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Abstract

The R package ecosystem is expanding fast and dependencies among packages are becoming more complex in the ecosys-
tem. In this study, we explored the package dependencies from a new aspect. We applied a new metric named “de-
pendency heaviness” which measures the number of additional strong dependencies that a package uniquely contributes
to its child or downstream packages. We systematically studied how the dependency heaviness spreads from parent
to child packages, and how it further spreads to remote downstream packages in the CRAN/Bioconductor ecosystem.
We extracted top packages and key paths that majorly transmit heavy dependencies in the ecosystem. Additionally,
the dependency heaviness analysis on the ecosystem has been implemented as a web-based database that provides
comprehensive tools for querying dependencies of individual R packages.
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1. Introduction

R has become a major programming language applied
in many fields, including statistics, bioinformatics, geoin-
formatics, economics and general data science. It is widely
used for a variety of tasks such as data processing (Grole-
mund and Wickham, 2016), visualization (Wilke, 2019),
statistical modeling (Venables and Ripley, 2002), interac-
tive web application development (Chang et al., 2022) and
reproducible reporting (Xie, 2015). The reusable and ex-
tensible code implemented by developers are formatted as
R packages and distributed on public repositories such as
the Comprehensive R Archive Network (CRAN)1 and Bio-
conductor2 (Huber et al., 2015). CRAN is the major repos-
itory for R packages and Bioconductor specifically focuses
on biology data analysis, especially on high-throughput
omics data3. Both repositories perform manual valida-
tions on new packages and apply regular checks on pack-
ages to ensure their quality and usability. The number
of packages in the two repositories increases almost expo-
nentially by year (Hornik et al., 2021). Besides these two
“standard repositories”, there are also a huge number of R
packages distributed on GitHub, which are self-maintained
and mainly for experimental purposes.

Code reuse is an essential part of a programming lan-
guage (Haefliger et al., 2008). An R package may inherit

∗Corresponding author
Email address: z.gu@dkfz.de (Zuguang Gu)

1https://cran.r-project.org/.
2http://bioconductor.org/.
3Omics is a branch of biology science which studies biological

systems from large-scale data. It includes a list of sub-branches,
such as genomics which aims to reveal mutations and rearrangements
on DNAs, and transcriptomics which quantifies mRNA levels of all
genes in an organism.

functionalities from other packages, which forms the de-
pendency relations between packages. In other words, a
package depends on the availability of other packages to
work. R packages as well as their complex dependency re-
lations construct the ecosystem. The continuously increas-
ing number of R packages makes the dependency relations
among packages even more complex (Mora-Cantallops et al.,
2020a). By 2022-06-08, there are in total 22,076 CRAN
and Bioconductor packages, including 194,351 direct de-
pendency relations4. With such complex dependency re-
lations, the ecosystem might be vulnerable to failures of
only a small number of packages. For example, recently a
compiling failure of the isoband package caused additional
failures of 4,747 (almost 25%) of all packages on CRAN5.
isoband is a dependency of the hub package ggplot2 and it
results in the failure being transmitted continuously to a
huge number of downstream packages via ggplot2. Thus, it
is important to explore the dependency structure in the R
package ecosystem from the aspect of software engineering,
which helps to understand the structure of the ecosystem,
to reveal top packages having major impacts and to study
the vulnerability of the ecosystem.

The ecosystem contains complex dependency relations
between packages, which can be naturally modeled as a
graph (Fortuna et al., 2011). There are mainly two types
of studies on the dependency graph. In the first cate-
gory, researchers applied complex network analysis (CNA)
approaches on the dependency graph, such as calculat-
ing various centrality metrics to explore the impacts of

4The statistics were obtained with the R function
available.packages().

5See a bug report on https://twitter.com/cjvanlissa/status/
1577552826561171457. The failure was fixed very quickly within a
week, https://github.com/wilkelab/isoband/issues/33.
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top packages, or applying network community methods
to partition packages into densely connected subgraphs to
further analyze their specific attributes (Mora-Cantallops
et al., 2020b). In the second category, researchers devel-
oped tools for visualizing the complex dependency rela-
tions. These tools are mainly implemented as R pack-
ages, such as deepdep (Rafacz et al., 2021), pkgnet (Burns
et al., 2021), pkggraph (Srikanth and Nikhil, 2018) and
miniCRAN (de Vries, 2022). They give intuitive views
of how dependencies are transmitted between packages.
Nevertheless, they only work well on subgraphs showing
local relations with small sizes, e.g., dependencies from a
small number of R packages, while it becomes difficult to
generate and to read when the size of the graph increases.

Network analysis on the dependency graph helps to
understand the R ecosystem from the system’s level. The
degree centrality is a widely-studied metric which mea-
sures the number of dependency packages or the number
of child packages that depend on a package (i.e., the de-
pendents) (Korkmaz et al., 2019; Mora-Cantallops et al.,
2020b). Indeed, degree is an important metric for revealing
top packages that have significant impacts on the ecosys-
tem. However, it is a local metric and we can still look at
the system from new aspects. In practice, when a user in-
stalls a new package P, additional packages to be installed
that he would notice are actually the total dependency
packages upstream of P, while which packages are P ’s di-
rect dependencies are unobservable to the user. From a de-
veloper’s perspective, the direct dependencies of his pack-
age provide no information of which parent brings more
dependencies to it, while he needs to inspect the complete
upstream of the dependency chain to find out parent pack-
ages contributing heavy dependencies. All these imply, the
number of “total dependencies” instead of “direct depen-
dencies” is a more practical metric. In fact, the number
of total dependencies begins to be paid more attention in
the R community. For example, Bioconductor and R uni-
verse6 are listing the number of total dependencies as a
basic metric for the packages hosted there.

When a package P has potentially more total depen-
dencies, there are several consequences which affect the
usability of P. We have listed the risks in our previous pa-
per (Gu and Hübschmann, 2022): “(i) Users have to in-
stall a lot of additional packages when installing P, which
would bring the risk that installation failure of any up-
stream package stops the installation of P. (ii) The num-
ber of packages loaded into the R session after loading P
will be huge, which increases the difficulty to reproduce a
completely identical working environment on other com-
puters. (iii) Dependencies of P will spread to all its child
packages. (iv) On the platforms for continuous integration
such as GitHub Action or Travis CI, automatic validation
of P could easily fail due to the failures of its upstream
packages.” Therefore, it is important to reveal packages

6https://r-universe.dev/.

contributing high total dependencies to better study their
impacts on the vulnerability of the ecosystem.

Total dependency, or the transitive dependency, has
already been investigated in several studies (Abate et al.,
2009; Mora-Cantallops et al., 2020b), however, there still
lacks a way to capture the unique transitive dependencies
that a single package contributes. In our previous study
(Gu and Hübschmann, 2022), we proposed a new metric
named “dependency heaviness” that measures the num-
ber of dependencies that a parent uniquely brings to its
child package and are not brought by any other parent.
Simply speaking, this new metric helps to identify which
parent package is heavier in the context of how it uniquely
contributes the dependencies to its child package. Since
now the dependency contribution of parent packages can
be measured quantitatively, developers can easily identify
heavy parents of their packages, then apply possible opti-
mization to reduce the complexity of package dependencies
and build more robust software. Of course, how to opti-
mize the dependency depends on the specific uses of parent
packages in the corresponding package. We recommended
several solutions in Section 9.1.

Dependency heaviness can provide new insights for risk
analysis on package ecosystems. Number of dependen-
cies, especially transitive dependencies, is a commonly-
used metric of how vulnerable a package is to code breaks
in the ecosystem. Then, the dependency heaviness also
measures accumulated risks from upstream to a package
that are uniquely transmitted via a parent.

We have implemented the dependency heaviness met-
ric in an R package pkgndep7. In our previous study (Gu
and Hübschmann, 2022), we briefly described pkgndep as
software with several use cases. In this study, we extended
the definition of dependency heaviness to a broader range.
Besides the dependency heaviness from a single parent to a
single child package, we also studied how it is transmitted
to remote downstream packages. We performed a system-
atic empirical study on the dependency transmission in the
R package ecosystem. The contributions of this study are
briefly listed as follows:

1. We studied how dependency heaviness spreads lo-
cally from parent to child packages, and we stud-
ied how dependency heaviness is simultaneously con-
tributed by two parent packages.

2. We studied how dependency heaviness is transmitted
remotely from upstream to downstream packages.

3. We applied CNA approaches and we extracted top
packages and key paths that majorly transmit heavy
dependencies in the ecosystem.

4. The dependency heaviness analysis on the ecosys-
tem has been implemented as a web-based database
which provides comprehensive tools for analyzing de-
pendencies of individual R packages.

7https://CRAN.R-project.org/package=pkgndep.
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The remainder of this paper is organized as follows.
Section 2 briefly summarizes current studies on the ecosys-
tem of R as well as other programming languages. Section
3 provides technical background for understanding depen-
dency relations in R. Section 4 introduces definitions of
various heaviness metrics. Section 5 describes the new
functionalities of the pkgndep package for this study as
well as data processing. Section 6 raises various research
questions. Section 7 describes the results of the analysis
and answers the research questions. Section 8 describes the
web-based database for the dependency heaviness analy-
sis. Section 9 discusses how dependency heaviness analysis
benefits developers. Section 10 summarizes the study. Sec-
tion 11 discusses limitations of the analysis and proposes
future plans. Section 12 encloses the paper with conclu-
sions.

2. Current studies

2.1. Current studies on the R package ecosystem

There are a few studies applied on the R ecosystem
where researchers analyzed the dependency relations as
well as from other aspects. In this section, we briefly de-
scribed their analyses and findings.

R package dependencies can be modeled as a network
with a complex structure. Mora-Cantallops et al. (2020b)
performed complex network analysis on the CRAN ecosys-
tem. Similar to social networks, they found the depen-
dency network of CRAN also has the scale-free property.
In a scale-free network, node degree follows a power-law
distribution and the proportion of degrees of hub nodes
is stable as the network size increases (Wang and Chen,
2003). This implies, in the R ecosystem, there are only a
small number of hub packages that contribute huge amounts
of dependencies to other packages. They also partitioned
the global dependency network into modules and they
found CRAN is modular where each module mainly cor-
responds to a specific analysis task.

Bommarito and Bommarito (2021) studied how pack-
ages contribute dependencies to their dependents, but ag-
gregated by developers. Very interestingly, many of the
most depended-on packages are maintained by the same
developers. They found the top 10 developers are respon-
sible for more than 50% of all packages in the ecosystem,
and the percent would become higher if transitive depen-
dency relations are also considered. This suggests that the
R ecosystem is more vulnerable on the developer’s level.

German et al. (2013) separated R packages into base
packages, recommended packages, popular packages and
contributed packages where the order of the four groups
reflects the priority to be core packages in the ecosystem.
They found that the more core a package is, the more de-
pendents it has. Additionally, they explored other aspects
such as code size, documentation, and community inter-
est. One interesting finding was code size for base packages
keeps increasing over years while in other categories code
size is almost stably unchanged.

As there are also a huge amount of R packages hosted
on GitHub, Decan et al. (2016b) studied the inter-repository
package dependencies between CRAN and GitHub. They
performed survival analysis and found that packages on
GitHub are easier to break due to updates of their de-
pendencies from CRAN. This may imply R packages on
GitHub are less maintained and tested.

Mora-Cantallops et al. (2020a) studied the evolution
of the R ecosystem. They revealed that in general pack-
ages are stably updated over the years, but the number of
packages as well as the complexity of dependency relations
are increasing. The increasing complexity is expected as a
result of the scale-free property of the dependency graph
where hub packages will preferably be linked to more new
packages when the ecosystem evolves.

There are also studies focusing on other aspects of the
R ecosystem. Claes et al. (2014) analyzed package errors
on CRAN. They found Solaris and MacOS have more er-
rors mainly because they are less used in development and
packages are less tested on the two platforms. They also
found the majority of the errors on CRAN are from exter-
nal factors thus irrelevant to developers.

Korkmaz et al. (2019) measured the impacts of pack-
ages by the numbers of downloads, and they studied how
various factors can predict package impacts by utilizing
a generalized linear regression model. They used three
groups of predictor variables: 1. package features such as
number of commits and GitHub stars, 2. dependency net-
works centrality such as degree and closeness, 3. metrics
from the co-developer network8. They found the num-
ber of dependents is a major factor that well correlates to
package impacts. Another interesting finding in this study
was if an author contributes to more packages, i.e., if an
author is more active, his packages tend to have higher
impacts.

In a very recent paper (Vidoni, 2021), the author called
for more software engineering studies on R programming
language. She proposed various futural directions for both
software engineers and R developers for better understand-
ing the R ecosystem from the system’s level.

2.2. Current studies on other ecosystems

Given parent-child dependency relations of packages,
the construction of dependency graphs is similar for other
programming languages. Methods applied in one ecosys-
tem can almost be seamlessly applied to other ecosystems.
We briefly described some of the current analyses and find-
ings as follows.

Decan et al. (2016a) compared topology of dependency
graphs in CRAN, npm (package repository of JavaScript)
and PyPI (package repository of Python) and they found
various network metrics are statistically different between
ecosystems. This may reflect specific patterns of how pack-
ages are implemented in different programming languages.

8In a co-developer network, developers are nodes and two devel-
opers are connected if they contribute to the same package.
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In particular, they found Python packages are more iso-
lated where a large number of them only depend on the
standard core packages.

Abate et al. (2009) studied the transitive dependency
in the ecosystem. They proposed a metric “sensitivity”
which measures the total number of downstream packages.
They applied it to the Debian ecosystem and they revealed
packages with small amounts of direct dependents but af-
fecting majority of other packages in the ecosystem in an
indirect manner. They claimed sensitivity is a more mean-
ingful metric for measuring risks in the ecosystem.

Evolution of a package involves bug fixing, adding new
features and changing interfaces, thus it may cause code
breaks to downstream packages. Bogart et al. (2016) stud-
ied different responses to break changes, i.e., package up-
dates that are not compatible with its dependents pack-
ages, in the Eclipse, npm and CRAN ecosystems. They
found that different responses reflect the difference on poli-
cies and values of the repositories, such as that Eclipse re-
quires backward compatibility, npm allows break changes
via parallel versioning of the same package, and CRAN
requires compatibility always for the newest versions.

Jafari et al. (2021) discussed strategies applied in de-
pendent packages for getting rid of break changes from up-
stream. By analyzing the JavaScript ecosystem, they dis-
covered seven bad habits for handling dependencies, which
they named as “dependency smells”, for example, depend-
ing on a fixed version, or depending directly on a remote
repository with a URL. They argued these smells will pro-
duce potential risks to the ecosystem in the future. As a
note, the dependency smell they categorized can mostly
be applied to other ecosystems.

For a package P, Abate et al. (2009) proposed a metric
“strong dominance” which measures the proportion of P ’s
dependencies that are from an upstream package Q. The
metric helps to identify a package that dominantly con-
tributes dependencies to its downstream package P. It is
similar to the dependency heaviness metric we applied in
this paper, but the dependency heaviness metric is more
focused on the unique dependencies that Q contributes to
P in the ecosystem.

3. Background concepts

Reusable code in R is formatted as packages. R pro-
vides a flexible way for handling dependencies. In this
section, we first introduce the definitions of various depen-
dency relations. Next we categorize packages according to
their relations in the dependency graph, and specific heav-
iness metrics will be defined for them later in Section 4.1.

3.1. Dependency relations

Dependency relations are declared in the fields of “De-
pends”, “Imports”, “LinkingTo”, “Suggests” and “Enhances”
in an R package’s DESCRIPTION file, which locates un-
der the root directory of a package (Figure 1). Denote

Figure 1: The DESCRIPTION file of the package lubridate. Only
a fragment of the file is demonstrated. This is an example where
all five dependency fields are specified. For most of the packages
in CRAN/Bioconductor, only a subset of them is specified. Version
requirements can also be specified for dependency packages.

a package as P, dependency packages in its “Depends”
are expected to be directly used by users if P is to be
used, and they provide base functionalities for P. For ex-
ample, it might be a good idea to set the package ggplot2
as a “Depends” package for its extension packages. Depen-
dency packages in “Depends” are attached to the search
path9 in the R session ahead of P when executing the
command library(P). All their public functions are visi-
ble to users. Dependency packages listed in “Imports” are
internally used by P where specific functions, methods or
classes from there are imported into P ’s namespace based
on the rules defined in P ’s NAMESPACE file. The “Im-
ports” packages are also loaded in the R session, but they
are not attached to the search path, thus not visible to
users. Dependency packages listed in “LinkingTo” contain
header files to compile P ’s C/C++ code. Packages listed
in “Depends”, “Imports” and “LinkingTo” are necessary
for using P and they must be installed before installing P.

Fields “Suggests” and “Enhances” are similar. They
contain dependency packages that are not necessary for
using P, e.g., only used in examples or vignettes, or in
the code that provides optional functionalities of P. Thus,
these two types of dependencies are not mandatory to
be installed when installing P. However, dependencies in
“Suggests” are by default required for a complete R CMD

check10. “Enhances” field is more flexible and packages
listed are never checked.

In the CRAN/Bioconductor ecosystem, the proportions
of the five types of dependency relations are 8.8% for “De-

9Search path is an ordered list of environments and package
namespaces where a function is sequentially looked up when it is
executed by a user. The R function search() returns the search
path.

10R CMD check is a command that performs comprehensive checks
on a package. It checks source code, documentations, examples,
vignettes and it runs unit tests. A successful check is required for
acceptance on CRAN/Bioconductor.
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Package P

Package C, ...

Depends: package, ... 

Imports: package, ... 

LinkingTo: package, ...

Category C

Package A, ...

Depends: package, ... 

Imports: package, ... 

LinkingTo: package, ...

Category A

Package B, ...

Depends: package, ... 

Imports: package, ... 

LinkingTo: package, ...

Category B

Package D, ...

Depends: package, ... 

Imports: package, ... 

LinkingTo: package, ...

Category D

Package E, ...

Depends: package, ... 

Imports: package, ... 

LinkingTo: package, ...

Category E

Package F, ...

Depends: package, ... 

Imports: package, ... 

LinkingTo: package, ...

Category F

Depends: package, ... 

Imports: package, ... 

LinkingTo: package, ...

Suggests: package, ... 

Enhances: package, ... 

Figure 2: Demonstration of dependency relations between R packages. Packages in categories A-D are in the upstream of package P. Packages
in categories E and F are in the downstream of P.

pends”, 54.4% for “Imports”, 2.8% for “LinkingTo”, 33.7%
for “Suggests”, and 0.4% for “Enhances” from 194,351 re-
lations in 22,076 packages11. Readers please refer to the
official R manual “Writing R Extensions” (R Core Team,
2022) for more details on the dependency relations.

3.2. Flexible control of dependencies

Being different from other programming languages, R
provides a flexible control of dependencies. For example, in
JavaScript, all dependencies should be available in advance
of using a library, even if the functionality of a dependency
is only rarely used by users. As a comparison, R allows
specifying a set of core dependencies as well as a set of weak
dependencies. Dependencies used in P ’s source code can
be explicitly specified in a form of pkg::function(...)

where pkg is a parent of P. In this way, function() is
not directly imported from pkg, thus availability of pkg is
not mandatory for R CMD check while it is only checked
when pkg::function(...) is executed in P. Although
pkg contributes to P ’s source code, it is used optionally.
Thus it can be declared as a weak dependency and put in
P ’s “Suggests” field. This actually provides the possibility
to optimize P ’s dependencies. When a parent of P brings
a large number of extra dependencies but it only provides
limited functionalities which are rarely used by users, it
is reasonable to specify it as a weak dependency in “Sug-
gests”12. Actually this is the motivation of us to develop
the pkgndep package which helps developers easily identify
parent packages that contribute heavy dependencies.

11The dependency relations of all CRAN/Bioconductor packages
were obtained with the R function available.packages(). Data was
collected on 2022-06-08.

12Developer can write helper code to check whether weak parent is
already installed. If not, a friendly message can be printed to inform
users to install it.

3.3. Dependency categories

Depending on different dependency relations, the fol-
lowing dependency categories for package P are defined as
follows.

Strong parent packages: Dependency packages listed
in the “Depends”, “Imports”, and “LinkingTo” fields of P
(red box in Figure 2). They are also called strong direct
dependency packages of P. Strong parent packages are
mandatory to be installed when installing P. To make it
easy to discuss, we always referred to them as parent
packages in the paper.

Weak parent packages: Dependency packages listed
in the “Suggests” and “Enhances” fields of P (green box
in Figure 2). They are optionally required when installing
P.

Strong dependency packages: Total dependency
packages by recursively looking for parent packages (cat-
egory A, B, as well as packages in red box in Figure 2).
They are also called upstream packages. Note strong
dependency packages include parent packages. Strong de-
pendency packages are mandatory to be installed when
installing P and failure of any strong dependency pack-
age will prevent installation of P. In some other studies,
they are also called transitive dependency packages
(Decan et al., 2019; Mora-Cantallops et al., 2020b; Kikas
et al., 2017).

All dependency packages: Total dependencies by
recursively looking for parent packages, but on the level of
P, its weak parents are also included (package category A,
B, C and D, plus all packages listed in the red and green
boxes in Figure 2). It simulates when the full functionality
of P is required, or when all weak parents become strong
parents, the total number of strong dependency packages
that P requires. In this paper, we did not discuss packages
in this category, but for completeness, its definition is still
given here.
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P

A P1 P2 P3

P

A P1 P2 P3

X

P

B P1 P2 P3

P

B P1 P2 P3

Y

Package: P
Type: Package
Title: title
Version: 0.99.0
Date: 2022-06-08
Authors: Zuguang Gu
Imports: A, parent1, parent2,

parent3
Suggests: parent4 parent5
...

Package: P
Type: Package
Title: title
Version: 0.99.0
Date: 2022-06-08
Authors: Zuguang Gu
Imports: parent1, parent2, 

parent3
Suggests: A, parent4, parent5
...

Package: P
Type: Package
Title: title
Version: 0.99.0
Date: 2022-06-08
Authors: Zuguang Gu
Imports: parent1, parent2,

parent3
Suggests: B, parent4, parent5
...

Package: P
Type: Package
Title: title
Version: 0.99.0
Date: 2022-06-08
Authors: Zuguang Gu
Imports: B, parent1, parent2, 

parent3
Suggests: parent4, parent5
...

A

E F G H

B C D

Figure 3: Demonstration of the heaviness definition. A) Fragment of the DESCRIPTION file of package P where package A is a strong
parent. B) Change A to a weak parent of P, i.e., by moving A to P ’s “Suggests”. C) The dependency graph of all upstream packages of P.
Note the graph only contains strong dependency relations. D) Remove the relation between A and P from the dependency graph to simulate
A has become a weak parent of P. E) Fragment of the DESCRIPTION file of package P where package B is a weak parent. F) Change B to
a strong parent of P, i.e., by moving B to P ’s “Imports”. G) The dependency graph of all upstream packages of P. Note since B is a weak
parent of P, there is no connection between B and P. H) Add a new connection between B and P to simulate B has become a strong parent
of P.

Child packages: Packages whose parents include P
(category E in Figure 2). They are the packages on which
P has a direct impact of dependencies. In some studies
and package repositories, they are also called direct de-
pendents (German et al., 2013).

Downstream packages: Total packages by recur-
sively looking for child packages (category E and F in
Figure 2). P is required for the installation of any of its
downstream packages. Note downstream packages include
child packages.

Indirect downstream packages: Downstream pack-
ages excluding child packages (category F in Figure 2), i.e.,
these with distance to P of at least 2 in the global depen-
dency graph. These are the packages on which P has an
indirect influence of dependencies.

Except explicitly clarifying, the term “dependency” al-
ways refers to “strong dependency” in the paper.

4. Methods

4.1. Definitions of dependency heaviness
The dependency heaviness in general measures the num-

ber of additional dependencies that a parent uniquely brings
to its child packages or downstream packages in the ecosys-
tem. Depending on different dependency categories de-
fined in Section 3.3, there are various heaviness metrics
listed in the following subsections.

Heaviness from a parent. If package A is a strong
parent of P, the heaviness of A on P denoted as h is cal-
culated as

h = n1 − n2 (1)

where n1 is the number of strong dependencies of P (Fig-
ure 3A), and n2 is the number of strong dependencies
of P after changing A from a strong parent to a weak
parent, i.e., by moving A to P ’s “Suggests” (Figure 3B).
Thus, the heaviness measures the number of additionally
required strong dependencies that A brings to P and are
not brought by any other parent. In some discussions in
the paper, we explicitly denoted it as hA→P to indicate the
parent-child relation, or hA if only the parent is of interest.

If package B is a weak parent of P, n2 is defined as the
number of strong dependencies of P after changing B to
a strong parent of P, i.e., by moving B to P ’s “Imports”
(Figure 3E-F). In this scenario, the heaviness of the weak
parent is calculated as n2 − n1.

From the aspect of dependency graph denoted as a di-
rected graph G = (V,E) where V is the set of all packages
and E is the set of all strong parent-child dependency re-
lations in the ecosystem, the heaviness of A on P is a score
associated with an edge eA→P ∈ E. Now n1 is the number
of upstream packages of P (n1 = 9 in Figure 3C) and n2 is
the number of upstream package of P after removing the

6



connection of A→ P from G (n2 = 6 in Figure 3D), thus
the heaviness of A on P is n1−n2 = 3. When B is a weak
parent of P, n2 is calculated as the number of upstream
packages after adding a new connection of B → P to G
(Figure 3G-H).

Since weak parents are not necessarily required for P,
in this paper, we only discussed the heaviness from strong
parents.

Max heaviness from parents. Normally, a package
has multiple parents. Max heaviness from parents helps to
reveal the parent that dominantly brings extra dependen-
cies to package P. Assume P has Kp parents, the heaviness
denoted as hmax is defined as

hmax = max
k∈{1..Kp}

hk (2)

where hk is the heaviness of the k th parent on P.
Heaviness from an upstream package. If package

C is an upstream package of P in the global dependency
graph, let n1 be the number of strong dependencies of P,
and let n2 be the number of strong dependencies of P after
changing C to a weak parent of all C ’s child packages, then
the heaviness of C on P denoted as hu is calculated as

hu = n1 − n2. (3)

From the aspect of the dependency graph, n2 is the
number of upstream packages of P after removing all edges
which start from C. When C is only a parent of P (i.e.,
distance from C to P is one), hu is not always identical to
h. Assume C is a parent of P and P has another parent
A where C is also a parent of A, i.e., with the relations
of C → P and C → A → P . h just measures the local
dependency effect which only removes C → P , while hu

is a global dependency effect which removes all links from
C, i.e., both C → P and C → A, which results in general
hu ≥ h. In some discussions in the paper, we denoted it
explicitly as hC→P

u to indicate the upstream-downstream
relation.

Heaviness on child packages. Assume P has Kc

child packages and the k th child is denoted as Ak. Denote
the number of strong dependencies of Ak as n1k, and de-
note the number of strong dependencies of Ak after chang-
ing P to a weak parent of Ak as n2k, the heaviness of P
on its child packages denoted as hc is calculated as

hc =
1

Kc

Kc∑
k=1

(n1k − n2k). (4)

n1k−n2k is actually the heaviness of P on Ak, Equation
4 can be rewritten as

hc =
1

Kc

Kc∑
k=1

hP→Ak . (5)

The heaviness measures the average number of addi-
tional dependencies that P brings to its child packages.

Heaviness on downstream packages. The defini-
tion is similar to the heaviness on child packages. Assume
P has Kd downstream packages and the k th downstream
package is denoted as Bk. Denote the number of strong de-
pendencies of Bk as n1k, and denote the number of strong
dependencies of Bk after changing P to a weak parent of
all P ’s child packages as n2k. The heaviness of P on its
downstream packages denoted as hd is calculated as

hd =
1

Kd

Kd∑
k=1

(n1k − n2k). (6)

From the aspect of the dependency graph, n2k is the
number of upstream packages of Bk in a reduced graph
where P is removed. Equation 6 can be rewritten as

hd =
1

Kd

Kd∑
k=1

hP→Bk
u (7)

where hP→Bk
u is the heaviness of P as an upstream package

on Bk. In this way, hc and hd are not always identical if
P only has child packages. hc is a local measure while hd

is a global measure. They have the relation of hd ≥ hc.
Heaviness on indirect downstream packages. The

calculation is the same as hd except here child packages are
excluded from downstream packages. Denote the heavi-
ness as hid and denote the set of P ’s child packages as Sc,
hid is defined as

hid =
1

Kd −Kc

Kd∑
k=1

(n1k − n2k) · I(Bk /∈ Sc) (8)

where Kc and Kd are the numbers of child and downstream
packages respectively, and I() is an indicator function. hid

is set to 0 if Kc = Kd, i.e., P has no indirect downstream
packages. hid measures the contribution of dependencies
of P to the ecosystem in an indirect way.

4.2. Adjusted heaviness

In the Results section (Section 7), we performed de-
pendency heaviness analysis on the CRAN/Bioconductor
ecosystem. One of the aims is to prioritize packages which
are significantly affected by upstream packages or affect
their downstream packages in the ecosystem. If grouping
packages by K which can be the number of parent, child
or downstream packages depending on different types of
heaviness metrics, distributions of heaviness values always
have long tails, and tails are especially longer for smaller K
(Figure 6 and 9). Thus, if simply ranking packages based
on the original heaviness values, top packages are prefer-
ably associated with small K. In general, packages with
small K are of less interest because they only have very
small impacts on the ecosystem. To prioritize packages
with broader impacts on the ecosystem, the original defini-
tions of various heaviness metrics are adjusted to decrease
the weights of packages with smaller K. Please note, the

7



0.80

0.85

0.90

0.95

1.00

0 10 20 30
Value of a

S
ta

bi
lit

y 
of

 r
an

ks
 o

f a
ll 

he
av

in
es

se
s 

co
m

pa
re

d 
to

 p
re

vi
ou

s 
a

A) Adjust heaviness on child packages

0.925

0.950

0.975

1.000

0 10 20 30
Value of a

S
ta

bi
lit

y 
of

 r
an

ks
 o

f a
ll 

he
av

in
es

se
s 

co
m

pa
re

d 
to

 p
re

vi
ou

s 
a

B) Adjust heaviness on indirect downstream packages

Figure 4: Select a proper penalty value a for adjusting heaviness values. A) Adjust heaviness on child packages. B) Adjust heaviness on
indirect downstream packages. Vertical dashed lines are the final selections of the penalty values.

designs of the adjusted heaviness metrics are empirical and
the absolute values of adjusted heaviness are meaningless,
which are only used for ranking packages.

Adjusted max heaviness from parents. When a
package has more parents, dependencies from individual
parents would have more overlap (i.e., dependencies from
parent A overlap to dependencies from parent B). Since
heaviness only measures the number of unique dependen-
cies that a single parent brings in, or in other words, the
number of dependencies that are mutually exclusive to
those brought by all other parents, with more parents, the
max heaviness from parents would decrease. For a package
indexed as k in the ecosystem, the original max heaviness
from parent denoted as hmax,k is adjusted to hadj

max,k, by
multiplying a zooming factor denoted as ak:

hadj
max,k = ak · hmax,k. (9)

ak is defined as

ak = (nk + 30)/nmax (10)

where nk is the number of parents of the k th package, and
nmax is the maximal number of parents of all packages in
the ecosystem. The value of 30 was selected empirically to
balance the zooming rate on different nk.

Adjusted heaviness on child packages. Generally,
heaviness on child packages has a trend that distribution
tails are shortened when the numbers of child packages
increase (Figure 9). This is mainly because if package
P has more child packages, its child packages may have
more other parents which dilute the heaviness from P. To
decrease the weights of packages with small numbers of
child packages, a positive penalty term denoted as a is

added to Kc as in Equation 11 where Kc is the number
of child packages and hadj

c is the adjusted heaviness of a
package on its child packages. Note a is set to the same
value for all packages.

hadj
c =

1

Kc + a

Kc∑
k

(n1k − n2k) =
Kc

Kc + a
· hc. (11)

It is easy to see that a decreases hc faster for smaller Kc

than larger Kc. To select an optimized value for a, we took
a as integers in the set {1, 2, . . . , 29, 30}; and for a specific
package indexed as k and a value of a, we calculated the
adjusted heaviness on its child packages denoted as hadj

c,k,a,

and the vector for all packages is denoted as hadj
c,a . a is

selected as the value by which the ranking of adjusted
heaviness of all packages becomes stable. To measure the
stability of the ranking in hadj

c,a compared to hadj
c,a−1, we

calculated the stability score denoted as sa as

sa =
1

N

N∑
k

I(|Rk,a −Rk,a−1| ≤ 50) (12)

where N is the total number of packages in the ecosys-
tem, Rk,a and Rk,a−1 are the ranks of package k’s adjusted

heaviness in the two vectors hadj
c,a and hadj

c,a−1 respectively,
and I() is the indicator function.

sa, or its general denotation s, measures the fraction of
packages whose ranking differences of adjusted heaviness
are no larger than 50 between two neighboring values of
a (50 is a small value compared to the total number of R
packages in the ecosystem, which is 22,076 in this study).

8
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Figure 5: Demonstration of the co-heaviness definition. A) Fragment of the DESCRIPTION file of package P where package A and B are
two strong parents. B) Change both A and B to weak parents of P, i.e., by moving A and B to P ’s “Suggests”. C) The dependency graph
of all upstream packages of P. Note the graph only contains strong dependency relations. D) Remove the relation between A and P from the
dependency graph to simulate A has become a weak parent of P. E) Remove the relation between B and P from the dependency graph to
simulate B has become a weak parent of P. F) Remove the relations from both A and B to P from the dependency graph to simulate A and
B have become two weak parents of P. The number of blue nodes in Figure F corresponds to the value of co-heaviness of A and B on P.

When s becomes stable with a, we could conclude increas-
ing a won’t greatly change the ranking in s. In Figure 4A,
we calculated s on a list of a in {1, 2, . . . , 29, 30}. By ob-
serving the trend of the curve, we can see when a = 10 (red
vertical in Figure 4A), s starts to increase slowly. Thus, a
was empirically selected to 10.

Adjusted heaviness on indirect downstream pack-
ages. The definition is the same as the adjusted heaviness
on child packages. For a package P, the adjusted heaviness
denoted as hadj

id is calculated as:

hadj
id =

Kid

Kid + a
· hid (13)

where Kid is the number of indirect downstream packages,
i.e., Kid = Kd − Kc. The penalty a was selected in a
similar way as for child packages. It was selected as a = 6
(Figure 4B).

The heaviness on all downstream packages can be ad-
justed in the same way. However, in this study, we only
looked at the heaviness on indirect downstream packages
instead of total downstream packages, thus, here we omit-
ted the definition of adjustment of heaviness on all down-

stream packages.

4.3. Co-heaviness from parent pairs

Heaviness from parent A on P only measures the num-
ber of additional dependencies that A uniquely brings to
P. However, there are scenarios where multiple parents im-
port a similar set of dependencies, which results in heav-
iness from individual parents being very small. Here we
define the co-heaviness that measures the number of ad-
ditional dependency packages simultaneously brought by
two parent packages (Figure 5). Let A and B be two par-
ents of P, let SA be the set of reduced dependency packages
when only changing A to a weak parent of P (Figure 5D),
let SB be the set of reduced dependency packages when
only changing B to a weak parent of P (Figure 5E), and
let SAB be the set of reduced dependency packages when
changing both A and B to weak parents of P, then the
co-heaviness of A and B on P denoted as hco is defined as

hco = |SAB \ ∪(SA, SB)| (14)

where X \Y is the set of elements in X but not in Y , and
|X| is the number of elements in set X (Figure 5F). The co-
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heaviness measures the number of reduced packages only
caused by co-action of A and B. In some discussions in the

paper, we denoted it explicitly as h
(A,B)→P
co to indicate the

relations.
With the previous denotations, there are

hA = |SA| (15)

hB = |SB | (16)

SA ∩ SB = ∅ (17)

where hA is the heaviness of A on P, hB is the heaviness
of B on P, and SA and SB are mutually exclusive. Then
there is the following relation:

|SAB | = hco + hA + hB . (18)

Thus, the number of reduced dependencies by moving
both A and B to P ’s weak parents is the sum of heaviness
of A and B on P individually and the co-heaviness of A
and B on P (Figure 5F).

5. Tools and materials

In our previous study (Gu and Hübschmann, 2022),
we have developed an R package pkgndep which performs
dependency heaviness analysis on single packages. For a
given R package whose dependency packages are only from
CRAN and Bioconductor, pkgndep calculates the depen-
dency heaviness from every of its parent package, addi-
tionally with an intuitive heatmap visualization as well as
an HTML report, which helps developers to easily reveal
heavy parents. To be a companion tool for the study de-
scribed in this paper, we have updated pkgndep to version
1.2.0 with new functionalities for analyzing the R package
ecosystem13. Given a package P, there are the following
functions for querying package dependencies in various de-
pendency categories:

• parent dependency()

• upstream dependency()

• child dependency()

• downstream dependency()

And there are the following functions for calculating
the corresponding dependency heaviness metrics:

• heaviness()

• co heaviness()

• heaviness from upstream()

• heaviness on children()

13https://CRAN.R-project.org/package=pkgndep.

• heaviness on downstream()

The function names are self-explanatory. We believe
these new functions will be convenient tools for researchers
who wish to perform software engineering studies on the
R package ecosystem.

The analysis on the R package ecosystem is bound
to a certain snapshot of CRAN and Bioconductor. In
this study, dependency relations of all CRAN and Bio-
conductor packages (we call it the “package database”)
were obtained with the function available.packages()

on 2022-06-0814. This resulted in 18,638 R packages from
CRAN, 3,438 packages from Bioconductor (bioc version
3.15), and 124,251 strong dependency relations in the two
ecosystems. Various dependency analyses in this study
were applied with the pkgndep package with its aforemen-
tioned new functions. The result is represented as a ta-
ble where rows are R packages and columns are various
heaviness metrics. The table can be obtained by the func-
tion all pkg stat snapshot() in pkgndep. Network anal-
ysis was applied with the package igraph (Csardi and Ne-
pusz, 2006) and visualized with Cytoscape (Shannon et al.,
2003) and the R package RCy3 (Gustavsen et al., 2019).

For reproducibility of this study, we have integrated
the script for calculating dependency metrics for all pack-
ages in the pkgndep package and it can be accessed with
the command system.file("extdata", "analysis.R",

package = "pkgndep"). The scripts for the figures in
this paper are available at https://github.com/jokergoo/
pkgndep global. pkgndep version 1.2.* can be used to re-
produce the complete analysis in this study. We plan to
regularly update the package database in pkgndep to en-
sure the dependency analysis on R packages is always up-
to-date.

6. Research questions

Dependency heaviness is a directional measure. It mea-
sures the amount of dependencies uniquely transmitted
from a package to its single or total downstream packages.
In the context of the complex dependency graph, we sep-
arated our research questions (RQs) into three categories
according to different dependency directions.

Packages have certain numbers of parents and each par-
ent may bring additional dependencies transitively. We
studied the dependency flow from parent to child packages
and we first asked the following two research questions:

• RQ1: What is the general pattern of depen-
dency heaviness from parents? This includes
the following sub questions: 1. What is the propor-
tion of packages suffering from heavy parents and
what are they? 2. How is the dependency heaviness
accumulated from remote upstream packages?

14available.packages() always returns the metadata of the
newest versions of all packages hosted on CRAN/Bioconductor.
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Table 1: Average values of various metrics of packages on CRAN and Bioconductor. Nchild: number of child packages; Nindirect: number of
indirect downstream packages.

Metrics averaged in the ecosystem CRAN Bioconductor

Number of strong dependencies 30.8 66.1
Number of parents 5.1 8.4
Max heaviness from parents 13.3 24.6
Max co-heaviness from parents 4.5 12.2
Number of children 4.7 3.5
Number of children (with Nchild > 0) 18.2 15.2
Heaviness on child packages (with Nchild > 0) 7.8 14.8
Number of indirect downstream 29.0 11.5
Number of indirect downstream (with Nindirect > 0) 256.8 136.5
Heaviness on indirect downstream packages (with Nindirect > 0) 4.4 8.3

• RQ2: It is very common that a package depends
on multiple parents. The second research question is
how do two parents contribute dependencies
synergistically?

For hub packages such as ggplot2 in the ecosystem,
their dependencies are all passed to their downstream pack-
ages. With regards to the impacts on downstream pack-
ages, we asked the next following two research questions:

• RQ3: What is the general pattern of depen-
dency heaviness of a package contributing to
all its child packages? This also includes several
sub questions: 1. What is the distribution of de-
pendency heaviness on child packages? 2. What are
the top packages that spread the highest amount of
dependencies directly to their children?

• RQ4: A package may transmit dependencies to its
remote downstream packages. We next asked what
are the differences between the dependency
heaviness transmission to indirect downstream
packages and to direct child packages?

CNA on the dependency graph can reveal interesting
structures of dependency transmission in the ecosystem.
From the aspect of network analysis, we asked the last
research question:

• RQ5. How are the dependency flows trans-
mitted throughout the ecosystem? This in-
cludes the following sub questions: 1. What is the
global attribute and structure of the dependency graph
if taking dependency heaviness as weight? 2. How
deep can the dependency heaviness be transmitted?
3. Does there exist a core graph that transmits the
majority of the dependencies in the ecosystem?

When answering these research questions, we also ex-
amined the difference between CRAN and Bioconductor
to reveal ecosystem-specific patterns.

7. Results

7.1. RQ1: Heaviness from parent packages

A package may have multiple parents. Here we only
studied the max heaviness from its parents (abbreviated
as MHP) which measures the number of unique dependen-
cies that a package maximally inherits from its parents.
In Section 7.1.3, we demonstrated that if a package suf-
fers heavy dependency from its parents, it is very likely
that one or only a very few parents contribute heavy de-
pendencies to it. Therefore, MHP is a reasonable metric
for studying the general pattern of heaviness from parent
packages.

7.1.1. Distribution of MHP

In general, MHP has a long-tail distribution where
82.4% of all packages have a heaviest parent contributing
heaviness < 30, whereas there are only 878 (4.0%) pack-
ages having a heaviest parent contributing heaviness ≥ 60.
Therefore, only a small fraction of packages have heavy
parents in the ecosystem. For 878 packages with extremely
heavy parents (MHP ≥ 60), 785 (89.4%) of them only
have less than 15 parents, which indicates packages with
small numbers of parents are more likely to have heavy
parents. Also interestingly, 720 (82.0%) of them do not
have child packages, which indicates when packages have
heavier parents, they are more likely to be leaf packages in
the dependency graph and no other package depends on
them.

Distribution tails of MHP are shortened when numbers
of parents increase (Figure 6A). As has been explained in
Section 4.1, MHP measures the number of unique depen-
dencies that a single parent maximally brings in. Thus,
with more parents, dependencies from multiple parents
would have more chances to overlap, which results in de-
creasing MHP. In Figure 6A, it can be straightforwardly
observed that, on the top edge of the point clouds, there is
a clear trend where MHP drops as the number of parents
increases.
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Globally, Bioconductor packages have heavier parents
than CRAN packages. The mean MHP for all Biocon-
ductor packages is 24.6 while it is only 13.3 for all CRAN
packages (Table 1. The median values are 16 vs 6). Nev-
ertheless, the difference of MHP in the two repositories
becomes smaller when the number of parents increases.
E.g., when only considering packages with parents > 20
(580 packages left), the mean MHP values are 27.2 vs 22.8
for CRAN and Bioconductor packages, and the median
values are 23 vs 19.

Bioconductor packages suffer heavier parents than CRAN
packages. The reason might be that Bioconductor pack-
ages are mainly for biological data analysis and many of
them integrate various analyses and annotation resources
from upstream packages (average numbers of parents are
5.1 and 8.4 for CRAN and Bioconductor, Table 1). Thus,
it is easier for dependency heaviness to be accumulated
from upstream on Bioconductor (average numbers of strong
dependencies are 30.8 and 66.1 for CRAN and Biocon-
ductor, Table 1). For example, the Bioconductor pack-
age miRspongeR listed as a top package in Figure 6A has
an upstream package SPONGE which integrates analy-
sis from a list of heavy parents for different analysis aims
(tidyverse for data processing, ggpubr for visualization,
biomaRt for obtaining biological annotation data, caret
for statistical modeling).

7.1.2. Top packages with the highest MHP

If a package has more upstream dependencies, it is
more vulnerable to corruptions from its upstream pack-
ages. We identified top packages with the highest MHP
and these top packages have the most risky parents in the
ecosystem from the aspect of how they uniquely contribute
risks to their child packages.

Packages with smaller numbers of parents have longer
distribution tails of MHP. To capture top packages with
the heaviest parents but not biased by the small numbers
of parents, the original MHP was adjusted. Top packages
that have extremely heavy parents are filtered by adjusted
MHP ≥ 60 and they are marked in red in Figure 6A. We
found there are 8 CRAN packages and 24 Bioconductor
packages that have extremely heavy parents. This also in-
dicates Bioconductor packages may suffer more from heavy
parents. Among them, the package MinBAR has the high-
est MHP with the heaviest parent named ecospat which
uniquely contributes 206 additional dependencies to Min-
BAR.

When a package suffers from an extremely heavy par-
ent, the next question naturally to ask is how are the de-
pendencies accumulated from the upstream of the heavy
parent? Figure 6B illustrates upstream dependencies of
the top 32 packages with adjusted MHP ≥ 60. To keep
the graph small and compact, parent-child with depen-
dency heaviness ≥ 20 are only included in the graph. In
other words, the graph in Figure 6B contains major de-
pendency flows from upstream to the packages suffering

heavy parents. Interestingly, for most packages, high de-
pendencies are accumulated from upstream in very long
ranges. The longest transmission path in the graph has a
length of 9, e.g., from testthat to treekoR or censcyt. As a
comparison, the average distance in the global dependency
graph is only 2.6. We also found heavy dependencies can
be inherited from the same parents, such as Seurat trans-
mitting on average 130 unique dependencies to its 3 child
packages and lumi transmitting on average 152 unique de-
pendencies to its 7 child packages. The transmission of
heaviness will be further discussed in Section 7.3 on the
short-range transmissions and in Section 7.5 on the long-
range transmissions.

7.1.3. Uniqueness of the heaviest parents

A package may have multiple parents. We observed a
general pattern that only a small number of parents con-
tribute large heaviness while the majority of other parents
only contribute very small heaviness to their child pack-
ages. The Gini index was used to quantitatively measure
the dispersion of the heaviness distribution from a pack-
age’s parents. When the Gini index is close to 1, there is
a uniquely high heaviness value; and when the Gini index
is close to zero, the heaviness values approximately follow
a uniform distribution. Figure 6C shows that there is a
clear trend that when MHP increases, i.e., when the par-
ents get heavier, the Gini indices increase as well. For the
top packages with extremely high MHP, the corresponding
Gini indices are very close to 1. This indicates these heavi-
est parents play unique and dominant roles in contributing
dependencies to their child packages.

Answer to RQ1

Only a small fraction of R packages in the ecosystem
suffer from heavy parents. The heavy dependencies on
them are normally accumulated from far upstream. If
a package suffers from heavy parents, it is very likely
the heaviest parent plays a unique and dominant role
in contributing dependencies to it.

7.2. RQ2: Co-heaviness from two parent packages

Heaviness discussed in Section 7.1 only measures the
number of dependencies that a single parent uniquely brings
in. However, there are scenarios where multiple parents
import similar sets of dependencies, which results in heav-
iness from individual parents being very small. Taking
the package DESeq2 (version 1.36.0) as an example, its
two parent packages geneplotter and genefilter import 51
and 53 dependencies respectively, among which 50 are the
same15. Due to the high overlap, the heaviness of geneplot-
ter and genefilter on DESeq2 are only 1 and 2. In this sec-
tion, we studied the dependency heaviness simultaneously

15The heaviness analysis on DESeq2 can be accessed in the heav-
iness database introduced in Section 8.
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imported by two strong parents, i.e., the co-heaviness. In
the analysis, for a package, we only looked at the max-
imal co-heaviness from all its parent pairs (abbreviated
as MCoHP). Empirically, MCoHP is dramatically higher
than the co-heaviness from other pairs if a package has
an obvious heavy parent pair. For the ease of discussion,
we name the parent pair which contributes the highest co-
heaviness as the MCoHP parents in the paper.

7.2.1. Relations of parent pairs

In the CRAN/Bioconductor ecosystem, we found 92.6%
of all packages have MCoHP < 20, and only 533 (2.4%) of
them (143 from CRAN and 390 from Bioconductor) have
MCoHP ≥ 40, which indicates the proportion of pack-
ages whose heavy dependencies are simultaneously inher-
ited from two parents are extremely small in the ecosys-
tem. Denote two parents of package P as A and B, the
relations of parent pairs can be summarized into the fol-
lowing four categories:

1. Parent-child. E.g., B is a parent of A where A
inherits all dependencies from B.

2. Upstream-downstream. E.g., B is an indirect up-
stream package of A where A also inherits all depen-
dencies from B.

3. Common-upstream. There exists a common up-
stream package C of A and B where C contributes
heavy dependencies to both A and B, defined as

hC→A
u > 0.75h

(A,B)→P
co and hC→B

u > 0.75h
(A,B)→P
co .

This means the co-heaviness of A and B mainly comes
from C.

4. No clear relation. The dependencies of A and B
are accumulated from their upstream packages inde-
pendently; or A and B may have common upstream,
but the upstream packages do not contribute signif-
icantly high heaviness on them.

For the 533 top packages with MCoHP ≥ 40, in 486
(91.2%) packages, MCoHP parents are in parent-child rela-
tion; in 4 (0.75%) packages, MCoHP parents are in upstream-
downstream relation; in 13 (2.4%) packages, MCoHP par-
ents are in common-upstream relation; and in 30 (5.6%)
packages, MCoHP parents have no clear relation (Figure
7).

7.2.2. Parent pairs that contribute high co-heaviness

Since most MCoHP parents are in parent-child rela-
tions, we next studied whether there is preference of select-
ing a member of the MCoHP parents. Again only in the
533 packages with MCoHP ≥ 40, we found in the Biocon-
ductor ecosystem, the package AnnotationDbi dominantly
contributes high co-heaviness to its child packages as a
MCoHP parent (Figure 8A-B). Top four companion pack-
ages co-working with AnnotationDbi are org.Hs.eg.db (af-
fecting 79 child packages), org.Mm.eg.db (affecting 51 child
packages), GenomicFeatures (affecting 48 child packages)
and org.Rn.eg.db (affecting 35 child packages) (Figure 8A).
AnnotationDbi is a base Bioconductor package which de-
fines the general database interface, and a large number of
other packages storing specific biological annotation data
are implemented with this interface. To use a specific an-
notation package from Bioconductor, methods from Anno-
tationDbi should also be used for extracting correspond-
ing data. Therefore, the data packages (e.g., org.Hs.eg.db
for human, org.Mm.eg.db for mouse and org.Rn.eg.db for
rat) and AnnotationDbi are normally used together. Sim-
ilarly, AnnotationHub and ExperimentHub provide similar
functionalities for storing external annotation and exper-
imental data. ExperimentHub inherits the same set of
function interface from AnnotationHub, thus any pack-
age depending on ExperimentHub would also depend on
AnnotationHub. These two “*Hub” packages are becom-
ing standard ways for handling external data and they
are used more and more frequently in the Bioconductor
system. Figure 8B shows the number of child packages
of the MCoHP parent packages. Besides the aforemen-
tioned three “org.*.eg.db” packages, AnnotationDbi co-
works with in total 18 packages on Bioconductor and it
affects 235 child packages with mean co-heaviness of 44.
There are other examples of heavy MCoHP parents (Fig-
ure 8B). The package GenomicFeatures co-works with 9
other packages where GenomicFeatures provides tools for
manipulating gene/transcript annotations and the com-
panion packages are organism-specific annotation pack-
ages. The package BSgenome co-works with 30 other pack-
ages where BSgenome provides classes and methods for
dealing with genome sequences, and the companion pack-
ages are also organism-specific annotation packages.
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Figure 8: Co-heaviness in the CRAN/Bioconductor ecosystem. A, C, E) Number of child packages for each MCoHP parent pair. A: all 390
top Bioconductor packages; C: the top Bioconductor packages of which MCoHP parents do not include the annotation packages listed in
Figure B; E: all 143 top CRAN packages. In Figure A, C, E, numbers in the parentheses are the average co-heaviness. B, D, F) Number of
child packages for packages as a member of MCoHP parents. In Figure B, D, F, numbers in the parentheses are the average co-heaviness and
numbers of companion packages. All analyses are restricted to 533 packages with MCoHP ≥ 40. MCoHP: max co-heaviness from parents.
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As has been demonstrated previously, top packages
contributing strong co-heaviness in the Bioconductor ecosys-
tem are all annotation-related packages. We next explored
Bioconductor by excluding the eight top annotation-related
packages listed in Figure 8B. We aimed to study the co-
heavines patterns for the “software packages” on Biocon-
ductor. Figure 8C shows now there is almost no dominant
parent pair contributing strong co-heaviness, except the
pair CAMERA and xcms. These two packages are both
for mass spectrometry data analysis and they contribute a
mean co-heaviness of 77 to their 5 child packages. CAM-
ERA and xcms provide core functionalities for mass spec-
trometry data analysis and additional packages in the field
might need to depend on both of them. Figure 8D lists
top Bioconductor software packages as heavy co-parents.
Notably, the package Gviz which provides a general visu-
alization framework for genomics data affects 6 child pack-
ages as a co-parent with other 4 comparison packages. It
contributes on average a co-heaviness of 88 which is much
higher than other co-parent packages.

For CRAN packages, there are less package pairs that
contribute strong co-heaviness to their child packages (av-
erage MCoHP are 4.5 and 12.2 for CRAN and Bioconduc-
tor, Table 1). There is only one parent pair Hmisc and rms
that contribute strong co-heaviness on their 9 child pack-
ages with average co-heaviness of 57 (Figure 8E). Also,
Hmisc affects 20 child packages as a co-parent with other
9 companion packages (Figure 8F) where Hmisc is a parent
of all its companion packages.

Answer to RQ2

Only a small fraction of R packages in the ecosystem
inherit dependencies uniquely and simultaneously from
two parents. The two parents contributing high co-
heaviness mostly have the relation of parent-child, thus
they provide a similar set of dependencies. There are
more Bioconductor packages having high co-heaviness
from parents where one parent provides an interface
for manipulating biological data and the other parent
provides data for specific organisms with that interface.
On CRAN, there are very few packages suffering from
high co-heaviness from parents.

7.3. RQ3: Heaviness on child packages

We studied how a package P contributes dependency
heaviness to its child packages (abbreviated as HC) by
looking at the average number of dependencies uniquely
brought by P.

7.3.1. Distribution of HC

Figure 9A illustrates the distribution of HC for 5,593
(25.3%) packages with at least one child. In general, dis-
tributions of HC have very long tails for packages with
small numbers of children, and distribution tails are short-
ened dramatically as numbers of children increase. This

is mainly because when P has more child packages, the
heaviness on child packages may be diluted by their other
parents.

On average, CRAN packages have slightly more chil-
dren than Bioconductor (18.2 vs 15.2, Table 1), but with
smaller average HC (7.8 vs 14.8, Table 1)16. In Section 7.1,
we have demonstrated Bioconductor packages have more
parents and inherit more strong dependencies, thus it is
expected that they on average transmit more dependency
heaviness to their children.

7.3.2. Top packages with the highest HC

From the perspective of R package developers, HC is
especially useful because it also measures the expected
number of additional dependencies if P is added as a new
strong parent of their packages. Thus it is important to list
top packages that contribute high heaviness in the ecosys-
tem. Similarly, we also adjusted original HC and we set
adjusted HC ≥ 30 to extract top packages that broadly
affect a large number of child packages in the ecosystem
(Figure 9A and Table 2). Not surprisingly, these top pack-
ages already inherit large amount of dependencies from
their parents (the column Nstrong in Table 2), and most of
these dependencies are transmitted to their child packages
uniquely (the column Nchild in Table 2). To list a few, the
package lumi has 162 dependencies from its parents, and
on average 114 (70.4%) of them are uniquely contributed
to its child packages; the package RTCGA has 127 depen-
dencies from its parents, and all of them uniquely go to
its child packages. Also as listed in Table 2, there are
several packages transmitting large heaviness to broader
sets of child packages, such as the package caret contribut-
ing on average 41 additional dependencies to its 180 child
packages, the package car contributing on average 40.6
additional dependencies to its 183 child packages, and the
package ggpubr contributing on average 37.0 additional de-
pendencies to its 125 child packages. These packages play
major roles in contributing heavy dependencies to their
child packages in the ecosystem.

Expectedly, many of the top packages listed in Table
2 are popular and widely applied in various fields such
as general statistical modeling (car, caret, fda, rms and
FactoMineR), specific analysis approaches on biological
data (WGCNA and Seurat), data visualization (ggpubr,
Gviz and survminer) and infrastructure-related applica-
tions (devtools and tidyverse), thus they are depended-on
by a great number of child packages. However, developers
who depend on these top packages should be aware of the
potential risks that they introduce.

7.3.3. How do package dependencies transmit to children?

Package P may have multiple child packages. We ex-
plored the distribution of individual heaviness values of P
on all its child packages. In Figure 9B, when packages

16Statistics are based on packages with at least one child package.
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Table 2: Top packages with adjusted HC ≥ 30. Nstrong: number of strong dependencies; Nchild: number of child packages; HC: heaviness on
child packages.

Package Nstrong Nchild HC Repository Package Nstrong Nchild HC Repository

ecospat 232 3 151.0 CRAN GenomicScores 98 26 56.0 Bioconductor
RTCGA 127 9 128.0 Bioconductor AER 92 22 52.6 CRAN
lumi 162 13 114.2 Bioconductor WGCNA 108 33 52.3 CRAN
Rcmdr 135 45 101.2 CRAN drc 96 17 51.1 CRAN
Deducer 107 5 94.6 CRAN tidyverse 107 89 48.4 CRAN

Seurat 145 38 85.3 CRAN devtools 76 80 47.0 CRAN
taxize 127 12 77.4 CRAN Gviz 142 37 43.5 Bioconductor
TraMineR 100 7 77.1 CRAN FactoMineR 104 52 41.2 CRAN
smacof 122 8 75.2 CRAN caret 81 180 41.0 CRAN
brms 123 13 65.1 CRAN car 87 183 40.6 CRAN

MESS 84 9 63.8 CRAN ggpubr 96 125 37.0 CRAN
minfi 141 38 62.4 Bioconductor rms 78 54 36.8 CRAN
survminer 115 27 58.2 CRAN fda 60 78 33.9 CRAN

have high adjusted HC values, i.e., ranked as top packages
affecting their child packages, Gini indices of the heaviness
values get close to 0.2. It indicates that top heavy pack-
ages contribute dependencies almost evenly to their child
packages.

Answer to RQ3

In general, the average unique dependencies that a
package contributes to all its child packages decrease
when it has more children. HC metric is important es-
pecially for developers because it also measures the ex-
pected number of additional dependencies if P is added
as a new strong parent of their packages. We found
many of the top packages with extremely high HC are
already popular in use and we suggest developers pay
more attention to these packages if they want to add
them as new parents of their packages.

7.4. RQ4: heaviness on indirect downstream packages

HC is a metric of local relation, i.e., the direct parent-
child relation. We next studied how dependency heavi-
ness is uniquely transmitted to remote downstream of the
global dependency graph.

7.4.1. Remove child packages from downstream

We observed that, for top packages with the highest
heaviness on downstream packages (abbreviated as HD),
they tend to also have high HC values. In the left panel of
Figure 9C, 478 packages are common in the top 500 pack-
ages with the highest HC values and the top 500 packages
with the highest HD values. This implies, for these 478
packages, the downstream packages are mainly composed
of child packages. For this reason, to study the long-range
dependency transmission, we removed child packages from

downstream packages, i.e., we only studied the heaviness
on indirect downstream packages (abbreviated as HID). In
the right panel of Figure 9C, now there are only 129 pack-
ages in common in the top 500 packages by HC and by
HID, and these 129 packages contribute strong heaviness
to both their direct child packages and remote downstream
packages.

7.4.2. Compare packages with top HC and HID

Figure 9D illustrates the distributions of HID for 2,396
(10.9%) packages with at least one indirect downstream
package. Similarly, distributions also have long tails, which
indicates only a small fraction of packages spread large
dependencies to the ecosystem in the long ranges. In Fig-
ure 9D, we highlighted packages with adjusted HID ≥ 20.
Compared to Figure 6A, the list of top packages changes.
Table 3 lists top packages with adjusted HC ≥ 30 or ad-
justed HID ≥ 20. To reduce the length of the table, we
additionally set the numbers of downstream packages (i.e.,
numbers of child packages + numbers of indirect down-
stream packages) ≥ 30. In the 21 packages listed in Table
3, they can be summarized into three categories: i) hav-
ing both top HC and HID values (9 packages); ii) only
having top HID values (7 packages); iii) only having top
HC values (5 packages). In the first category, packages
not only affect their direct child packages but also affect
indirect downstream packages. An example is the package
car which directly affects 183 child packages (with HC of
40.6) and additionally 435 indirect downstream packages
(with HID of 31.9, Figure 10A). In the second category,
packages have very few direct child packages, but child
packages play as hub packages to transmit the heaviness
to a great number of indirect downstream packages. One
typical example is the package rstatix, which only has 10
child packages, but affects 203 indirect downstream pack-
ages. Figure 10B demonstrates the heaviness is mainly
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Table 3: Top packages with adjusted HC ≥ 30 or adjusted HID ≥ 20. Additionally packages listed in the table have numbers of downstream
packages (i.e., numbers of child packages + numbers of indirect downstream packages) ≥ 30. Nchild: number of child packages; HC: heaviness
on child packages; Nid: number of indirect downstream packages; HID: heaviness on indirect downstream packages.

Package Nchild HC Nid HID Is it a top HC package? Is it a top HID package?

car 183 40.6 435 31.9 y y
recipes 26 9.9 227 20.6 y
rstatix 10 12.1 203 26.0 y
caret 180 41.0 29 28.4 y y
ggpubr 125 37.0 80 24.4 y y

AnnotationHub 97 16.7 101 23.4 y
rainbow 5 21.0 125 27.5 y
fds 2 37.0 126 29.3 y
fda 78 33.9 46 22.7 y y
devtools 80 47.0 15 36.3 y y

tidyverse 89 48.4 5 38.0 y
FactoMineR 52 41.2 37 18.5 y
rms 54 36.8 30 30.3 y y
minfi 38 62.4 22 35.2 y y
RcmdrMisc 7 19.3 43 34.6 y

Gviz 37 43.5 9 35.7 y y
Rcmdr 45 101.2 1 81.0 y
Seurat 38 85.3 2 54.0 y
survminer 27 58.2 9 60.0 y y
WGCNA 33 52.3 2 24.5 y

weights 12 30.6 21 35.4 y

transmitted from rstatix via a hub child package ggpubr
which spreads the dependency flow to 96.2% of down-
stream packages of rstatix. In the third category, packages
mainly contribute heaviness only till their child packages
and majority of the transmission do not go further deep in
the dependency graph, e.g., the package tidyverse (Figure
10C). The downstream dependency graph for any package
on CRAN/Bioconductor can be accessed in the heaviness
database in pkgndep which will be introduced in Section
8.

Similar to HC, CRAN packages have more indirect
downstream packages than Bioconductor (256.8 vs 136.5,
Table 1), but CRAN packages on average transmit less de-
pendency heaviness to their indirect downstream packages
(4.4 vs 8.3, Table 1)17. Nevertheless, there are more pack-
ages with top HID (adjusted HID ≥ 20) on CRAN than
on Bioconductor (25 vs 7).

17Statistics are based on packages with at least one indirect pack-
age.

Answer to RQ4

Only a small fraction of packages spread large depen-
dencies in the ecosystem in the long ranges. There are
three modes of the dependency transmission: i) Depen-
dency heaviness is broadly transmitted to both direct
child packages and remote downstream packages; ii)
Dependency heaviness is transmitted to remote down-
stream via hub child packages; iii) Dependency heav-
iness is mainly transmitted locally where their child
packages are the ends of the dependency transmission.

7.5. RQ5: Dependency graph analysis

In previous sections, the analysis was focused on differ-
ent heaviness metrics on individual packages. In this sec-
tion, we studied the dependency relations from the aspect
of the global dependency graph by applying the complex
network analysis approaches on it.

7.5.1. The general patterns of heaviness spreads in the de-
pendency graph

Denote the global dependency graph as G = (V,E),
where V is the set of all packages in the CRAN/Bioconductor
ecosystem, E is the set of strong dependency relations, and
G is directed, then the heaviness from a parent on a child
is a score associated to an edge in the graph. Figure 11A
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A B

C

Figure 10: Three examples of dependency graphs of how packages transmit dependencies heaviness to their downstream packages. A) The
package car. B) The package rstatix. C) The package tidyverse. The three packages are colored in orange in the graphs. In Figure A, to
reduce the size of the graph for visualization, leaf nodes sharing the same parent are grouped and colored in green. Note the three graphs are
directed where car, rstatix and tidyverse are the root nodes.

illustrates the distribution of heaviness which can be ap-
proximated as a stretched exponential distribution (Elton,
2018) fitted as

Pr(H = h) = 0.46 · exp(−1.66h0.37) (19)

where H is the random variable of the heaviness. The
model implies in the ecosystem, there are only a very small
amount of dependency transmissions that are heavy from
parent to child packages. The 95th percentile of all heavi-
ness values is 20.

7.5.2. Total dependency heaviness to the ecosystem

In Section 7.3 and 7.4, we studied the average heavi-
ness on child packages and indirect downstream packages.
Here we looked at the total heaviness that a package con-
tributes to the whole ecosystem, i.e., to all its downstream
packages. Using the same denotation in Equation 6, the to-
tal heaviness of package P on all its downstream packages
is calculated as hd · Kd. The total heaviness also mea-
sures the number of reduced dependencies in the whole
ecosystem if P is removed. A package with small HD may
have a large total effect simply because it has a huge num-
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Figure 11: Heaviness analysis on the global dependency graph. A) Distribution of heaviness from a parent on a child package. The line is
the fit from a stretched exponential distribution (R2 = 0.952). B) Total heaviness on downstream packages for the packages with HD ≥ 10.
Packages in red have total heaviness ≥ 5,000. Values in the parentheses are the numbers of downstream packages. C) MHP distribution of
packages at each depth in the dependency graph. D) Number of packages at each depth. In Figure C and D, packages with depth = 0 (709
packages, i.e., packages with no dependencies) and depth ≥ 11 (1 package) are removed for the plot. HD: heaviness on downstream packages;
MHP: max heaviness from parents.

ber of downstream packages. For example, the package
stringr only has a small HD of 2.3, but it affects 5,276
downstream packages, which makes it a top package con-
tributing dependencies in the ecosystem. Therefore, we
only looked at packages with HD ≥ 10 (1,247 packages
left). Figure 11B illustrates ggplot2 is the most influen-
tial package that affects 5,622 downstream packages with
a HD value of 14.7. It uniquely contributes in total 82,830

dependencies to the ecosystem. Another example is the
package car which affects 618 downstream packages but
with a higher HD value of 35.6, uniquely contributing in
total 20,001 dependencies. All of the top 20 packages (fil-
tered by total heaviness on downstream ≥ 5,000) listed in
Figure 11B affect a large number of downstream packages,
with an average number of 882. The top 20 packages (0.1%
of all packages) contribute 18.9% unique dependencies to
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the whole ecosystem. This suggests if developers of these
top packages can manage to reduce dependencies of their
packages, it will greatly reduce the risks they bring to the
whole ecosystem.

7.5.3. Depth of the dependency heaviness transmission

In Section 7.1, we observed dependency heaviness on
top packages with the highest MHP are accumulated from
very remote upstream. Here we studied dependency heav-
iness transmission for all packages in the ecosystem. For
each package, we calculated its depth in the graph as the
maximal distance from all its upstream packages where the
distance between two packages is the length of the shortest
path in the directed graph. Figure 11C illustrates the dis-
tribution of MHP at each depth, and Figure 11D illustrates
the number of packages at each depth. The two figures
clearly show, when a package locates more downstream in
the graph, it receives larger dependency heaviness from its
parent.

7.5.4. Core graph

To study how the dependency heaviness is transmit-
ted in the global dependency graph, we constructed a core
graph where heaviness from a parent on a child is ≥ 30.
The core graph includes 4,302 packages (19.5%), 3,950
strong dependency relations (3.2%) and 44.2% heaviness
flows of the complete graph (measured as the fraction of
total heaviness in the core graph and in the global graph).

The core graph is visualized in Figure 12A. It can be
easily observed that there are several hub packages that
transmit large heaviness to their direct child packages. The
top two packages ggplot2 and AnnotationDbi contribute
heavy dependencies to their 442 and 273 child packages
directly. We also observed there are a huge number of
isolated and small graph components (i.e., maximally con-
nected subgraphs) where heaviness is only transmitted lo-
cally. Out of the total 379 graph components, 352 com-
ponents only have size ≤ 10; however, the other 27 com-
ponents include 77.0% of packages in the core graph. The
largest component leaded by ggplot2 includes 2,082 pack-
ages (48.4% of all packages in the core graph). The size of
the graph component approximately follows a power-law
distribution (Figure 12B).

We next studied how deep a package P can transmit
heavy dependencies to downstream of the core graph. For
this, we defined a metric named “dependency transmission
length”. Assume P is reachable to Nleaf leaf packages18

where a leaf package has out-degree of zero in the graph, let
di be the distance from P to the i th leaf package which is
the length of the shortest path from P to the leaf package,
then the dependency transmission length denoted as l for
P is calculated as

18Package A is reachable to package B in the dependency graph
when the distance from A to B is finite.

l = max
i∈{1..Nleaf}

di. (20)

Figure 12C illustrates the distribution of dependency
transmission length. It shows the majority of the trans-
mission from P only has a length of 1, which can be easily
confirmed by Figure 12A. But there also exist long paths
where heavy dependencies can be continually transmit-
ted to P ’s deep downstream packages (examples in Figure
12D). Note the depth analysis here is different from that
in Section 7.5.3. In Section 7.5.3, we studied how the de-
pendency heaviness P inherits from its upstream, while in
this section we studied how the dependency heaviness is
transmitted to P ’s downstream.

7.5.5. Key dependency paths

The betweenness of an edge measures the number of
shortest paths in the graph that pass through the edge. In
the context of the dependency graph, the edge betweenness
measures the amount of heaviness flows that are transmit-
ted via a parent-child pair. In Figure 12A, edges with be-
tweenness ≥ 20 are highlighted in red and a subgraph that
only contains these high betweenness edges is induced in
Figure 12D. We named the subgraph as “key dependency
paths”. The key paths transmit 25.2% of the total heavi-
ness flows (measured as the fraction of total betweenness
in the key paths and in the core graph) while only includ-
ing 0.8% edges and 1.0% packages from the core graph.
In most cases, in the key paths, the heaviness is transmit-
ted from hub packages, however there are exceptions. For
example, rstatix only has a few child packages (10 in the
global graph and 4 in the core graph), but it connects two
hub packages car and ggpubr as a bridge to continue the
dependency transmission (Figure 12D). Another similar
example is viridis that connects ggplot2 and fields (Figure
12D). Besides that, we also found there are long paths such
as from testthat to MBESS with length of 6, and from car
to diffcyt or RTCGA with length of 5, where the heavy
dependencies can be continually transmitted through.

Answer to RQ5

We constructed a core graph which transmits heavy de-
pendencies in the ecosystem. We revealed graph com-
ponents and key paths that transmit major heaviness
in the ecosystem. We found that hub packages mainly
transmit dependency heaviness only to their child pack-
ages, thus locally. When a package locates more deep in
the downstream of the dependency graph, it preferably
inherits larger dependency heaviness from the ecosys-
tem.

8. The open database

We have integrated the dependency heaviness analy-
sis for the CRAN/Bioconductor ecosystem in the package
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Figure 12: Analysis on the core dependency graph. A) Network visualization of the core graph. Node size is mapped to out-degree, i.e.,
number of child packages. Labels of hub packages with out-degree ≥ 30 are added. Edge width is mapped to the betweenness and edges
with betweenness ≥ 20 are highlighted in red. B) Distribution of graph component sizes. The line is the fit of the power-law distribution
(R2 = 0.845). The largest five data points are removed from fitting. C) Distribution of dependency transmission length of packages in the
core graph. D) The subgraph that only contains high betweenness edges from Figure A. Node size is mapped to the out-degree calculated
from the core graph. Values on edges are the heaviness from parents to corresponding child packages.

pkgndep as a web-based database (We call it the heaviness
database, Figure 13). It provides detailed analysis reports
on the dependency heaviness both from direct parent-child
relations and remote upstream-downstream relations. The
heaviness database can be simply accessed with the func-
tion dependency database() from the pkgndep package.

The database has two parts: a summary table of all
packages and analyses of individual packages. Figure 13A

illustrates the global table of the heaviness analysis of all
packages. Columns in the table are separated into two
groups highlighted in yellow and blue, which correspond
to metrics from upstream (e.g., MHP) and on downstream
(e.g., HC, HD and HID). Packages with adjusted HC ≥ 30
are highlighted in red to emphasize that they have high
impacts on the ecosystem. If a package only imports a
limited number of functions from the heaviest parent, the
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Figure 13: Web-based database of the dependency heaviness analysis for all R packages on CRAN/Bioconductor. A) The global heaviness
table of all packages. B) Upstream of a package. Dependency path from every upstream package is listed in a table and visualized in a graph.
C) Downstream of a package. Dependency path to every downstream package is listed in a table. The table can be filtered by selecting a
range of depths of the dependency paths. D) A graph of the downstream dependency graph. Green nodes represent groups of leaf packages
that connect to the same parent package. Edges with high betweenness are highlighted in red. The cutoff of betweenness is selected as the
‘elbow’ of the curve of sorted betweenness of all edges in the graph. Values on edges are the heaviness from parents to corresponding child
packages.
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package is marked as ‘reducible’ in purple, which implies
possibility to reduce its upstream dependencies for devel-
opers (see our suggestions in Section 9.1).

The database contains comprehensive tools for query-
ing dependencies for individual packages. For a pack-
age P, the database allows to explore how the dependen-
cies are inherited from parent or upstream to P, and how
the dependencies are transmitted from P to its child or
downstream. In the direct parent and child dependency
results, there are tables showing heaviness-related met-
rics. It also lists the “Imports” information (i.e., how
classes and methods are imported from parents to P or
from P to its children) which is automatically parsed from
the NAMESPACE files of corresponding packages. In the
upstream dependency results, the dependency path from
each upstream package to P is listed, which is the short-
est path from the upstream package to P in the global
dependency graph (Figure 13B). There is also an inter-
active graph that shows how the heaviness is accumu-
lated (Figure 13B). Similarly, in the downstream depen-
dency results, the dependency path from P to every down-
stream package is listed, which can be further filtered by
the depth to the downstream packages (Figure 13C). The
downstream dependency graph is also visualized as an in-
teractive graph (Figure 13D). Normally, the downstream
dependency graph is large. In order to reduce the graph
size for visualization, leaf packages are grouped into a sin-
gle node if they have the same parent (Figure 13D). Addi-
tionally, edges with high betweenness in the downstream
dependency graph are highlighted in red, which correspond
to the key paths that transmit major dependency heavi-
ness from P.

9. Considerations for developers

The heaviness analysis is especially useful for develop-
ers. As this study was motivated and accumulated from
the author’s experience as an active developer of R pack-
ages19, we proposed the following considerations from three
different aspects from a developer’s perspective. Note the
three aspects are associated while not isolated. In the fol-
lowing subsections, we discussed each aspect with several
examples to demonstrate how heaviness analysis benefits
developers. The dependency heaviness analysis for all ex-
ample packages mentioned in this section can be accessed
in the heaviness database in pkgndep.

9.1. How to properly handle the dependency of a package?

It is a good practice to keep package dependency as
simple as possible. However, there is always a balance be-
tween the compactness of dependencies and the compre-
hensiveness of a package’s functionalities. If a package has
a parent showing high heaviness (e.g., with high MHP),
it is a sign that reduction of the dependency complexity

19https://jokergoo.github.io/software/.

should be considered. We have the following three sugges-
tions that developers may consider.

First, if package P only imports one or a small amount
of simple functions from its parent A, heavy dependencies
from A can be avoided by directly implementing functions
with the same functionalities as the original ones. For
example, as we have demonstrated in our previous study
(Gu and Hübschmann, 2022), the package mapstats has
a heavy parent Hmisc with heaviness of 49 where only
a single function capitalize() is imported to mapstats.
capitalize() is an extremely simple function that only
capitalizes the first letter of a word. It can be easily re-
implemented by developer’s own to get rid of the 49 un-
necessary dependencies.

Second, on CRAN/Bioconductor, it is common that
there are several packages providing the same functional-
ities for an analysis task. Then if P depends on a heavy
parent, the developer can look for a light dependency pack-
age which provides the same functionality as the heavy
one. For example, the package biovizBase has a heavy
parent Hmisc with heaviness of 30 where a single func-
tion bezier() is imported to biovizBase. bezier() is
for generating Bézier curves and the use of Hmisc can
be replaced with other lighter packages that also gener-
ate Bézier curves, e.g., a package called bezier but with
zero additional dependency. As a note, this optimization
on biovizBase is even more meaningful because the reduc-
tion of the 30 extra dependencies on biovizBase can ad-
ditionally reduce the dependencies of its 631 downstream
packages with an average reduced dependencies of 20 for
each.

Third, Some packages aim to be a “toolkit” to pro-
vide comprehensive analysis by integrating many other
packages. This increasing comprehensiveness also brings
the expansion of dependencies. For example, the package
singleCellTK provides comprehensive tools for analyzing
single-cell RNASeq data by depending on 82 parents and
in total 369 strong dependencies20. This makes it very vul-
nerable to failures from upstream packages and it is not
friendly for users to install. Nevertheless, for such toolkit
packages, there are always core functionalities that are
more frequently used by users and optional functionalities
that are less used. The huge dependencies of such pack-
ages can be reduced by moving parents that only provide
optional functionalities to weak parents, then it dramati-
cally reduces the total strong dependencies (see methods
in Section 3.2). Take the package cola which is also devel-
oped by the author as an example. cola provides consen-
sus clustering analysis as its core functionality, and it also
provides comprehensive functions for downstream analy-
sis. According to our experience, we found some down-
stream analyses that depend on heavy parents are rarely
used by users, thus, we set them as weak parents. With

20singleCellTK is the package with the largest number of par-
ents and the second largest number of strong dependencies on
CRAN/Bioconductor.
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this strategy, the strong dependency of cola was dramati-
cally reduced from 252 to 64.

Nevertheless, there are also packages with no parent
contributing significantly high dependency heaviness. In
this case, optimizing the dependencies is difficult. An ex-
ample is the package Seurat which has 50 parents and
145 strong dependencies, but the heaviest parent only con-
tributes 8 additional dependencies (MHP = 8), thus opti-
mization on one or only a few parents won’t dramatically
reduce dependencies of Seurat. Besides that, there are also
scenarios where reduction of heavy parents could not be
performed: (i) A heavy parent provides core functional-
ity to its child package; (ii) S4 methods or S4 classes21

are imported from a parent package; (iii) A child package
depends on the C/C++ headers from a parent22.

9.2. How is dependency heaviness accumulated to a pack-
age from upstream?

Dependencies from remote upstream cannot be directly
controlled by the developer, but it is still useful for under-
standing how the heaviness is accumulated to his package.
Here we take top packages with the highest adjusted HC
(Section 7.3) as examples, because they also inherit huge
dependency heaviness from their upstream and they play
important roles in the ecosystem. Figure 14 illustrates
upstream packages that transmit major dependency heav-
iness to top HC packages. In general, dependencies are
transmitted in the long ranges, which agrees with the re-
sults in Section 7.1. We observed there are three different
modes of dependency accumulation.

1. Heaviness is accumulated from multiple heavy
parents. For example, package ecospat inherits unique
dependencies from ENMeval (with a heaviness of 74
uniquely transmitted to ecospat) and caret (with a
heaviness of 19 uniquely transmitted to ecospat) sep-
arately.

2. A group of packages inherit heavy dependen-
cies all from the same heavy upstream pack-
age. For example, package TraMineR, taxize, Gviz
and WGCNA all inherit huge unique dependencies
from the same upstream package Hmisc.

3. The heaviness transmission can be traced back
to a remote upstream package. As a typical ex-
ample, dependency transmission to package RTCGA
can be traced back to the package car which ad-
ditionally affects several other packages. If tracing
further to car ’s upstream, we can see the heavy de-
pendencies are actually from the package testthat.

Once we have revealed the upstream source of the heav-
iness, this leads us to the question which is asked in the
next section: how does the dependency heaviness spread

21S4 is an object oriented system in R.
22Then the parent must be put in the “LinkingTo” field of the

child package.

Top packages with adjusted HC >= 30

Figure 14: Upstream of packages with adjusted HC ≥ 30. For sim-
plicity, only edges with heaviness ≥ 20 and graph components with
size ≥ 5 are kept in the figure. Values on edges are the heaviness
values from parents to corresponding child packages. HC: heaviness
on child packages.

in the ecosystem from the “source”? In particular, we will
explore the impacts of testthat and Hmisc on their down-
stream packages.

9.3. How to reduce the dependency heaviness spreading to
the downstream?

When a package becomes popular in the ecosystem, it
is very important for the developer to carefully manage
its dependency size. If the developer introduces new fea-
tures that need extra dependencies, he should be aware
of the risks that are also brought to the ecosystem. We
suggest the developer also paying attention to the current
set of parents of his package, and trying to compact its
dependency size.

According to our observation, there are still a large
number of packages on CRAN/Bioconductor whose depen-
dency sizes can be reduced. Here we take the package An-
notationDbi as an example. AnnotationDbi is a hub pack-
age that contributes dependency heaviness to 1,444 down-
stream packages in the ecosystem (with HD of 20.2, mainly
on Bioconductor). It was also mentioned as a high impact
package in Section 7.2.2 and Section 7.5.4. By explor-
ing how AnnotationDbi ’s parents contribute their func-
tionalities to AnnotationDbi, we found a package KEG-
GREST contributes 20 unique dependencies to Annota-
tionDbi and these extra dependencies are transmitted to
all downstream packages of AnnotationDbi. A close inspec-
tion shows only one function KeggList() is imported to
AnniotaitonDbi and this functionality is very rarely used
by its massive downstream packages. If KEGGREST can
be set as a weak parent of AnnotationDbi, on average 9.5
dependencies can be reduced for every of its 1,444 down-
stream packages. This actually implies even a small re-
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duction of dependencies of a hub package will have a huge
impact on the whole ecosystem.

It is also interesting to explore how dependencies from
hub packages are transmitted to downstream packages in
the ecosystem. This helps to reveal the “problematic sites”
of the dependency transmission and later developers can
propose possible solutions to fix them. We found the fol-
lowing two typical scenarios where heavy dependencies are
improperly transmitted to the ecosystem and they can ac-
tually be avoided.

Inefficient use of a parent package. In Section
9.2, we revealed a long dependency heaviness transmission
originated from testthat. A closer look shows testthat be-
haves as a hub package in the ecosystem which has 130
child packages and 1,304 indirect downstream packages,
with HC of 18.2 and HID of 15.8 respectively23. This
is quite unexpected because testthat is a package mainly
for package unit testing purpose and it is normally put in
a package’s “Suggests” field24. We found there are two
reasons for its high impact in the ecosystem. First, ma-
jority of the heaviness from testthat are transmitted via
its child package nloptr to downstream. In total 18,933
extra unique dependencies (81.3% of all from testthat) are
transmitted to its 1,156 (80.6%) downstream packages via
nloptr. nloptr declares testthat as its strong parent be-
cause nloptr performs unit testing on its C++ code which
requires a header file from testthat, thus testthat must be
put in its “LinkingTo” field. If by some means, nloptr can
get rid of the strong dependency on testthat, e.g., by using
another unit testing tool on C++ code, on average 16.4 de-
pendency heaviness for each of its 1,156 downstream pack-
ages can be reduced.

Secondly, we also observed testthat is used inefficiently
in its 129 other child packages (excluding nloptr). In
these packages, developers use testthat to perform object
validation in the source code, e.g., to compare whether
two objects are equal (by expect equal()) or to validate
a text output (e.g., by expect match()). testthat pro-
vides comprehensive tools for unit testing on packages.
while it would be too heavy if it is directly used in pack-
age’s source code just for simple validation. Actually,
developers can replace expect *() functions from test-
that with self-implemented code very easily. For example
expect equal(x, y) can be replaced by x == y (assum-
ing x and y are two scalars), and expect match(text,

regexp) can be replaced by grepl(regexp, text). In
this way, large amount of extra dependencies of testthat
can be reduced.

A hub package providing a wide range of func-
tionalities. If a hub package provides a wide range of
functionalities, it is very likely that it also inherits a large
number of packages from upstream (We have partially dis-
cussed it in Section 9.1). All the dependencies of the hub

23The downstream dependency graph of testthat can be accessed
in the heaviness database in pkgndep.

24https://r-pkgs.org/testing-basics.html.

package are transmitted to the downstream even though
child packages may only import a limited number of func-
tions from it. Here we take the package devtools and
Hmisc as two examples. devtools provides functionalities
for package development, but in the ecosystem it has 80
child packages with HC of 47 and 15 indirect downstream
with HID of 36.3. A deep inspection shows most of its
child packages import the function install github() to
install dependencies that are directly from their develop-
ment branches on GitHub. There are two possible opti-
mizations. First, dependency on devtools can be set as a
weak parent because devtools does not contribute to the
functionalities of its child packages. And second, the in-
stallation functionality in devtools can be separated into a
new and light package. Actually, install github() has
already been moved to a new package remotes25, and de-
velopers can consider to migrate from devtools to remotes.

As a second example, also as we have mentioned in
Section 7.2.2 and Section 9.2, Hmisc behaves as a heavy
hub packages with 248 child packages (with HC of 29.4)
and 383 indirect downstream packages (with HID of 20).
Hmisc, as its name tells, provides a huge collection of func-
tions for “data analysis, high-level graphics, utility oper-
ations, functions for computing sample size and power,
simulation, importing and annotating datasets, imputing
missing values, advanced table making, variable clustering,
character string manipulation, conversion of R objects to
LaTeX and HTML code, and recording variables”26. It
has 18 parents and in total 67 strong dependencies from
upstream. The dependency heaviness analysis on Hmisc
reveals ggplot2, viridis and htmlTable contribute majority
(59.7%) of dependencies to Hmisc27. The first two are for
data visualization and the last one is for report generation.
A deep inspection of how Hmisc is used in its child pack-
ages shows the visualization and reporting are very rarely
used. Thus, similar as devtools, if Hmisc can separate its
visualization and reporting parts out as a separated pack-
age, it can save on average 18.5 extra dependencies for
every of its 631 downstream packages.

10. Discussion

Dependency analysis is an important topic for study-
ing package ecosystems. One of the aims is to discover
top packages that have major impacts on the dependency
transmission in the ecosystem. Number of dependents is
a widely-used metric that measures the local impact of
how important a package is in contributing to other pack-
ages’ functionalities (Mora-Cantallops et al., 2020b; Kork-
maz et al., 2019). By taking the ecosystem as a whole,
researchers studied the vulnerability of packages to the
failures caused by recursive dependencies from upstream.

25The first version of remotes was released in 2016.
26https://CRAN.R-project.org/package=Hmisc.
27Heaviness analysis of Hmisc can be performed in the heaviness

database in pkgndep.
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Then, a more useful metric, the number of transitive de-
pendencies, is proposed (Mora-Cantallops et al., 2020b;
Decan et al., 2019). Besides the transitive effects accumu-
lated from upstream, researchers also looked at the number
of transitive dependents to study the indirect influences on
downstream of the ecosystem (Decan et al., 2019; Abate
et al., 2009). Although these metrics are useful for un-
derstanding the attributes of the ecosystem, they are used
as descriptive statistics in current studies (Decan et al.,
2019). These analyses are usually global and they are lim-
ited for developers because they provide almost no prac-
tical help on how to manage dependencies of their pack-
ages. After high impact packages are discovered from the
ecosystem, naturally there will be the follow-up questions
to ask, such as how the dependencies are transmitted from
upstream to the high impact packages or how the depen-
dencies are transmitted from the high impact packages to
downstream? This may bring more questions such as can
we find the most important part of the dependency trans-
mission in the ecosystem? As a package may have mul-
tiple dependencies, either direct or transitive, it is quite
common that individual dependencies have different lev-
els of influences on the package. This implies, to under-
stand the ecosystem deeper, we need to shift the focus from
package-centered to dependency relation-centered, i.e., to
find which dependency relation is more important with
regard to transmitting dependencies. For this purpose,
we proposed a new metric named “dependency heaviness”
which quantitatively measures the unique contribution of
dependency from a parent to a child. Dependency heavi-
ness is also based on transitive dependencies, but it mea-
sures from a different aspect. With this metric, we can
easily identify which parents are heavy with regards to
how they contribute dependencies to a child package.

Based on the direct dependency heaviness from a par-
ent to a child, we extended the heaviness definitions to
a broader range to study the patterns of unique depen-
dency flows in the ecosystem. We aimed to answer the
question of how the dependencies are uniquely transmit-
ted through the ecosystem. We first explored the heavy
dependency inheritance from parent and upstream pack-
ages. This analysis might be less interesting for software
engineering because top packages with this metric are ba-
sically special cases. They are preferably located at the
end of the dependency transmission chain and with no de-
pendents, thus having no large impact on the ecosystem.
But as they inherit heavy dependencies from upstream, it
is still interesting to explore how the dependencies are ac-
cumulated. We found the deeper a package is located in
the ecosystem, the more likely it inherits heavier depen-
dencies.

We next explored how packages transmit unique depen-
dencies to the downstream of the ecosystem with two met-
rics of HC and HID. This analysis is more important be-
cause top packages with the highest HC or HID have major
impacts on the dependency transmission in the ecosystem.
HC is a more practical metric because it also measures the

expected number of additional dependencies if a package
is included as a new parent of a developer’s package. HC,
although it is also summarized from all its child packages,
can generate different results from current studies. For ex-
ample, the package Rcpp has 2,795 child packages and it
is the package with the third most child packages in the
ecosystem. As a hub package, code breaks of Rcpp will af-
fect a large number of other packages. In this sense, Rcpp
can be treated as the source of the “risk” in the ecosystem.
However, from the aspect of dependency heaviness, it only
has a HC of 0.58, which means it is an extremely light
package. HC and HID focus more on the role of a package
as an intermediate package receiving dependencies from
upstream and transmitting to downstream. So they are
more like bi-directional metrics of the dependency trans-
mission. Additionally, HC and HID focus more on the
influences on individual packages while not on the whole
set of dependents.

We applied network analysis on the dependency graph.
Being different from network analysis in current studies
which take the graph as unweighted (Mora-Cantallops et al.,
2020b), we studied the graph by weighting edges with de-
pendency heaviness. In this way, we can distinguish which
relations are more important in the graph. Based on the
edge weights, we extracted a core graph and key paths that
transmit major dependencies in the ecosystem. A deeper
analysis on the dependency graph revealed heavy depen-
dencies can be accumulated from very far upstream, and
hub packages transmit heavy dependencies most locally.

We have implemented the complete analysis as a web-
based database that can be easily accessed from the pkgn-
dep package. The database provides detailed statistics for
various heaviness metrics both from upstream and down-
stream packages. It also provides comprehensive depen-
dency analysis for individual packages. It helps develop-
ers understand how the dependencies are accumulated to
their packages from the ecosystem and how the dependen-
cies spread to the downstream of their packages. We have
extensively used it to study the dependency chains of ex-
ample packages in Section 9.

11. Limitations and future work

In Section 7.1, we studied patterns of maximal heav-
iness from parents (MHP) in the ecosystem. As we have
demonstrated, if a package suffers heavy dependencies from
its parents, in many cases, the heaviest parent dominantly
contributes unique dependencies to it. Nevertheless, there
are still cases where there are more than one dominantly
heavy parents. For example, the package pathwayTMB28

has two heaviest parents of clusterProfiler and survminer
which contribute dependency heaviness of 62 and 55 mutu-
ally exclusively. One reasonable hypothesis is that if pack-
age P has more than one heavy parent, these heavy parents

28pathwayTMB inherits 215 strong dependencies from its 16 parent
packages.
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are responsible for different analysis tasks in P. Indeed,
for the two heavy parents of pathwayTMB, clusterProfiler
performs gene set enrichment analysis and survminer per-
forms survival analysis, thus they introduce dependencies
from different sources. Nevertheless, such scenarios where
P has multiple heavy parents should not be often, but it
provides a complementary view on the ecosystem.

In Section 4.3, we defined the co-heaviness metric from
two parents. We can define co-heaviness from more than
two parents in a similar way. However, as co-heaviness
only measures the unique number of dependencies that a
group of parents simultaneously bring in, with considering
more parents, the co-heaviness value will decrease and it
would not be a proper metric for studying the ecosystem.

Our study was only focused on the CRAN and Biocon-
ductor ecosystems. There are also a great number of R
packages only hosted on GitHub. Since CRAN and Bio-
conductor packages are not allowed to depend on GitHub
packages, it would be interesting to study how the de-
pendencies heaviness is transmitted to GitHub packages.
Since GitHub packages are more for experimental pur-
poses, one hypothesis is that GitHub packages may suffer
more from heavy parents.

Evolution of the package ecosystem is also a popular
topic in software engineering (German et al., 2013; Kikas
et al., 2017; Mora-Cantallops et al., 2020a) which studies
the longitudinal change of packages as well as their de-
pendency relations over time. In particular, we think the
following two topics might be worth exploring. 1. We can
study the dependency changes after a high impact pack-
age was introduced to the ecosystem. For example, tidy-
verse was introduced to CRAN in 2016. Since then, it has
become a core package for data analysis. tidyverse is a
heavy package with HC of 48.4 and it would be interesting
to study how it changes the dependency structure of the
ecosystem. 2. Specific for Bioconductor, it would be in-
teresting to study the dependency structure change along
with the evolution of high-throughput technologies, e.g.,
in the era of microarray, genomics, single cell transcrip-
tomics, and multi-omics29. This might help to answer the
question: does more advanced technology make the corre-
sponding tools more complex? Finally, we hope the study
presented in this paper as well as the pkgndep package
can give developers new insights to properly maintain and
optimize dependencies of their packages, then to build a
healthier and more robust R ecosystem in the future.

In Section 9, we manually explored that heavy depen-
dencies of a group of packages can be traced back to the
upstream package nloptr which inherits large dependencies
from testthat. This analysis is important because it helps
to find out the “source” of the heavy dependency trans-
mission. Then the question is how to reveal such “source
packages” systematically and automatically? To answer

29An example of the timeline can be found at https:
//carpentries-incubator.github.io/bioc-project/02-introduction-
to-bioconductor/index.html.

this question, we can look at a parent package A and its
child P from two aspects. First, the dependency trans-
mission from A to P is influential in the ecosystem where
A contributes a huge amount of dependency heaviness to
the downstream via P. Let’s denote the total amount of
dependency heaviness from A to its downstream via P as

h
A→(P )
d,total . Using the same denotations in Equation 6, it can

be calculated as

h
A→(P )
d,total =

Kd∑
k=1

(n1k − n2k) · I(Ak ∈ SP
d ) (21)

where Ak is A’s k th downstream package and SP
d is the set

of P ’s downstream packages. Second, heavy dependencies
transmitted to A’s downstream via P are not originated
from A’s parents. This means A is the source of the heavy
dependency chain while very few dependencies are accu-
mulated from A’s parents. Let’s denote A’s MHP parent as
B, then we can quantitatively measure the level of A→ P
being a source of the heaviness transmission denoted as
sA→(P ) by

sA→(P ) = h
A→(P )
d,total − h

B→(P )
d,total . (22)

In this way, if A is the source of heaviness transmission

via P, h
B→(P )
d,total will be small which makes sA→(P ) being

a large value; while if most of the heaviness is still from

A’s parent B, h
A→(P )
d,total and h

B→(P )
d,total would be similar which

makes sA→(P ) being a small value.
The dependency heaviness analysis can be extended

to ecosystems in other programming languages. Theoret-
ically, definitions of various heaviness metrics have no as-
sumption of which package ecosystem to use, and they
can be universally applied as long as a global dependency
graph is available. Similar as pkgndep, we plan to im-
plement a general purpose tool that supports many other
package ecosystems also with a web-based analysis plat-
form for them.

12. Conclusion

We performed a systematic analysis on the dependency
heaviness landscape of the R package ecosystem. We re-
vealed the general patterns of the dependency transmission
locally from parent to child packages, also remotely from
upstream to downstream packages. Using network anal-
ysis approaches, we revealed top packages and key paths
that play significant roles in transmitting dependencies in
the ecosystem. The complete analysis has been imple-
mented as a web-based database and we believe it will
facilitate researchers as well as R package developers to
better understand the R package ecosystem and to build
more robust software.
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