arXiv:1912.04466v2 [cs.SE] 5 Jul 2022

VULPEDIA: Detecting Vulnerable Ethereum Smart
Contracts via Abstracted Vulnerability Signatures

Jiaming Ye Mingliang Ma Yun Lin
Kyushu University Nanjing University National University of Singapore
Japan China Singapore

ye.jiaming.852@s.kyushu-u.ac.jp

Lei Ma
University of Alberta
Canada

This article is accepted by Journal of Systems and

Software.

Abstract—Recent years have seen smart contracts are get-
ting increasingly popular in building trustworthy decentralized
applications. Previous research has proposed static and dynamic
techniques to detect vulnerabilities in smart contracts. These
tools check vulnerable contracts against several predefined rules.
However, the emerging new vulnerable types and programming
skills to prevent possible vulnerabilities emerging lead to a large
number of false positive and false negative reports of tools.
To address this, we propose Vulpedia, which mines expressive
vulnerability signatures from contracts. Vulpedia is based on
the relaxed assumption that the owner of contract is not
malicious. Specifically, we extract structural program features
from vulnerable and benign contracts as vulnerability signatures,
and construct a systematic detection method based on detection
rules composed of vulnerability signatures. Compared with the
rules defined by state-of-the-arts, our approach can extract more
expressive rules to achieve better completeness (i.e., detection
recall) and soundness (i.e., precision). We further evaluate
Vulpedia with four baselines (i.e., Slither, Securify, SmartCheck
and Oyente) on the testing dataset consisting of 17,770 contracts.
The experiment results show that Vulpedia achieves best per-
formance of precision on 4 types of vulnerabilities and leading
recall on 3 types of vulnerabilities meanwhile exhibiting the
great efficiency performance.

I. INTRODUCTION

Powered by the Blockchain technique [I], smart con-
tracts [2] have attracted much attention and been applied
in various industries, e.g., financial service, supply chains,
smart traffic, and ToTs. Solidity is the most popular
language for smart contract for its mature tool support and
simplicity. However, the public has witnessed several severe
security incidents, including the notorious DAO attack [3]
and Parity wallet hack [4]. According to previous reports [5],
[6], up to 16 types of security vulnerabilities were found
in Solidity programs. These security issues undermine the
confidence of people who have executed transactions via
smart contracts and eventually affect the trust towards the
Blockchain ecosystem.

Witnessing the severity and urgency of this problem,
researchers and security practitioners have made endeavors
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to develop automated security scanners [7], [8], [9], [10],
[11]. Existing state-of-the-art scanners usually adopt the
rule-based methods for vulnerability detection. SLITHER [T]
supports 39 hard-coded static rules; SECURIFY [I0] sup-
ports 15 rules for verifying the extracted path constraints
from the contract with the SMT solvers [I12]; OYENTE [§]
supports 8 rules for generating assertions for verifying the
vulnerabilities. Each rule represents a pattern of vulnerable
contract, which warns the programmers to avoid potential
risks before deploying the contracts.

Although experiments have demonstrated their effec-
tiveness, it is notable that rules behind these scanners
are manually crafted by human experts. The manually
predefined rules can be obsolete, because @ previously
unseen vulnerable code may be introduced, which cannot
be captured by the hard-coded rules, and @ new defense
mechanisms (i.e., programming skills to prevent bugs) may
have successfully mitigated the vulnerabilities, but the
code may still match the predefined vulnerable pattern or
rules. Therefore, most updated rules should be learned to
distinguish vulnerable contracts from robust ones.

In this work, we alleviate the incompleteness of detection
rules by combining vulnerability signatures abstracted
from both vulnerable and benign contracts (i.e., vulnerable
signature and benign signature). The vulnerable signature
is designed for matching commonalities of a particular
vulnerability. Comparatively, the benign signature is ab-
stracted from falsely reported contracts in order to reduce
false alarms. For each vulnerability, we adopt vulnerable
and benign signatures to synthesize detection rules of
VULPEDIA. Note that VULPEDIA is built upon the relaxed
assumption that the owner of contract is not malicious.
Detecting malicious contract (e.g., contract with backdoors,
exploit code) is different to the vulnerability detection
(i.e., the target of VULPEDIA). Based on this assumption,
the operations related to the contract owner are all
deemed as vulnerability defense behaviors. Compared with
previous work, the synthesized rules are more updated and
expressive than the predefined rules in the state-of-the-art



vulnerability scanners, capturing a lot of unseen patterns
in practice.

In our implementation, we first collect truly and falsely
reported contracts by applying three state-of-the-art vul-
nerability scanners (i.e., SLITHER [7], OYENTE [I13], and
SECURIFY [I0]) and manually evaluate their correctness.
Based on the results, analyzing truly reported vulnerable
contracts allows us to capture salient program signatures
responsible for vulnerable contracts. In contrast, analyzing
falsely reported vulnerable contracts allows us to capture
signatures noticeable for avoiding false alarms. Next, we
categorize the contracts by their vulnerability types (e.g.,
Reentrancy, Unchecked Low-level-call, etc.) and alarm
types (i.e., true or false alarm). For each category, we cluster
the contracts based on their tree edit distance [I4] and
then extract program feature commonalities from the PDGs
(program dependency graph) of each cluster to summarize
vulnerability signatures. Finally, we abstract 4 vulnerable
signatures and 6 benign signatures. They are integrated as 4
detection rules regarding 4 vulnerabilities (i.e., Reentrancy,
SelfDestruct, Tx-origin, and Unexpected-Revert).

We conduct our signature abstraction on a set of
76,354 smart contracts and evaluations on a set of 17,770
contracts, respectively. The evaluation results show that,
compared with the state-of-the-art vulnerability scanners
(i.e., SLITHER, OYENTE, SMARTCHECK and SECURIFY),
our approach achieves outstanding accuracy on 4 vulner-
abilities and leading recall on 3 vulnerabilities. We make
our tool, VULPEDIA, available at [I5].

To summarize, we make the following contributions:

1) We propose an approach to abstract vulnerability
signatures and compose detection rules to report vulner-
ability. The learned rules are more expressive than rules
of the state-of-the-art scanners, reporting vulnerabilities
with better completeness and soundness

2) On the 17,770 contracts crawled from Google, VULPE-
DIA yields the best precision on 4 vulnerabilities and
leading recall on 3 ones, in comparison with the other
state-of-the-art scanners.

3) Experiments show that VULPEDIA is efficient in vul-
nerability detection. The detection speed of VULPEDIA
on 17,770 contracts is far faster than OYENTE and
SECURIFY.

This work is organized as: In we first introduce
the different types of vulnerabilities we address in our study,
and explain why the state-of-the-art tools fail. In
we illustrate the basic steps of our proposed tool, namely
VULPEDIA. In we conduct an empirical study and
introduce our method of signature abstraction. We also
elaborate the effectiveness of signatures with examples. In
we compare VULPEDIA with the other state-of-arts
using 17,770 real-world contracts deployed on Ethereum.

briefly introduces the related work and

concludes our study.

II. BACKGROUND AND MOTIVATION

In this section, we explain the 4 vulnerability types
(i.e., Reentrancy, The abuse of tx.origin, Unexpected Revert
and Self-destruct Abusing.) targeted by our study. The 4
vulnerabilities deeply threats the safety of transactions
of smart contracts. For example, the Reentrancy caused
the DAO attack in 2016 and resulted in hundreds of
millions dollars losses; The tx.origin and Unexpected Revert
vulnerability are listed in the Decentralized Application
Security Project (DASP) [I6]; The Self-destruct Abusing
vulnerability often appears with the use of selfdestruct
instruction in Solidity, and is prone to being exploited if
it is not well protected. We also show a real-world case,
which is not well-handled by the state-of-the-art scanners,
to motivate this work.

A. Vulnerability Types

1) Reentrancy (RE) As the most famous Ethereum vul-
nerability, reentrancy recursively triggers the fall-back
function [I7] to steal money from the victim’s balance or
deplete the gas of the victim. Reentrancy occurs when
external callers manage to invoke the callee contract
before the execution of the original call is finished, and
it was mostly caused by the improper usages of the
function withdraw() and call.value(amount) (). It was also
reported in [5].

2) The Abuse of tz.origin (TX) When the visibility is
improperly set for some key functions (e.g., some
sensitive functions with public modifier), the extra
permission control then matters. However, issues can
arise when contracts use the deprecated tx.origin (espe-
cially, tx.origin==owner) to validate callers for permission
control. It is relevant to the access control vulnerability
in [I6]. When a user U calls a malicious contract A, who
intends to forward call to contract B. Contract B relies
on vulnerable identity check (e.g., require(tx.origin ==
owner) to filter malicious access. Since tx.orign returns
the address of U (i.e., the address of owner), malicious
contract A successfully poses as U.

3) Unexpected Revert (UR) In a smart contract, some
operations may unfortunately fail. This can lead to
two main impact: 1) the gas (i.e., the fee of executing
an operation in Ethereum platform) of the transaction
is wasted; 2) the transaction will be reverted, i.e., the
denial of service (DoS). The denial of service attack
is also termed "DoS with revert” in [I8]. The attacker
could deliberately make some operations fail for the
purpose DoS. For example, some functions recursively
send ethers to an array of users. If one of these calls
fails, the whole transaction will be reverted. An attacker
can deliberately fail this transaction to achieve a denial-
of-service attack.

4) Self-destruct Abusing (SD) This vulnerability allows
the attackers to forcibly send Ether without triggering
its fall-back function. Normally, the contracts place
important logic in the fall-back function or making



I function withdraw () {

2 require (msg.sender == owner) ;

3 uint256 amount = balances [msg.sender ];

1 require (msg.sender . call.value (amount) () );
5 balances [msg.sender] = 0;

6}

Fig. 1: An example of a non-vulnerable code. This is
misreported as vulnerability by SLITHER and OYENTE.

calculations based on a contract’s balance. However,
this could be bypassed via the self-destruct contract
method that allows a user to specify a beneficiary to
send any excess ether [I8]. That is, a vulnerable contract
is prone to being exploited to transfer all money to
attacker’ account meanwhile shut down the service.

B. Motivating Examples

Fig. 1] is mistakenly alarmed by SLITHER and OYENTE.
The function withdraw intends to send ethers to the
msg.sender. It first verifies the identity of caller at line 2.
Then, the function reads the amount of current balance of
the caller at line 3 and sends ethers to the caller by using
a Solidity call .call.value() (). Finally, the function
updates the balance of caller at line 5.

The reason of the false alarm of SLITHER is due to that
SLITHER detects reentrancy with the following rule:

DataDep(_,varg) > Call(_,varg) >
DataDep(__,varg) = reentrancy

(1

In DataDep(_,var_g) denotes write and read
operations to variables; var, denotes a certain public global
variable; > denotes the execution order in the control flow;
Call(_,vary) denotes function call operations. This rule
describes a common pattern for Reentrancy vulnerability.
shows a typical example. var, is usually a balance
account (e.g., balances [msg.sender], line 3 in. An
attacker just needs to create a fallback function that calls
withdraw(). Once msg.sender.call.value(amount) ()
is executed and transfers the funds, the attacker’s fallback
function [I7] will be triggered and call withdraw() (line
1) again. By this means, the attacker can transfer more
funds before balances[msg.sender] is reduced to 0. This
continues until there is no ether remaining, or execution
reaches the maximum stack size.

However, the pattern in is usually an over-
estimation for real Reentrancy vulnerability. In fact, the
example in [Fig. 1]is a counter-example because the function
withdraw() is protected by an identity check at line 2.
This statement specifies a precondition for running the
withdraw() function. Once the precondition is not satisfied,
the execution will be aborted. In the identity check
indicates that the contract calling this withdraw() function
is limited to its owner (i.e., the creator of the contract).

The reason of the false alarm of OYENTE is due to that
OYENTE detects reentrancy with the following rule:

(DataDep(_,varg) A (gaStrans > 2300)A

(amtpar > amiirans)) = Call(_,vary) = reentrancy

(2)

In OYENTE requires the gas expense less than
a certain value. In Solidity programs, each transaction
requires an amount of gas to complete in the runtime.
gaStrans > 2300 means the gas used for transaction must
be larger than 2300 (2300 is the least gas expense to conduct
a transaction call). amipq > amtyrqns means the balance
amount must be larger than transfer amount. Finally, the
rule of OYENTE requires call to external functions by Call
meanwhile send money. Comparing with (defined
by SLITHER), OYENTE has more constraints for gas and
balance value. Similar to the rule of SLITHER in
also overestimates the condition where Reentrancy
attack can happen. With the protection by the identity
check (i.e., line 2 in , the execution of function calls
conforms to the defined runtime conditions but is already
free from the Reentrancy attack.
How Vulpedia can address this issue: In contrast, VUL-
PEDIA is equipped with detection rule composed of a
vulnerable signature as shown in (i.e., the signature
indicating potential vulnerability) and a benign signature
as shown in (i.e., the signature indicating potential
code behaviors defending or fixing vulnerability).

DataDep(_,varg) > Call(_,vary)

= reentrancy

3)

ControlDep(msg.sender, _) = DataDep(_,varg) >

(4)

Call(_,vary) = reentrancy

For the vulnerable signature, VULPEDIA adopts valuable
experience from SLITHER and OYENTE and detects Reen-
trancy by matching data dependency of variables followed
by call operations. As for the benign signature, VULPEDIA
eliminates false reports by filtering out functions which
contain control dependency on msg.sender. For example,
in the code at lines 2 checks if the msg.sender equals
the address of owner, and the function is not considered
as vulnerability by VULPEDIA.

III. OVERVIEW

shows the workflow of abstracting vulnerability
signatures for VULPEDIA. The workflow can be roughly
grouped into four steps: 1) The pre-detection of existing
tools; 2) Vulnerability report inspection; 3) AST clustering
and signature abstraction; 4) Rule composition. Note that
manual efforts are involved in step 2 and step 4.

In the first two steps, we systematically evaluate (1) how
accurately state-of-the-art tools can report the vulnerable
smart contracts and (2) under what condition can those
tools be ineffective. We collect the reports of the state-of-
the-art tools on a training dataset of 76,354 contracts. Then,
we employ three experienced smart contract developers to
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Fig. 2: The workflow of extracting vulnerability signatures of VULPEDIA.
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Fig. 3: The architecture diagram of Vulpedia.

manually confirm the reports of the tools, and categorize
them into two groups: truly alarmed vulnerable contracts
and falsely alarmed vulnerable contracts.

In the last two steps, we first calculate the tree edit
distance based on the ASTs of contracts in a particular
vulnerability type and cluster the contracts of the type by
defining the contract similarity. Next, we abstract common
nodes from the PDGs (program dependency graph) of each
cluster to summarize signatures (e.g., as shown in .
From truly vulnerable contracts, we summarize vulnerable
signatures. In contrast, from falsely alarmed vulnerable
contracts, we summarize benign signatures. Finally, we
manually integrate the vulnerable signatures and benign
ones into vulnerability detection rules.

After we equip our VULPEDIA detector with the com-
posed rules, the detector takes unknown contracts as inputs
and generate vulnerability reports based on the signatures.
The figure of the architecture is shown in [Fig. 3| Specifically,
the detector first conduct preprocessing on the input
smart contract code. The detector extracts normalized
AST from the contract. Based on this normalized AST,
the detector conducts a PDG extraction. Meanwhile, the
detector extracts existing signatures from the vulnerability
signature database. Lastly, the detector produces detection
reports based on the comparison results. That is, if the
PDG matches vulnerable signatures but not matched

with benign signatures, the contract will be deemed as
a vulnerable contract; otherwise, the detector will produce
a non-vulnerable report.

IV. EMPIRICAL STUDY OF SIGNATURE ABSTRACTION

In this section, we first illustrate how we empirically
collect contracts in this study. We report how we se-
lect the vulnerability scanners and how we construct a
contract dataset. Next, we introduce our method of @
clustering similar contracts by comparing tree edit distance,
0 abstracting commonalities from PDGs of clusters as
signatures and @ detection rules composition based on the
abstracted signatures. Finally, we elaborate the signatures
with examples to evidence the representativeness of them.

A. Selected Scanners and Dataset

1) Choice of Scanners and Vulnerability Types: Overall,
we select vulnerability scanners based on how practical
they can be used in real-world scenarios. We investigate a
list of static analyzers, including SLITHER [7], OYENTE [13],
Zeus [9] SMARTCHECK [II], and MyTHX [20]. These
tools utilize manually defined detection rules to detect
vulnerabilities. The rules could match vulnerabilities in
some cases but also generate much false reports. We also
investigate dynamic detectors like MYTHRIL [19], CON-
TRACTFUZZ [24], ECHIDNA [21] and MANTICORE [22]. They
exercise programs and check the runtime status of functions
to find vulnerabilities. The dynamic analyzers often achieve
high detection precision but suffer from limited scalability.
Additionally, we investigate other analyzing tools (e.g.,
Solidity reverse engineering tool OcTOPUS [23]) to facilitate
our exploiting contracts. A summary of the above tools can
be found at[Table 1] In our study, some tools are not selected
because they are not open-sourced (ZEUs [9], MYTHX [20]),
not related to our task (EcHIDNA [2I], OcToPrus [23]) and
efficiency concerns (MYTHRIL [19], CONTRACTFUZZER [24],
MANTICORE [22]).

Finally, we choose SLITHER v.0.4.0, OYENTE v0.2.7 and
SMARTCHECK v2.0 as our scanners.

2) Dataset for Empirical Study: We implement a web
crawler to download Solidity files from accounts of Ether-
scan [25], a famous third-party website on Ethereum
block explorer. Etherscan provides APIs for downloading
transaction information (e.g., transaction addresses, time).

Vulpedia Detector



TABLE I: The state-of-art tools for Solidity analysis.

Tool Name Method Technique Open Source Implementation Adopted In Experiment
MyYTHRIL [I9] Dynamic Constraint Solving [ ] Python O
MyTHX [20] Dynamic Constraint Solving O N.A. O
SLITHER [7] Static CFG Analysis { Python {
EcHIDNA [2]] Dynamic Fuzzy Testing [ Haskell @)

MANTICORE [22] Dynamic Testing { Python O
OYENTE [I3] Dynamic Constraint Solving [ Python (]
SMARTCHECK [I1] Static AST Analysis { Java {
Ocrorus [23] Static Reverse Analysis [ ] Python O
ZEus [9] Static ~ Formal Verification O N.A. O
CONTRACTFUZZER [24] Dynamic Fuzzy Testing [ Go O

TABLE II: The percentages of adopted Solidity contracts
versions. According to [26].

Major Version # of Smart Contracts Percentage
0.1 13 <0.1%
0.2 89 <0.1%
0.3 519 0.39%
0.4 71,350 54.27%
0.5 32,479 24.69%
0.6 22,171 16.85%
0.7 4,200 3.19%
0.8 725 0.55%

TABLE III: Number of collected contracts for each category

RE TX UR SD

46 38 421 3
720 179 2,546 51

Alarm Type

True Positive
False Positive

We choose contracts deployed by Solidity 0.4.25 and
0.4.24. The reasons are two folds: 1) as listed in
Solidity 0.4 is the majority version among all versions and
the 0.4.24 and 0.4.25 are the latest versions in Solidity 0.4;
2) The versions 0.4.24 and 0.4.25 are supported by most
analyzers, so that they facilitate our study. Additionally,
we find that the downloaded dataset has redundant con-
tracts (contracts which share commonality with others).
Regarding these redundant contracts, we remove contracts
that are exactly same to others and contracts that are
only different in transfer address with others. Finally, we
have 76,354 contracts for empirical study. Our crawler can
be accessed at https://github.com/ToolmanInside/smart_
contract crawler.

[Table IIT shows the number of contracts we collected
in this study. Overall, among 76,354 contracts, the three
tools report 508 true vulnerable contracts albeit 3,496 false
vulnerable ones. [Table TV] shows the details on the number
of reported contracts and precision performance of each tool.
We observed that all the tools have a large number of false
alarms. This is due to contract programmers have invented
many heuristics to detect the potential vulnerabilities. In
other words, most existing detection rules are obsolete. It
motivates us to pursue (and generate) a more expressive
and fine-grained rule to mitigate the false alarms.

TABLE IV: The precision performance of three tools
SLITHER, OYENTE and SMARTCHECK on four vulnera-
bilities.

Vulnerability = SLITHER OYENTE  SMARTCHECK
RE 623 (3.53%) 143 (16.78%) N.A.
X 67 (28.35%) N.A. 150 (12.66%)
UR 2,678 (8.25%) N.A. 289 (69.20%)
SD 54 (5.56%) N.A. N.A.

B. Vulnerability Rule Abstraction

In this section, we introduce the definition of signature
and show how we cluster and abstract the vulnerable/be-
nign signatures from each cluster.

1) Definition: We define a vulnerability rule for a Solidity
contract as following BNF:

(rule) == (comp_sig)

(comp__sig) = —{comp_sig) | ({comp_sig) V {comp_sig))
| ({comp_sig) N {(comp_sig)) |
((comp_sig) > (comp_sig)) | (sig)

(sig) := DataDep(X,Y) | ControlDep(X,Y) | ForLoop |
IsInstance(X,Y) | Call(L,X) | SelfDestruct(X) |
msg.sender | tx.origin |

Here, the detection rule is composite of signatures. A
composite signature is a negation (—) of itself, or conjunc-
tion (A), union (V), succeed () with another composite
signature. A composite signature can also be a single
vulnerability signature. Specifically, vulnerability signature
indicates basic program relationships and built-in keywords
of Solidity language. For example, the data dependency

(DataDep(X,Y)) relationship denotes that variable X has

data dependency to Y (i.e., variable assignment operations).

The control dependency (ControlDep(X,Y)) indicates asser-

tation operations (e.g., require, assert) between variables

X and Y. The for loop ForLoop denotes the function body

exists a for loop statement. The IsInstance(X,Y) denotes

the variable X is a type of variable Y. Call operation

CALL(L,X) includes low level calls (e.g., call.value()

and send() in Solidity) and high level calls (i.e., user-

defined function calls). Here, variable L represents the result
of call operations and variable X represents the parameters
required by the call. SelfDesutrct(X) is a built-in function
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1| // Code Block A // Code Block B // Code Block C Block A Block B Block C
2 || function buy(ERC20 function buy(ERC20 function buy(ERC20
_token, address[] _exs, _token, address[] _exs, _thToken, address[] _exs, | Input | | Input | | Input |
uint[] _indexs, uint256[] uint[] _indexs, uint256[]|||uint[] _idxs, uint256[]
_values) public payable _values) public payable ¥Values) public payable | for | | for | | for |
3 (14 {
4 for (uint i=0; for (uint i=0; for (uint i=0; | uint | | uint | | uint |
i<_exs.length; i++) i<_exs.length; i++) i<_exs.length; i++) ettt ARREk]
5 | |
6 bytes memory data = bytes memory data = :| bytes | | bytes | '
new bytes(_indexs[i+1] - new bytes(_indexs[i+1] - ' !
_indexs[il); _indexs[il); ( ! !
7 if(_token!=address(0) if(_thToken.isSpecial i - - '
§&6 1 > 0) { Token) { : !
8 transfer(_token, tfarﬁfer(_token, ! !
_values[il); _viElues]|li] g ] |
9 } else { } else { : :
10 L |
11 || require(_exs[i].call.val require(_exs[i].call.val require(_exs[i].call.val I
ue(_values[i])(data), ue(_values[i])(data), ueg_values[l])(data), | call | | call | | call |
||ll); llll); nn ;
12111 1} 3 BB D | require | | require | | require |

Fig. 4: Three similar code blocks of Unexpected Revert that are found in real-world contracts. Based on their tree edit
distance, we cluster them together and abstract a graph skeleton from their PDG. The yellow boxes denote function
inputs, blue boxes denote common nodes on PDG and white boxes in dotted box represent different nodes.

Algorithm 1: Contract Clustering and Signature
Abstraction Algorithm

similar trees by using hierarchical clustering algorithm. The
clustering procedure can be found at line 1 to line 10 in

input :SourceCode, source code of smart contracts

output : SignatureCands, abstracted signature
candidates

// Contract Clustering Process

ASTs = get AST (SourceCode)

nASTs = AST Nomalization(AST's)

distanceMatrix = List[N, N]

// N is the number of trees

foreach idz i € range(nASTs) do

foreach idx j € range(nASTs)andi # j do
treeEdtDist = ARTED(nASTs[i], nASTs[j])
// Calculate the distance between two
trees

distanceMatrix|[i, j] = treeEdtDist

© o N D T A W N =

—
=)

1 Clusters = hierarchicalClustering(distance M atriz)
12 // Signature Abstraction Process

13 SignatureCands < 0

14 foreach cluster ¢ € Clusters do

15 PDGs + 0

16 foreach tree t € ¢ do

17 PDG p < getPDG(t)

18 pn < PDGNormalization(p)

19 PDGs + PDGs U pn

20 commonSeq < LCS(PDGs)
xn | SignatureCands < SignatureCands U commonSeq

22 return SignatureCands

call in Solidity. Once it is called, the service of current
contract is stopped and the rest balance is transferred
to an arbitrary receiver X. The msg.sender and tx.origin
are built-in variables. Specifically, msg.sender denotes the
address of current contract and tx.origin denotes the origin
of call chains [17].

2) Contract Clustering: In this section, we first define
contract similarity on normalized ASTs, and then we cluster

the [Algorithm 1]

Contract Similarity. We define the contract similarity by
considering both semantic and structural information of
the code. To this end, we use AST (Abstract Syntax Tree)
to represent the code of the functions of each contract.
For each AST of a Solidity function, we normalize the
concrete nodes in the AST for retaining core information
and abstracting away unimportant details such as variable
names or constant values, as shown in line 2 of [Algorithm 1}
For each AST corresponding to a function, we just retain
the information such as node type, name, parameter and
return value (if contained). For the variable names (e.g.,
_indexs in code block A and code block B of [Fig. 4)), they
will be normalized with the token asterisk “x”. Similarly,
we repeat the same normalization for constant values of
the types string, int, bytes Or uint.

Given two trees, we use the tree edit distance between
two normalized ASTs as their distance. The AST nor-
malization process is shown in line 3 of In
this work, we apply a robust algorithm for the tree edit
distance (ARTED) [I4], which computes the optimal path
strategy by performing an exhaustive search in the space
of all possible path strategies. Here, path strategy refers
to a mapping between two paths of the two input trees
(or subtrees), as the distance between two (sub)trees is
the minimum distance of four smaller problems, i.e., (1)
the edit distance between two empty trees, (2) the edit
distance of transferring a tree F' to an empty tree, (3) the
edit distance of transferring an empty tree to a tree F' and
(4) the edit distance of transferring a tree F' to another
tree G. Note that though ARTED runs in quadratic time
and space complexity, it is guaranteed to perform as good



or better than its competitors [14].

Contract Clustering. We cluster the ASTs via hierarchical
clustering algorithm with complete linkage [27], as shown
in line 4 to line 10 in Then, we group the
codes in with considerable modification. We deem
that the ASTs in each cluster share commonalities as a
feature (or signature) for a vulnerability category.

3) Signature Abstraction: After clustering contract func-
tions with AST, we abstract signature by referring to
their PDG (Program Dependency Graph) information. The
reason lies in that PDG allows us to capture the code
semantic features like control and data dependencies.
PDG Representation. For each AST, we transfer its code
into a PDG including all its depended code elements such
as global variables and called functions, as shown in line
13 to line 17 in In a PDG, each of its nodes
is an instruction and the edge between nodes indicates
data dependency, control dependency, and call relation
between the nodes. Thus, given a cluster containing N
Solidity functions, we reduce it into a problem of finding
the common subgraph of N PDGs. The normalization of
PDGs is shown in line 18 in
PDG Matching. The graph matching problem is a NP-
complete problem. We simplify the problem with the
following steps. Before matching, we also abstract away
variable names and constant values in the PDGs as we
do that for AST. Next, we simplify the calculation by
flattening the graph into a node sequence (via depth first
order search) and align the sequences by LCS algorithm [28],
as shown in line 20 in[Algorithm 1] The aligned graph nodes
are considered as commonalities shared by the code in the
same cluster.

As a result, the signature abstracted from a cluster is
essentially a graph skeleton, as shown in Then,
we manually inspect those skeletons and refine them into
usable signatures. The refining process requires manual
efforts because some signatures are semantically similar
to others but different in syntax. These signatures require
to be filtered out by human expert. After we repeat the
above procedures on both vulnerable and benign contracts,
we construct a set of vulnerable and benign signatures.

4) Rule Composition: In this work, we follow the fol-
lowing heuristics to integrate the signatures into a rule.
Generally, a detection rule is a composite boolean expression
of vulnerability signatures. Given a vulnerability category, a
detection rule first requires the input contract match with
the vulnerable signatures. The vulnerable signatures are
essential ingredients of forming a vulnerability. Therefore,
if the input contract is not matched with vulnerable signa-
tures, the contract should be considered as invulnerable.
Next, the input contract is required not to match with
benign signatures. The benign signatures are the best
practices to defend vulnerabilities. If the input contract
matches with them, it suggests that the contract is capable
for defending vulnerabilities and should not be reported
as vulnerability.

C. Case Study: Abstracted Signatures

We applied the three chosen scanners to 76,354 contracts.

Overall, SLITHER reports the most vulnerabilities, in total
3,422 (623 + 67 + 2,678 + 54) candidates covering four
types. In contrast, SMARTCHECK reports 439 (150 +
289) candidates and OYENTE reports only 143 candidates.
After they are processed by our methods, we abstract 4
vulnerable signatures and 6 benign signatures, as shown in
Based on these signatures, we further integrate
them into 4 detection rules, as shown in In
this section, we elaborate the signatures with examples to
evidence their representativeness.
Signature of Reentrancy. We extract 4 signatures from TPs
and FPs of reported reentrancy vulnerabilities, including 1
vulnerable signature (SIG1) and 3 benign signatures (SIG2,
SIG3, SIG4).

SIG1 is abstracted from general patterns of reentrancy
vulnerabilities. This signature consists of two parts: (1) the
read or write operation of variable X (i.e., DataDep(_,X))
and (2) the call operation with the parameter variable X
(i.e., Call(_,X)).

SIG2 adds various forms of checks (i.e., in require or
assert) for msg.sender compared with SIG1. For example,
SIG2 checks whether the identity of msg.sender is checked
under certain conditions (e.g., equal to the owner, or with
a good reputation, or having the dealing history) before
calling the external payment functions. With the identity
check, the function is only accessible to related users,
blocking the malicious attack from attackers. Example
of this signature can be found at

SIG3 describes a falsely reported case of transferring bal-
ance to a fixed address. In Fig. [5] the function closePosition
sends balance to a token bancorToken which is assigned with
a fixed address at line 2. According to the detection rule of
SLITHER (See , this code is a vulnerability because
— (1) it reads the public variable agets[_idx1; (2) then calls
external function bancorToken.transfer(); (3) last, writes to
the public variable agets[ idx]. However, in practice, this
contract can never be easily exploited to steal ethers due
to the hard-coded address constant (i.e., 0xiF...FFic). Note
that the constant address can be a malicious address, under
such circumstance this address cannot protect contract.
However, this case is very rare. Therefore, we choose to
trust the creator of the contract as well as the designated
addresses are benign.

SIG4 is to prevent from the recursive entrance of the
function — eliminating the issue from root. For instance,
in the internal instance variable reEntered will be
checked at line 5 before processing the business logic
between line 8 and 10. To prevent the reentering due to
calling ZTHTKN.buyAndSetDivPercentage.value(), reEntered will
be switched to true; after the transaction is done, it will
be reverted to false to allow other transactions.
Signature of Unexpected Revert. We extract 2 signatures
from reported Unexpected Revert vulnerabilities, including
1 vulnerable signature SIG5 and 1 benign signature SIG6.



TABLE V: Extracted Signatures from Different Vulnerability Categories

ID Vulnerability V/B Signature

1 V  DataDep( ,X) > Call(_,X)

D e B Gt - o) - i)

4 B ControlDep(Y, ) > DataDep( ,X) = Call(_,X) = DataDep(Y, )

2 Unexpected Revert 1\3/ ?Z:ﬁzzg ; (C}leln(i}a)i)ce?XiZg:)Ol/l\) eg(gl[}}(i),X ) ) = ControlDep(L, )

g Abuse of Tx.origin ]\3] ggiggggﬁsggiii?;) SOZZngzz((é.gﬁigin,X ) > ControlDep(X,Y)
190 SelfDestruct \}; ggi(zgjgi;()(mé;sj;ggf; )mi-Ctgi)taDep(i,X ) = SelfDestruct(X)

TABLE VI: Detection rules for each vulnerability

ID  Vulnerability Rule

SIG1 A = (SIG2 V SIG3 V SIG4)
SIG5 A — SIG6
SIG7 A = SIG8
SIG9 A = SIG10

1 Reentrancy
2 Revert

3 Tx.origin

4 Self-destruct

I contract BancorLender {
2 ERC constant public bancorToken =
ERC(0
x1f573d6fb3f13d689ff844b4ce37794d79a7fflc);
function closePosition (uint _idx) public {

[S28'N

6 bancorToken. transfer (agets|[_idx].lender ,
amount ) ;
[ return ;

8 P}

Fig. 5: A real case of using SIG3 (a hard-coded address at
line 3), a FP of reentrancy for SLITHER.

SIG5 represents general patterns of Unexpected Revert
vulnerabilities. This signature consists of three parts: (1)
the for loop program structure (i.e., ForLoop); (2) the call
operation of the variable X (i.e., Call(_,X)); (3) the result
of call operation is further checked by assertions.

According to the recent technical article [29], the rules of
Call/Transaction in Loop are neither sound nor complete
to cover most of the unexpected revert cases. At least,
modifier require is often ignored, which makes SLITHER and
SMARTCHECK incapable to check possible revert operations
on multiple account addresses. Here, multiple accounts
must be involved for exploiting this attack — the failure
on one account blocks other accounts via reverting the
operations for the whole loop. Hence, in the example of
the operations in the loop are all on the same
account (i.e., sender at line 5) and potential revert will not
affect other accounts. Therefore, the transfer operation of
which target is a single address is considered as SIG6.
Signatures of Tx.0rigin Abusing. We extract 2 signatures
from the truly vulnerable contracts and falsely reported
contracts, including 1 vulnerable signature (SIG7) and 3
benign signatures (SIGS).

I contract ZethrBankroll is ERC223Receiving {

2 ZTHInterface public ZTHTKN;

3 bool internal reEntered;

| function receiveDividends () public payable {

5 if (!reEntered) {

6

7 if (ActualBalance > 0.01 ether) {

8 reEntered = true;

9 ZTHTKN. buyAndSetDivPercentage . value (
ActualBalance) (address (0x0), 33, "");

10 }

TN

Fig. 6: A real case of using SIG4 (an execution lock of
reEntered), an FP of reentrancy for SLITHER.

I function withdraw () private {

2 for (uint i = 0; i < player_ [uid].planCount; i
++) {

3

4 address sender = msg.sender;

5 sender . transfer (amount) ;

5}y

=~

Fig. 7: A real FP of Unexpected Revert reported by
SMARTCHECK, where only one account is involved (SIG6).

For SIG7, this signature is extracted from general
patterns of tx.origin vulnerabilities. This vulnerability
first reads the value of tx.origin, followed by an assign-
ment to variable X (i.e., DataDep(tx.origin,X)). After
this, the function has an assertion to this variable (i.e.,
ControlDep(X, )). While we extract signatures from the
TPs of vulnerabilities, we find that our SIG7 is slightly
looser than the detection rule in SLITHER. SLITHER skips
the function if there exists a read operation to a particular
variable msg.sender, ignoring that some of these variables
are irrelevant to tx.origin. In order not to overlook potential
vulnerabilities, our SIG7 only requires a read of tx.origin,
followed by an assertion on this variable.

For SIG8, we observe that SMARTCHECK reports much
more cases (210) than SLITHER (34), but has lower precision
performance than SLITHER. After our investigation, we find
that the incorrect reports of SMARTCHECK are due to the
unsound rules (as shown in. That is, SMARTCHECK



I function destroyDeed () public {

2 require (msg.sender == owner) ;

3 if (owner.send(address (this).balance)) {
1 selfdestruct (burn);}

5}

Fig. 8: A real FP of self-destruct abusing by SLITHER, as
selfdestruct() is used under two checks at line 2,3 (SIG10).

simply reports vulnerability once tx.origin appears in
assertion statements. However, under some circumstance
(e.g., comparing msg.sender with tx.origin), the use of
tx.origin should not be reported. We summarize the SIG8
based on the FPs of SMARTCHECK.

DataDep(tz.Origin, X) = ControlDep(X, )
= Tx.Origin abusing

()

Signature of Self-destruct Abusing. We extract 2 signa-
tures from the self-destruct vulnerabilities, including 1
vulnerable signature SIG9 and 1 benign signature SIG10.

SIGY is extracted from general patterns of self-destruct
vulnerabilities. This signature consists of two parts: (1) the
read or write operation of variable X (i.e., DataDep(_,X))
and (2) the call operation of the self-destruct with the
parameter X (i.e., SelfDestruct(X)).

For SIG10, we extract this signature from FPs of tools.
In the existing scanners, only SLITHER detects the misuse
of self-destruct, which is called suicidal detection. In total,
SLITHER reports 54 cases of suicidal via its built-in rule —
as long as function SelfDestruct is used, no matter what the
context is, SLITHER will report it. Obviously, the SLITHER’s
rule is too simple and too general. It mainly works for
directly calling SelfDestruct without permission control or
conditions of business logic — under such circumstance (3
out of 54), the SLITHER rule can help to detect the abusing.
In practice, in most cases (51 out of 54) SelfDestruct
is called with the admin or owner permission control or
under some strict conditions in business logic. For example,
SelfDestruct is indeed required in the business logic at line
2 of As the owner wants to stop the service of the
contract via calling SelfDestruct, after the transactions
are all done, the contract becomes inactive. Note that
parameter burn is just padded to call SelfDestruct in a
correct way. Hence, we summarize the SIG10, adding a
strict condition control or a self-defined modifier for identity
check when using SelfDestruct.

In brief, for a vulnerability type, we use the vulnerable
signatures to match potential vulnerabilities, which yield
a better recall. Then, we leverage corresponding benign
signatures to filter out false reports.

D. Vulnerability Detection

The implementation of the vulnerability detection of
VULPEDIA is based on the previously abstracted signatures
and integrated detection rules, but slightly different from
them. The workflow of detection is shown in Specifi-
cally, in this workflow, VULPEDIA reports vulnerability only

Contracts Input
-

KCan match No

vulnerable sig

Yesl Non-
vulnerable
(€l s Yes contract
benign sig
Vulnerability Reports l
No
= | Vulnerability j

Fig. 9: The detection workflow of Vulpedia.

when the vulnerable signatures are matched meanwhile the
benign signatures are not matched. That is, the vulnerable
and benign signatures are separated things. However, in
previous subsection, the signatures are combined to form
detection rules. The reason is that our benign signatures are
designed to filter out false positive reports. The detection
rules shown in all follow the pattern that the
vulnerable signatures should be matched but the benign
ones should not. Therefore, though the implementation
of the detection process seems differently, the logic of the
workflow is the same with previous designs.

V. EVALUATION

Experimental Environment. Throughout the evaluation,
all the steps are conducted on a machine running on Ubuntu
18.04, with 8 core 2.10GHz Intel Xeon E5-2620V4 processor,
32 GB RAM, and 4 TB HDD. For the scanners used in
evaluation, no multithreading options are available and
only the by-default setting is used for them.
Tool Implementation. Vulpedia is implemented based on
the SLITHER analyzer. We adopt the AST analysis from
SLITHER, and we build PDG analysis based on the CFG
(control flow graph) and call graph of SLITHER. The
vulnerability signatures are implemented as detectors in
nearly 1,000 lines of Python code. The demo of our tool can
be found at https://github.com/ToolmanInside/vulpedia_
demol
Dataset for Tool Evaluation. To take a different dataset
from contracts we used in empirical study, we get an-
other address list of contracts from Google BigQuery
Open Dataset. After removing contracts that already
used in our empirical study, we get the other 17,770
real-world contracts deployed on Ethereum, on which
we fairly compare our resulted tool VULPEDIA with the
version of the scanners: SLITHER v0.6.4. OYENTE v0.2.7,
SMARTCHECK v2.0 and SECURIFY v1.0 that is open-
sourced at Dec 2018. The evaluation dataset is opened
along with empirical study dataset at https://drive.google
com/file/d/1kizsz0 8B8nP4UNVr0gYjaj25VVZMOSC.
The evaluations are conducted based on a relaxed
assumption that the owners of contracts are not malicious.
That is, the operations of the owners are all deemed as
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TABLE VII: The detection performance for our tool and other existing ones on the 17,770 contracts, where #N refers
to the number of detections, P% and R% refer to the precision rate and the recall rate among the number of detections,
respectively. Note that P%= (#TP of the tool)/#N, and R%= (#TP of the tool)/ (#TP in union of all tools).

Vulnerability SLITHER OYENTE SMARTCHECK SECURIFY VULPEDIA
#N  P% R% #N  P% R% #N P% R% #N  P% R% #N P% R%
Reentrancy 162 9.8% 326% 28 71% 4.1% N.A. NA. NA. 797 1.1% 183% 119 285% 69.3%
Abuse of tx.origin 23  43.4% 33.3% N.A. N.A. N.A. 44 333% 56.6% N.A. N.A. NA. 98 88.7% 96.6%
Unexpected Revert 356 5.8% 67.7% N.A. N.A. N.A. 51 471% 774% N.A. N.A. N.A. 43 488% 67.7%
Self Destruct 18 16.6% 42.8% N.A. N.A. N.A. N.A. NA NA NA NA NA 20 350% 100%

defense behaviors to vulnerabilities. The evaluations aim

to answer these RQs:

RQ1. How is the precision of VULPEDIA, compared with
the existing scanners in vulnerability detection?

RQ2. How is the recall of VULPEDIA? Can our signature-
based method report more vulnerabilities?

RQ3. How is the efficiency of VULPEDIA, in tool compari-
son on the datasets?

A. RQ1: Evaluating the Precision of Tools
As mentioned in[Sec. IV-C] we have learned 10 signatures

in total for the four types of vulnerabilities. To evaluate
the effectiveness of the resulted vulnerable signatures
and detection rules, we apply them on the 17,770 newly
collected contracts and compare with the other state-of-
the-arts detection tools. Details on the performance of each
tool are shown in Table[VII] Note that all TPs are manually
verified by our authors.

In Table [VII, we list 280 detection results of VUL-

PEDIA, with an averaged precision of 50.2%, regardless
of vulnerability types. In comparison, SLITHER has an
averaged precision of 18.9%; OYENTE’s averaged precision
is 7.1%; SMARTCHECK’s averaged precision is 40.2%; and
SECURIFY’s precision is surprisingly only 1.1%. In the rest
of this section, we analyze the false positives of these tools
from the perspective of supporting vulnerability signatures.
FPs of Reentrancy. Among the four supported tools except
SMARTCHECK, VULPEDIA yields the lowest FP rate (71.5%)
owing to the adoptions of benign signatures for reentrancy.
FP rates of other tools are even higher. For example, the
FP rate of SECURIFY is 98.9%, as its detection pattern
is too general but has not considered possible defense
to vulnerabilities in code. SLITHER adopts Rule [I| to
detect, but it supports no benign signatures — its recall
is acceptable, but FP rate is high. OYENTE adopts Rule
and has no benign signatures — its recall is low due to
the strict rule, and its FP rate is also high.
FPs of Unexpected Revert. As summarized in
SLITHER reports Unexpected Revert vulnerability when a
call in loop is detected, ignoring the potential false alarms
(i-e., low level call in a loop). This coarse detection rule
leads to 335 FPs. SMARTCHECK handles SIG5 but not SIG6
and leads to 27 FPs. In comparison, VULPEDIA combines
SIG5 and SIG6 for integrating detection rule, yielding the
lowest FP rate 51.2%.

FPs of Tx.Origin Abusing. SLITHER has a strict rule
for detecting this type, only checking the existence of
tx.0Origin == msg.sender. We find that this tool also skips
the function if there exists a read operation to a particular
variable msg.sender, ignoring that some of these variables
are irrelevant to tx.origin. For the case that tx.origin is
compared with an unrelated address variable, SLITHER
reports it as vulnerability, causing FPs. Comparatively,
SMARTCHECK and VULPEDIA manage to include all the
identity check cases, but meanwhile also lead to FPs due
to the fact — accurate symbolic analysis is not adopted in
SMARTCHECK or VULPEDIA to suggest whether tx.Origin
can be used to rightly replace msg.sender. Hence, the FP
rate due to ignoring SIGS8 is higher than that of VULPEDIA.
FPs of Self-destruct Vulnerability. VULPEDIA has 13 FPs.
After inspecting, we find 10 FPs are due to the unsatisfac-
tory handling of SIG10. That is, the identity check hides
in self-defined modifiers. Function modifiers are overlooked
by VULPEDIA, causing FPs. Comparatively, SLITHER only
reports 3 true positives. The reason is that SLITHER simply
reports vulnerability when a SelfDestruct call is detected.
Due to the inconsideration of the potential access controls,
SLITHER performs less precision than VULPEDIA.

Answer to RQ1: VULPEDIA performs best in evalua-
tions of precision among tools. In detecting tx.origin
vulnerability, VULPEDIA outperforms the second best
tool by 45.3% (88.7% - 44.3%). The reason of the high
precision performance is VULPEDIA adopts effective
benign signatures to remove false reports.

B. RQ2: Evaluating the Recall of Tools
In [Table VIIJ in most cases, VULPEDIA yields the

best recall except on unexpected revert, where R% for
SMARTCHECK is 77.4% and R% for VULPEDIA is 67.7%.
Based on the vulnerable signature abstracted in empirical
study, we expect VULPEDIA can find more similar vul-
nerable candidates. A comparison between vulnerabilities
only found by VULPEDIA (denoted by green bars) and
vulnerabilities found by other tools (represented by red
bars) is shown in

Recall of Reentrancy. In this vulnerability, VULPEDIA
performs best by report 69.3% vulnerabilities. Among all
TPs, VULPEDIA finds 56% unique TPs that are missed
by other evaluated tools. We find that the other three
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Fig. 10: Comparing the vulnerabilities only reported by
VULPEDIA with vulnerabilities reported by other tools.
“Our Unique” means those only found by VULPEDIA.

tools commonly fail to consider the user-defined function
transfer(), not the built-in payment function transfer().
For the example in Fig. [1I} SLITHER and SECURIFY miss
it as they mainly check the external call for low-level
functions (e.g., send(), value()) and built-in transter(),
ignoring user defined calls. OYENTE does not report this
example, as it fails in the balance check according to Rule[2}
Comparatively, VULPEDIA detects this vulnerability, as we
have an vulnerable signature that has a high code similarity
with this example. Notably, though VULPEDIA has the best
recall of 69.3%, it misses 30.7% TPs. This is due to the
fact that reentrancy has many forms, and our vulnerable
signature is not sufficient to cover those TPs.

Recall of Unexpected Revert. In this vulnerability, the per-
formance of VULPEDIA is slightly worse than SMARTCHECK
(77.4%). Specifically, VULPEDIA only reports 9% unique
TPs while 91% TPs are found by other tools. The reason of
the TPs missed by VULPEDIA (reported by SMARTCHECK)
are due to the incompleteness of our vulnerable signature
SIG6. That is, the signature requires a ControlDep after
Call. However, the ControlDep is unnecessary when the
Call is a high level call (e.g., user defined function call)
because assertion operations are already integrated in high
level calls. Therefore, the signature causes FNs.

Recall of Tx.Origin Abusing. For this type, 96.6% TPs
are found by VULPEDIA— almost all TPs are found by
VULPEDIA. Additionally, VULPEDIA reports 40% unique
TPs which are missed by other tools. The reason is that we
matches identity check of Tx.0rigin in self-defined modifiers,
which is commonly overlooked by other tools.

Recall of Self-destruct Abusing. For this type, all vulner-
abilities (100%) are found by VULPEDIA. Comparatively,
SLITHER only reports 42.8% vulnerabilities. 57% of TPs
are only found by VULPEDIA. The rationale of TPs
missed by SLITHER is that SLITHER skips the function
if the function is only accessible to internal calls (i.e.,
set visibility to internal). These functions are however
prone to being exploited by internal calls. Therefore, they
should not be overlooked. VULPEDIA leverages SIG9 to
match vulnerability candidates, so we have better recall
performance.

1 contract Alice {

2

3 function aliceClaimsPayment(bytes32 _dId, uint
_amount, address _addr) external {

4 require (deals [ _dId].state==DS. Initialized);

5

6 deals|[_dId].state = DS.PaymentSentToAlice;

7 if (_addr == 0x0) {msg.sender.transfer (
_amount) ; }

8 else {

9 ERC20 token = ERC20(_addr);

10 assert (token.transfer (msg.sender , _amount)
)5}

11

12 1}

Fig. 11: A real case of reentrancy. This is a TP for
VULPEDIA but a FN for SLITHER, OYENTE and SECURIFY.
TABLE VIII: The time (min.) of vulnerability detection
for each scanner on 76,354 and 17,770 contracts. “S.C.”
denotes SMARTCHECK.

Dataset SLITHER OYENTE S.C. SECURIFY VULPEDIA
76,354 156 6,434 641 N.A. 883
17,770 52 1,352 141 8,859 295

Answer to RQ2: VULPEDIA has best performance on
detection recall. Except Unexpected Revert, VULPEDIA
outperforms other tools on three vulnerabilities. The
reason of this leading performance is our abstracted
vulnerable signatures can represent essence of most
vulnerabilities.

C. RQS3: Evaluating the Efficiency

On Dataset for Empirical Study. In Table [VIII] SLITHER
takes the least time (only 156 min) in detection.
SMARTCHECK and VULPEDIA have the comparable de-
tection time (500~1000 min). They are essentially of the
same type of technique — pattern based static analysis.
In practice, they may differ in performance due to imple-
mentation differences, but still, they are significantly faster
than OYENTE that applies symbolic execution. Compared
with other dynamic analysis or verification tools (i.e.,
MyTHRILL and SECURIFY that cannot finish in three
days for the 76,354 contracts), OYENTE is quite efficient.
Notably, the signature abstraction time of VULPEDIA is
not included in the detection time, as it could be done
off-line separately. Since signature abstraction is analogical
to rules formulation, it is not counted in the detection time.
On Dataset for Tool Evaluation. On the smaller dataset, we
observe the similar pattern of time execution — SLITHER
is the most efficient, OYENTE is least efficient (except
SECURIFY), and SMARTCHECK and VULPEDIA have the
comparable efficiency. Notably, SECURIFY can finish the
detection on 17,770 contracts, but it takes significantly
more time than other tools. The performance issue of
SECURIFY rises due to the conversion of EVM IRs into
datalog representation and then the application of verifi-
cation technique. OYENTE is also less efficient, as it relies
on symbolic execution for analysis. VULPEDIA should be
comparable to SMARTCHECK and SLITHER, as these three



all adopt rule based matching analysis. The extra overheads
of VULPEDIA, compared with SLITHER and SMARTCHECK,
are signature-based code matching.

Answer to RQ3: VULPEDIA outperforms SECURIFY
and OYENTE regarding the detection efficiency on
both empirical evaluation and tool comparison. In
general, VULPEDIA is efficient as a signature-based
vulnerability detection tool.

D. Threats to Validity

In our experiments, we adopt recall rate as a metric,
which is a potential threat. Generally, the recall rate
indicates the number of TPs divided by the number of all
vulnerabilities. However, it requires an overwhelming effort
to find out all vulnerabilities (i.e., the ground truth). In our
study, we evaluate recall performance based on the union
of vulnerabilities reported by all tools. Additionally, in the
abstraction of signatures, we manually confirm signatures,
which may introduce bias. To alleviate this, we repeat our
experiments for 3 times. Also, we note that the randomness
is an inevitable factor in the evaluations of efficiency. We
repeat the experiments for 5 times and record the average
values. Besides, the abstracted signatures are prone to
introducing incompleteness. To alleviate this, we implement
our methods on the top of SLITHER, which facilitates our
signature abstraction from PDGs.

VI. DISCUSSIONS
A. The Relaxed Security Assumption

The experiments and comparisons are all conducted
based on the relaxed security assumption. That is, we
assume the operations of contract owner are not malicious
behaviors. We follow this assumption because the security-
design is more strict than ordinary contract when the
contract is designed for industry needs. In fact, existing
successful contracts (e.g., e-voting, NFT) have been audited
by experts to be protected from rogue owners. To avoid
our tool been blindly used by users and developers, this
assumption should be pointed out.

B. The Weakness of VULPEDIA

In this section, we discuss the improvement of the
weakness of VULPEDIA found in our experiment practice.
In our view, involving manual efforts brings biases, and
the biases may affect the effectiveness of the tool. However,
VULPEDIA relies on manual efforts, mainly in the two steps:
1) manually confirm the reports of existing tools in our
empirical study. We add man-powers in this step because
the existing static tools have severe limitations and produce
a large number of false reports. Due to Ren et al. [30],
the SLITHER tool has a false positive rate over 70%. If
the false reports are not removed from all reports, the
dataset cannot be correctly labeled, and our signature
abstraction is infeasible. 2) We manually integrate the
vulnerable signatures and benign ones into vulnerability

detection rules. In this step, we use manual efforts to filter
out ineffective signatures. This is due to the lack of smart
contract vulnerability benchmark. If we have a benchmark,
we can replace the man-powers in this step and filter out
ineffective signatures by running testing on the benchmark.

VII. RELATED WORK

Vulnerability Detection in Smart Contracts. There is
already a list of security scanners on smart contracts. From
the perspective of software analysis, these scanners could
be categorized into static- or dynamic-based. In the former
category, SLITHER [7] aims to be the analysis framework
that runs a suite of vulnerability detectors. OYENTE [13]
analyzes the bytecode of the contracts and applies Z3-
solver [3I] to conduct symbolic executions. Recently,
SMARTCHECK [I1] translates Solidity source code into
an XML-based IR and defines the XPath-based patterns
to find code issues. SECURIFY [I0] is proposed to detect
the vulnerability via compliance (or violation) patterns
to guarantee that certain behaviors are safe (or unsafe,
respectively). These static tools usually adopt symbolic
execution or verification techniques, being relevant to
VULPEDIA. However, none of them applies code-similarity
based matching technique or takes into account the possible
DMs in code to prevent from attacks.

There are some other tools that enable the static
analysis for smart contracts. VERISMART [32] proposes
a domain-specific algorithm for verifying smart contracts.
VERX [33] combines symbolic execution and contract status
abstraction to verify transactions. ZEUS [9] adopts XACML
as a language to write the safety and fairness properties,
converts them into LLVM IR [34] and then feeds them to
a verification engine such as SEAHORN [35]. Besides, there
is another EVM bytecode decompiling and analysis frame,
namely OcToPUS [23], which needs the users to define the
patterns for vulnerability detections. To prevent the DAO,
Grossman et al. propose the notion of effectively Callback
Free (ECF) objects in order to allow callbacks without
preventing modular reasoning [36]. MAIAN is presented to
detect greedy, prodigal, and suicidal contracts [37], and
hence the vulnerabilities to address differ from the types
we address in this paper. The above tools are relevant, but
due to various reasons (e.g., issues in tool availability), we
cannot have a direct comparison with them.

The less relevant category includes dynamic test-
ing or fuzzing tools: MANTICORE [22], MYTHRIL [19],
MyTHX [20], EcmmpNA [2I] and ETHRACER [38].
sFuzz [39] and HARVEY [40] use the advanced techniques
(e.g., concolic testing, fuzzing and tainting) for detection.
Dynamic tools often target certain vulnerability types and
produce results with few FPs. However, they are unsuitable
for a large-scale detection due to the efficiency issue.
Code-similarity based Vulnerability Detection. In general,
similar-code matching technique is widely adopted for vul-
nerability detection. In 2016, VULPECKER [41] is proposed
to apply different code-similarity algorithms in various



purposes for different vulnerability types. It leverages vul-
nerability signatures from National Vulnerability Database
(NVD) [42] and applies them to detect 40 vulnerabilities
that are not published in NVD, among which 18 are zero-
days. As VULPECKER works on the source code of C,
BINGO [43] can execute on binary code and compare
the assembly code via tracelet (partial trace of CFG)
extraction [44] and similarity measuring. VUDDY [45]
targets at exact clones and parameterized clones, not
gapped clones, as it utilizes hashing for matching for the
purpose of high efficiency. To sum up, these studies usually
resort to the vulnerability database of C language for
discovering similar zero-days. In contrast, plenty of our
efforts are exhausted in gathering vulnerabilities from other
tools for smart contracts and auditing them manually.
VULPEDIA adopts a more robust algorithm (e.g., LCS),
which can tolerate big or small code gaps across the similar
candidates of a vulnerability.

VIII. CONCLUSION

In this study, we propose VULPEDIA, a static analyzer
based on abstracted signatures. We focus on addressing
one key challenges: the manually predefined detection rules
can be obsolete. To this end, we first conduct an empirical
study for signature abstraction. We leverage state-of-the-
arts scanners to detect vulnerabilities on our training
dataset. Based on their results, we propose a method to
cluster similar contracts and abstract vulnerable signatures
and benign signatures, respectively. After we collect all
signatures, we conduct comparative evaluations with state-
of-the-art tools. The results show that VULPEDIA exhibits
best performance of precision on 4 types of vulnerabilities
and leading recall on 3 types of vulnerabilities with great
efficiency performance.
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