: placeModule(f’,m)

24: mapNodeToplInst.get(f').add(m)
25: f'.update ResourcesAvail()

26: placed < true

27: break

28: while placed is false do

29: f < getNextInPath(p, f)

30: if resources®?® > resourcesp;? then
31: placeModule(f, m)

32: mapNodeT oplInst.get(f).add(m)
33: f.updateResources Avail()

34: placed < true

35: mapPtoNextNode.get(p).set(f)
36: Mplaced-add(m)

37: m < getNextMicroservice(a, Mpiaced)

38: mapNodeToSD < generateSD(mapNodeToulnst)
39: return mapNodeT opuInst, mapN odeT 0S D

of each path (lines 9-16). If sufficient resources are not
available within the considered node, the policy consid-
ers cluster members (lines 21-27) before moving onto the
next tier (lines 28-35). After all microservice instances are
mapped to nodes, the algorithm generates service discovery
information for each node hosting client microservices (line
38).

These objects together create a platform to model mi-
croservices in Edge/Fog computing environments, while
capturing their dynamic, independent, and scalable nature.

4 Performance Evaluation

This section discusses the simulation of a set of Edge/ en-
vironments using iFogSim?2 for different application case
studies, including Audio Translation Service (ATS), Car-
diovascular Health Monitoring (CHM), and Crowd-sensed
Data Collection (CDC). Then, we evaluated the efficiency
of various combinations of iFogSim2’s built-in Mobility,
Clustering, and Microservice management policies with
respect to latency, network usage, and energy consumption
for each case study. We also parameterised the lightweight
and modular architecture of iFogSim2 in terms of RAM
usage and execution time and compared it with the existing



simulators, including IoTSim-Edge [12] and PureEdgeSim
[14]. The use cases and the experiment results are discussed
below.

4.1 Case study 1: Audio Translation Ser-
vice (ATS)

Translation service is highly recommended for tourists, es-
pecially when they are visiting non-native language speak-
ing countries. Currently, Google and Microsoft offer dif-
ferent translator services to the users, which mainly deal
with text and imagery inputs [25]. Since the frequency
and variations of such inputs can be easily estimated or
controlled, their processing is usually performed by fol-
lowing a specific set of operations without requiring any
additional services. As a result, most of state-of-the-art
smartphones can execute these translation services with
the available computing resources they have. However,
for audio-based translation, various computation-intensive
data pre-processing operations are required as the pitch in-
tensity varies between the users, and the background noises
always couple tightly with the actual data [26]. Conversely,
for smartphones, the real-time adjustment or update of
external services for performing these operations is not of-
ten feasible due to additional overhead. In such scenarios,
the exploitation of Fog computation can be a potential
solution for Audio Translation Service (ATS).

However, in any Fog computing-based ATS system, a
majority of users is expected to be mobile and their smart-
phones are regarded as the data sources. Therefore, to meet
the desired QoS, efficient mobility-aware service manage-
ment techniques are required for such an ATS. Considering
this issue, we have modelled a mobility-driven simulation
case study on Fog computing-based ATS in iFogSim2. The
details of the application model, simulation parameters,
comparing mobility management policies and their perfor-
mances for this case study are discussed below.

4.1.1 Application Model

To align with the distributed data flow approach adopted
by core iFogSim, we have modelled the application for ATS
as a Directed Acyclic Graph (DAG) (shown in Fig. 3). It
consists of three application modules, which are described
in the following

e Client module: It is deployed on smartphones that
primarily grasp audio data from the integrated sensors.
The Client module also performs necessary authenti-
cations to access the ATS and forwards the data to
the Processing module for further analysis.

e Processing module: It is expected to execute by the
tier-2 nodes for faster interactions with the smart-
phones. However, various computation-intensive Ar-
tificial Intelligence (AI)-enabled audio data analysis
operations including data filtration, noise reduction,
pitch classification, and speech segmentation are per-
formed by the Processing module. The results of these
analyses are then pushed back to the Client module
so that they can be displayed to the user via the
smartphone display.

e Storage module: The Processing module forwards
the input data and analytical outputs to the Storage
module for periodic updates of the Al models and thus
ensures the enhanced performance of the ATS.

Considering the amount of audio data generated through
such an ATS, it is recommended to host the Storage module
in Cloud for further scalability.

4.1.2 Simulation Environment

The simulation environment for the ATS use case is made
highly aligned with the EUA dataset of iFogSim2 having
118 Fog gateways residing at 12 different blocks across
the Melbourne CBD. We assume that the smartphones of
mobile users can connect with any of the gateways (tier-2
nodes). The gateways of a particular block can also in-
teract with a Cloud datacentre (tier-0 nodes) via a proxy
server (tier-1 nodes). The specifications of the comput-
ing infrastructure along with that of application modules
are presented in Table 2. The simulation experiments are
conducted on an Intel Core 2 Duo CPU @ 2.33-GHz with
2GB-RAM configured computer, and the fractional selectiv-
ity of input-output relationship within a module is set to be
1.0. The numeric values of the simulation parameters have
been extracted from the existing literature as mentioned
in [27, 28].

4.1.3 Comparing Policies

While imitating the ATS case study in iFogSim2, the move-
ment of smart-phones are set to vary using both directional
and random mobility pattern. Furthermore, we have used
three different mobility management techniques in the
simulated Fog computing environment to deal with such
movement. These techniques are listed below.

e Cloud-centric migration: In this approach, the
current upper tier contact (source gateway) of a mobile
smartphone pushes the respective application modules
directly to the Cloud VMs. Later, the Cloud VMs
pushes the modules to the new upper tier contact
(destination gateway) of the smartphone.

e Non-hierarchical migration: By connecting all
Fog gateways through a mesh communication channel,
this approach allows the direct migration of application
modules between source and destination. As a result,
the upper tier Fog nodes remain uninvolved during
module migration, leading it to be a non-hierarchical
operation.

e Intra/Inter-cluster migration: This approach
refers to the built-in mobility management policy of
iFogSim?2 as discussed in Algorithm 1. It only involves
the upper tier Fog nodes in migrating modules if the
source and destination gateway do not belong to the
same cluster. Here, the node clustering is performed
by Algorithm 2.

4.1.4 Results

The performance of the comparing techniques is discussed
below.
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Figure 3: Application model for the Audio Translation Service (ATS)

Table 2: Simulation parameter for the ATS

Duration of experiment : 500 seconds

Number of location change events:140

Resource type Cloud VM Proxy server Fog gateway Smart-phone

=

Configuration |}

Numbers 10 12 118 1

Speed (MIPS) 4480 3600-4000 2800-3000 500

RAM (GB) 16 16 8 1

Uplink (MBPS) 100 10 50 100

Downlink 100 20 100 200

(MBPS)

Busy power 1468 428 206 60

(MJ)

Idle power (MJ) 1332 333 170 35

Attribute = RAM (GB) Input (MB) Output (MB) CPU length

Module (MI)

Client 0.10 2 2.5 500

Processing 4 2.5 1.5 2500

Storage 4 1 1 1000

e Migration time: Fig. 4 depicts the delay in migrat- [ _ 250 518 )
ing application modules for different comparing mobility £ L 185
management policies. Since Cloud datacentres reside at a é 156
multihop distance from the gateways, the transfer of ap- s 180 w7 112 121
plication modules to the Cloud and later their forwarding g 100
to the destination gateway increases the overall migra- | £ -
tion delay for the Cloud-centric approach. Conversely, the £
P
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source and destination gateway not only in the node hier- J

archy but also in horizontal levels. As a result, it is more
likely to find a CAN in the proximity of the gateways than
that of a Cloud-centric approach, minimising the migra-
tion delay. However, the Non-hierarchical policy provides
the most desirable outcome in this case as it exploits the
mesh connectivity between source and destination gateway
during module migration reducing the delay significantly.
Nevertheless, as the assurance of large-scale mesh connec-
tivity across the gateway is costly, such an approach is
feasible only when user mobility is confined.

Furthermore, directional mobility presents better man-
agement of migration delay than random mobility in all
comparing policies. It happens because, in directional mo-
bility, user speed remains the same. As a result, despite
location change, their source and destination gateway are
less likely to vary within a short distance. Consequently, it
reduces the number of total migration events and lessens
the delay. Conversely, during random mobility, the num-
ber of migration events can increase unevenly, resulting in
increased migration delay.

e Network usage: Fig. 5 portrays the network resource
usage during module migration for different simulating tech-

Figure 4: Time to migrate application modules

niques. As the realisation of the Cloud-centric approach
involves multiple nodes within the communication path
between gateways and Cloud to migrate modules in both
directions, it consequently increases their collective net-
work usage. Nevertheless, the Intra/Inter-cluster technique
performs slightly better in this case as it attempts to re-
duce the involvement of intermediate nodes during module
migration and consequently lessens their network usage.
Conversely, the Non-hierarchical approach only exploits
the network resources which is available within the commu-
nication link between the source and destination gateway,
resulting in the least usage.

Moreover, as the number of migrating events increases
with random mobility, network usage increases. On the
other hand, by limiting the occurrence of such events,
directional mobility can help to lower network resource
usage.

e Energy consumption: Fig. 6 illustrates the con-
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sumption of energy during module migration for different
adopted policies. For the Cloud-centric approach, the in-
crement in energy usage is obvious as it directly involves
Cloud datacentres conventionally consuming a significant
portion of energy in the distributed computing ecosystem.
The involvement of other intermediate nodes further con-
tributes to increasing the overall energy consumption. The
random mobility of users can also elevate energy usage
during mobility management by increasing the migration
frequency. In comparison, both Intra/Inter-cluster and
Non-hierarchical module migration approaches perform
well in managing energy usage as they resist the involve-
ment of Cloud and intermediate nodes to a greater extent
for such an operation.
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Figure 6: Energy consumed during module migration

4.2 Case study 2: Cardiovascular Health
Monitoring (CHM)

Electrocardiogram (ECG) monitoring is a widely used
method for diagnosing heart diseases using both reactive
and proactive methods [29, 24]. In IoT-based smart health-
care, wearable sensors are used to sense and transmit ECG
signals towards analysis platforms that host applications
developed for detecting concerning heart conditions. Such
applications are designed to perform multiple tasks, includ-
ing: filtering ECG data to remove data anomalies, ECG
feature extraction and generating emergency warnings in
real-time, long-term collection and analysis of data to make
predictions to ensure preventive measures [22].

Design and development of such IoT applications increas-
ingly use modular architectures, especially microservices

architecture to enable balanced deployment of real-time
tasks within resource-constrained Fog resources and latency
tolerant tasks within Cloud datacentres. Hence, Cardio-
vascular Health Monitoring (CHM) is designed following
microservice architecture and modelled using DAG-based
modeling of applications integrated into iFogSim2.

4.2.1 Application model

Fig 7 shows the microservice architecture of the CHM appli-
cation, where vertices represent each microservice and edges
depict the data dependencies among microservices. CHM
consists of four microservices, namely Preprocessing Mi-
croservice, Emergency Diagnosis Microservice, Prediction
Microservice, and Client Microservice. The specifications
of each microservice are described in what follows:

e Client Microservice: This is the mobile front end of
the CHM application. Client microservice is deployed
on users’ smartphones and receives raw ECG signals
transmitted by the sensors that are wirelessly con-
nected to each smartphone. Also, it is responsible for
sending sensor data towards Preprocessing Microser-
vice placed in either Edge/Fog or Cloud and displaying
results received after processing.

e Preprocessing Microservice: The Preprocessing mi-
croservice performs data cleaning using filters to filter
out noise added to ECG sensor data during transmis-
sion. Moreover, data anomalies in the sensed data are
also removed before sending data for further process-
ing.

e Emergency Diagnosis Microservice: This microservice
is responsible for real-time analysis and identification
of concerning health conditions like heart attacks and
sending back a warning signal towards the client mi-
croservice to trigger an emergency notification.

e Prediction Microservice: Prediction microservice
stores and analyses ECG time series data using ma-
chine learning models to predict health risks to the
patients. Prediction reports are sent back to the mo-
bile front end to be displayed for users.

These microservices communicate together to monitor and
predict the cardiovascular health of users. Preprocessing
and Emergency Diagnosis microservices form a latency-
critical service to be placed on Fog or Cloud, based on the
placement policy whereas Prediction Microservice repre-
sents a service that requires high computation and storage
resources and is expected to be placed in the Cloud.

4.2.2 Simulation Environment

For this case study, a physical topology of 7 Fog nodes is
used, which consists of 6 Wifi gateways (tier-2 nodes) con-
necting to a single proxy server. Besides, the proxy server
(tier-1 nodes) is connected to the Cloud datacentre (tier-0
nodes). Also, 25 smartphones with randomly generated lo-
cations connect with the Wifi gateways to send ECG sensor
data towards the Fog environment. The specifications of
the computing infrastructure along with that of application
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Figure 7: Microservice application model for the Cardiovascular Health Monitoring (CHM)

Table 3: Simulation parameter for the CHM

Duration of experiment : 20000 seconds

Number of location change events:140

Resource type Cloud VM Proxy server Fog gateway Smart-phone
=

Configuration |}

Numbers 16 1 6 25
Speed (MIPS) 2500-3000 2500-3000 2500-3000 500
RAM (GB) 16 16 8 1
Uplink (MBPS) 100 10 50 100
Downlink 100 20 100 200
(MBPS)

Busy power  107.339 107.339 107.339 87.530
(MJ)

Idle power (MJ) 83.433 83.433 83.433 82.440
Attribute = RAM (GB) Input (MB) Output (MB) CPU length
Module (MI)
Client 0.10 0.5 0.5 1000
Preprocessing 0.5 0.5 0.5 2000
Emergency 0.5 0.5 0.5 2500
Diagnosis

Prediction 2 0.5 0.5 4000

modules are presented in Table 3. Furthermore, to model
the physical topology, MicroserviceFogDeuvcie, Sensor and
Actuator classes of iFogSim2 are used. The simulation
experiments are conducted on an Intel Core i7 CPU @
1.80-GHz with a 4/GB-RAM computer and the fractional
selectivity of the input-output relationship within a module
is set to be 1.0. The numeric values of the simulation pa-
rameters have been extracted from the existing literature
as mentioned in [24, 30, 31].
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Figure 8: The average delay of the CHM application

4.2.3 Comparing Policies

For the experiments, three different placement techniques
are used, as follows:

e Edgeward: This placement technique only consid-
ers vertical scalability of application modules without

12

taking Fog node clustering and horizontal scalability-
based load balancing into consideration.

SMP-No-Clustering: It uses horizontal scalability
and load balancing features available in microservice
orchestration of iFogSim2 but does not implement
clustering of Fog nodes.

SMP-Clustering: Such an approach makes use of
both microservice orchestration and clustering features
available in iFogSim2.

4.2.4 Results

The performance of the comparing techniques are discussed
below.

e Average delay of control loop: The control loop of
the CHM application, which is the most latency-sensitive
loop, consists of Client microservice — Preprocessing Mi-
croservice — Emergency Diagnosis Microservice — Client
microservice. The less average delay for this control loop
demonstrates better placement decision and coordination
among computational resources. Fig. 8 depicts the aver-
age delay for the execution of this control loop for three
placement techniques. It depicts that the average execu-
tion delay of the control loop significantly decreases for
SMP-No-Clustering and SMP-Clustering in comparison to
the Edgeward. Edgeward placement moves microservices
upwards to the Fog hierarchy, such that a single instance
of each microservice is deployed for each edge to Cloud
path. Due to the resource-constrained nature of Fog nodes,



this approach places microservice instances in higher Fog
tiers, thus increasing average delay. Also, the results show
that the SMP-Clustering outperforms SMP-No-Clustering.
Even though SMP-No-Clustering uses horizontal scalability,
due to lack of clustering, microservices are scaled among
nodes on multiple Fog tiers whereas, in the case of SMP-
Clustering, clusters are dynamically formed among Fog
nodes of the same hierarchical tier, which enables microser-
vices to be horizontally scaled within nodes of the same
tier before moving to the upper tier. Hence, the SMP-
Clustering scenario places latency-critical microservices
closer to the edge network which results in lower average
delay.

e Energy consumption: Figure 9 shows the amount
of energy consumed by different classes of nodes and total
energy consumption obtained through each technique. As
Fig. 9.a demonstrates, the energy consumption of Cloud
resources is higher in the Edgeward technique because
it places most of the microservices on the Cloud VMs.
However, the energy consumption of Cloud resources for
SMP-No-Clustering and SMP-Clustering are lower while
they consume more energy in the Fog tier due to running
more microservices in the resources of that tier. While en-
ergy consumption at different tiers depends on the number
of microservices running on that tier, Fig. 9.b depicts that
the total energy consumption of all nodes is reduced by
in SMP-No-Clustering and SMP-Clustering. It highlights
the positive effect of more efficient distribution, scaling,
and load balancing of microservices in the Fog tier com-
pared to more centralized approaches. Also, the results of
SMP-Clustering prove the potential of clustering for better
scaling and load balancing of microservices either vertically
or horizontally.

e Network usage: The total amount of data trans-
ferred in the network is an important metric for the evalu-
ation of different techniques. Techniques resulting in high
data transmission may lead to congestion in the network,
service interruption, or increasing average delay of the ap-
plications’ control loop, especially in high-density networks.
Fig. 10 illustrates the total network usage of different tech-
niques in Megabytes (MB). It demonstrates that Edgeward
placement incurs higher network usage due to excessive
usage of higher tier Fog nodes and Cloud datacentre in
comparison to the other two techniques. Furthermore, it
shows that SMP-Clustering results in lower network usage
compared to SMP-No-Clustering. Although the clustering
mechanism embedded in the SMP-Clustering requires data
transmission for the formation of clusters, it is a lightweight
mechanism in terms of network usage. Hence, in a long
simulation time, SMP-Clustering outperforms other tech-
niques due to the efficient usage of the lower tier Fog nodes
and better load balancing.

4.3 Case study 3: Crowd-sensed Data
Collection (CDC)

Crowd-sensing exploits internet-connected sensors to collect
vast amounts of data that can be analysed to retrieve com-
plex information. Crowd-sensed Data Collection (CDC)
application represents a mobile crowd-sensed scenario that
aids urban road network planning. Within urban settings,

road system design and traffic signal controlling are ex-
tremely challenging. Thus, these tasks can benefit from
complex machine learning algorithms. As such algorithms
require large amounts of data for accurate decision making,
vehicular crowd-sensing is used as a solution for data collec-
tion. Sensors onboard mobile vehicles sense and transmit
real-time location and speed data that can be used to
derive traffic conditions of the road networks. Using this
method, any vehicle can voluntarily share data with the
data analytic platforms, which results in a collection of
large volumes of data. Such applications can benefit from
Fog computing environments to process the data closer to
the edge network, thereby reducing the burden on the data
transmission networks connecting sensors to the Cloud. So
we design a CDC application following the microservice
architecture and modelled it using DAG-based modeling
of applications integrated with iFogSim?2.

4.3.1 Application model

Fig 11 shows the microservice architecture of the CDC
application, where vertices represent each microservice
and edges depict the data dependencies among microser-
vices. CDC consists of two microservices, namely Nginz
Microservice, Processing Microservice and a database to
store data for further processing. The specifications of each
microservice are described in what follows:

e Nginx Microservice: This is the webserver that acts
as the gateway to the processing microservice. Ng-
inx microservice receives data, which is generated by
the vehicular sensor network, and routes that data
towards the Processing microservice to perform data
analytics. Also, it is responsible for load balancing
requests among multiple Processing microservices.

e Processing Microservice: The processing microservice
is responsible for sanitizing the sensor data, extracting
features that represent trajectories of vehicles, and
sending the processed data towards the Cloud to be
saved in a time-series database. Data analytic plat-
forms can use crowd-sensed data stored in the database
for urban planning.

4.3.2 Simulation environment

Table 4 presents the specifications of general simulation
parameters used in imitating the CDC case study. The
value of simulation parameters within a specific range is
determined by a pseudo-random number generator. More-
over, the computing environment is set to be hierarchical
having mobile vehicles at the lowest tier. Tier-2 Fog nodes
are marked as the gateway followed by proxy servers and
Cloud at tier-1 and tier-0, respectively. An Intel Core 2
Duo CPU @ 2.33-GHz with 2GB-RAM configured com-
puter has been used to execute the simulation script and
perform the experiments. The numeric values of the simu-
lation parameters have been extracted from the existing
literature as mentioned in [24, 27].
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Figure 9: Energy consumption for running the CHM application (a) Energy consumed by the resources of different

tiers, (b) Total energy consumption of resources

Table 4: Simulation parameter for the CDC

Duration of experiment : 500 seconds

Tuple generation rate : 5/seconds

Mobility interval : 10-50 seconds

Resource type = Mobile vehicles Tier-2 Node Tier-1 Node Tier-0 Node
Configuration |}

Percentage of nodes 30% 30% 20% 20%
Speed (MIPS) 500-1000 2000-2500 3000-2500 4000-5000
RAM (GB) 2 4 8 16
Uplink (MBPS) 100 50 10 100
Downlink (MBPS) 200 100 50 150

Busy power (MJ) 50-100 200-300 400-600 1500-2000
Idle power (MJ) 20-30 80-100 150-200 700-900

N
J
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Figure 10: The total network usage of the CHM application

4.3.3 Comparing Simulators

The simulation environment for the CDC use case has
been implemented on three different simulators includ-
ing IoTSim-Edge [12] and PureEdgeSim [14] along with
iFogSim2. These simulators have been selected because of
their recent inclusions in the literature and open source
license. Furthermore, their Java programming language-
based implementation does not arise any compatibility
issues with the proposed iFogSim2 simulator, which also
helps in reconstructing the experimental results. A brief
discussion of the simulators is given below.

e ToTSim-Edge: This monolithic simulator supports
the imitation of microservices in form of microelements
and provides support for customising the user mobility;
however, lacks abstractions for node clustering.

e PureEdgeSim: It supports the modularisation of
different simulation components and facilities qualita-
tive allocation of tasks using a built-in Fuzzy inference

engine; nevertheless, barely provides functionalities
for node clustering and microservice management.

iFogSim2: The proposed simulator is well-equipped
with APIs and built-in policies for illustrating mobility,
microservice, and node clustering-related use cases in
Edge/Fog computing environments. The function of
its different components can also be tuned as per the
case studies to create variations in the simulations.

4.3.4 Results

The simulation experiments on the CDC use case study are
exclusively exploited to demonstrate the efficacy of IoT'Sim-
Edge, PureEdgeSim, and iFogSim2 simulators in terms
of supporting mobility, microservice, and node clustering
issues. The results are discussed below.

e RAM usage: Table 5 illustrates the RAM usage of dif-
ferent simulators for varying simulation configurations. As
noted, [oTSim-Edge supports the imitation of device mobil-
ity and microservice orchestration in Edge/Fog computing
environments. However, as it does not facilitate modulari-
sation of the simulation components and mostly operates
in a monolithic manner, its RAM usage does not vary for
Mobility and Mobility+ Microservices simulation configura-
tions. Conversely, PureEdgeSim only supports the Mobility
configuration. Nevertheless, this simulator consumes more
RAM than other simulators because of its built-in Fuzzy
inference engine, supporting task allocation based on qual-
itative features. On the other hand, iFogSim2 supports a
wide range of simulation configurations, including Mobility,
Mobility+ Microservices, Mobility+ Clustering, Microser-
vices+Clustering and Mobility+Microservices+Clustering.
Despite facilitating such configurations, the RAM usage
for iFogSim2 does not increase significantly because of its

14



Nginx
Microservice

sensor
Sensor

raw_data

Processing
Microservice

processed_data %

Figure 11: Microservice application model for the Crowd-sensed Data Collection (CDC)

Table 5: RAM usage for different simulator

Simulators = ToTSim- PureEdge- iFogSim?2
Edge Sim
Variations |}
Mobility 26% 38% 12%
Mobility+Microservices 26% - 21%
Mobility4Clustering - - 19%
Microservices+Clustering - - 15%
Mobility+Microservices+Clustering - 32%
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Figure 12: Simulation processing time for different simula-
tors

modular architecture and lightweight built-in service and
resource management policies.

e Simulation time: Fig. 12 depicts the simulation
time of IoTSim-Edge, PureEdgeSim and iFogSim?2 for Mo-
bility configuration. As PureEdgeSim deliberately exploits
the Fuzzy inference for managing mobility, it requires more
time to imitate the effect of changing locations, which also
elevates with the increasing number of such events. How-
ever, iFogSim2 performs well in this case because of its low
complexity built-in mobility management techniques. Its
modular architecture further helps to outperform IoTSim-
Edge, which cannot ensure mobility management in a
segmental manner.

5 Conclusions and Future Work

Efficient resource management in Edge/Fog computing
environment is an important challenge due to the dynamic
and heterogeneous nature of Edge/Fog nodes and IoT de-
vices. In this paper, we put forward iFogSim2 simulator,
which is an extension of the iFogsim simulator, to address
service migration for different mobility models of IoT de-
vices, distributed cluster formation among Edge/Fog nodes
of different hierarchical tiers, and microservice orchestra-
tion. To support different simulation scenarios, the new
components of the iFogSim2 simulators are loosely coupled,
so that components (Mobility, Clustering, and Microser-
vices) can be solely used for the simulation, or they can be
integrated for more complex scenarios. Besides, to enhance

the usability of iFogSim2, several case studies and test
scripts are implemented and integrated with this simulator,
which simplifies the process of defining new policies and
case studies for its users. The results demonstrate the
effectiveness of using iFogSim2 for different case studies
and also prove its low footprint compared to other related
simulators.

As a future work, iFogSim2 simulator can be further
improved by integration of monetary-based policies, simu-
lating distributed ledgers across Fog nodes, setting different
communication profiles for sensors such as LoRa and Blue-
tooth, and simulating distributed and federated machine
learning approaches.

Software Availability

The source code of the iFogSim2 simulator is accessible
from: https://github.com/Cloudslab/iFogSim
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