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Abstract. The granularity level of the program dependence graph (PDG)
for composite data structures (tuples, lists, records, objects, etc.) is in-
accurate when slicing their inner elements. We present the constrained-
edges PDG (CE-PDG) that addresses this accuracy problem. The CE-
PDG enhances the representation of composite data structures by de-
composing statements into a subgraph that represents the inner elements
of the structure, and the inclusion and propagation of data constraints
along the CE-PDG edges allows for accurate slicing of complex data
structures. Both extensions are conservative with respect to the PDG,
in the sense that all slicing criteria (and more) that can be specified in
the PDG can be also specified in the CE-PDG, and the slices produced
with the CE-PDG are always smaller or equal to the slices produced by
the PDG. An evaluation of our approach shows a reduction of the slices
of 11.67%/5.49% for programs without/with loops.

Keywords: Program Analysis · Program Slicing · Composite Data Structures.

1 Introduction

The Program Dependence Graph (PDG) [18] represents the statements of a pro-
gram as a collection of nodes; and their control and data dependencies are rep-
resented as edges. The PDG is used in program slicing [23], a technique for
program analysis and transformation whose main objective is to extract from a
program the set of statements, the so-called program slice [30], that affect the
values of a set of variables v at a program point p (⟨p, v⟩), which is known as
the slicing criterion [18].

Unfortunately, the original PDG is not able to properly handle the slicing of
composite data structures. Finite composite data structures can be atomized [19]
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and then sliced as usual, however, infinite data structures cannot be atomized
and slicing them is therefore imprecise.

In this paper, we propose a general method that solves the problem of accu-
rately representing and slicing any composite data structure, even if it is recur-
sive (infinite data structures can be also sliced) or if it is collapsed and expanded
again (we solve the slicing pattern matching problem [24], which is explained in
Section 2).

The rest of the paper is structured as follows: The next section demonstrates
the problems in slicing composite data structures. Section 3 presents the CE-
PDG and how it is used for slicing. In Section 4 we present an implementation
and an empirical evaluation of the proposed technique. It is followed by a dis-
cussion of related work and the conclusions.

2 Slicing Composite Data Structures

In this section, we show the inaccuracy problems caused by the PDG when it is
used to slice programs with complex data structures. It is important to remark
that the problem of data structure slicing can be studied and solved at the level
of the PDG (i.e., for intra-procedural programs). Because we can present the
fundamental ideas and solutions of field-sensitive slicing at this level, we avoid
the representation in the System Dependence Graph (SDG) [9] (i.e., for inter-
procedural programs). In this way, we keep the presentation easier to understand,
avoiding the complexity introduced by the SDG (procedure calls, input/output
edges, summary edges...). Of course, an extension of our work for the SDG is
possible and will increase the precision of our technique by propagating depen-
dencies throughout procedures3. We also want to highlight that, for the sake of
clarity, we ignore aliasing, pointers, and other programming features that are
orthogonal to the problem we want to solve: slicing (recursive) data structures.
The pointer analysis needs to be field-sensitive in the same way our approach is.

Example 1. Consider the fragment of Erlang code in Figure 1a, where we are
interested in the values computed at variable C (the slicing criterion is ⟨4, C⟩).
3 Our implementation is already inter-procedural. However, due to lack of space, and

because it is an important problem by itself, we have limited the paper to the intra-
procedural version.

1 foo(X,Y) ->
2 {A,B} = {X,Y},
3 Z = {[8],A},
4 {[C],D} = Z.

(a) Original Program

1 foo(X,Y) ->
2 {A,B} = {X,Y},
3 Z = {[8],A},
4 {[C],D} = Z.

(b) PDG Slice

1 foo(X,Y) ->
2 {A,B} = {X,Y},
3 Z = {[8],A},
4 {[C],D} = Z.

(c) Minimal Slice

Fig. 1: Slicing Erlang tuples (slicing criterion underlined and blue, slice in green)
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The only part of the code that can affect the values at C (i.e., the minimal slice) is
coloured in green in Figure 1c. Nevertheless, the slice computed with the PDG
(shown in Figure 1b) contains the whole program. This is a potential source
of more imprecisions outside this function because it wrongly includes in the
slice the parameters of function foo and, thus, all calls to foo are also included
together with their arguments and the code on which they depend.

The fundamental problem in this particular example is pattern matching: a
whole data structure (the tuple {[8],A}) has been collapsed to a variable (Z)
and then expanded again ({[C],D}). Therefore, the list [C] depends on the list
[8]. Nevertheless, the traditional PDG represents that [C] flow depends on Z,
and in turn, Z flow depends on A. Because flow dependence is usually considered
to be transitive, slicing the PDG wrongly infers that C depends on A (A is in
the slice for C). This problem becomes worse in presence of recursive data types.
For instance, trees or objects (consider a class A with a field of type A, which
produces an infinite data type) can prevent the slicer to know statically what
part of the collapsed structure is needed. An interesting discussion and example
about this problem can be found in [26, pp. 2–3]. In the next section we propose
an extension of the PDG that solves the above problem.

3 Constrained-Edges Program Dependence Graph

This section introduces the CE-PDG, for which the key idea is to expand all
those PDG nodes where a composite data structure is defined or used. This
expansion augments the PDG with a tree representation for composite data
structures. We describe how this structure is generated and we introduce a new
kind of dependence edge used to build this tree structure. For this, we formally
define the concepts of constraint and constrained edge; describe the different
types, and how they affect the graph traversal in the slicing process.

3.1 Extending the PDG

Figure 1b shows that PDGs are not accurate enough to differentiate the elements
of composite structures. For instance, the whole statement in line 4 is represented
by a single node, so it is not possible to distinguish the data structure {A,B} nor
its internal subexpressions. This can be solved by transforming the PDG into a
CE-PDG. The transformation is made following three steps.

Step 1 The first step is to decompose all nodes that contain composite data
structures so that each component is represented by an independent node. As in
most ASTs, we represent data structures with a tree-like representation (similar
to the one used in object-oriented programs to represent objects in calls [13,29]).
The decomposition of PDG nodes into CE-PDG nodes is straightforward from
the AST. It is a recursive process that unfolds the composite structure by levels,
i.e., if a subelement is another composite structure, it is recursively unfolded until
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the whole syntax structure is represented in the tree. The CE-PDG only unfolds
data types as much as they are in the source code, thus unfolding is always finite
(unlike atomization). In contrast to the PDG nodes (which represent complete
statements), the nodes of this tree structure represent expressions. Therefore, we
need a new kind of edge to connect these intra-statement nodes. We call these
edges structural edges because they represent the syntactical structure.

Definition 1 (Structural Edge). Let G = (N,E) be a CE-PDG where N is
the set of nodes and E is the set of edges. Given two CE-PDG nodes n, n′ ∈ N ,
there exists a structural edge n 99K n′ if and only if:

– n contains a data structure for which n′ is a subcomponent, and
– ∀n′′ ∈ N : n 99K n′ ∧ n′ 99K n′′ → n ̸99K n′′.

Structural edges point to the components of a composite data structure, com-
posing the inner skeleton of its abstract syntax tree. More precisely, each field in
a data type is represented with a separate node that is a child of the PDG node
that contains the composite data structure. For instance, the structural edges
of the CE-PDG in Figure 2 represent the tuples of the code in Figure 1. The
second condition of the definition enforces the tree structure as otherwise “tran-
sitive” edges could be established. For example, without the second condition a
structural edge between {[C],D} = Z and C could exist.

Step 2 The second step is to identify the flow dependencies that arise from the
decomposition of the data structure. Clearly, the new nodes can be variables
that flow depend on other nodes, so we need to identify the flow dependencies
that exist among the new (intra-statement) nodes. They can be classified ac-
cording to two different scenarios: (i) composite data structures being defined,
and (ii) composite data structures being used. In Figure 1 we have a definition
(line 4), a use (line 3) and a definition and use in the same node (line 2). The
explicit definition of a whole composite data structure (e.g., a tuple in the left-
hand side of an assignment, see line 4) always defines every element inside it, so
the values of all subelements depend on the structure that immediately contains

ENTER

Z = {[8],A} {[C],D} = Z

D

{0 {1

[8] A

}1}0
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Fig. 2: CE-PDG of the code in Figure 1.
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them. Hence, the subexpressions depend on the structure being defined (i.e., flow
edges follow the same direction as structural edges. See {[C],D}=Z in Figure 2).
Conversely, the structure being used depends on its subexpressions (i.e., flow
edges follow the opposite direction than structural edges. See Z={[8],A} in Fig-
ure 2). Additionally, because the decomposition of nodes augments the precision
of the graph, all flow edges that pointed to original PDG nodes that have been
decomposed, now point to the corresponding node in the new tree structure. An
example of a flow edge that has been moved due to the decomposition is the
flow edge between the new A nodes. In the original PDG, this flow edge linked
the nodes {A,B}={X,Y} and Z={[8],A}.

Step 3 The last step to obtain the CE-PDG is labelling the edges with constraints
that are used during the slicing phase. The idea is that the slicing algorithm
traverses the edges and collects the labels in a stack that is used to decide what
edges should be traversed and what edges should be ignored. We call the new
labelled edges constrained edges.

Definition 2 (Constraint). A constraint C is a label defined as follows:

C ::= ∅ | ∗ | Tuple | List
Tuple ::= {int | }int

Pos ::= H | T
List ::= [Pos | ]Pos

The meaning of each kind of constraint is the following:

– Empty Constraint (n ∅−→ n′). It specifies that an edge can always be
traversed by the slicing algorithm.

– Asterisk Constraint (n ∗−→ n′). It also indicates that an edge can always
be traversed; but it ignores all the collected restrictions so far, meaning that
the whole data structure is needed. This kind of constraint is the one used
in control and structural edges, which are traversed ignoring the previous
constraints collected.

– Access Constraint (n
opposition−−−−−−→ n′). It indicates that an element is the

position-th component of another data structure that is a tuple if op=Tuple
or a list if op=List . op also indicates whether the element is being defined
(“{”, “ [”) or used (“}”, “ ]”).

For the sake of simplicity, and without loss of generality, we distinguish be-
tween tuples and functional (algebraic) lists. The position in a tuple is indicated
with an integer, while the position in a list is indicated with head (H) or tail
(T ). The case of objects, records, or any other structure can be trivially included
by just specifying the position with the name of the field. Arrays where the po-
sition is a variable imply that any position of the array may be accessed. Hence,
arrays with variable indices are treated as {∗ constraints, which would match a
constraint }x for any x.

Example 2. All edges in Figure 2 are labelled with constraints. Because B is
the second element being defined in the tuple {A,B}, the constraint of the flow
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dependence edge that connects them is {1 . Also, because 8 is the head in the
list [8], the constraint of the flow dependence edge that connects them is ]H .

At this point, the reader can see that the constraints can accurately slice the
program in Figure 1a. In the CE-PDG (Figure 2), the slicing criterion (C) is the
head of a list (indicated by the constraint [H ), and this list is the first element
of a tuple. When traversing backward the flow dependencies, we do not want
the whole Z, but the head of its first element (i.e., the cumulated constraints
[H {0 ). Then, when we reach the definition of Z, we find two flow dependencies
([8] and A). But looking at their constraints, we exactly know that we want to
traverse first }0 and then ]H to reach the 8. The slice computed in this way is
composed of the grey nodes, and it is exactly the minimal slice in Figure 1c.
Note that no structural edge is traversed during the slice in the above example.
How structural edges are handled during slicing is discussed in the next section.

The CE-PDG is a generalization of the PDG because the PDG is a CE-PDG
where all edges are labelled with empty constraints (∅). In contrast, all edges in
the CE-PDG are labelled with different constraints:

– Structural and control edges are always labelled with asterisk constraints.
– Flow edges for definitions inside a data structure are labelled with opening

({,[) access constraints.
– Flow edges for uses inside a data structure are labelled with closing (},])

access constraints.
– The remaining data edges are labelled with empty constraints.

The behaviour of access constraints and asterisk constraints in the graph
traversal is further detailed in the next section.

3.2 Slicing the CE-PDG: Constrained traversal

In this section, we show how constraints can improve the accuracy of the slices
computed with the CE-PDG. The paths of the CE-PDG that can be traversed
are formed by any combination of closing constraints followed by opening con-
straints. Any number of empty constraints (∅) can be placed along the path.
On the other hand, asterisk constraints (∗) always ignore any constraints already
collected. Therefore, after traversing an asterisk constraint, the paths that can
be traversed are the same as if no constraint was previously collected.

The slicing algorithm uses a stack to store the words while it traverses the
CE-PDG. When a node is selected as the slicing criterion, the algorithm starts
from this node with an empty stack (⊥) and accumulates constraints with each
edge traversed. Only opening constraints impose a restriction on the symbols
that can be pushed onto the stack: when an opening constraint is on the top of
the stack, the only closing constraint accepted to build a realizable word is its
complementary closing constraint.

Table 1 shows how the stack is updated in all possible situations. The con-
straints are collected or resolved depending on the last constraint added to the
word (the one at the top of the Input stack) and the new one to be treated
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Table 1: Processing edges’ stacks. x and y are positions (int or H/T ). ∅ and ∗
are empty and asterisk constraints, respectively. S is a stack, ⊥ the empty stack.

Input Stack Edge Constraint Output Stack
(1) S ∅ S
(2) S {x or [x S{x or S[x
(3) ⊥ }x or ]x ⊥
(4) S{x or S[x }x or ]x S
(5) S{x or S[x }y or ]y error
(6) S ∗ ⊥

(column Edge Constraint). All cases shown in Table 1 can be summarized in
four different situations:

– Traverse constraint (cases 1 and 3): The edge is traversed without
modifying the stack.

– Collect constraint (case 2): The edge can be traversed by pushing the
edge’s constraint onto the stack.

– Resolve constraint (cases 4 and 5): There is an opening constraint at
the top of the stack and an edge with a closing constraint that matches it
(case 4), so the edge is traversed by popping the top of the stack; or they do
not match (case 5), so the edge is not traversed.

– Ignore constraints (case 6): Traversing the edge empties the stack.

3.3 The slicing algorithm

Algorithm 1 illustrates the process to slice the CE-PDG. It works similar to
the standard algorithm [21], traversing backwards all edges from the slicing cri-
terion and collecting nodes to form the final slice. The algorithm uses a work
list with the states that must be processed. A state represents the (backward)
traversal of an edge. It includes the node reached, the current stack, and the
sequence of already traversed edges (line 6). In every iteration the algorithm pro-
cesses one state. First, it collects all edges that target the current node (function
getIncomingEdges in line 7). If the previous traversed edge is structural, we
avoid traversing flow edges (lines 9–10) and only traverse structural or control
dependence edges. The reason for this is that structural edges are only traversed
to collect the structure of a data type so that the final slice is syntactically
correct (for instance, to collect the tuple to which an element belongs). Flow
edges are not further traversed to avoid collecting irrelevant dependencies of
the structural parent. Function processConstraint checks the existence of a
loop (reaching an already traversed edge) during the slicing traversal and im-
plements Table 1 to produce the new stack generated by traversing the edge to
the next node (line 11). If the edge cannot be traversed according to Table 1
(newStack == error), then the reachable node is ignored (line 12). Otherwise,
the node is added to the work list together with the new stack (line 13). Finally,
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Algorithm 1 Intraprocedural slicing algorithm for CE-PDGs
Input: The slicing criterion node nsc .
Output: The set of nodes that compose the slice.

1: function slicingAlgorithmIntra(nsc)
2: slice ← ∅; processed ← ∅
3: workList ← {⟨nsc ,⊥, []⟩}
4: while workList ̸= ∅ do
5: select some state ∈ workList;
6: ⟨node, stack , traversedEdges⟩ = state
7: for all edge ∈ getIncomingEdges(node) do
8: ⟨sourceNode, type,_⟩ ← edge

9: if getLastEdgeType(traversedEdges) = structural
∧ type = flow

then

10: continue for all
11: newStack ← processConstraint(stack , edge)
12: if newStack ̸= error then

13: workList ← workList ∪
{⟨sourceNode,newStack , traversedEdges ++ edge⟩}

14: processed ← processed ∪ {state}
15: workList ← {(n, s, t) ∈ workList | (n, s,_) ̸∈ processed}
16: slice ← slice ∪ {node}
17: return slice

18: function processConstraint(stack , edge)
19: ⟨_,_, constraint⟩ ← edge
20: if constraint = AsteriskConstraint then return ⊥
21: else
22: if edge ∈ traversedEdges then
23: if isIncreasingLoop(findLoop(traversedEdges),edge) then return ⊥
24: if constraint = EmptyConstraint then return stack
25: else return processAccess(stack , constraint)

26: function processAccess(stack , constraint = ⟨op, position⟩)
27: if stack = ⊥ then
28: if op = { ∨op = [ then return push(constraint, stack)
29: else return ⊥
30: lastConstraint ← top(stack)

31: if (op = } ∧ lastConstraint = ⟨{, position⟩)
∨ (op = ] ∧ lastConstraint = ⟨[, position⟩) then

32: return pop(stack)
33: else
34: if op = } ∨ op = ] then return error
35: else return push(constraint, stack)
36: return stack

the state is added to a list of processed states, used to avoid the multiple evalua-
tion of the same state, and the current node is included in the slice (lines 14–16).

Function processConstraint computes a new stack for all possible types
of constraint: First, it returns an empty stack for asterisk constraints (line 20),
Then, the condition in line 22 checks the existence of a loop (reaching an already
traversed edge) during the slicing traversal. Function findLoop (line 23) returns
the shortest suffix of the sequence of traversed edges that form the last loop, while
function isIncreasingLoop (line 23), whose rationale is extensively explained
in Section 3.4, consequently empties the stack when needed. If no dangerous loop
is detected, the function returns the same stack for empty constraints (line 24), or
it processes access constraints following Table 1 with function processAccess
(line 25).
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Example 3. Consider again function foo in the code of Figure 1a, the selected
slicing criterion (⟨4, C⟩), and its CE-PDG, shown in Figure 2. The slicing process
starts from the node that represents the slicing criterion (the expanded represen-
tation of the CE-PDG allows us to select C, the bold node, inside the tuple struc-
ture, excluding the rest of the tuple elements). Algorithm 1 starts the traversal
of the graph with an empty stack (⊥). The evolution of the stack after traversing

each flow edge is the following: ⊥ [H−→ [H
{0−→ [H{0

∅−→ [H{0
}0−→ [H

]H−→ ⊥. Due to the
traversal limitations imposed by the row 5 in Table 1, node A is never included
in the slice because the following transition is not possible: [H{0

}1−→ error. As
already noted, the resulting slice provided by Algorithm 1 is exactly the minimal
slice shown in Figure 1c.

3.4 Dealing with loops

In static slicing we rarely know the values of variables (they often depend on dy-
namic information), so we cannot know how many iterations will be performed
in a program loop4 (see the programs in Figure 3, where the value of max is
unknown). For the sake of completeness, we must consider any number of iter-
ations, thus program loops are often seen as potentially infinite. Program loops
produce cycles in the PDG. Fortunately, the traversal of cycles in the PDG is
not a problem, since every node is only visited once. In contrast, the traversal
of a cycle in the CE-PDG could produce a situation in which the stack grows
infinitely (see Figure 3a5), generating an infinite number of states. Fortunately,
not all cycles produce this problem:6 To keep the discussion precise, we need to
formally define when a cycle in the CE-PDG is a loop.

Definition 3 (Loop). A cyclic flow dependence path P = n1
C1←−− n2 . . .

Cn←−− n1

is a loop if P can be traversed n > 1 times with an initial empty stack (⊥)
following the rules of Table 1.

There exist three kinds of loops:
(1) Loops that decrease the size of the stack in each iteration can only produce

a finite number of states because the stack will eventually become empty. Such
loops can be traversed collecting the elements specified by the stack, without a
loss of precision.

(2) Loops that keep the same stack in each iteration are also not a problem
because traversing the loop multiple times does not generate new states. Again,
4 Note the careful wording in this section, where we distinguish between “program

loops” (while, for...), “cycles” (paths in the PDG that repeat a node), and “loops”
(repeated sequence of nodes during the graph traversal).

5 It is easier to see how the stack changes by reading the code backwards from the
slicing criterion.

6 The interested reader has a developed example for each kind of loop, which includes
their CE-PDGs, in the technical report https://mist.dsic.upv.es/techreports/
2022/06/field-sensitive-program-slicing.pdf.

https://mist.dsic.upv.es/techreports/2022/06/field-sensitive-program-slicing.pdf
https://mist.dsic.upv.es/techreports/2022/06/field-sensitive-program-slicing.pdf
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1 read(max);
2 x = init_tuple();
3 for(int i=0; i<max; i++){
4 {e,d} = x;
5 {a,b} = d;
6 x = {a,b};
7 }
8 {c,d} = x;
9 print(c);

(a) Increasing stack size

Entry

x = init_tuple() i = 0

x = {a,b}

{c,d} = x

c d

a b
Control Edges
Flow Edges

Structural Edges

read(max) i < max print(c)

{a,b} = d

a b

i++

Flow Loop Edges

{e,d} = x

e d

{0 {1{0 {1

{0 {1

}0 }1

(b) CE-PDG of code in Figure 3a

Fig. 3: Slicing flow-dependence cycles in the CE-PDG (slicing criterion under-
lined and blue, slice in green).

they can be traversed as many times as required by the stack, without a loss of
precision.

(3) Loops that increase the size of the stack in each iteration (Figure 3a)
could produce an infinite number of states because the stack grows infinitely. It
is important to remark that not all cycles formed from more opening constraints
than closing constraints are increasing loops. They may not even be loops (see
Definition 3). Cycles that are not loops are not dangerous because the cycle’s
edges constraints prevent us to traverse them infinitely. One illustrative example
is the code in Figure 3a where we have the flow dependence cycle (6, x)

}0←−
(6, a)

∅←− (5, a)
{0←− (5, d)

∅←− (4, d)
{1←− (4, x)

∅←− (6, x). But this is not a loop
because no matter with what stack we enter the cycle, when {1 is pushed on
the stack, the cycle cannot be entered again due to the constraint }0 that does
not match the top of the stack. In contrast, in the same code there exist a loop
(highlighted in bold red) that can infinitely increase the stack with {1 in each

iteration: (6, x)
}1←− (6, b)

∅←− (5, b)
{1←− (5, d)

∅←− (4, d)
{1←− (4, x)

∅←− (6, x).
We formally define a special kind of loop which is the only potentially dan-

gerous: increasing loop.

Definition 4 (Increasing loop). A loop L is an increasing loop if the number
of opening constraints along L is greater than the number of closing constraints.

To define and detect the increasing loops (those that can grow the stack
infinitely) we have designed the pushdown automaton (PDA) of Figure 4. The
input of this automaton is the sequence of constraints that form a dependence
cycle. The PDA contains two states and two different stacks (closing stack and
opening stack). Initial state 0 represents the case where all opening constraints
of the sequence are balanced by the corresponding closing constraint. When a
closing constraint is reached, the PDA pushes the constraint into the closing
stack (pushc). When an opening constraint is processed, the PDA pushes the
opening constraint into the opening stack (pusho) and moves to state 1. Final
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0

start

1

}i, ]i
pushc(i)

{i, [i
pusho(i)

}i, ]i
popo()
Mo ∧ Eo

{i, [i
pusho(i)

}i, ]i
popo()

Mo ∧ ¬Eo

∅ ∅

Mo ≡ top(So) = i
Eo ≡ len(So) = 1

Fig. 4: Pushdown automaton to
recognize increasing loops.

state = 0
So = ϵ
Sc = ϵ

state = 0
So = ϵ
Sc = 1

state = 1
So = 1
Sc = 1

state = 1
So = 1, 1
Sc = 1

}1

∅ {1

∅

{1

∅

Fig. 5: States produced by the
PDA in Figure 4 with the word
}1∅{1∅{1∅

state 1 represents the case where an opening constraint has been processed but
not balanced yet. In state 1, when a closing constraint that matches a previous
opening constraint (condition Mo) is processed, we pop the opening constraint
from the stack (popo). If the popped element of the opening stack is the last
element of the stack (condition Eo), the PDA returns to state 0. Finally, if a
path is accepted by this automaton, the path forms an increasing loop if and only
if the reversed stack Sc is a prefix of So and they are not equal. The rationale of
this condition is that it ensures that, in each iteration, there are more opening
constraints (those in So) than closing constraints (those in Sc), and all the closing
constraints close some but not all opening constraints (because they are a prefix),
thus the number of opening constraints grows infinitely. Note that * constraints
do not appear in the PDA because they cannot appear in a loop (an * constraint
empties the stack and thus the same state would be repeated).

Example 4. Consider the dependence cycle formed from lines 4, 5, and 6 of
Figure 3a: (6, x)

}1←− (6, b)
∅←− (5, b)

{1←− (5, d)
∅←− (4, d)

{1←− (4, x)
∅←− (6, x),

which contains the word: }1∅{1∅{1∅.
Now, if we parse this word with the PDA we produce the sequence of states

shown in Figure 5. The final state is an accepting state, and the reverse of Sc

(1) is a prefix of So (1, 1) (but they are not equal), so this path corresponds to
an increasing loop. Moreover, the PDA also detects that this loop adds {1 (the
remainder of So once the prefix is removed) to the stack in every iteration.

An increasing loop n1
C1←−− n2

C2←−− . . .
Cn←−− n1 can be identified because

C1C2 . . . Cn belongs to the language induced by the PDA in Figure 4 and the
two final stacks computed with the PDA, Sc and So, satisfy that reverse(Sc) is
a prefix of So and reverse(Sc) ̸= So.

Only increasing loops can produce non-termination. For this reason, Algo-
rithm 1 detects loops (Line 22) and checks whether they are increasing with
function processEdgeCircuit (Line 23). This function uses the PDA of Fig-
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ure 4 to determine whether the loop is increasing and in such a case the stack is
emptied, i.e., the traversal continues unconstrained.

The reader could think that it would be a good idea to identify all increas-
ing loops at CE-PDG construction time. Unfortunately, finding all cycles has
an average complexity O(N2EL), where L is the number of cycles. The worst
complexity is exponential O(2N ) [7]. Our approach avoids the problem of finding
all loops. We just treat them on demand, when they are found by the slicing
algorithm (i.e., we do not search for loops, we just find them during the CE-
PDG traversal). So we only process those loops found in the slicing process; and
processing a loop has a linear cost (in the worst case O(N), if the loop includes
all program statements).

4 Implementation and empirical evaluation

Comparing our implementation against other slicers is not the best way to assess
the proposed stack extension to the PDG, because we would find big differences
in the PDG construction time, slicing time, and slicing precision due to differ-
ences in the libraries used, different treatment for syntax constructs such as list
comprehensions, guards, etc. Therefore, we would not be able to assess the spe-
cific impact of the stack on the slicer’s precision and performance. The only way
to do a fair comparison is to implement a single slicer that is able to build and
slice the PDG with and without constraints.

All the algorithms and ideas described in this paper have been implemented
in a slicer for Erlang called e-Knife. e-Knife can produce slices based on either
the PDG or the CE-PDG. Thus, it allows us to know exactly the additional cost
required to build and traverse the constraints, and the extra precision obtained
by doing so. e-Knife is a Java program with 12186 LOC (excluding comments
and empty lines). It is an open-source project and is publicly available7.

Additionally, anyone can slice a program via a web interface8, without the
need to build the project locally. Large or very complex programs may run into
the memory and time limitations that are in place to avoid abuse.

To evaluate e-Knife, we used Bencher, a program slicing benchmark suite for
Erlang. All the benchmarks were interprocedural programs, so we have created a
new intraprocedural version of them (by inlining functions). This intraprocedural
version has been made publicly available9. To evaluate the techniques proposed
throughout this work, we have built both graphs (PDG and CE-PDG) for each
of the intraprocedural benchmarks. Then, we sliced both graphs with respect
to all possible slicing criteria10, which guarantees that there is no bias in the
selection of slicing criteria.

We strictly followed the methodology proposed by Georges et al. [6]. Each
program’s graph was built 1001 times, and the graphs were sliced 1001 times per
7 https://mist.dsic.upv.es/git/program-slicing/e-knife-erlang
8 https://mist.dsic.upv.es/e-knife-constrained/
9 https://mist.dsic.upv.es/bencher/

10 Each variable use or definition in all functions that contain complex data structures.

https://mist.dsic.upv.es/git/program-slicing/e-knife-erlang
https://mist.dsic.upv.es/e-knife-constrained/
https://mist.dsic.upv.es/bencher/
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Table 2: Summary of experimental results, comparing the PDG (without con-
straints) to the CE-PDG (with constraints).

Graph Generation Slice
Program PDG CE-PDG Function #SCs PDG CE-PDG Slowdown Red. Size

bench1A.erl 5468.10ms 5474.38ms

getLast/2 26 82.55µs 392.39µs 4.40± 0.50 14.88± 3.23%
getNext/3 174 308.66µs 1645.44µs 4.94± 0.16 13.06± 1.58%
getStringDate/1 11 30.18µs 93.71µs 3.22± 0.18 8.67± 4.07%
main/1 57 1121.93µs 2869.79µs 2.59± 0.30 38.76± 7.22%

bench3A.erl 49.58ms 49.59ms tuples/2 22 38.39µs 153.21µs 3.69± 0.44 5.46± 2.08%

bench4A.erl 79.70ms 79.76ms main/2 31 89.80µs 376.33µs 4.23± 0.42 20.79± 5.47%

bench5A.erl 48.69ms 48.73ms lists/2 18 60.92µs 265.87µs 3.82± 0.43 6.51± 2.08%

bench6A.erl 403.52ms 403.66ms ft/2 34 82.59µs 333.51µs 3.60± 0.36 12.25± 2.72%
ht/2 16 21.39µs 71.55µs 2.94± 0.29 10.79± 3.81%

bench9A.erl 199.53ms 199.71ms main/2 18 197.94µs 458.68µs 2.25± 0.14 1.38± 1.07%

bench11A.erl 15.49ms 15.52ms lists/2 16 43.09µs 141.87µs 3.30± 0.16 6.47± 2.22%

bench12A.erl 1661.91ms 1663.25ms

add/4 26 104.88µs 454.55µs 4.27± 0.49 15.21± 4.29%
from_ternary/2 9 22.92µs 103.17µs 4.28± 0.44 3.56± 2.76%
main/3 39 103.42µs 408.30µs 4.03± 0.51 8.43± 6.27%
mul/3 21 55.05µs 261.14µs 4.57± 0.35 2.74± 1.31%
to_ternary/2 13 71.93µs 199.70µs 3.05± 0.28 1.02± 1.37%

bench14A.erl 3841.95ms 3842.62ms main/2 81 85.94µs 451.66µs 4.01± 0.40 8.76± 2.56%

bench15A.erl 1948.76ms 1949.37ms main/4 71 246.97µs 609.24µs 2.94± 0.19 2.31± 1.73%

bench16A.erl 276.60ms 276.79ms word_count/5 36 83.79µs 289.83µs 3.96± 0.30 8.91± 2.93%

bench17A.erl 63.47ms 63.60ms mug/3 19 55.44µs 202.33µs 3.78± 0.18 5.59± 3.10%

bench18A.erl 71.38ms 71.50ms mbe/2 19 83.69µs 278.30µs 3.73± 0.31 7.38± 4.71%

Totals and averages for set A 757 218.65µs 814.51µs 3.88± 0.10 11.67±3.02%
bench1B.erl 4689.59ms 4695.39ms main/1 273 2375.91µs 52978.07µs 19.04± 1.48 5.78± 2.23%

bench2B.erl 122.07ms 122.10ms main/2 17 100.30µs 160.02µs 2.54± 0.47 0.25± 0.34%

bench3B.erl 53.70ms 53.71ms tuples/2 18 73.09µs 283.20µs 3.70± 0.42 4.33± 1.25%

bench4B.erl 38.34ms 38.40ms main/2 39 136.43µs 351.29µs 2.98± 0.33 11.78± 3.70%

bench5B.erl 24.67ms 24.72ms lists/2 11 83.64µs 316.45µs 3.83± 0.20 6.88± 0.89%

bench6B.erl 89.36ms 89.49ms tuples/2 44 64.04µs 241.37µs 3.65± 0.39 6.54± 1.65%

bench8B.erl 144.54ms 144.67ms main/2 42 317.21µs 19641.19µs 57.75± 7.30 0.73± 0.68%

bench9B.erl 53.57ms 53.65ms main/2 17 305.20µs 588.48µs 2.02± 0.16 1.16± 0.88%

bench10B.erl 146.72ms 146.98ms main/1 35 415.38µs 7368.92µs 26.06± 5.94 2.23± 1.17%

bench11B.erl 15.10ms 15.15ms lists/2 13 69.71µs 248.10µs 3.58± 0.18 8.02± 2.17%

bench12B.erl 526.36ms 527.29ms main/3 88 1445.05µs 7244.07µs 5.15± 1.32 2.61± 2.69%

bench13B.erl 41.00ms 41.05ms main/0 22 212.20µs 307.64µs 1.88± 0.35 0.48± 0.40%

bench14B.erl 257.98ms 258.50ms main/2 52 167.99µs 522.23µs 3.20± 0.40 12.84± 4.48%

bench15B.erl 376.22ms 376.62ms main/4 73 394.71µs 770.11µs 2.39± 0.16 8.78± 2.86%

bench16B.erl 170.25ms 170.42ms word_count/5 40 200.22µs 3490.60µs 30.73± 6.76 3.70± 1.53%

bench17B.erl 93.42ms 93.55ms mug/3 19 248.47µs 442.49µs 1.88± 0.22 4.96± 2.45%

bench18B.erl 102.34ms 102.48ms mbe/2 19 393.15µs 607.97µs 1.55± 0.15 0.05± 0.11%

Totals and averages for set B 822 1060.16µs 19742.28µs 13.43± 1.18 5.49±2.16%

criterion. To ensure real independence, the first iteration was always discarded
(to avoid influence of dynamically loading libraries to physical memory, data
persisting in the disk cache, etc.). From the 1000 remaining iterations we retained
a window of 10 measurements when steady-state performance was reached, i.e.,
once the coefficient of variation (CoV, the standard deviation divided by the
mean) of the 10 iterations falls below a preset threshold of 0.01 or the lowest
CoV if no window reached it. It is with these 10 iterations that we computed
the average time taken by each operation (building each graph or slicing each
graph w.r.t. each criterion).

The results of the experiments performed are summarized in Table 2. The
two columns (PDG, CE-PDG) display the average time required to build each
graph. Building the CE-PDG, as in the PDG, is a quadratic operation; and the
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inclusion of labels in the edges is a linear operation. Thus, building the CE-PDG
is only slightly slower than its counterpart. The other columns are as follows
(average values are w.r.t. all slicing criteria):

Function: the name of the function where the slicing criterion is located.
#SCs: the number of slicing criteria in that function.
PDG, CE-PDG: the average time required to slice the corresponding graph.
Slowdown: the average additional time required (with 95% error margins),

when comparing the CE-PDG with the PDG. For example, in the first row,
the computation of each slice is on average 4.40 times slower in the CE-PDG.

Red. Size: the average reduction in the slices sizes (with 95% error margins).
It is computed as (A−B)/A where A is the size (number of AST nodes) of
the slice computed with the standard (field-insensitive) algorithm and B is
the size (number of AST nodes) of the slice computed with the field-sensitive
algorithm (Algorithm 1). This way of measuring the size of the slices is much
more precise and fair. LOC is not proper because it can ignore the removal
of subexpressions. PDG/CE-PDG nodes is nor a good solution because the
CE-PDG includes nodes and arcs not present in their PDG counterparts,
therefore they are incomparable.

The averages shown at the bottom of the table are the averages of all slicing
criteria, and not the averages of each function’s average.

The first 13 benchmarks (set A) are benchmarks with complex data structures
but without cycles, while the rest of benchmarks (set B) do contain cycles. In
set A, each slice produced by the CE-PDG is around four times slower. However,
this has little impact, as each slice consumes just hundreds of milliseconds. As
can be seen in each row, generating the graph is at least 3 orders of magnitude
slower than slicing it. This increase in time is offset by the average reduction of
the slices, which is 8.45%. This increase goes up to 38.76% in function main/1
from bencher1A, as it contains complex data structures that can be efficiently
sliced with the CE-PDG. The same happens in set B, but due to the analysis of
loops, the slowdown is around thirteen times slower.

If we consider programs without cycles, and taking into account that this is
an intra-procedural technique, the time required to compute a slice will be of at
most a few hundred µs. Therefore, our technique reduces the size of the slices by
11.67 ± 3.02% at almost no cost (only a few µs). If we consider programs with
cycles, the slowdown is 13.43, but since the technique has more opportunities for
improvement (because, contrarily to the CE-PDG, the PDG includes the whole
cycle in the slice in all cases), the reduction in the slices size is 5.49 ± 2.16%.
This is a very good result: for many applications, e.g., debugging, reducing the
suspicious code over 11.67% with a cost of increasing the slicing time by only a
few milliseconds is a good trade-off to make.

5 Related work

Transitive data dependence analysis has been extensively studied [20,27]. Less
attention has received, however, the problem of field-sensitive data dependence
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analysis [14,19,10,26]. The existing approaches can be classified into two groups:
those that treat composite structures as a whole [15,18,17,14], and those that
decompose them into small atomic data types [11,1,3,16,19,12,2,8]. The later ap-
proach is often called atomization or scalar replacement, and it basically consists
of a program transformation that recursively disassembles composite structures
to their primitive components. However, slicing over the decomposed structures
usually uses traditional dependence graph based traversal [12,2,8] which limits
the accuracy. Moreover, atomization cannot deal with recursive data structures.
Other important approaches for field-sensitive data dependence analysis of this
kind are [10,26,14]. Litvak et al. [14] proposed a field-sensitive program depen-
dence analysis that identifies dependencies by computing the memory ranges
written/read by definitions/uses. Späth et al. [26] proposed the use of push-
down systems to encode and solve field accesses and uses. Snelting et al. [25]
present an approach to identify constraints over paths in dependence graphs.
Our approach combines atomization with the addition of constraints checked by
pushdown systems to improve the accuracy of slicing composite data structures.

Severals works have tried to adapt the PDG for functional languages dealing
with tuple structures in the process [5,4,28,10]. Some of them with a high ab-
straction level [22], and other ones with a low granularity level. Silva et al. [24]
propose a new graph representation for the sequential part of Erlang called the
Erlang Dependence Graph. Their graph, despite being built with the minimum
possible granularity (each node in the graph corresponds to an AST node) and
being able to select subelements of a given composite data structure, does not
have a mechanism to preserve the dependency of the tuple elements when a tuple
is collapsed into a variable; i.e., they do not solve the slicing pattern matching
problem (for instance, they cannot solve the program in Figure 1). In contrast,
although our graph is only fine-grained at composite data structures, we over-
come their limitations by introducing an additional component to the graph, the
constrained edges, which allow us to carry the dependence information between
definition and use even if the composite structure is collapsed in the process.

6 Conclusion

To address the imprecision of PDG-based slicing of composite data structures,
we present a generalization of the PDG called CE-PDG where (i) the inner
components of the composite data structures are unfolded into a tree-like repre-
sentation, providing an independent representation for their subexpressions and
allowing us to accurately define intra-statement data dependencies, and (ii) the
edges are augmented with constraints (constrained edges), which allows the prop-
agation of the component dependence information through the traversal of the
graph during the slicing process. As a result, the CE-PDG allows the user to
select any subexpression of a data structure as the slicing criterion and it com-
putes accurate slices for (recursive) composite data structures. An evaluation of
our approach shows a slowdown of 3.88/13.43 and a reduction of the slices of
11.67%/5.49% for programs without/with cycles.
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