Automated data validation: an industrial
experience report

Lei Zhang*!, Sean Howard?, Tom Montpool?, Jessica Moore?,
Krittika Mahajan?, and Andriy Miranskyy'!

"Department of Computer Science, Ryerson University,
Toronto, Canada
2Environics Analytics, Toronto, Canada

December 6, 2022

Abstract

There has been a massive explosion of data generated by customers
and retained by companies in the last decade. However, there is a
significant mismatch between the increasing volume of data and the
lack of automation methods and tools. The lack of best practices in
data science programming may lead to software quality degradation,
release schedule slippage, and budget overruns. To mitigate these
concerns, we would like to bring software engineering best practices
into data science. Specifically, we focus on automated data validation
in the data preparation phase of the software development life cycle.

This paper studies a real-world industrial case and applies software
engineering best practices to develop an automated test harness called
RESTORE. We release RESTORE as an open-source R package. Our
experience report, done on the geodemographic data, shows that RE-
STORE enables efficient and effective detection of errors injected dur-
ing the data preparation phase. RESTORE also significantly reduced
the cost of testing. We hope that the community benefit from the
open-source project and the practical advice based on our experience.

arXiv:1903.03676v2 [cs.DB] 5 Dec 2022

*Corresponding Author: leizhang@ryerson.ca
fCorresponding Author: avm@ryerson.ca

1 Introduction

Big data and data analytics are revolutionizing modern business processes
of sales and marketing. McKinsey Analytics’s report shows that big data
and data analytics technologies have served as a fundamental technology for
artificial intelligence and also enabled a new big data ecosystem [36]. IDC
says that worldwide data volume will grow 61% to 175 ZB by 2025 [25].
Wikibon predicts that the big data revenues for software and services will
reach US $103 B in 2027 with an annual growth rate of 10.48% [g].

Besides business opportunities, big data also brings challenges to data
scientists. Poor data quality leads to failures of their machine learning mod-
els. How to improve the data quality is an active topic in both academia
and industry. Data validation is known as an essential process to ensure
data quality so that the data are both correct and meaningful for the next
step of data analytics. However, due to the large volume, the fast veloc-
ity, and the wide variety of generated big data, the data science community
is seeking for a more efficient way to ensure data quality. Modern data
validation tools have the ability to automate this process to improve the effi-
ciency [4], 44, 45] [51), 23, 47, [5]. Automation is also one of the most important
concepts in continuous integration. However, to the best of our knowledge,
automated testing methods and tools are still lacking a mechanism to detect
data errors in the datasets, which are updated periodically, by comparing
different versions of datasets.

There is another underlying challenge. Data science programmers imple-
menting data analysis algorithms often may not have a computer science or
software engineering training as they come from other branches of science,
such as mathematics and statistics. Thus, many data science programmers
will not have formal training in developing and maintaining complex software
solutions. Based on the literature [0}, [64] and discussions with practitioners,
the programming practices of data science programmers often resemble those
of programmers from 1960s that triggered a software crisis leading to the
creation of software engineering in 1968 [60]. Similar issue of lacking best
practices also happens in scientific-application software [28]. These issues
are currently prevalent in the data science community, where existing solu-
tions are of low quality, unmaintainable, and non-evolvable [29, 30]. All of
this leads to significant economic loss, as the cost of evolving data science
products is higher than it should be.

Theoretically, one can try to address these issues by forcing existing rig-

orous software engineering best practices on data science programmers; re-
alistically, it will (almost surely) work ineffectively [29, B0]. This will hap-
pen because the programmers lack foundational training and may not have
time, interest, or energy to learn laborious practices. Thus, one needs to ei-
ther tailor existing software engineering techniques or create new lightweight
software engineering techniques that would be adopted by data science pro-
grammers. Our ultimate goal is to improve the state-of-the-practice and to
bring lightweight yet rigorous software engineering into data science.

Automation is crucial for efficient delivery in data-driven software devel-
opment [1], especially in two areas: 1) data preparation and 2) deployment.
In this paper, we focus on the former — creating automated data validation
for verifying the correctness of data preparation and cleansing processes.

In a nutshell, our contributions in this paper are two-fold. First, we re-
port issues that a team of data scientists experience while processing geode-
mographicE] datasets. The geodemographic data have to be updated period-
ically (e.g., due to arrival of new census data). Such an update entails data
preparation and cleansing, which is often error-prone.

Second, to combat the issues experienced during the data update, we
present an automated data validation framework called RESTORE. This
framework automates the statistical tests introduced by the team as part
of the generation of best practices. RESTORE compares the previous ver-
sion/ Vintageﬂ of a dataset with a new one and reports potential issues. The
framework is written in R language [48] and is released as an open-source R
package on GitHub [63]]

By adopting the RESTORE R package in an industrial setting, we seek
answer to the question — does the RESTORE package improve the
efficiency of the data validation procedure, i.e., identifying data
errors with less time and human resources?

RESTORE introduces a set of test cases that our team found useful em-
pirically. However, this set is not exhaustive. Thus, we designed RESTORE
so that it can be easily extended with additional test cases, if other data
science teams decide to introduce new test cases that would help them in

!Geodemography is an area of market research, specializing in profiling economic and
demographic characteristics of geographical areas [16]. Geodemographic datasets are typ-
ically hierarchical, i.e., tree-like. For example, a group of postal codes belong to a town,
the group of towns belong to a county, and a group of counties belong to a province.

2From hereon, we will use the term version and wvintage interchangeably.

Shttps://github.com/miranska/restore

https://github.com/miranska/restore

validating their data. We welcome contributions to the code via GitHub.
Moreover, the team come up with a set of best practices based on our expe-
riences, and we hope data science practitioners who are facing data validation
challenges benefit from our take-away messages.

The rest of the paper is structured as follows. In Section [2, we introduce
the background of data validation, geodemographic data, and our industrial
settings. Section |3| discusses our proposed method for automated data vali-
dation. Section [4] presents the details of data tests. In Section [5, we analyze
the pros, cons, and assumptions of our method. Section [0] introduces the
interface of RESTORE, our validation, threats to validity, potential exten-
sions of RESTORE, and take-away messages. Section [7]depicts related work.
Finally, Section [§ concludes the paper.

2 Background

In this section, we first discuss the importance of data validation (Sec-
tion . Then, we review the existing solutions (Section . We also give
an introduction of the characteristics of geodemographic data (Section .
Finally, we illustrate the data development process in our industrial settings

(Section [2.4)).

2.1 Importance of data validation

Data-driven software development consists of both data-oriented stages (e.g.,
data collection and data cleaning) and model-oriented stages (e.g., model
training and model evaluation) [I]. The first stage is often data collection
where data scientists look for and integrate available datasets or collect their
own.

A typical data analytics companylﬂ will have to collect multiple datasets at
this stage, many of which will be updated regularly. For example, a ledger of
trades from a foreign office of a bank may be updated daily, macroeconomic
metrics data — quarterly, and census data — yearly. During an update,
values of variables are typically refreshed. In addition, observations and
variables can be added or removed in the new version of the dataset. Once

4Data analytics companies provide data analytics services by analyzing the acquired
data to assist businesses such as software development, market analysis, improving oper-
ational efficiency, etc.

Transformation Data Validation

Source Target

Figure 1: Data validation in ETL pipeline

updated data are received, the data development team will clean and trans-
form the data. Then the data will be passed to software development and
testing teams that will ingest the data into data science software products
that customers will use to access and analyze the data.

The scenario above is a typical Extract, Transform, and Load (ETL)
process. Our proposed data validation technique is feasible in any cases
where ETL is required, such as machine learning or business analysis. The
sequence may vary on a case-by-case basis, but the abstract principle remains
the same. Figure[I|shows how data validation techniques can be incorporated
into the ETL pipeline.

In ETL processes, data transformation routines (manual and automatic)
may be defective, leading to errors in the resulting output. Then, the de-
fective output will be used as input data for analytical models, leading to
errors in data analytics, especially in machine learning models where input
data errors can be amplified over a feedback loop. Such triggers may lead
to various failures on the software side, ranging from a failed query in the
analytics system (which is easy to detect) to incorrect results (which may be
harder to expose). For example, suppose a report suggests that the overall
population of Canada is 100 million. In that case, it is an apparent data de-
fect that is easy to spot because the correct answer (as per the 2016 Census)
is 36.29 million. However, suppose the report tells us that the population of
Canada is 37 million. In that case, a tester may need to verify the numbers
manually and must have some context to assess the data appropriately.

As discussed, data validation is the last step of data development before
loading the data to the target platform, which is a counterpart of validation
testing in software testing. For example, bugs of internal scripts used for ETL
can generate data defects. However, such data defects cannot be revealed by
testing the software code but can be reported by validating the data. Below,
we list some of the root causes that can lead the input data to incorrectness.

1. The raw data may be corrupted, e.g., due to incorrect extraction from
an external source.

2. Data scientists may perform some data transformations manually, which
injects some errors.

3. The ETL scripts may contain hard-coded values, which worked for the
previous version of the dataset but not for the new version. To better
illustrate this case, suppose that we have an “if” block, i.e., “if x # 107,
which works for values < 10, but the same “if” block can trigger an
error in the new version where x = 11.

Here, we pick two concrete examples from our demos in RESTORE, which
can be found in the file of analysis_results_hierarchy.xlsx [63], to illus-
trate what data defects are and how we can detect them. In the first example,
we show a synthetic case where the number of observations changes signifi-
cantly from the old vintage of the dataset to the new vintage of the dataset
(i.e., 16,085 versus 16,018 is reasonable rather than 16,085 versus 160, which
is differed by two orders of magnitude). Such a data defect can be detected
by magnitude test, i.e., any differences greater than one order of magnitude
should be automatically detected and reported to data scientists for further
investigation. In the second example, to assess monotonic relationships, we
perform the Spearman rank-order correlation test on two variables, and we
set a threshold, which is 0.8. As a result, any correlation coefficient with a
value of less than 0.8 will be added to the “alert” list and manually evaluated
by data scientists.

If no anomalies are revealed during the data preparation stage, these
anomalies may pass on to the software developers or testers, leading to fail-
ures in system tests. The defective data will be returned to the data devel-
opment team for a fix. The data development team will now have to fix a
defect, then test and reload the data. These delays lead to schedule slip-
page and budget overruns. Therefore, we need to find a solution to identify
such defects as early as possible, saving time and money. In this paper, our
goal is to detect data-related defects automatically, streamline data update
schedules, and reduce the cost of detecting and fixing the defects.

2.2 Existing solutions

There are many test frameworks for testing database engines and business
logic that alters the data in the databases [27), 35, 19, 42, 18]. Some auto-
mated data validation methods for data migration have been proposed [44]
45, 51]. In addition, some automated database testing frameworks [9, [11]
43, [10], 38] are developed to make sure that the previously captured analyt-
ics SQL queries execute successfully in the current version. It is important
to monitor the quality of data fed to analytics or machine learning models
because errors in the input data can nullify the accuracy. Thus, data vali-
dation frameworks for data analytics, especially for machine learning models
recently, are proposed [14], 4], 52, 47, [5], 23].

We are not interested in database testing systems. The problem we aim
to solve is complementary. We focus on data validation at an early stage
— before a dataset is loaded into the database. More specifically, we are
interested in validating a new dataset by comparing it against the predecessor
(like regression testing in software engineering). To reach our goal, we need
to examine the changes in the data preparation step and flag the erroneous
records and variables.

2.3 Geodemographic data

As mentioned in Section [l geodemographic datasets have two characteristics.
First, geodemographic datasets are typically hierarchical, e.g., a group of
postal codes belong to a town, a group of towns belong to a county, and so
on. Second, geodemographic data are usually updated periodically, e.g., due
to arrival of new census data.

As an example of periodically updated datasets, many demographic data
and surveys (leveraged in geodemography) are updated annually by national
census organizations or primary research companies. These data, in turn, get
ingested by companies around the globe to improve business decisions. The
data ingestion process leads to dataset refreshment and/or transformation,
which may introduce new data flaws (e.g., incorrect values) or defects (e.g.,
changed /missing attributes) in the software.

The consequences of such errors vary. For example, if the transformed
dataset does not have a required variable, the software doing data analysis
on this transformed data may fail as it would be unable to find the variable.
Such an error would be detected fairly early in the testing of software systems.

However, an error may be more subtle: all the variables would be present,
but the values of these variables are incorrect, leading to incorrect results
generated by the business intelligence software. In one example, a sample
report may suggest that the average price of a house for area B is $50K while
for area C it is $10M. Both numbers are extreme, but not outside of the realm
of possibility. Thus, an analyst may need to manually verify both numbers
and must have some context to appropriately assess the resulting numbers.
This manual verification is arduous.

Note that our proposed solution — RESTORE — is designed to deal
with hierarchical data, but it can be applied to “flat” datasets too by setting
hierarchical depth to zero. Therefore, we hope that that this framework will
be helpful to any data scientist dealing with flat or hierarchical data that
requires periodic update.

2.4 Environics Analytics

It is important to understand how the data are developed and tested in a
typical data analytics/data science project. In this research project, we pro-
vide a concrete example to illustrate a typical procedure of data development
and testing, based on the process adopted by Environics Analytics, Toronto,
Canada (abbreviated to EA in this paper). EA specializes in geodemography
and marketing analytics and builds standard and custom data-driven solu-
tions for their clients. Many of their data and services are provided using a
Software-as-a-Service (SaaS) approach [37]. These services require datasets
to be updated multiple times per year. During the update, anomalies in new
vintages of datasets may introduce defects in services. The quality assurance
team used to manually test the datasets to detect and eliminate the defects,
but this process was time- and human-resource-consuming.

EA’s SaaS platform hosts data built and maintained by EA, as well as
data supplied by EA’s partners or clients. Data supplied by partners or
clients can be in a variety of formats. Their most common data structure
is a tabular dataset that consists of various levels of geographic information.
This data architecture has its advantages because it allows for the necessary
flexibility to work with different types and sizes of data. In this paper, we
assume that all datasets are in tabular format (or can be converted to this
format).

Before an automated data testing tool is adopted, the dataset develop-
ment process in EA is as follows.

1. The data team creates a dataset (either a new one or an update of an
existing one).

2. This dataset is loaded into a staging database by the data team.

3. The software development and quality assurance/testing teams exe-
cute a mixture of automated and manual test workloads (against the
application) mimicking customers’ behaviour (e.g., select a particular
geographic area and then run a house prices report). Under the hood,
the software layer issues analytic (read-only) queries to the staging
database. As part of the software testing, data in analytics reports are
assessed, resulting in possible data errors to be uncovered.

4. If failures (such as those discussed in Section [I]) in the analytics reports
are observed during the execution of the workloads, a bug report is is-
sued for further investigation. Data bugs may exist in various forms:
e.g., errors in raw data, errors in the calculation of “constructed” vari-
ables as part of the load into the staging database, and errors generated
by how the application handles the data.

Once the data team fixes the defects, this team recreates the dataset as
necessary, reloads it into the staging database, and hands it over to the soft-
ware development team for testing (basically, rerunning the above process).
This process repeats itself until all the data-related defects are eliminated.
Then the dataset is loaded into a production database, and the product is
made available to a customer. As mentioned in Section [I the process is
time-consuming and may significantly delay the release (from days to weeks)
of the product to customers.

3 Our solution

We develop a theoretical foundation for comparison of various versions of the
datasets. Rather than performing the exact comparison, we explore methods
needed to compare distributions of the data. For example, we compare dis-
tributions of the data in a pair of releases (e.g., using Kolmogorov-Smirnov
test [53] or Mann-Whitney U test [34]). We implement these theoretical
findings in an automated regression testing framework. Regression testing

Data Validation Tool (RESTORE)

I
}
I
I
I
I
I
I
i
Data Comparison Report Generator ! Report
I
|
I
I
|
I
I
|
|
I
I

Figure 2: Comparison of old and new vintages of the dataset.

is a type of testing, which ensures that the existing functionality of a soft-
ware product is not broken with new changes, i.e., the functionality does not
regress [21, [B1]. In our case, the functionality is data-centric.

The framework enables automatic testing of datasets immediately after
generation of a new version of the data, thus, ensuring that defects in the
data are captured early in the process, before the dataset is shipped off by the
data development team. We do not alter the original inputs (while following
best practices of functional programming). Instead, we take a sequence of
transformations of datasets and analyze the results of the transformation.
The optimal goal of this study is to shorten the development and testing
cycle, reducing the probability of schedule slippage and freeing resources to
focus on more complex workloads, thus,

1. Improving overall product quality (as teams will have more time and
resources to identify complex defects that otherwise would be “masked”
by simpler defects, which can be caught by the automated regression

testing [58, 50]), and

2. Reducing development costs (the savings will manifest themselves be-
cause the cost of creating, maintaining, and executing test cases will
be lower than the cost of manual testing) [13].

These steps of automated data regression testing are graphically depicted
in Figure , which shows the following process (discussed in details in Sec-

tions |4 and @

10

1. Load both old and new vintages of the dataset into RESTORE.

2. Apply a set of test to verify and validate the integrity of the new vin-
tage.

3. Generate the final report which is exported in human- and machine-
readable formats.

Note that the report generated by RESTORE needs to be manually re-
viewed by the data scientists. The data scientists will use their experiences to
decide whether a further investigation is necessary. The RESTORE package
helps the data scientists to automate mundane data validation tasks and de-
tect potential data defects as soon as possible (in the data preparation stage).
We will discuss the assumptions and limitations of the proposed method in
Section [5.4] Let us first look at the details of the tests used to compare the
vintages.

4 Tests’ description

To address our problem (i.e., validation of the modified dataset), a set of
tests performs an approximate comparison (rather than exact comparison as
done by [9]) of the datasets. Based on practical experiences, we create ten
groups of tests, which will be discussed in details below.

We also need to define success criteria, which consists of numeric thresh-
olds, for these tests. The criteria are defined based on our practical experi-
ence, where we find that these values provide a large number of true data
defects while keeping the number of false defects low. We cannot guarantee
that these values are optimal for any dataset; rather, they can be treated as
a set of good starting values and adjusted based on a particular use-case and
the needs of a data tester.

Below we give details of our tests grouped into three categories: high-level
tests dealing with metadata, tests of paired observations, and tests leveraging
the results of the paired tests (which we deem higher-order tests). These tests

are discussed in Sections 1.1}, 1.2 and [4.3] respectively.

11

Table 1: Example of a dataset vintage; v. is a variable name.

Key ‘ Hierarchy Level ‘ V1 ‘ e ‘ UN
1 | National 100 | ... | 500

2 | City 31...| 16
M | National 12 (... 124

4.1 High-level testing of vintages

An example of a dataset vintage with NV Variablesﬂ and M observations is
given in Table [l Note that the ‘Key’ values are not necessarily numeric.
The only constraint is that the 2-tuple of ‘Key’ and ‘Hierarchy Level” should
be unique for every row (i.e., observation).

We now perform three groups of high-level tests assessing the character-
istics of the vintages as follows: 1. comparing attributes of the variables,
2. checking the variables for missing observations, and 3. counting discarded
observations.

4.1.1 Variables’ attributes comparison

Rationale: We perform a set of “sanity-check” tests, comparing high-level
characteristics of the datasets (i.e., metadata), such as the number of rows
and columns. If the numbers do not match, this may be a cause for concern [
Here, we assume that the datasets have no significant changes. Details of our
assumptions can be found in Section [5.4}

Method: We obtain three items for each of the vintages, old and new: the
number of variables, the names of variables, and the number of observations
in the dataset. We then compare these items.

Success criteria: If the number of variables, the names of the variables,
and the number of observations are the same, then the test passes. If the
number of variables or the number of observations is not identical between the
old vintage and the new vintage of a dataset, the test fails and this mismatch

5The term variable is synonymous to column or feature, depending on the reader’s
background.

6If machine learning techniques are used subsequently, data scientists may need to
rebuild the machine learning model if they want to train the model on all the variables,
but this is out of the scope of this paper.

12

gets reported. If a variable, present in the old vintage, is not present in the
new vintage (or vice versa), then it is also considered a failure and the name
of the variable is added to the report.

4.1.2 Missing (NA) observations

Rationale: Typically, a clean dataset should not have missing observations
in a variable.

Method: Thus, for each ‘Variable Name’ (e.g., for each v; in vy,..., vy
in Table [I) and ‘Hierarchy Level’, we search for missing observations (in R
such observations are marked as NA). This process is done individually for
old and new vintages of the dataset.

Success criteria: A ‘Variable Name’ and ‘Hierarchy Level” pair that has
zero missing observations passes the test; otherwise, it gets reported.

4.1.3 Discarded observation count

Now we can join the old and new vintages of the dataset, so that we can
perform pairwise tests for each variable (as will be discussed in Section .
We perform the inner join (in the relational algebra sense of the term [33])
on the ‘Key’ and ‘Hierarchy Level’ columns (shown in Table (1)) of the old
and new vintages, discarding the observations that are present in only one of
the vintages. Before moving to the pairwise tests, we will perform one last
metadata test, based on the count of discarded observations.

Rationale: In practice, we found out that paired observations are more
valuable for detecting defects than the non-paired ones (as they contain more
information about changes to the dataset). However, the observations that
did not make it into the inner join of the old and new vintage may indicate
a defect in the data preparation process.

Method: Count the number of observations present in the old and absent
in the new vintage, deemed c;, as well as the number of observation present
in the new and absent in the old vintage, deemed c,. Note that we already
compared the count of observations of the vintages in Section [4.1.1, However,
in this section we pair the observations, which brings additional information.
If we denote the count of observations in the old vintage as c¢,, in the new
vintage — as ¢,, and in the join of old and new vintage as ¢, then ¢; = ¢,—c,
and co = ¢, — ¢,. If all the observations are paired via the inner join, then
Co = Cp = Cy-

13

Success criteria: The test passes if ¢; = 0 and ¢; = 0; otherwise the test
fails, and the values of ¢; and ¢y are reported. A tester can then assess if the
discarded observations appeared in the data are due to normal data churn
or because of a defect in data preparation.

4.2 Paired testing

Once we join the old and new vintage (using the approach discussed in Sec-
tion , we can conduct the following sets of pairwise tests (performing
comparisons for a given variable and hierarchy level): 1. the magnitude ra-
tio test, 2. the mean relative error test, 3. the correlation test, and 4. the
distribution test. These tests are discussed below.

4.2.1 Magnitude ratios

Rationale: We compare the magnitudes for the minimum, maximum, sum,
mean, and median values for each level of hierarchy between the old and new
vintages. The expectation is that extreme points of the distribution, as well
as the central points, pairwise, should be in the same ballpark, which we will
assess by comparing the order of magnitudes.

Method: Let us denote a metric for the i-th variable and j-th hierarchy
level of an old vintage as m; ;, and for i-th variable and j-th hierarchy level
of a new vintage as m, ;,, respectively. Then the magnitude ratio R;; is
computed as follows:

1, if m; j, =0 and m, ;, = 0;
R;; = < undefined, if m;;, =0 or m;;, = 0; (1)
M j.o/Mijn, Otherwise.

Success criteria: We compute the value of R; ; for each pair of the metrics
(min of the old and new vintage, max of the old and new vintage, etc.). If
0.1 < R;; < 10 then both values are of the same magnitude and the test
succeedsm otherwise — fails and gets reported. Note that we have two special
cases. If m;;, = 0 and m;;, = 0, then we assume that the magnitudes are
identical — setting R;; = 1. If m;,, = 0 or m;, = 0, then we cannot

"The threshold R;; can be adjusted on a case-by-case basis, we will further in Sec-

tion @

14

credibly assess magnitude difference; in this case we emit a warning asking
an analyst to assess the magnitude difference manually.

Note that given the pairwise nature of the comparison, the ratios of sums
and averages will yield identical results. However, we retain both for a prac-
tical reason: the sums help an analyst to compare the values of variables
at different levels of hierarchies (as, typically, the sum of observations at a
lower hierarchy level aggregate to the value at a higher level of the hierarchy)
hence the decision to keep the sum values.

4.2.2 Mean relative error

Rationale: The previous test (comparing min, max, etc.) assesses statistics
that discard information about pairwise relations of individual observations.
Given that we pair observations in the old and new vintage, we can compare
each observation using mean relative error. We prefer the mean relative
error over the mean absolute error because the values of attributes vary
significantly between the variables as well as the variables’ hierarchy levels.

Method: Let us pair old and new observations for the i-th variable and
denote paired vector of observations for the i-th variable and j-th hierarchy
level of old vintage as x;;, and for the new vintage as x; ;,,. Then the mean
relative error £ ; is computed as an average of relative errors of each pair of
observations in x; ;, and @; j,:

Eij = (|(#ij0 — Tijn) O Tijol), (2)
for all non-zero elements of x; ; ,, where @ is the Hadamard division operator
(performing element-wise division of vectors) and (-) computes the mean.

By construction, all pairs of observation, where an element from z; ;, is
equal to 0, have to be ignored. If z;;, vector has a lot of zero values, then
this test may become misleading. In this case one can implement another
test of relative change, see the work of [57] for review and comparison of such
tests.

Success criteria: The test considered successful if £;; < 0.2. A smaller
value of the threshold can generate a high number of false alarms based on
the our previous experiences.

4.2.3 Correlation test

Rationale: We expect that there should be a strong mutual relation between
the observations of a given variable in the old and new vintages. To measure

15

the strength of this relation, we compute correlations between the values of
a given variable in the old and new vintages. The relation does not neces-
sarily have to be linear but it should be monotonic. Thus, to assess these
properties, we use Pearson product-moment correlation coefficient [46, [41]
(to assess linearity) and Spearman rank-order correlation [54], 41] (to assess
monotonicity).

Method: We compute Pearson and Spearman correlations coefficients
(deemed r; ; and p; ;, respectively) for pairs of z; ;, and w; ;, for each vari-
able ¢ and hierarchy level j. Correlation values range between —1 and 1,
with 1 being perfect correlation, —1 — perfect anticorrelation, and 0 — no
correlation.

Success criteria: The test is considered successful if r; ; > 0.8 and p; ; >
0.8, and unsuccessful otherwise (similar to the criteria in Section [£.2.1] this
threshold can also be adjusted on a case-by-case basis). From a practical
perspective, a lot of real-world variables exhibit nonlinear relations (plus
Pearson correlation assumes data normality which is often not the case).
Thus, we pay more attention to the case of p; ; < 0.8 than to the case of
rij < 0.8, because (empirically) they observed that it is a stronger indicator
of a defect in the data.

4.2.4 Distribution test

Rationale: The previous test assesses the correlation between the i-th vari-
able of the old and the new vintages. In this test, we generalize this approach
by comparing distributions of the old and new vintages of this variable. If
the distributions are significantly different, then it may be an indicator that
there is a defect in the data.

Method: We use the nonparametric two-sample Kolmogorov-Smirnov
test [53] to compare the differences between the two distributions. The null
hypothesis of the test is that the samples are drawn from the same distribu-
tion.

Success criteria: The value of the Kolmogorov-Smirnov test p-value for
the ¢-th variable and j-th hierarchy level is denoted by S; ;. If S;; < 0.05,
we assume that the null hypothesis is rejected and declare test failure. If
Si; > 0.05 — the test succeeds (even though it does not imply that the
distributions are not different).

16

4.3 Higher-order testing

The set of higher-order tests (i.e., those that combine the values of the metrics
computed in Section [4.2) is composed of the following: 1. the comparison of
Spearman correlation coefficients for different levels of hierarchy, 2. hybrid
test, and 3. ranking of the number of test failures. The details of the tests
are given below.

4.3.1 Comparison of Spearman correlation for different levels of
hierarchy

Rationale: In Section [4.2.3 we computed Spearman correlation p; ; for i-th
variable and j-th level of hierarchy. Data scientists in our team observed that
a significant difference in the p values for two adjacent levels of hierarchy (i.e.,
pij and p; j+1) may indicate a defect in the data of the i-th variable. The root
cause of such defect often relates to different aggregation procedures (from
the raw data) associated with different levels of hierarchy.

Note that while we compute both Pearson and Spearman correlations in
Section [£.2.3] the comparison test focuses only on the latter. As we discussed
in Section , the p;; < 0.8 (Spearman correlation) is a stronger indicator
of a defect in the data than r;; < 0.8 (Pearson correlation). Analogously,
it was found that comparison of differences in p;; is a better indicator of
a defect than a comparison of differences in r; ;. Thus, to reduce tester’s
information overload, it was decided not to include the comparison of 7; ; in
the report.

Method: We compute relative difference C; ; between two adjacent levels
of hierarchy:

Cij = (pij — pij+1)/pij,if pij # 0. (3)
Given J levels of hierarchy, with the 1-st level being the top one and the
J-th level being the bottom one, we perform J —1 computations of C; ;, with
j=1...,J—1.

Success criteria: Based on our experience, —0.1 < C; ; < 0.1 is considered
acceptable. C; ; values outside of this range may indicate a problem with the
data of the i-th variable and j-th or ‘j + 1’-th levels of the hierarchy.

17

Table 2: Example: results obtained from the hybrid test.

Variable | Hierarchy | E;; Tij Pij Sij
Name (7) | Level (j)

Us National | 0.578 | 0.401 | -0.278 | 0.001
Vs City 0.617 | 0.672 | 0.693 | 0.002
U City 0.669 | 0.532 | 0.454 | 0.046

4.3.2 Hybrid testing

Rationale: We described multiple tests in the sections above. Intuitively,
the higher the number of tests that failed for a given variable and hierarchy
level z; ;, — the higher the chances that there is something wrong with the
observations of this variable. We observed that a simultaneous failure of four
tests — namely, mean relative error (Section , Spearman and Pearson
correlations (Section [4.2.3), and Kolmogorov-Smirnov test (Section [4.2.4) —
is a very strong indicator of a defect in the underlying data (based on EA
data scientists’ past experiences). Thus, if z; ;, fails all those tests, it should
attract the attention of the data team.

Method: We identify all the variables that failed four above-mentioned
tests simultaneously and report them along with the values of the associated
metrics. Table 2| displays an example of this report.

Success criteria: As shown in Table [2] a variable’s name and correspond-
ing hierarchies are listed in the report if and only if all of the following criteria
are satisfied: 1. E; ; > 0.2, 2. r; ; < 0.8, 3. p;; < 0.8, and 4. S; ; < 0.05.

4.3.3 Ranking of the number of test failures

Rationale: All of the above metrics are computed for each variable and hi-
erarchy level individually. We observed that a test failure at multiple levels
of the hierarchy of a given variable acts as a reliable indicator of a defect in
the data associated with this variable.

Method: Thus, it is useful to count the number of test failure for each
variable and test type and then order them in descending order from the
highest number of test failures to the lowest. To reduce clutter, we report
only the variables that have at least one test failure associated with them.
Example of such ranking is given in Table [3]

18

Table 3: Example: ranking test. To preserve space, a subset of tests is shown
in this example.

Variable Name (1) ‘ Eian ‘ T all ‘ Piall ‘ Si all ‘ Total
vy 4 6 6 6 22

U3 4) 2) 16

Success criteria: An ultimate success is when there are no test failures
associated with a variable and this variable does not show up in the report.
The higher the number of tests and types of tests that failed — the higher
the chances that a variable has a defect in its data.

5 Discussion of tests’ properties

5.1 Root causes of test cases’ failures

As mentioned at the beginning of Section [4 not every test failure will lead
to exposure of a data defect. Instead, a failure suggests that a new vintage is
different from the old one in some unexpected way, and that a tester should
take a close look at the failure. For the tests operating at a particular hi-
erarchy level (i.e., those discussed in Sections , and , a good
starting point of an investigation is a review of data transformation proce-
dures for a particular variable and level of hierarchy for which the test case
failed. In the case of the test discussed in Section m (examining adjacent
levels of hierarchy), the problem typically is associated with data transfor-
mation procedures for one of these levels. The root cause of a failure of the
test described in Section often resides in the general procedure that
touches multiple levels of the hierarchy of the variable under investigation.
The tests discussed in Section [4.1.1] operate at an even lower level of
granularity (as they deal with potentially missing variables or observations).
While removal or addition of variables is not uncommon, sometimes an ana-
lyst renames a variable by mistake, which often ends up being the root cause
for the variable to appear in the report of this test. If the datasets have a
significantly different number of observations, it may be caused by datasets
truncation or data corruption. A failure of the final metadata-related test,
discussed in Section [£.1.3] may indicate corruption of the values in the ‘Key’

19

or ‘Hierarchy Level” columns.

5.2 Predictive power of tests

As discussed above, not every failure of a test “translates” into an actual
defect. However, anecdotally, we observed that higher-order tests described
in Sections [4.3.2 and [4.3.3] yield the lowest number of false alerts], followed
by the correlation-related tests in Sections [4.2.3| and [4.3.1}

On the other side of the spectrum, the distributions comparison test dis-
cussed in Section yields the highest number of false alarms. This is
expected, as the underlying distributions for a large number of variables in
periodically updated datasets experience legitimate change to their underly-
ing distributions (which the test detects successfully). However, the list of
such variables are typically known to the dataset curators and, thus, can be
filtered out with relative ease during the analysis of the report (generated by
RESTORE).

The rest of the tests fall in the middle of the spectrum. For example,
the change to a distribution also translates into changes to statistics (such as
mean, min, and max), which we analyze in Section [4.2.1] However, because
we are comparing the magnitudes of these statistics, these tests are less prone
to false alarms.

5.3 Data types

All of the tests can process variables to which ratio and, arguably, interval
scales [50] can be applied.

We will also be able to compute the test for numeric variables measured
on nominal or ordinal scales [56], but the results of some of these tests (e.g.,
magnitude comparison of averages for the ordinal scale) would be question-
able from the statistical perspective. Thus, one has to be careful when in-
terpreting the results of the tests.

The test cannot be computed for non-numeric tests, except for the tests
discussed in Section (.1l

8We believe that these two tests will also help to mitigate the multiple comparisons
problem [I5] because we are more interested in the observations that trigger multiple test
failures in these two tests.

20

Fortunately, curators of datasets typically know data types and measuring
scales of the variables in the datasets and can recommend which variables
should be excluded from the analysis.

5.4 Assumptions and limitations

Here, we summarize assumptions on which our proposed method is based as
well as associated limitations.

1. As discussed in Section [2.4], we assume that all input datasets for RE-
STORE are in tabular format (or can be transformed to this format).
There exist other data formats, e.g., JSON and SQLite. We recommend
practitioners to convert non-tabular format datasets into a tabular for-
mat before working with RESTORE.

2. We assume that there are no significant changes between two versions of
the dataset. However, this might not always be the case. For example,
in the case of the current pandemic, geodemographic data can change
significantly in certain areas/’

3. If there are attributes that only exist in one vintage dataset, we only
report the names of such attributes. As discussed in the section of
high-level testing (Section, our proposed test suite can report miss-
ing/new attributes by comparing all the names of attributes in both
datasets. However, the tests discussed in Sections [4.2] and [4.3] are not
applicable for missing/new attributes in such a circumstance.

4. Our proposed method does not deal with categorical data. As discussed
in Section [5.3] we focus on numeric tests. One can leverage our method
for categorical data by converting it to numerical data using one-hot
encoding [2]. However, this is beyond the scope of this paper.

5. As discussed in Section [4.2.2] zero values are ignored if they are denom-
inators, because the mean relative errors will mathematically become
undefined in such cases. Other formulas — e.g., mean absolute per-
centage error (MAPE) — may suffer from the same issue. If an analyst
experience this issue, they may implement a metric designed to avoid
the issue, such as msMAPE [7] or MASE [22].

9This may affect the downstream data science pipeline. For example, the subsequent
machine learning models may have to be re-trained.

21

6. The attributes that contain NA values are reported (as discussed in
Section . Paired tests in Section are not applicable for ob-
servations with NA values. Data scientists can manually check the
generated report and decide if an observation with NA values require
further investigation.

Note that one can create additional metrics for the test suite to address
the above-mentioned limitations.

6 The RESTORE package and take-away mes-
sages

In this section, we introduce the interface of the RESTORE package in Sec-
tion[6.1] Then, we validate RESTORE in industrial settings and find answers
to our research question in Section [6.2] After that, we discuss threats to va-
lidity in Section We also discuss potential extensions of RESTORE in
Section[6.4l In Section [6.5] we deliver our take-away messages for practition-
ers applying data validation techniques.

6.1 The interface of RESTORE

We implement the set of tests discussed in Section [4] in an open-source R
package, available at [63]. The installation of the package follows a standard
installation process for R package, details are given in the README file
of [63].

The tests are controlled by a single function test_two_datasets. The
function ingests old and new vintages of the dataset as well as specification
of the hierarchy either from CSV files or from R data frames.

We found that for interactive testing, when a tester adjusted the datasets
and wanted to quickly assess the results, the CSV files were more convenient.
On the contrary, for automated testing, when the datasets were tested as part
of the automated regression test harnesses, the data frame option was more
suitable.

The final report is written into a user-specified XLSX file or saved as R
data structure (so that it can be easily parsed later, if necessary). Users can
select the test which should be stored in the final report. Parameters of the
test_two_datasets function are as follows.

22

Parent Child Rank | Hierarchy
A Hierarchy | Hierarchy Level
N Level Level
B Cl A B 1A
A C 2| B
/ B D 3D
D C D 4| C

(a) (b) ()

Figure 3: An example of hierarchy configuration. (a) Example of a non-linear
hierarchy. (b) 2-tuple encoding of the non-linear hierarchy from Figure .
(c) Sample ranking of the hierarchy levels in Figure

The parameters legacy_file and target_file set the path to the files
that contain the old vintage of the dataset and the new vintage of the dataset,
respectively.

The parameters hier_pair sets the path to a CSV file containing 2-tuples
‘Parent Hierarchy Level’ and ‘Child Hierarchy Level’, this enables RESTORE
to operate on non-linear hierarchies. For example, a tree depicted in Figure
will be encoded by 2-tuples shown in Figure

The parameter hier points to a CSV file containing an ordered list of
hierarchy levels, which is used for sorting the test results in the reports
containing hierarchy column (e.g., the one shown in Table , see Figure
for an example of such a file. Note that this parameter is not used to define
the actual hierarchy.

The parameter thresholds points to a CSV file containing values for
success criteria of tests described in Section [4l

The variables described above have corresponding “twin” parameters
(namely, legacy df, target df, hier pair df, hier df, and thresholds df)
which allow to pass the dataset and configuration files in the R data frame
format.

The final report parameter specifies the location of the output report
file in XLSX format. The parameter final data specifies an output location
for the report stored in the R data structure format. The rest of the param-
eters are used to determine important variable names and a list of tests to

23

run, as summarized in Table [4]

While RESTORE reads data only from CSV files or data frames, it does
not imply that we cannot leverage other data formats. We simply need to
convert our data into one of these two formats. For example, if the data
resides in a relational database, one can issue SELECT SQL query from R
using DBI [49] package, which will automatically extract and convert the data
into the R data frame format.

As part of the package, we provide a sample file demonstrating the usage
of RESTORE program interface (see example.R on Zenodo [63]).

Table 4: Additional parameters of test_two_datasets.

Parameter ‘ Type ‘ Details ‘ Default Value
key_col String Name of the column containing ‘Keys'. NA
hier_col String Name of the column containing ‘Hierarchy Levels’. NA
report_char Boolean | TRUE — generate the report of characteristic comparison; FALSE — do not generate the report. TRUE
report_na Boolean | TRUE - generate the report of missing (NA) variables; FALSE - do not generate the report. TRUE
report_discard Boolean | TRUE — generate the report of discarded observations; FALSE — do not generate the report. TRUE
report_magnitude Boolean | TRUE -~ generate the report of magnitude metrics; FALSE — do not generate the report. TRUE
report_mre Boolean | TRUE — generate the report of mean relative errors; FALSE — do not generate the report. TRUE
report_spearman Boolean | TRUE — generate the report of Spearman test; FALSE — do not generate the report. TRUE
report_pearson Boolean | TRUE — generate the report of Pearson test; FALSE — do not generate the report. TRUE
report_distribution | Boolean | TRUE — generate the report of distribution test; FALSE — do not generate the report. TRUE
report_spearman_diff | Boolean | TRUE — generate the report of Spearman comparison for hierarchies; FALSE — do not generate the report. | TRUE
report_hybrid Boolean | TRUE — generate the report of hybrid metrics; FALSE — do not generate the report. TRUE
report_ranking Boolean | TRUE — generate the report of ranking; FALSE — do not generate the report. TRUE

6.1.1 Special case: flat hierarchy

To deal with the case of a flat hierarchy (i.e., non-hierarchical dataset), we do
not need to pass hier _pair and hier pair df values to test_two_datasets.
Under the hood, RESTORE adds a dummy hierarchy column to the dataset
and runs all the tests against the dataset except for the test comparing corre-
lation coefficients for different values of hierarchy (discussed in Section [4.3.1]).

6.2 Validation

The RESTORE R package has been institutionalized into EA’s product de-
velopment cycle. The data scientists use the package to detect defects in the
new vintage of the datasets. To assess the benefits of the package, we seek
an answer to the following question.

Does the RESTORE package improve the efficiency of the data
validation procedure, i.e., identifying data errors with less time and
human resources?

24

First, we quantified the time needed to run all the tests on two reference
geodemographic datasets (named D; and Dj). The summary statistics for
these datasets are shown in Table [5 The table also shows the average and
the standard deviation of the execution time of test_two_datasets function
based on 10 runs of the function for each dataset. We kept the parameter
values of the function to defaults, i.e., all of the reports were generated.

Potential data defects have been successfully detected and reported by
RESTORE (note that whether a result reported by RESTORE is a true
data defect will require manual investigation by data scientists). To preserve
space, we will highlight two examples. The examples can also be found in
the demo uploaded to Zenodo [63]. The first example depicts how Spearman
rank-order correlation will list any variable names (as well as all the test
results of these two variables, e.g., Pearson correlation) as long as the test
results are below the success criteria (set at 0.8). The first example lists
five variables (e.g., one of them has a Spearman correlation 0.6607) recorded
in the output file. The second example shows a case in the demo where the
mean relative error is bigger than the threshold of 0.5, which is 1.2342. There
are 20 cases listed in the test of the mean relative error. All of them need to
be manually examined by the data scientists.

Our testbed is a laptop equipped with 2 GHz Intel Core i5 CPU and 16
GB memory, running R v.3.5.1 on MacOS v.10.14.3. The datasets are read
from files (which is slower than reading the datasets from R data frames).
Executing a complete set of tests and generating the final report took, on
average, ~ 3.4 minutes for the D; and ~ 2.3 minutes for the Ds.

The data scientists also found these tests are computationally inexpensive.
Based on the feedback from EA data scientists, the same set of tests, when
conducted manually by an experienced data tester takes ~ 2 hours of the
tester’s time (per dataset). Thus, using RESTORE speeds upﬂ this testing
process by ~ 97%.

The usefulness of RESTORE is also supported by results of an anonymous
survey of 15 data scientists in EA who are now using the tool. An anonymous
poll was sent to everyone with the following three questions.

1. Is RESTORE helpful? Possible answers were “Extremely useful”, “Very
useful”, “Somewhat useful”, “Not so useful”, and “Not at all useful”.

10Note that we do not take into account the analysis of the test results. However, this
time would be identical for both manual-based and RESTORE-based workflows.

25

Table 5: Performance evaluation of RESTORE on two reference datasets.
Note that the new vintage of Dy consists of fewer variables compared to the
old vintage. Consequently, less computations for comparison are needed —
hence less time compared to the one with D;.

Dataset | Hierar. | Variables Observations Time
Name | Levels Count Count 4+ St. Dev.
| Count | Old | New | Old | New | (Seconds)
D, 7757 | 762 | 67,370 | 67,370 | 202 £ 11
D, 71716 | 584 | 67,370 | 67,370 | 137 £ 8

2. Does RESTORE save time? Possible answers were “Yes” or “No”.

3. Does RESTORE identify errors? Possible answers were “Yes” or “No”.

One respondent (=~ 7% of respondents) found RESTORE extremely use-
ful, eleven respondents (=~ 73% of respondents) — very useful, and three
respondents (20% of respondents) — somewhat useful. All fifteen respon-
dents unanimously agreed that RESTORE saves time and identifies errors.
The results suggest that the data scientists in EA find RESTORE to be a
helpful data validation tool in the data development process because it can
efficiently identify data errors.

We have seen the results showing increased efficiency in the identification
of potential errors in updated datasets with RESTORE. How does EA benefit
from this efficiency in production? RESTORE has been institutionalized
by EA and integrated into the dataset development process discussed in
Section [2.4] Incremental changes made to the new vintage of the dataset are
tested by RESTORE to make sure that the new vintage did not regress. If
the tests failed, a root cause detection of the regression is easy to detect, as
the failure is typically related to data transformations applied between the
two increments.

In the long term, this increased automation and a better approach to data
testing will significantly reduce the cost of delivering products to market. We
estimate that the time of getting data to market can be reduced by about
half (leading to cost reduction and improving customers’ satisfaction).

To summarize, the data scientists found these tests to be helpful in prac-
tice, i.e., the tests could detect defects in the data reliably. The tests are also

26

computationally inexpensive, which helps to preserve scalability and enable
fast verification that the latest changes to a dataset did not inject any new
errors.

6.3 Threats to validity
The threats to validity, classified as per [61l, [62], are discussed below.

6.3.1 Construct validity

To assess the usefulness of RESTORE, we conducted the survey in EA. We
choose an anonymous poll to proactively address the concern that EA data
scientists can be positively biased toward the tool that is developed with the
help of people from the same organization. We cannot formally prove that
the questionnaire is sufficiently detailed to observe and measure bias-inducing
factors (e.g., the work culture and politics) that may affect the results of the
survey. However, the fact that EA institutionalized RESTORE implicitly
supports the results of the survey.

6.3.2 Internal validity

The implementation of RESTORE that we wrote in R may contain bugs. To
mitigate this threat, we performed peer code reviews and wrote automated
unit tests. EA data scientists performed acceptance testing.

6.3.3 External validity

We cannot claim that our software would be of use for any dataset, which is in
line with other software engineering studies, suffering from the variability of
the real world [59]. However, RESTORE is helpful for structured hierarchical
and non-hierarchical datasets, where at least some of the attributes exist in
multiple vintages. These attributes should be either numeric or should be
convertible to numeric values (as discussed in Section [5.4)).

Moreover, we cannot claim that our list of metrics is exhaustive. To mit-
igate this threat, we published our source code (as well as a demo program)
on GitHub so that anyone can adopt and extend RESTORE for their needs.

27

6.4 Potential extensions of RESTORE

The current version of RESTORE works by focusing on a pair-wise com-
parison of numerical datasets (measured using ratio and interval scale, as
discussed in Section that can be loaded into memory. This is sufficient
for our use-cases. We released RESTORE as an open-source package so that
one can extend or alter the tests implemented in RESTORE based on their
specific use-cases or requirements. Below, we sketch potential ways to ex-
tend the package if one needs to compare large volumes of data, desires to
compare other types of variables, or would like to do non-paired comparison
of variables.

RESTORE has been validated in production to process medium size
datasets (e.g., datasets that comprise 600+ variables with ~ 1.5 million ob-
servations). Currently, RESTORE reads all data into memory. This may be
an issue for very large datasets (a.k.a. big data). This can be mitigated by
altering the process of ingestion datasets into the package: rather than load-
ing the whole dataset into memory, one can process a subset of columns (e.g.,
loaded using fread function from R data.table package [12]) in multiple
iterations[lT| Alternatively, if the number of observations is such that they
cannot be loaded into memory, then one can leverage an external framework,
such as Spark, and perform the computations outside of the R engine. Note
that Spark integrates into R, e.g., using sparklyr package [32].

If a tester needs to apply RESTORE to other types of data, some of the
tests (discussed in Section are readily applicable. One can extend the
package by adding additional tests. For example, to extend comparison of
distributions to ordinal data, one can adopt Mann-Whitney U test [34].

Finally, as discussed in Section [4.1.3] we did not perform comparison on
non-paired observations (i.e., non-joined ones) of the datasets, as, empirically,
they were found less useful for detecting defects in our datasets. However, if
one desires to apply the tests to non-paired observations of a given variable,
then it can be done with relative ease — all the tests, with the exception
of the ones discussed in Sections [4.2.2 4.2.3] and 4.3.1, are applicable to
non-paired data.

1 Given that computations for every variable are independent of each other, the com-
putations can be easily parallelized using foreach [40] and parallel [48] packages.

28

6.5 Take-away messages (the best practices)

Based on our hands-on experiences, we introduce five suggestions for data
scientists who will develop data regression testing tools. To the best of our
knowledge, our proposed best practices are the first general guidelines pro-
posed for data scientists who want to adopt automated data validation in data
preparation. In general, a data validation framework for datasets should have
five characteristics as follows, and data scientists should adopt best practices
to incorporate in the data validation these characters.

1.

Comprehensive test oracles. Data scientists should have explicit
knowledge of the data structure and the reasonable ranges of values in
the datasets. The testing framework will include multiple testing rules
to test various aspects that may negatively affect the data quality.

Automated testing. Compared to manual testing, where a set of
tests is performed manually, automated testing significantly reduces
the human and time resources for the testing process.

Modularity-driven testing. Keep in mind the variability of datasets.
Thus, there is no one-size-fits-all solution. A scalable testing framework
can be altered based on the nature of datasets. The set of tests can
be truncated or extended so that all the erroneous data are discovered,
and the false alarm rate is kept within a reasonable range (whichever
data scientists are comfortable with).

Flexible thresholds. The thresholds in testing can be set and ad-
justed based on empirical studies. For example, data scientists can
decrease the threshold if the sensitivity is high. Thus, it is essential to
keep the thresholds adjustable in the design of the testing framework.
In this way, data scientists can always change the testing criterion if
needed.

Continuous integration. In case there are more than one data scien-
tist who is responsible for data testing, or there are more than one data
development teams, we would better use the best practices to manage
code dependencies. For example, a version control system, such as
git [55], can be employed to empower people to collaborate. Besides
that, we should also aim to ensure the testing framework to run on
different environments, e.g., Linux and Mac OS. In such a manner, it

29

is easy to share between team members (or different teams) without
complicated configuration.

Our experience can be extended to a more general software testing life
cycle (STLC). There are various processes of STLC, they all must include, in
some form, the four fundamental activities [20], i.e., 1) requirement analysis
and test analysis, 2) test planning and preparation, 3) test case development
and test execution, and 4) test cycle closure. The stages of STLC are activ-
ities conducted during the test procedure. Our experience report focuses on
some best practices for those who want to adopt automated testing. Those
best practices can be performed at any stage of STLC, e.g., automated test-
ing can involve requirement analysis and testing planning.

Note that our data regression testing take-away messages resonate with
some best practices of software regression testing in software. However, the
former focuses on data defects while the latter investigates software defects.
We argue that both, data and software regression testing, are crucial to
ensure the overall quality of data-driven software.

7 Related work

Software engineering best practices for data science. Jones [26] gives an
overview of software engineering best practices and introduces 50 best prac-
tices based on the study of long lifecycle projects in the industry. Kim et
al. [29] discuss software-oriented data analytics. They conduct a survey on
data scientists in Microsoft and propose a set of strategies to help data scien-
tists increase the impact and actionability of their work. Begel and Zimmer-
mann [3] present the results from two surveys related to data science in the
field of software engineering. The results list the most concerned questions
from practitioners in 12 categories, including best practices of development
and testing practices.

Data validation frameworks. [14] provided a survey of big data challenges
and data validation functionalities in existing big data platforms, such as
Microsoft Azure HDInsight [39]. While there exist various data validation
tools, most of them focus on testing a single dataset (e.g., [I7]) rather than
comparison of two datasets, which is a key difference between our solution
and other data validation tools. Comparing Great Expectations with RE-
STORE, Great Expectations is not designed for hierarchical data and thus

30

is not suitable for proper testing of geodemographic data. IBM SPSS Statis-
tics [24] can identify suspicious and invalid cases, variables, and data values
in a given dataset. IBM SPSS Statistics focuses on providing a set of data
validation rules for a single dataset, e.g., flag incomplete IDs. However, it
cannot validate two versions of the same dataset. Thus, this approach is
complementary to ours, which automates the checks of two datasets, saving
an analyst’s time. In the SPSS case, such checks would have to be built
from scratch. [4] developed a data validation protocol for a bird monitor-
ing program. The tool validates and filters the data to remove potential
sources of errors and bias. [52] identified the importance of data flow vali-
dation in workflow processes. They defined some possible errors in the data
flow, e.g., missing data and redundant data. [47] investigated four common
data management challenges (data validation is one of them) in machine
learning. Later, this research group in Google [5] studied data validation
in the machine learning pipeline and identified the importance of detecting
data defects early because the model trained with buggy data often ampli-
fies the data bugs over a feedback loop. They proposed a data validation
to quantify the distribution distance between training data and new data.
However, automated tests are not in the scope of this work. Hence, it is hard
to merge their methods or tools into a continuous integration pipeline. The
data linter [23] focused on data validation in the ETL pipeline. It is a ma-
chine learning-based tool that can automatically inspect input datasets for
machine learning models, identify potential data issues (lints), and suggest
potentially useful feature transforms for a given model type. The data linter
does not compare two versions of datasets for data validation.

There exist some work to ensure data integrity during data migration [44]
45, [51]. Instead of comparing two datasets, their approaches detect if the
data is altered during the migration process. Thus, we cannot apply their
approaches in our case. Below, we also provide some other related but com-
plementary papers.

Database testing frameworks. There exists a significant amount of test
frameworks for testing database engines and business logic that alters the
data in the databases [27] 35 19] [42], [1§]. In addition, some database testing
frameworks are available [9, 11l 43, 10, 38]. However, none of them are
suitable for testing dataset vintages.

Open source projects for regression testing of databases. Regression test-
ing tools for databases try to assure that a query (captured in one of the
previous releases) executes successfully (in the release under test). This

31

functionality is available in many existing automated database testing frame-
works [9], 1], 43, [10], [38]. However, this will typically be inadequate for our
needs as successful execution of a statement cannot guarantee that the re-
turned results are correct (as was discussed in Section [I)). Some database
testing frameworks, e.g., [9], can readily check if the recordsets are identical
and highlight the difference between them. However, as we discussed before,
changes between vintages of a dataset are expected. Thus, these tests are
not sufficient for our needs.

8 Conclusion

In this paper, we focused on applying software engineering best practices to
the automation of data validation. Our data under study is taken from the
geodemographic domain. We presented a set of tests that enable automated
detection of defects in a new vintage of a dataset. We implemented the tests
in an open-source R package called RESTORE and validated it in practice.
We showed that the adoption of RESTORE can help the procedure of data
validation achieve 1. efficiency — reducing the cost to incorporate a new
vintage of a dataset, 2. simplicity — encapsulating a batch of relatively com-
plex testing rules into one interface, and 3. scalability — processing datasets
comprised of about 1.5 million observations and more than 600 variables.
Moreover, we also proposed a set of strategies for the best practices in data
validation based on our own experience.

This set of tests is of interest to practitioners, as using the RESTORE
package on their datasets gives them the advantages to 1. have more certainty
about delivery dates for products, 2. reduce the occurrence of data defects in
products, and 3. dedicate more time to developing new functionality, rather
than testing the existing one.

Acknowledgment

The work reported in this paper is supported and funded by Natural Sciences
and Engineering Research Council of Canada, Ontario Centres of Excellence,
and Environics Analytics. We thank Environics Analytics data scientists for
their valuable feedback.

32

References

[1] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Na-
gappan, B. Nushi, and T. Zimmermann. Software engineering for ma-
chine learning: A case study. In 2019 IEEE/ACM j1st International

Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), pages 291-300. IEEE, 2019.

[2] J. Beck and B. P. Woolf. High-level student modeling with machine
learning. In Intelligent Tutoring Systems, 5th International Conference,
ITS 2000, Montréal, Canada, June 19-23, 2000, Proceedings, pages 584—
593, Montréal, Canada, 2000. Springer.

[3] A. Begel and T. Zimmermann. Analyze this! 145 questions for data
scientists in software engineering. In 36th International Conference on
Software Engineering, ICSE 14, Hyderabad, India - May 31 - June 07,
201/, pages 12-23, Hyderabad, India, 2014. ACM /IEEE.

[4] D. N. Bonter and C. B. Cooper. Data validation in citizen science:
a case study from project FeederWatch. Frontiers in Ecology and the
Environment, 10(6):305-307, 2012.

[5] E. Breck, N. Polyzotis, S. Roy, S. Whang, and M. Zinkevich. Data
validation for machine learning. In A. Talwalkar, V. Smith, and M. Za-
haria, editors, Proceedings of Machine Learning and Systems 2019, ML-
Sys 2019, Stanford, CA, USA, March 31 - April 2, 2019, pages 334—-347.
mlsys.org, 2019.

[6] L. Cao. Data science: A comprehensive overview. ACM Comput. Surv.,
50(3):43:1-43:42, 2017.

[7] Z. Chen and Y. Yang. Assessing forecast accuracy measures. Preprint
Series, 2010:2004-10, 2004.

8] L. Columbus. 10 charts that will change your
perspective of big data’s growth. https://
www.forbes.com/sites/louiscolumbus/2018/05/23/
10-charts-that-will-change-your-perspective-of-big-datas-growth/
7sh=34a6c0a92926, May 2018.

33

https://www.forbes.com/sites/louiscolumbus/2018/05/23/10-charts-that-will-change-your-perspective-of-big-datas-growth/?sh=34a6c0a92926
https://www.forbes.com/sites/louiscolumbus/2018/05/23/10-charts-that-will-change-your-perspective-of-big-datas-growth/?sh=34a6c0a92926
https://www.forbes.com/sites/louiscolumbus/2018/05/23/10-charts-that-will-change-your-perspective-of-big-datas-growth/?sh=34a6c0a92926
https://www.forbes.com/sites/louiscolumbus/2018/05/23/10-charts-that-will-change-your-perspective-of-big-datas-growth/?sh=34a6c0a92926

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

DbFit Community. DbFit. http://dbfit.github.io/dbfit, 2019.
[Online; accessed 31-January-2019].

DBTD Project. DB Test Driven. http://www.dbtestdriven.com,
2019. [Online; accessed 31-January-2019].

DbUnit Community. DbUnit. http://dbunit.sourceforge.net, 2019.
[Online; accessed 31-January-2019].

M. Dowle and A. Srinivasan. data.table: Extension of ‘data.frame’. R
Foundation for Statistical Computing, 2017. R package version 1.10.4-3.

E. Dustin, J. Rashka, and J. Paul. Automated software testing: intro-
duction, management, and performance. Addison-Wesley Professional,
1999.

J. Z. Gao, C. Xie, and C. Tao. Big data validation and quality assurance
- issuses, challenges, and needs. In 2016 IEEE Symposium on Seruvice-
Oriented System FEngineering, SOSE 2016, Oxford, United Kingdom,
March 29 - April 2, 2016, pages 433-441. IEEE Computer Society, 2016.

A. Gelman, J. Hill, and M. Yajima. Why we (usually) don’t have to
worry about multiple comparisons. Journal of Research on Educational
FEffectiveness, 5(2):189-211, 2012.

J. Goss. “we know who you are and we know where you live”: The
instrumental rationality of geodemographic systems. Fconomic Geogra-
phy, 71(2):171-198, 1995.

Great Expectations. Great expectations home page. https://
greatexpectations.io/, 2020.

F. Haftmann, D. Kossmann, and A. Kreutz. Efficient regression tests for
database applications. In CIDR, pages 95-106, Asilomar, USA, 2005.
Citeseer.

R. A. Haraty, N. Mansour, and B. A. Daou. Regression testing of
database applications. Journal of Database Management, 13(2):31-42,
2002.

34

http://dbfit.github.io/dbfit
http://www.dbtestdriven.com
http://dbunit.sourceforge.net
https://greatexpectations.io/
https://greatexpectations.io/

[20]

[21]

22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

I. Hooda and R. S. Chhillar. Software test process, testing types and
techniques. International Journal of Computer Applications, 111(13),
2015.

D. Huizinga and A. Kolawa. Automated defect prevention: best practices
i software management. John Wiley & Sons, Hoboken, USA, 2007.

R. J. Hyndman and A. B. Koehler. Another look at measures of forecast
accuracy. International journal of forecasting, 22(4):679-688, 2006.

N. Hynes, D. Sculley, and M. Terry. The data linter: Lightweight,
automated sanity checking for ML data sets. In NIPS MLSys Workshop,
volume 1, 2017.

IBM Knowledge Center. IBM SPSS Statistics — validate
data. https://www.ibm.com/support/knowledgecenter/SSLVMB_23.
0.0/spss/data_validation/idh_idd_vdtab_variables.html, 2020.

IDC. Dataage 2025 - the digitization of the world — seagate canada.
https://www.seagate.com/ca/en/our-story/data-age-2025/, Nov
2018.

C. Jones. Software engineering best practices. McGraw-Hill, Inc., New
York, NY, USA, 2009.

G. M. Kapfhammer and M. L. Soffa. A family of test adequacy criteria
for database-driven applications. In ACM SIGSOFT Software Engineer-
ing Notes, volume 28, pages 98-107, Helsinki, Finland, 2003. ACM.

D. Kelly. A software chasm: Software engineering and scientific com-
puting. IEEFE Softw., 24(6):118-120, 2007.

M. Kim, T. Zimmermann, R. DeLine, and A. Begel. The emerging
role of data scientists on software development teams. In Proceedings of
the 38th International Conference on Software Engineering, ICSE 2016,
Austin, TX, USA, May 14-22, 2016, pages 96107, Austin, TX, USA,
2016. ACM/IEEE.

M. Kim, T. Zimmermann, R. DeLine, and A. Begel. Data scientists in
software teams: State of the art and challenges. IEEE Trans. Software
Eng., 44(11):1024-1038, 2018.

35

https://www.ibm.com/support/knowledgecenter/SSLVMB_23.0.0/spss/data_validation/idh_idd_vdtab_variables.html
https://www.ibm.com/support/knowledgecenter/SSLVMB_23.0.0/spss/data_validation/idh_idd_vdtab_variables.html
https://www.seagate.com/ca/en/our-story/data-age-2025/

[31]

[32]

33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

W. E. Lewis. Software testing and continuous quality improvement.
Auerbach publications, Boca Raton, USA, 2000.

J. Luraschi, K. Kuo, K. Ushey, J. Allaire, and The Apache Software
Foundation. sparklyr: R Interface to Apache Spark. R Foundation for
Statistical Computing, 2018. R package version 0.9.2.

D. Maier. The theory of relational databases. Computer science press,
Rockville, MD, USA, 1983.

H. B. Mann and D. R. Whitney. On a test of whether one of two
random variables is stochastically larger than the other. The annals of
mathematical statistics, 18(1):50-60, 1947.

A. Maule, W. Emmerich, and D. S. Rosenblum. Impact analysis of
database schema changes. In Proc. of the 30th int. conference on Soft-
ware engineering, pages 451-460, Leipzig, Germany, 2008. ACM.

McKinsey Analytics. Analytics comes of age. https:
//www.mckinsey.com/~/media/McKinsey/Business)%20Functions/
McKinsey’%20Analytics/Our’%20Insights/Analytics%20comes’200f%
20age/Analytics-comes-of-age.ashx, January 2018.

P. M. Mell and T. Grance. Sp 800-145. the nist definition of cloud com-
puting. Technical report, National Institute of Standards & Technology,
Gaithersburg, MD, USA, 2011.

Microsoft. SQL Server Data Tools. https://visualstudio.

microsoft.com/vs/features/ssdt/, 2019. [Online; accessed 31-
January-2019].

Microsoft. Cloud computing services — Microsoft Azure. https://
azure.microsoft.com/en-ca/, 2021.

Microsoft and S. Weston. foreach: Provides Foreach Looping Construct
for R. R Foundation for Statistical Computing, 2017. R package version
1.4.4.

J. L. Myers, A. D. Well, and R. F. Lorch Jr. Research Design and
Statistical Analysis. Routledge, New York, NY, US, 3 edition, May
2010.

36

https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Analytics/Our%20Insights/Analytics%20comes%20of%20age/Analytics-comes-of-age.ashx
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Analytics/Our%20Insights/Analytics%20comes%20of%20age/Analytics-comes-of-age.ashx
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Analytics/Our%20Insights/Analytics%20comes%20of%20age/Analytics-comes-of-age.ashx
https://www.mckinsey.com/~/media/McKinsey/Business%20Functions/McKinsey%20Analytics/Our%20Insights/Analytics%20comes%20of%20age/Analytics-comes-of-age.ashx
https://visualstudio.microsoft.com/vs/features/ssdt/
https://visualstudio.microsoft.com/vs/features/ssdt/
https://azure.microsoft.com/en-ca/
https://azure.microsoft.com/en-ca/

[42]

[43]

[44]

[45]

[46]

[48]

[49]

[50]

A. Nanda, S. Mani, S. Sinha, M. J. Harrold, and A. Orso. Regression
testing in the presence of non-code changes. In Proc. of the jth IEFE

Int. Conf. on Software Testing, Verification and Validation, pages 21—
30, Berlin, Germany, 2011. IEEE.

NDbUnit Community. NDbUnit. https://github.com/NDbUnit/
NDbUnit, 2019. [Online; accessed 31-January-2019].

P. Paygude and P. Devale. Automated data validation testing tool for
data migration quality assurance. International Journal of Modern En-
gineering Ressearch (IJMER), pages 599-603, 2013.

P. Paygude and P. Devale. Automation of data validation testing for
QA in the project of db migration. International Journal of Computer
Science, 3(2):15-22, 2013.

K. Pearson. Mathematical contributions to the theory of evolution. iii.
regression, heredity, and panmixia. Philosophical Transactions of the
Royal Society of London. Series A, containing papers of a mathematical
or physical character, 187:253-318, 1896.

N. Polyzotis, S. Roy, S. E. Whang, and M. Zinkevich. Data management
challenges in production machine learning. In S. Salihoglu, W. Zhou,
R. Chirkova, J. Yang, and D. Suciu, editors, Proceedings of the 2017
ACM International Conference on Management of Data, SIGMOD Con-
ference 2017, Chicago, IL, USA, May 14-19, 2017, pages 1723-1726.
ACM, 2017.

R Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing, 2017.

R Special Interest Group on Databases (R-SIG-DB), H. Wickham, and
K. Miller. DBI: R Database Interface. R Foundation for Statistical
Computing, 2018. R package version 1.0.0.

D. M. Rafi, K. R. K. Moses, K. Petersen, and M. V. Méntyla. Benefits
and limitations of automated software testing: Systematic literature
review and practitioner survey. In Proc. of the 7th Int. Workshop on
Automation of Software Test, AST 12, pages 36—42, Piscataway, NJ,
USA, 2012. IEEE Press.

37

https://github.com/NDbUnit/NDbUnit
https://github.com/NDbUnit/NDbUnit

[51]

[52]

[53]

[54]

[55]
[56]

[57]

[58]

[59]

[60]

[61]

[62]

V. Rathika and L. Arcokiam. Automated data validation framework for
data quality in big data migration projects. SSRG International Journal
of Computer Science and Engineering, 1(10):24-27, 2014.

S. Sadiq, M. Orlowska, W. Sadiq, and C. Foulger. Data flow and val-
idation in workflow modelling. In Proceedings of the 15th Australasian
database conference-Volume 27, pages 207-214. Citeseer, 2004.

N. V. Smirnov. On the estimation of the discrepancy between empirical
curves of distribution for two independent samples. Bull. Math. Univ.
Moscou, 2(2):3-14, 1939.

C. Spearman. The proof and measurement of association between two
things. The American journal of psychology, 15(1):72-101, 1904.

D. Spinellis. Git. IEEE Software, 29(3):100-101, 2012.

S. S. Stevens. On the theory of scales of measurement. Science,
103(2684):677-680, 1946.

L. Tornqvist, P. Vartia, and Y. O. Vartia. How should relative changes
be measured? The American Statistician, 39(1):43-46, 1985.

R. van Megen and D. B. Meyerhoff. Costs and benefits of early defect de-
tection: experiences from developing client server and host applications.
Software Quality Journal, 4(4):247-256, Dec 1995.

R. J. Wieringa and M. Daneva. Six strategies for generalizing software
engineering theories. Science of computer programming, 101:136-152, 4
2015.

N. Wirth. A brief history of software engineering. IEEE Annals of the
History of Computing, 30(3):32-39, 2008.

C. Wohlin, P. Runeson, M. Ho6st, M. Ohlsson, B. Regnell, and
A. Wesslén. Ezperimentation in Software Engineering. Computer Sci-
ence. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

R. Yin. Case Study Research: Design and Methods. Applied Social Re-
search Methods. SAGE Publications, Thousand Oaks, CA, USA, 2009.

38

[63]

[64]

L. Zhang, S. Howard, T. Montpool, J. Moore, K. Mahajan, and A. Mi-
ranskyy. RESTORE: Regression testing tool for datasets. https:
//zenodo.org/record/4601784, 2021.

Y. Zhang, T. Zhang, Y. Jia, J. Sun, F. Xu, and W. Xu. Datalab: In-
troducing software engineering thinking into data science education at
scale. In 39th IEEE/ACM International Conference on Software En-
gineering: Software Engineering Education and Training Track, ICSE-
SEET 2017, Buenos Aires, Argentina, May 20-28, 2017, pages 47-56,
Buenos Aires, Argentina, 2017. ACM/IEEE.

39

https://zenodo.org/record/4601784
https://zenodo.org/record/4601784

	1 Introduction
	2 Background
	2.1 Importance of data validation
	2.2 Existing solutions
	2.3 Geodemographic data
	2.4 Environics Analytics

	3 Our solution
	4 Tests' description
	4.1 High-level testing of vintages
	4.1.1 Variables' attributes comparison
	4.1.2 Missing (NA) observations
	4.1.3 Discarded observation count

	4.2 Paired testing
	4.2.1 Magnitude ratios
	4.2.2 Mean relative error
	4.2.3 Correlation test
	4.2.4 Distribution test

	4.3 Higher-order testing
	4.3.1 Comparison of Spearman correlation for different levels of hierarchy
	4.3.2 Hybrid testing
	4.3.3 Ranking of the number of test failures

	5 Discussion of tests' properties
	5.1 Root causes of test cases' failures
	5.2 Predictive power of tests
	5.3 Data types
	5.4 Assumptions and limitations

	6 The RESTORE package and take-away messages
	6.1 The interface of RESTORE
	6.1.1 Special case: flat hierarchy

	6.2 Validation
	6.3 Threats to validity
	6.3.1 Construct validity
	6.3.2 Internal validity
	6.3.3 External validity

	6.4 Potential extensions of RESTORE
	6.5 Take-away messages (the best practices)

	7 Related work
	8 Conclusion

