
On the Impact of Multiple Source Code Representations on Software
Engineering Tasks - An Empirical Study

Karthik Chandra Swarnaa,∗, Noble Saji Mathewsa, Dheeraj Vagavolua, Sridhar Chimalakondaa

aResearch in Intelligent Software & Human Analytics (RISHA) Lab, Department of Computer Science and Engineering,
Indian Institute of Technology Tirupati, India

Abstract

Efficiently representing source code is crucial for various software engineering tasks such as code classification and
clone detection. Existing approaches primarily use Abstract Syntax Tree (AST), and only a few focus on semantic
graphs such as Control Flow Graph (CFG) and Program Dependency Graph (PDG), which contain information about
source code that AST does not. Even though some works tried to utilize multiple representations, they do not provide
any insights about the costs and benefits of using multiple representations. The primary goal of this paper is to discuss
the implications of utilizing multiple code representations, specifically AST, CFG, and PDG. We modify an AST
path-based approach to accept multiple representations as input to an attention-based model. We do this to measure
the impact of additional representations (such as CFG and PDG) over AST. We evaluate our approach on three tasks:
Method Naming, Program Classification, and Clone Detection. Our approach increases the performance on these
tasks by 11% (F1), 15.7% (Accuracy), and 9.3% (F1), respectively, over the baseline. In addition to the effect on
performance, we discuss timing overheads incurred with multiple representations. We envision this work providing
researchers with a lens to evaluate combinations of code representations for various tasks.

Keywords: Source Code Representation, Abstract Syntax Tree, Control Flow Graph, Program Dependence Graph,
Code Embedding, Method Naming

1. Introduction

Due to the drastic rise in the availability of enormous volumes of source code in open-source projects and tools
to extract and analyze them [1, 2, 3], researchers have explored many ways of solving software engineering problems
such as code classification [4, 5], code clone detection [6, 7, 8], code summarization [9, 10], method name prediction
[11], and source code retrieval [12, 13]. Representing source code is central to all of these software engineering tasks
and is influential in determining the performance of the approaches [14, 15].

Many existing works utilize tree and graph-based representations such as Abstract Syntax Tree (AST) [7, 6, 14,
16, 17, 18, 19, 20], Control Flow Graph (CFG) [21, 22], or Program Dependency Graph (PDG) [23] to represent
source code for various tasks. Since programming languages have strict and well-defined grammar, researchers have
traditionally used formal methods to process and reason about source code. These formal approaches involve using al-
gorithmic or mathematical techniques over the AST, CFG, or PDG [24, 6, 25]. Due to advancements in deep learning,
researchers have started focusing on automatically learning program properties to make software more understandable
and maintainable [15]. These learning-based techniques improved performance over traditional methods [15].

Though the learning-based techniques provide superior performance to traditional methods, most of these works
are limited to specific aspects of source code. For example, as Table 1 highlights, AST dominates most of the research,
and only a few works use representations such as CFG or PDG. Two critical factors for a learning-based technique are
the learning model and the data used to train the model. Data in the current context refers to the code representations

∗Corresponding Author
Email addresses: cs17b026@iittp.ac.in (Karthik Chandra Swarna), ch19b023@iittp.ac.in (Noble Saji Mathews),

cs17b028@iittp.ac.in (Dheeraj Vagavolu), ch@iittp.ac.in (Sridhar Chimalakonda)

Preprint submitted to Journal of Systems and Software December 27, 2023

ar
X

iv
:2

10
6.

10
91

8v
5 

 [
cs

.S
E

] 
 2

4 
D

ec
 2

02
3



used to train the model. We experimented with both these factors to arrive at an optimal model and input data to max-
imize performance. However, software engineering literature traditionally focused on optimizing the model rather
than enhancing the input data to the model. One way to enhance the input data is by using a combination of represen-
tations, including various syntactic and semantic code representations. We can include multiple representations in the
dataset because, unlike traditional methods, learning-based methods can selectively give importance to those program
features that improve the model’s performance and neglect the ones that do not. With learning-based approaches, we
can offload the responsibility of choosing a suitable representation for a task to the model.

Table 1: An overview of the literature that utilizes AST / CFG / PDG

Representation Work Task(s) Venue

AST

Deckard [6] Code clone detection ICSE
White et al. [7] Code clone detection ASE
Wei et al. [26] Code clone detection IJCAI
TBCNN [4] Code classification AAAI
ASTNN [14] Code classification, Code clone detection ICSE
MTN [17] Code classification, Code clone detection TOSEM
code2vec [27] Method naming POPL
code2seq [28] Code summarization, Code captioning ICLR

InferCode [18] Code clone detection, Code classification,
Code clustering, Code search, Method naming ICSE

CFG Sun et al. [21] Code clone detection IFIP
Phan et al. [22] Software defect prediction ICTAI

PDG Li et al. [23] Bug detection OOPSLA

Combination of
representations

Allamanis et al. [29] Variable name prediction ICLR
Yamaguchi et al. [25] Software vulnerability detection SSP
Long et al. [30] Algorithm classifcation AAAI

Few approaches have used different graph structures together to represent source code [25, 29]. The Code Property
Graph (CPG) by Yamaguchi et al. [25] is one such approach where they integrated CFG, PDG, and AST into a joint
static data structure to model and detect software vulnerabilities. The CPG helps express common code vulnerabilities
for specific applications, which can be queried by graph traversal queries [31]. Similarly, Allamanis et al. [29]
combine AST, control flow, and data flow edges into a single graph, where these graph edges are particularly designed
for the variable name prediction task [27]. This approach needs execution trace information to create graphs, which is
an additional overhead [17]. Although these works use semantic graphs and perform well on the intended tasks, they
do not provide any insight into the effects of using semantic graphs along with AST. Besides, manually choosing the
appropriate edges for a task can be laborious and cannot be easily extended for other tasks.

Thus, in this paper, we try to answer the question: “How does utilizing multiple source code representations affect
the performance of diverse software engineering tasks?” We do this by extending an existing AST-based approach to
semantic graphs like CFG and PDG, then analyzing the impact of these representations on the model’s performance.
The technique we use in this work involves representing a code snippet as a set of paths extracted from its AST.
We selected this path-based technique since there is no need manually design program features for a specific task or
language. Moreover, extending this approach to CFG and PDG would allow us to measure the performance boost
provided by these semantic graphs. Code2vec [27] is a popular work that uses a similar technique wherein these
AST paths are used to train an attention-based neural network. This neural network encodes the code’s structural
information from individual AST paths by generating method-level code embeddings, which can then be used for
various downstream tasks. However, like most existing approaches, their works do not emphasize semantic graphs
such as CFG and PDG.

Our work introduces a way to extract paths from semantic graphs CFG and PDG. We utilize paths from both

2



syntactic and semantic representations to work on software engineering tasks. We extend the code2vec’s attention
mechanism to work with paths extracted from multiple code representations, mainly AST, CFG, and PDG. Utilizing
the attention mechanism to handle CFG and PDG paths may allow the model to capture the code semantics better,
which may not be possible with AST paths alone. This Aggregate Attention model gives optimal weights to individual
paths extracted from AST to compute a weighted average. It also parallelly calculates the weighted averages of
CFG and PDG paths. These three individual weighted averages are concatenated to generate a code embedding.
The attention mechanism allows the model to learn how much importance/weight it should give to each path. This
mechanism enables the neural network to capture subtle similarities and differences between code snippets, which
would be impossible if all paths were given equal weights without using attention.

The reason we take an existing AST-only approach and make it workable with multiple representations is to under-
stand the impact that utilizing multiple representations has on the model’s performance. Our goal is not to introduce a
better learning model but to investigate the possibility of improving the model’s performance by experimenting with
multiple representations. We chose code2vec because it is neither task nor language-dependent and is easily extensible
to various tasks like program classification and clone detection. Moreover, it is still widely used, and many recent
works are built upon it [28, 32, 33, 34].

The core reasoning of this paper is to explore the idea of integrating semantic structures (such as CFG and
PDG) with syntactic structures (AST) and study the effect on the performance of various software engineering
tasks.

As a first step, we evaluated our approach on the task of Method Naming using a custom C language dataset of
around 730K methods [35]. The comparative evaluation of code2vec and our model shows an increase of 11% in the
F1 score on the whole dataset. However, when evaluated on different projects in our dataset, we see an increase of F1
score up to 100%. This paper is an extension of our preliminary New Ideas and Emerging Results (NIER) paper [35],
which briefly demonstrates this approach on the method naming task. This paper extends our approach to program
classification and code clone detection tasks to find the generality across multiple tasks. We also have reimplemented
our Path Extractor tool (refer to Section 3.2) to extend its functionality for these new tasks.

Our experiments show that our approach improves performance over the AST-only approach for these tasks.
Our approach improves the accuracy by 15.7% for program classification and the F1 score by 9.3% for code clone
detection. Moreover, our results show that diverse approaches built upon code2vec for various tasks [28, 32, 33, 34]
can be enhanced by including paths from CFG and PDG. This paper discusses the additional timing overheads incurred
and other implications of our approach. We also discuss threats to the validity of our results and some ways to
overcome the shortcomings of our approach. Thus, we believe considering a combination of the syntactic and semantic
structures can lead to a new direction in representing source code while also improving existing works that rely solely
on AST, CFG, or PDG. We make all our code and data available on GitHub.1

The main contributions of our work are as follows:

• We introduce a novel way of extracting and utilizing semantic paths from CFG and PDG to represent code.

• We employ an attention neural network to learn code embeddings from syntactic and semantic paths. We apply
our approach to three tasks: Method Naming, Program Classification, and Code Clone Detection.

• We demonstrate that integrating semantic structures (such as CFG and PDG) with syntactic structures (AST)
can predominantly improve the performance of these tasks by 11% (F1), 15.7% (Accuracy), and 9.3% (F1),
respectively.

The remainder of this paper is organized as follows: Section 2 establishes the necessary background. Section
3 defines semantic paths and explains our attention pipeline. Section 4 describes three use cases, demonstrates our
experiments, and reports the results. Section 5 breaks down the results and discusses the main research questions.
Section 6 discusses the limitations and threats to the validity of our work. Section 7 presents the related work. Finally,
we conclude the paper in Section 8 with potential implications for further work.

1https://github.com/NobleMathews/mocktail-blue-lagoon

3



2. Background

2.1. Intermediate Code Representations

Researchers in program analysis and compiler design have developed multiple intermediate code representations
over the years [36, 25]. These representations can also be used in other related fields as they represent the program
properties well [25]. In this work, we use three of the well-known intermediate representations, namely - Abstract
Syntax Tree (AST), Control Flow Graphs (CFG), and Program Dependence Graphs (PDG). We chose CFG and
PDG to combine with AST because they are the most commonly used representations in literature after AST. We
did not select the representations based on their suitability for tasks since each task may require a different semantic
representation to achieve the best performance, which would lead to using a different set of representations for each
task. But, one of our primary considerations was not to hand-pick the program features and instead let the model
decide based on the input code snippets. Moreover, using semantics from multiple dimensions, such as control
flow, data dependency, and control dependencies, can still give good results [37]. We now define each of these
representations below:

Definition 1 (Abstract Syntax Tree). It is an ordered tree of source code tokens where the non-terminal nodes rep-
resent the statements or operators, and the terminal nodes represent the operands or variables. AST represents the
syntax of a program. It is abstract because it does not represent a programming language’s actual syntax, instead
represents its structure.

Definition 2 (Control Flow Graph). It is a directed graph where the nodes represent predicates and statements, and
the edges connecting them indicate the transfer of control between those nodes. It describes the order in which
program statements execute. Each edge also has a label that indicates the necessary conditions to execute that path.

Definition 3 (Program Dependence Graph). It is a directed graph where the nodes represent predicates and state-
ments, and the edges connecting them indicate control dependencies and data dependencies between those nodes.
PDG’s edges are of two types: control dependency edges representing how the result of a predicate influences the
variable and data dependency edges that indicate how one variable influences another. Ferrante et al. [36] first intro-
duced this representation for compiler optimization.

void r a n d o m f u n c t i o n ( )
{

whi le ( ! f l a g )
i f ( i s V a l i d ( x ) )

f l a g = t r u e ;
}

Figure 1: A sample C function / method

Figure 1 shows a sample C language function called random function, and Figure 2 shows the AST, CFG, and
PDG of the code snippet in Fig. 1. Each node in the figure has two fields separated by a comma (,). The first field
represents the type of the node, the second field represents the actual code token associated with the node.

2.2. Path-based Code Representation

In their work, Alon et al. [38] proposed representing a code snippet as a set of paths in its AST. They used these
AST paths with Conditional Random Fields (CRF) and evaluated the approach on method naming. Additionally, they
introduced the concept of Path Contexts in their work. Later, code2vec [27] used these AST paths with an attention-
based neural network and gained better results than the CRF approach. We briefly explain the concepts of AST path
and path contexts as defined by Alon et al. [38]:

4



AST CFG

Graph Edge

Example Path

Each node has two fields:
• first field - type d
• second field - code token t

PDG

Figure 2: Extracting AST, CFG, and PDG paths from the code snippet in Fig. 1

Definition 4 (AST Path). Let n represent a node in an AST, and it has two attributes - the type of node d and the code
token t. A path between nodes in the AST that begins at a terminal node n1, goes through a series of intermediate
non-terminal nodes n2, . . . , nk, and ends at another terminal nk+1 is called an AST path of length k. The path p is
represented by a sequence of the form: d1a1d2a2. . . dkakdk+1, where d1, d2, . . . , dk+1 are the types of the nodes n1, n2,
. . . , nk+1 respectively, and a1, a2,. . . , ak are the directions of movements between path nodes in the AST. Here, ai ∈ {

↑, ↓ }.

Definition 5 (AST Path Context). It is a tuple ⟨ t1, p, tk+1 ⟩, where t1 and tk+1 are the tokens associated with the AST
nodes n1 and nk+1 respectively, i.e., terminal nodes of path p.

The intuition behind this approach is that each AST path captures a unique structural template for a set of state-
ments. Consider the code snippet in Fig. 1. We show the AST for this snippet (with red edges) and an example
AST path in Fig. 2. This sample AST path represents the statement flag = true. Further, any other code snippet
with a similar assignment statement in its body (say a = b) has a subtree in its AST that is identical to the subtree
that represents the statement flag = true, regardless of the identifiers used. Hence, both assignment statements can be
represented by the same AST path. By this rationale, a set of AST paths can identify the structure of a code snippet.
Further, the tokens (t1 and tk+1) associated with the two terminal nodes of a path are called the context words since
they help differentiate the same path that occurs in two different contexts.

2.3. Attention Mechanism
Attention in deep learning is a technique that puts more emphasis/attention on the inputs that help the model make

better predictions and less emphasis on the inputs that do not [27]. An attention layer does this by assigning numerical
weights to its inputs to calculate an aggregation (weighted average) of all the inputs. Attention models are heavily
used in NLP tasks like Neural Machine Translation [39] and Speech Recognition [40]. The main advantage of the
attention models is that for two similar data instances (but not the same), they generate aggregations that are close in
the vector space. The subtle differences in similar inputs are captured through the difference in weights assigned to
them. Consider x1, . . . , xn to be the inputs to the attention layer. The goal of the attention layer is to learn an attention
vector a, which can be used to compute the weight αi for a given input xi. Given the attention vector, weights can be
calculated as the normalized dot product of inputs and the attention vector:

αi =
exp(aT · xi)∑n

j=1 exp(aT · x j)
(1)

ṽ =
n∑

i=1

αi · xi (2)

A weighted average vector ṽ can then be calculated to generate a single representation for the data instance (Eq 2).
The attention vector a will be learned over time to generate better representations for all the instances in the dataset.
This type of attention where the weights are calculated using dot product is called Luong attention [39].

5



3. Approach

3.1. Defining Semantic Path Contexts

Semantic features such as control flows and data dependencies have been used in some works to solve Software
Engineering problems [29, 41]. However, using paths from semantic representations is yet to be explored. AST paths
do not capture semantic aspects such as control flow and program dependencies which may be required to achieve
optimal performance. To overcome this issue, in this paper, we extend the concept of paths to CFG and PDG:

Definition 6 (CFG Path). Let n represent a node in a CFG, and it has two attributes - the type of node d and the code
token t. A path between nodes in the CFG that begins at the START node n1, goes through a series of intermediate
nodes n2, . . . , nk, and ends at a node nk+1 is called a CFG path of length k. The last node nk+1 can be of two types:

- The END node,

- A previously visited intermediate node that represents a loop control structure (i.e. nk+1 ∈ n2, . . . , nk.)

The path p is represented by a sequence of the form: d1 ↓ d2 ↓ . . . dkakdk+1, where d1, d2, . . . , dk+1 are the types of
the nodes n1, n2, . . . , nk+1, and the direction ak depends upon the last node nk+1. Here, ak is ↓, if nk+1 is END node, ↑
otherwise.

Definition 7 (CFG Path Context). It is a tuple ⟨ t1, p, tk+1 ⟩, where t1 and tk+1 are the tokens associated with the CFG
nodes n1 and nk+1 respectively, i.e., terminal nodes of path p.

The START and END nodes are special nodes that represent the start and end of program execution. Each of the
CFG paths represents a possible control flow pattern during program execution. To represent loop structures in a CFG,
we extract three different paths from it:

1. A path that ignores the loop and proceeds to the next node (i.e. nk+1 = END),

2. A path that goes through the loop only once and proceeds to the next node (i.e. nk+1 = END),

3. A path that goes through the loop only once and ends at the loop’s start node (i.e. nk+1 ∈ n2, . . . , nk.)

These three paths together represent possible executions of a loop. Hence, for this reason, we have two types of
last node nk+1 in our definition of the CFG path. Any other constructs like conditionals do not cause loops in CFG and
hence are straightforward to handle.

Definition 8 (PDG Path). Let n represent a node in a PDG, and it has two attributes - the type of node d and the code
token t. An edge e in a PDG has a label l associated with it. A PDG path p is a sequence of nodes n1, n2, . . . , nk+1
where all of the edges along the path have the same label lp. The path p is represented by a sequence of the form:
d1a1d2a2. . . dkakdk+1, where d1, d2, . . . , dk+1 are the types of the nodes n1, n2, . . . , nk+1, and a1, a2, . . . , ak are the
directions of movements between path nodes in the PDG. Here, ai ∈ { ↑, ↓ } and lp ∈ { CDG, DDG }.

Definition 9 (PDG Path Context). It is a tuple ⟨ t1, p, tk+1 ⟩, where t1 and tk+1 are the tokens associated with the PDG
nodes n1 and nk+1 respectively, i.e., terminal nodes of path p.

Since PDG is a combination of Control Dependency Graph (CDG) and Data Dependency Graph (DDG), each
PDG path can either represent a control dependence of statements or a data dependence. The labels of edges in a path
decide the type of PDG path. Since PDG is a graph (and not a tree), moving up and down does not make sense in
PDG. However, we chose to keep all the directions of movements as ↓. We do this to have a consistent model input
format. The concept of CFG and PDG path contexts are similar to AST path contexts. Fig. 2 depicts the CFG and
PDG for the code in Fig. 1 and an example path for each representation.

6



1) Data Collection 2) Data Preparation 3) Parallel Attention
Pipeline 4) Evaluation

AST

CFG

PDG

AST
Paths

CFG
Paths

PDG
Paths

Dense
Layer1

Dense
Layer2

Dense
Layer3

Attention
Layer1

Attention
Layer2

Attention
Layer3

Final AST
Vector

Final CFG
Vector

Final PDG
Vector

Final Code
Vector

Prediction
Layer 

Embedding
Layer3

Embedding
Layer2

Embedding
Layer1

ConcatenateCode Snippet

Custom dataset / OJ
dataset

Figure 3: Our pipeline to utilize a combination of Source Code Representations. The specific settings for the
final prediction layer are chosen based on the task at hand.

3.2. Extracting Path Contexts

We have developed and used a python-based tool to extract different path contexts from C programs. We first
parse each code snippet in the dataset using a platform called Joern [25] to generate AST, CFG, and PDG. These
graphs are exported as .dot files. We then extract paths from these graphs as per the definitions provided earlier. If
a snippet has multiple methods, Joern generates all the graphs (AST/CFG/PDG) for each method separately. In such
cases, we extract paths from all such graphs and use them to represent the complete code snippet. To account for the
high variation in lengths of AST paths, we follow code2vec’s policy and extract only those with a maximum length of
8 and width of 2. An AST path’s width refers to the difference in leaf node indices when all the leaf nodes are indexed
sequentially. Further, to avoid high variation in the number of path contexts across code snippets, we limit the number
of AST, CFG, and PDG path contexts extracted from a snippet to 200, 10, and 100, respectively. If a graph has more
paths than the maximum limit, we randomly sample the maximum number of paths allowed for that representation.
Some of the files may have hundreds of paths, and others may have as low as 1, and this variation could create very
sparse matrices while training the neural network. So we use these settings to avoid sparse matrices as they could
adversely affect the performance. We have set the path limits for AST (200), CFG (10) and PDG (100) based on their
average path counts in the dataset (refer Tables 2 and 4).

3.3. Parallel Attention Pipeline

Fig. 3 depicts different phases in our approach, and specifically, the third phase shows our parallel attention
pipeline. To combine AST, CFG, and PDG paths, we extend the code2vec model [27], which takes only AST path
contexts as input. Our model takes multiple types of path contexts as inputs in a parallel pipeline and finally generates
a code vector. We use multiple code2vec’s parallelly instead of a single code2vec because AST, CFG, and PDG
represent different aspects of a program and need to be learned separately, which would allow us to combine their
learned vectors later. Consider a code snippet C presented to the model as a bag of path contexts extracted from it.

C = [{a1, . . . , an1 }, {c1, . . . , cn2 }{p1, . . . , pn3 }], (3)

Here ai, c j, and pk are AST, CFG, and PDG path contexts respectively. Each of the AST path contexts is processed
by the model as follows: The three components of a path context (two context words and a path) are passed through
embedding layers to generate token and path embeddings of size D. These three embeddings are then concatenated
and passed through a fully connected (Dense) layer to generate a context vector x of size D. The tanh activation
function is used for this dense layer. The primary purpose of this dense layer is to learn to compress the concatenated
vector (size 3D) to generate a context vector (size D). This layer learns to perform this compression in a way that gives

7



more importance to a path when it appears with some tokens (context words) and less importance when it appears with
others. This helps in differentiating the same path that appears in two different contexts. As a result of this dense layer,
context vectors x1, x2, . . . , xn1 are generated for the AST path-contexts a1, a2, . . . , an1 respectively. These context
vectors are passed through an attention layer to compute a weighted average, as explained in Section 2.3. This process
is done parallelly for path contexts of each type (AST, CFG, and PDG), and three weighted average vectors ã, c̃, and
p̃ are generated. Then, average vectors are concatenated to generate the final code vector v. The code vector v is used
to make predictions regarding the code snippet C using another prediction layer. The model is trained to minimize
the prediction error. All the context, weighted average, and code vectors are trained and learned concurrently. The
prediction layer and the error function are decided based on the task, and we mention the specific details about our
experiments in Section 4. We have used Tensorflow’s Keras API to build our parallel attention pipeline.

4. Use Cases

4.1. Method Naming

The main goal of method naming is to predict/suggest an accurate name, given the method body. The predicted
name should accurately represent the semantics of the method. This is an important problem because having good
method names makes the code more readable and maintainable, but poorly named methods can adversely affect the
programmers’ productivity [11]. Consider v the code vector generated by our model for the input code snippet C and
y1, y2, . . . , yN are distinct method names found in the training dataset. Our aim now is to use v to predict which of
the labels y1, y2, . . . , yN is the actual name for the method C. After our model produces v, we use a fully connected
layer with softmax activation function to generate the prediction probability vector p̂. Consider W ∈ RN×d as the
weight matrix associated with this layer whose rows correspond to the labels y1, y2, . . . , yN . The probability vector p̂
is calculated as follows:

p̂i =
exp(Wi · v)∑N

j=1 exp(W j · v)
(4)

where p̂i is the probability of yi being the method name, and Wi is the row i of W. We use the standard cross-entropy
loss function for the training:

loss(t, p̂) = −
N∑

i=1

ti log ( p̂i), (5)

where t is an N-dimensional one-hot encoded true label. Then the predicted method name ŷ will be the one with
highest probability:

ŷ = arg max
i

( p̂i) (6)

4.1.1. Dataset Preparation
We opted for a C language dataset to assess our model’s performance in the Method Naming task. Our intention is

to initially investigate the influence of semantic representations on downstream tasks with an imperative language like
C. Once this initial experiments are demonstrated, the work could be further extended to object-oriented languages,
such as Java. We could not find any existing C language datasets for method naming, so we decided to collect our
own.

As the first step of our dataset collection, we fetched a list of open-source C projects from GitHub and ranked them
by popularity. Popularity was quantitatively assessed using a combination of stars and forks, following a standard z-
score approach [9, 27]. Repositories containing less than 10,000 methods were excluded from our analysis, as higher
method count generally indicates a project with a reasonably rich development history and complexity [42]. Including
projects with more than 10K methods also allows us to measure how well the model can generalize when trained on a
single repository. Conversely, repositories with over 300K methods were omitted to maintain tractability and prevent
any single project from unduly skewing the dataset, thereby ensuring a balanced and manageable scope for analysis.
Further, due to the prevalence of similar domains (e.g., operating systems, compilers, databases, and firmware, etc.)
in our repository list, we excluded projects of a similar nature at random to retain a more diverse set. To ensure a valid
and insightful comparison with code2vec, we construct a dataset of comparable size, consisting of roughly 700,000

8



methods. Ultimately, our curated dataset encompasses 16 open-source C projects, collectively containing 729,218
methods. A breakdown of the repositories considered, including their specific domain and the count of methods, is
available in our GitHub repository2.

We preprocess the dataset by dividing all the C source files into individual methods. We then replace any occur-
rences of the method’s name in its body with a special token and store the method name separately. We do this to
remove any additional help the model might get from path contexts that contain the method name as a context word.
We then normalize all method names by converting them to lowercase and splitting them into subtokens. A special
character like '|' separates the subtokens. The normalized name is the true label for the method naming task. Then
we extract paths from all the methods as explained in Section 3.2. We also filter out invalid methods that do not have
at least one path from each representation. In this case, we extract paths at the method-level since the task deals with
each method individually. These sets of paths are used to train the model to generate method-level embeddings. We
show the average path count statistics for the dataset in Table 2. In addition to the full dataset, we provide the statistics
for 5 out of 16 projects since we use them individually for evaluation.

Table 2: Average Path Count (per method) for our Dataset

Dataset Number of Methods AST CFG PDG

Full C dataset 729,218 72.8 4.4 15.8

FFmpeg 15,790 131.0 5.7 32.5

SumatraPDF 16,356 90.6 5.6 20.8

KBEngine 21,949 78.5 5.5 20.1

QEMU 39,881 92.3 4.0 17.3

CatBoost 54,365 75.1 4.6 19.7

4.1.2. Training, Evaluation, and Results
To train and evaluate the model, we shuffle methods from all 16 projects and split them into 649,004 training,

54,691 test, and 25,523 validation methods. Also, we randomly select some projects from the dataset to train and
evaluate the model by treating them as individual datasets. We do this to gauge how effectively the model could
generalize within individual projects. We train and test the model on each dataset using different combinations of
representations (i.e., AST, AST + CFG, AST + CFG + PDG.) We train our model to minimize the cross-entropy loss
(Eq. 5.) We use the Adam optimization algorithm with a batch size of 1024 and a learning rate of 0.001. We use
dropout regularization with a dropout value of 0.25 on the context vectors to avoid overfitting. Most of these settings
are adopted from code2vec to make our model’s performance comparison with code2vec as fair as possible.

The method naming task is a multi-class classification problem, and for this reason, we use the well-known F1
score as the metric [27, 9]. We briefly describe the Precision, Recall, and F1 score metrics.

Precision: It is the ratio of true positives to all positive predictions. Measures the accuracy of a model’s predictions.

Recall: It is the ratio of true positives to all actual positives. Measures a model’s ability to find all positive instances.

F1 Score: The harmonic mean of Precision and Recall. Provides a balanced performance measure for classification.

To measure our model’s performance on method naming, we consider the quality of the predicted method name.
We calculate the precision and recall over sub-words within the predicted method name. The intuition is that the
quality of a predicted method name is primarily determined by the sub-words used to construct it. When a prediction
has a high recall, we can infer that model can predict most of the sub-words of the true label (actual method name).
When a prediction has high precision, we can say that most of the sub-words in the predicted label are also in the true
label.

2https://github.com/NobleMathews/mocktail-blue-lagoon

9



Table 3: Results for Method Name Prediction Task

F1 scores

Dataset
code2vec

(AST) AST + CFG AST + PDG AST + CFG
+ PDG

Full C dataset 47.5 50.5 51.3 52.7
FFmpeg 38.5 45.8 46.1 47.3
SumatraPDF 13.7 27.8 29.4 33.2
KBEngine 22.9 37.3 38.9 41.0
QEMU 26.5 34.2 34.5 37.3
CatBoost 37.7 46.3 47.8 49.7

RQ1. How do combinations of representations perform on method naming compared to AST?

We use code2vec as the baseline for all our experiments. Since code2vec only uses AST paths, it as a baseline allows
us to measure the performance gain achieved using semantic code representations. We did not use any advances after
code2vec as a baseline since our work is fundamentally an extension of it, and our main goal is to measure the impact
of semantic representations but not to design a better learning model (which most of the advances after code2vec try
to achieve). We summarize our results for the method naming task in Table 3. We can see that by adding additional
representations like CFG and PDG, the F1 score increased in all of the cases. For this task, the performance boost
given by PDG paths is more than the boost given by the CFG paths. Overall, CFG and PDG increased the F1 score
from 47.5 to 52.7 (11% increase) on the full dataset. Furthermore, we observe that the model can capture program
properties very well within a project. For example, for the SumatraPDF project, the performance boost is more than
100%. The performance gain for individual projects is more significant than for the entire dataset. Thus, the CFG and
PDG paths help the model perform well within a project rather than on the full dataset. This behaviour is expected as
the combined dataset has functions from different projects with diverse programming styles and coding patterns.

Moreover, as Table 2 shows, the average AST, CFG, and PDG paths per method in the full dataset is 72.8, 4.4,
and 15.8. There are many AST paths per method, even though we limit their number based on the length and width
during the path extraction phase. In contrast, though CFG and PDG paths are not limited based on length, the average
number of CFG and PDG paths are only 4.4 and 15.8, respectively. This introduces a huge problem of data sparsity
on the CFG and PDG pipelines. However, for individual projects, the average number of CFG and PDG paths is much
higher, and hence the performance gain is also higher (e.g., more than 100% increase in F1 for SumatraPDF project
compared to 11% increase for the whole dataset.)

4.2. Program Classification

Program classification is a task that is aimed to classify the given code snippet into one of the many classes
based on its functionality. It is an important task that is primarily helpful in maintaining huge collections of software
[4, 43]. Consider v the code vector generated by our model for the input code snippet C and N be the total number of
classes. The true label t is an N-dimensional one-hot encoded vector. We use a fully connected layer with the softmax
activation function as the prediction layer. It takes the code vector v as input to generate the prediction probability
vector p̂. We use the standard cross-entropy loss function (Eq. 5) for the training. Then the predicted class label ŷ can
be calculated as the dimension with the highest value (Eq. 6.)

4.2.1. Dataset Preparation
We use the Open Judge (OJ) dataset first introduced by Mou et al. [4] and has been used in several other works on

Program Classification [14, 17, 18]. The dataset is a collection of solutions to 104 different programming problems
submitted to an online open judge (OJ). Each problem has 500 different C language solutions, making the dataset a

10



collection of 104 x 500 = 52,000 files divided into 104 classes. We aim to classify the programs that solve the same
problem into the same class.

We prepare the dataset by extracting paths from each source file (Section 3.2) and including only those files with
at least one path from each representation. Unlike method naming, this task operates with individual files rather than
methods. Hence, the set of paths extracted from each program is a file-level representation. We can use these file-
level representations to train our parallel attention pipeline to generate file-level embeddings. We show the average
path count statistics for the OJ dataset in Table 4. One can observe that the average number of paths of each type is
significantly higher than in the method naming dataset since each file now can have multiple methods.

Table 4: Average Path Count (per file) for the OJ Dataset

Number of Files AST CFG PDG

52,000 175.7 29.3 74.6

4.2.2. Training, Evaluation, and Results
Before training the model, we create Train-Test-Validation splits for the OJ dataset. We split each class (of 500

files) into a 70:20:10 ratio, creating a dataset with 36,400 train samples, 10,400 test samples, and 5,200 validation
samples. We train the network using the Adam optimization algorithm with a batch size of 1024 and a learning rate of
0.001, the same model settings and configurations as method naming. In this context, a fully connected layer with the
softmax activation function acts as the prediction layer for program classification. We use the classification accuracy
on the test dataset as the metric to evaluate the performance as done in other related works [4, 14, 17]. It is calculated
as the percentage of classifications done correctly.

RQ2. How do combinations of representations perform on program classification compared to AST?

Table 5 compares the performance of our approach to the baseline AST. The results follow a similar pattern to that of
method naming. We can see that as we include CFG and PDG, the accuracy increases with each addition. The PDG
paths significantly contribute to the performance gain than the CFG paths, which may be attributed to the much higher
number of PDG paths than the CFG paths (Table 4). When all three representations are included, the model shows a
performance increase of 15.7%.

Table 5: Results of Program Classification Task

Approach Test Accuracy (%)

AST (code2vec) 73.65

AST + CFG 75.79

AST + PDG 84.88

AST + CFG + PDG 85.23

4.3. Code Clone Detection

Code clone detection task aims to detect whether a given pair of code snippets are similar. This paper deals with
a specific kind of clone pairs called functional clone pairs or Type-4 clones [44]. We are not dealing with other types
of clone pairs that might be lexically or syntactically similar but lack functional similarity. Type-4 clones typically
pose the most intricate detection challenges due to their inherent complexity and are usually the hardest to detect
[44]. For instance, a pair of code snippets are considered Type-4 clones, irrespective of differences in code tokens
and structural composition, as long as they have the same functionality (e.g., the same solution implemented using

11



different algorithms). Owing to our current goal of demonstrating the combination of source code representations for
downstream tasks, the detection of Type-1 through Type-3 clones is not within the current scope.

Consider v1 and v2 the code vectors generated by our model for two input code snippets. If the input pair is a
true clone pair (i.e., they solve the same problem), its ground truth label (t) will be 1, and a false clone pair will have
ground truth label -1. Using this convention, we can calculate their functional similarity using the cosine similarity
measure:

sim(v1, v2) =
v1 · v2

|v1| · |v2|
(7)

The cosine similarity score determines how similar two vectors are in an N-dimensional space, and we later use
it to determine a clone pair. To determine if two code snippets constitute a clone pair, we require the vectors of both
snippets simultaneously. Consequently, our model cannot be directly used for supervised training aimed at minimizing
the error in detecting clone pairs, as it requires modifying the model with additional layers. Instead, we adopted an
unsupervised code clone detection approach [6, 45, 18]. It is a commonly used approach where the main idea is to
pre-train the model on a different task with the same dataset and use the learned model weights to generate and save
the code vectors for all code snippets in the dataset. Then, we form code vector pairs to calculate cosine similarity
and determine whether the input code snippets are clones based on whether the similarity score exceeds a threshold
(say θ):

ŷ =

1, sim(v1, v2) > θ
0, sim(v1, v2) ⩽ θ

(8)

This paper uses program classification as the pretraining task. We chose program classification as the pretraining
task because the primary goal in detecting functional clones and classifying programs based on functionality is the
same: to capture the functionality of the code snippets.

4.3.1. Dataset Preparation
We use the same OJ dataset for the clone detection task as well. The dataset is a collection of solutions to 104

different programming problems submitted to an online open judge (OJ). Each solution is stored as a separate file
in the dataset. We prepare the dataset as explained in Section 4.2.1 and use it to pretrain the model on the program
classification task. However, we use a modified version of the OJ dataset to evaluate the unsupervised code clone
detector (Eq 7 and 8.) Any two solutions/files from the same category of 500 solutions form a clone pair (i.e., its
ground truth label is 1). This is based on the fact that all files belonging a category solve the same problem, and thus,
have the same functionality. Conversely, any two files that belong to two different categories solve different problems
and do not form a clone pair (i.e., its ground truth label is 0). Since we have 104 categories with 500 solutions each,
this produces over a trillion possible code pairs, which are not practical to process. So we consider only the first 15
categories with 500 solutions each, which generates 28M code pairs, which is still hard to process. We then randomly
sample 50K true clone pairs and 50K false clone pairs to create a final dataset for code clone detection. This modified
version of the OJ dataset is called OJClone, first introduced by Wei and Li [26] and later adopted by other works
[14, 18]. Similar to program classification, this task operates at the file-level, aiming to evaluate functional similarity
between files in the dataset rather than individual functions.

4.3.2. Training, Evaluation, and Results
Because we are dealing with unsupervised code clone detection, we first train the model on program classification

exactly as in Section 4.2.2 and then save the vectors for all code snippets. Exporting the code vectors makes it easy
to create code pairs and to reproduce the results. As explained before, we form 50K clone and 50K non-clone code
vector pairs and use cosine similarity to evaluate the model (Eq. 7 and 8.) We chose the threshold (θ) as 0.4 for our
clone detector. We chose this value as it allowed our clone detector to achieve optimal performance in all four cases.
Since the problem is formulated as a binary classification problem (clone pair or not), we evaluate our approach using
Precision, Recall, and F1-score. To calculate these metrics, we treat true clone pairs as positive and false clone pairs
as negative samples.

RQ3. How do combinations of representations perform on code clone detection compared to AST?

12



Figure 4: Similarity score distribution for the OJClone dataset predicted by four different approaches.

Table 6: Results of Code Clone Detection Task

Approach Precision Recall F1

AST (code2vec) 0.93 0.81 0.86

AST + CFG 0.96 0.87 0.91

AST + PDG 0.95 0.86 0.90

AST + CFG + PDG 0.96 0.92 0.94

Fig. 4 depicts the cosine similarity distribution for all clone and non-clone pairs. We can see that CFG and PDG cause
the similarity distribution of positive samples to shift towards 1, while the similarity distribution of negative samples
shifts in the opposite direction. A threshold value of 0.4 produced the best results in all three cases. We compare
the performance of our approach with AST in Table 6. Once again, the results show that including semantic code
representations improves the performance significantly. Though the improvement in precision is only 0.03, this is
expected since AST alone achieves an impressive precision of 0.93. However, our approach’s main enhancement is
the recall, which has increased from 0.81 to 0.92. Overall, including CFG and PDG improves the F1 by 9%. An
interesting observation is unlike the previous two tasks, CFG provides a slightly better performance than PDG. Even
though the PDG paths are significantly more in number than CFG paths (refer Table 4), PDG did not provide superior
performance gain. This outcome can mean that control flows can capture the behaviour of programs much better than
data dependencies. This is understandable since PDG is more inclined towards capturing how a variable depends on
another but not how a variable behaves based on other variables.

5. Discussion

When evaluating how good an approach is to solve a problem, there can be multiple factors to consider, of which
we have already discussed an important one: performance. Another crucial factor would be the additional effort
needed compared to existing approaches. As previously discussed, a path-based approach does not manually craft
program features but lets the model pick appropriate features for a task. Moreover, the path extraction process can be
extended to other languages with minor adjustments, such as replacing the parser and modeling interactions between
any language-specific constructs as paths. Since the manual effort is significantly reduced and offloaded to the model,
measuring the additional processing overheads incurred in the data preparation and training phases is essential. We
analyze the processing overheads in this section and examine our results for further insights. While we acknowledge
that there could be other ways of measuring the impact of using multiple source code representations for Software

13



Engineering tasks, we limit the scope of this paper to performance (using metrics such as Accuracy, F1, etc.) and
additional overhead incurred (in terms of computational time overhead).

RQ4. What are the additional processing overheads incurred by including multiple representations?

Table 7 compares the throughputs of four different approaches - AST, AST + CFG, AST + PDG, AST + CFG +
PDG. We compare the throughputs at three stages of our pipeline: Path Extraction (Dataset creation), Model Training,
and Model Inference. We use a system with two Intel(R) Xeon(R) CPU E5-2640 v4 chips during the path extraction
phase. This system effectively has 40 CPUs, which our path extractor utilizes concurrently to extract paths from
multiple source files. We have used a system with three GeForce GTX 1080 Ti GPUs for training and evaluating the
model.

Table 7 shows that all three throughputs decrease as we include additional representations. The path extraction
throughputs for the method naming task are much higher than for program classification since the former is a method-
level task, and thus, samples have significantly fewer paths per representation than the latter. The path extraction
throughput decreased by 35.2% and 34.4% for both the tasks when CFG and PDG were included. The dataset
creation times can be hugely improved by making the path extraction algorithm more efficient and traversing the
graphs in-memory (without exporting them to a .dot file).

Table 7: Comparing the time taken by each approach in different phases of the pipeline

Path Extraction Throughput Model Throughput (samples/second)

(samples/minute) During Training During Inference

Representations
used

Method
Naming

Program
Classification

Method
Naming

Program
Classification

Method
Naming

Program
Classification

AST 2272 29 268 846 858 4110

AST + CFG 1827 23 179 535 694 3827

AST + PDG 1538 22 164 461 619 2854

AST + CFG + PDG 1470 19 126 317 563 2722

The model throughput during the training phase is quite affected when all three representations are used. The
training throughput decreased by 53% and 62.5% for method naming and program classification tasks. The throughput
for program classification is more affected because the average number of CFG and PDG paths at the file level is much
higher than at the method level (refer to Tables 2 and 4), and hence it takes more time for the model to process a code
snippet for program classification. The program classification task’s training throughputs are much greater than the
method naming task. One might think this is a contradiction since a file-level task has more paths per sample than a
method-level task, but other factors also affect model throughput, for example, model size and dataset size. The dataset
for method naming is much larger than program classification, which increases its model size and thus decreases the
training throughput.

Though the model’s inference throughput was also affected when we used multiple representations, the throughput
is still acceptable. To get a much clearer picture, we should look at the total time taken during inference, including
time taken for path extraction and model inference time. For method naming, the average total inference time per
sample comes out to be 0.027 seconds using AST and 0.043 seconds using all three representations (59% increase).
Similarly, average inference times for program classification are 2.07 and 3.16 seconds, respectively (52.6% increase).
Most of the increase in time comes from the path extraction phase. As mentioned, one can decrease path extraction
times using better algorithms, avoiding expensive file operations, etc.

RQ5. What are the implications of our results? and how does each representation contribute to the
model’s performance?

14



Our experiments show that each semantic representation, when used with AST, only increases the model’s perfor-
mance but never deteriorates it. This observation indicates that AST does not provide a complete picture, and we
might need additional representations to capture program features (semantics) effectively. However, some represen-
tations may be much effective than others for a given task and dataset. Consider Table 8, where we compare the
performance gain provided by CFG and PDG for all three tasks. We measure performance gain as the increase in the
performance metric when CFG/PDG is included. We can observe that the combination AST + PDG is more effective
than AST + CFG for method naming and classification tasks. This may be due to the higher number of paths in PDG
than CFG, which leads to PDG providing more features for the model to generalize. Although the combination AST
+ CFG gives a slightly better performance for clone detection than AST + PDG, the results are close. This variation
suggests that selecting the most suitable combination of code representations is largely task-dependent.

Table 8: Comparison of performance gain provided by CFG and PDG

Task AST AST + CFG AST + PDG

Method Naming (F1) 47.5 50.5 51.3
Classification (Accuracy) 73.65 75.79 84.88
Clone Detection (F1) 0.86 0.91 0.90

Furthermore, our results indicate that using all three representations may not always yield a significant perfor-
mance boost compared to a more focused subset. For example, in the case of the program classification task, AST +
PDG proves to be an optimal combination, delivering nearly equivalent performance to AST + CFG + PDG, but with
higher training and inference throughputs of 461 and 2854 samples/second, compared to 317 and 2722 samples/sec-
ond for AST+CFG+PDG. This suggests that customizing code representations for specific software engineering tasks
has the potential to reduce processing times while maintaining good performance. While we have observed promising
results within the context of our study, further research on a broader range of code bases and tasks is essential to
validate these observations and establish generalized conclusions.

6. Threats to Validity

6.1. External Validity
Language Generalization: Our study primarily focuses on the C programming language, and the conclusions

drawn may not directly generalize to other languages. Hence, there is a need to adapt our approach for each language,
taking into account their distinct characteristics.

Dataset Bias: The diversity of the dataset used for training and evaluation can significantly impact the results.
While we tried to diversify the dataset with projects from different domains, it still may not fully represent the broader
landscape of software projects. Further exploration using larger datasets, broader in scope, and encompassing lan-
guages beyond C is crucial to draw generalizable conclusions.

6.2. Internal Validity
Data Sparsity: Though our approach significantly boosts the performance for all three tasks, the data sparsity

problem discussed in Section 4.1.2 can potentially impact the model negatively when used on a larger scale. One
possible solution to address this sparsity is to devise more unique ways to formulate and extract semantic features from
these representations, such as paths that capture interactions between files and modules. We can also use additional
semantic features like data flow in addition to control flows (CFG) and program dependencies (PDG). One downside
of this approach is the increased effort for pre-processing and training, which can be decided as a trade-off for a
respective downstream task. We are essentially extracting more information from a program in the form of paths and
training the model rather than extracting limited information and requiring more training data to achieve the same
performance.

Parameter Settings: To ensure a fair comparision with code2vec, we have adopted code2vec’s network hyper-
parameters, including learning rates, batch sizes, and dropout rates. Extensive hyperparameter tuning is essential to

15



achieve optimal results with the aggregate attention model. Additionally, limiting maximum path lengths and widths
to 8 and 2 (refer 3.2) may potentially exclude relevant information and affect the quality of extracted features. Simi-
larly, using threshold values on the number of paths extracted from a code snippet (200 AST paths, 10 CFG paths, and
100 PDG paths) derived from average path counts within the dataset may not universally accommodate diverse code
structures, and can potentially impact representation quality. Furthermore, while avoiding sparse matrices in neural
network training, the strict enforcement of path count limits may inadvertently lead to information loss in code snip-
pets with inherently larger path counts. A detailed sensitivity analysis could be performed to optimise and fine-tune
parameters such as path lengths, widths and maximum path counts. Such analysis would involve assessing the impact
of these parameter choices on the performance of the Aggregate attention model on downstream tasks. However, in
the current work we limit ourselves towards exploring the impact of using multiple code representations in software
engineering downstream tasks.

6.3. Construct Validity

Automation Trade-Off: Another drawback to our approach is that since we are not manually designing program
features to represent code, some unusual cases like inline assembly may not be appropriately handled while extracting
paths. Accommodating such unique scenarios through automation is a trade-off that requires continued exploration
and refinement.

7. Related Work

7.1. Source Code Representation

Traditionally, researchers have expressed source code as a sequence of tokens to address important software en-
gineering tasks [46, 47, 45]. SourcererCC [45] creates a partial index for source code by using code tokens and then
uses it to detect code clones. For the task of bug localization, Zhou et al. [47] treat source code files as a text corpus
to find the similarity between each file and the bug report.

Representing structural information of source code using Abstract Syntax Trees (AST) has emerged as a critical
approach, capturing both lexical and syntactic information. ASTs have been used extensively in the literature [7, 6,
14, 16, 18, 19, 20]. For example, Deckard [6] introduces an algorithm for identifying similar sub-trees of two ASTs
to detect code clones. Researchers have also tried to capture syntactic information using deep learning models like
RNN [7] or Tree-LSTM [26] on ASTs to detect code clones. Mou et al. [4] use a custom Tree-based Convolutional
Neural Network (TBCNN) on ASTs to learn vector representations of code snippets. In their work, Zhang et al. [14]
extract the sub-trees from AST and feed them to an AST-based neural network (ASTNN) to generate code vectors
that can capture the sequential dependency of code statements. Li et al. [23] utilize the global program dependencies
of source code along with the local ASTs to predict bugs. Alon et al. [38, 27] introduce the AST path-based approach
for representing source code and various learning models to generate code vectors using AST paths. Code2seq [28]
adopts a similar strategy to code2vec for the task of Neural Machine Translation. More recently, Wang et al. [16]
introduced heterogeneous program graphs by including additional type information for nodes and edges in an AST
and used GNNs to learn program properties. In another work, Wang et al. [17] use a modular tree-based network to
detect the semantic difference in programs based on their ASTs. InferCode [18] use the subtrees of an AST as the
training labels and train a TBCNN in a self-supervised way. This way, the generated code vectors are not tied to a
specific task. Xiao et al. [48] used a new notion of path context and introduced the path context augmented network
(PCAN) to learn code vectors.

Researchers also explored the usage of Data Flow Graphs to capture source code’s structure [49, 50]. Graph-
CodeBERT [49] introduced a transformer-based model that uses the data flow in programs to learn the representa-
tions. Instead of taking the syntactic-level code structure like an AST, these approaches use the data flow to capture
the inherent code structure.

Some of the works have combined different graph structures; for example, Allamani et al. [29] represent the
program as a directed graph of code tokens with different labeled edges like syntax tree, control flow, and data flow for
predicting variable and method names. The Code Property Graph (CPG) by Yamaguchi et al. [25] is the most relevant
work to our approach where they create a static combination of AST, CFG, and PDG for the task of vulnerability
detection. They show its effectiveness by finding 18 previously undiscovered vulnerabilities in the Linux kernel’s

16



source code. Zhang et al. [51] constructed a code knowledge graph and used a bi-attention layer neural network to
detect bugs. More recently, Long et al. [30] introduced a multiview graph using data-flow, control-flow, read-write
graphs to obtain multiple perspectives about source code and employed a GGNN to extract information from them.

Many works have also built upon the code2vec model for various downstream tasks [32, 33, 34]. Compton et al.
[32] extend the code2vec model to Java classes by aggregating different method embeddings found in a class. Shi et
al. [33] use the code2vec model on pairs of AST paths as input for the task of defect prediction. They show an increase
in performance over the state-of-the-art model by 17%. In another work, Shi et al. [34] use the code2vec model for
discovering misconceptions in computing assignments. Our results show that the works built upon code2vec can be
enhanced by including semantic paths.

7.2. Method Naming

Allamanis et al. [11] is the first work that explicitly proposes a solution to the method naming problem to the
best of our knowledge. They use a log-bilinear neural network to map the method names to a high-dimensional
continuous space such that semantically similar names are closer to each other in the space. As the method’s name
usually indicates its semantics, this problem is a special case of code summarization. With this intuition, some
of the works on code summarization use method naming to evaluate the approach. For example, Allamanis et al.
[9] introduce a convolutional attention neural network that takes code tokens as input to detect program features in
a context-dependent way and produce a method name for that code snippet. Alon et al. [38] use AST paths as
inputs to Conditional Random Fields (CRF) to predict a method name for the input code snippet. They improved
the performance in their subsequent work, code2vec [27], using AST paths as input to an attention-based neural
network. Later, code2seq [28] followed a similar path-based approach with a different model and achieved a significant
performance boost compared to previous works. Recently, Wang et al. [16] used GNNs on their custom program
graphs to predict method names.

7.3. Program Classification

Several works have tried to classify source code based on the programming language used [52, 53], authorship
[54], domain [43], or as in our case, its functionality [4, 14, 17]. Mou et al. [4] are one of the first works that use a
learning model (TBCNN) to classify programs based on functionality. Later, Zhang et al. [14] proposed ASTNN to
overcome the problem of vanishing gradients from which previous deep learning techniques suffered. Wang et al. [17]
proposed a model (MTN) with multiple neural modules to deal with different AST semantic units. Their approach
showed an accuracy improvement of 1.8% over TBCNN. More recently, InferCode [18] used self-supervised learning
to improve the performance of TBCNN by 4%.

7.4. Code Clone Detection

Researchers have been actively studying code clone detection due to its applications in software engineering [44].
Many works have suggested a wide range of approaches, from token-based [46, 45] or tree-based techniques [24, 6]
to supervised [26, 55, 14, 56] and unsupervised [7, 18] deep learning methods. Baxter et al. [24] detect code clones
by generating ASTs for input code snippets and comparing their subtrees. This approach is one of the first attempts
to solve this problem without using string matching. CCFinder [46] creates a regularized token sequence from the
programs to detect duplicate code. White et al.’s [7] deep learning based technique is one of the earlier attempts to
automatically learn program features using a Recursive Neural Network on ASTs to detect code clones. Wei and Li
[26] propose a deep learning framework that detects clones by learning features using an AST-based LSTM. Several
supervised learning techniques like Oreo [55], ASTNN [14], MTN [17], and Fang et al.’s fusion learning [56] have
also shown significant improvements over traditional techniques.

8. Conclusion and Future Work

Moving away from the predominantly common approach of using AST for downstream tasks, in this work, we
explored the idea of integrating AST with semantic code representations (CFG / PDG) to measure the impact on
Software Engineering tasks. Towards this goal, we extended an AST path-based technique and adapted it to include
CFG and PDG path contexts. This allowed us to measure the impact of using multiple code representations. We

17



evaluated our approach on the method naming task with different sets of data, first with the full C dataset of 16
projects and then with some individual projects. By including CFG and PDG path contexts, we demonstrate that the
model outperforms code2vec by 11% on the full dataset and up to 100% on individual projects. The performance
boost observed for individual projects is much more significant than for the entire dataset, potentially owing to the
higher variation in the number of AST, CFG, and PDG paths. To test whether this approach has the potential to
be generalized for multiple software engineering tasks, we also evaluated the approach on program classification
and code clone detection. The combination AST+CFG+PDG outperforms code2vec in these two tasks by 15.7%
(Accuracy) and 9.3% (F1), respectively. We also measured the impact of multiple representations by measuring the
additional computational overhead incurred.

While our initial findings are promising, we see immense scope for further analysis towards generalization. One
interesting direction is to extend the approach to more programming languages. Specifically, the approach could be
extended to object-oriented languages such as Java to capture the control flow and dependencies between objects and
classes. Analyzing the impact of different language characteristics on the effectiveness of semantic representations
and model performance can provide valuable insights. To make our approach more robust and widely applicable, it is
important to work with more diverse and extensive datasets. This can potentially provide a better understanding of the
impact of semantic representations in different software development scenarios, taking into account various coding
styles and practices. Another research direction is to explore other semantic representations such as Data Flow Graph.

Though our primary intent with this work is not to propose an efficient learning model, our approach can still be
explored for other tasks, such as bug localization and code generation. The proposed approach itself can be improved
by conducting comprehensive hyperparameter optimization and sensitivity analyses to fine-tune model configurations.
This can help achieve the optimal performance with our approach. The proposed approach can also be leveraged to
improve the performance of several works built upon code2vec. Moreover, the way these representations are utilized
can be modified to suit the task at hand. Also, the proposed path-based approach itself could be further investigated
to find the optimal combinations of code representations for various downstream tasks. Another direction of future
work in our approach is to solve the data sparsity problem during training, as discussed in Section 5.

We anticipate that this study can motivate researchers to replicate existing approaches by integrating syntactic and
semantic representations. In addition, we see that the proposed approach can lay the groundwork to spin off multiple
novel code representations for various sub-domains of Software Engineering while efficiently leveraging advances in
AI and Programming Language Processing.

References

[1] S. Bajracharya, J. Ossher, C. Lopes, Sourcerer: An infrastructure for large-scale collection and analysis of open-source code, Science of
Computer Programming 79 (2014) 241–259.

[2] D. Spadini, M. Aniche, A. Bacchelli, Pydriller: Python framework for mining software repositories, in: Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2018, pp. 908–
911.

[3] S. M. Reza, O. Badreddin, K. Rahad, Modelmine: a tool to facilitate mining models from open source repositories, in: Proceedings of the
23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings, 2020, pp. 1–5.

[4] L. Mou, G. Li, L. Zhang, T. Wang, Z. Jin, Convolutional neural networks over tree structures for programming language processing, in:
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 30, 2016.

[5] F. Barchi, E. Parisi, G. Urgese, E. Ficarra, A. Acquaviva, Exploration of convolutional neural network models for source code classification,
Engineering Applications of Artificial Intelligence 97 (2021) 104075.

[6] L. Jiang, G. Misherghi, Z. Su, S. Glondu, Deckard: Scalable and accurate tree-based detection of code clones, in: 29th International Confer-
ence on Software Engineering (ICSE’07), IEEE, 2007, pp. 96–105.

[7] M. White, M. Tufano, C. Vendome, D. Poshyvanyk, Deep learning code fragments for code clone detection, in: 2016 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE), IEEE, 2016, pp. 87–98.

[8] G. Shobha, A. Rana, V. Kansal, S. Tanwar, Code clone detection—a systematic review, Emerging Technologies in Data Mining and Informa-
tion Security (2021) 645–655.

[9] M. Allamanis, H. Peng, C. Sutton, A convolutional attention network for extreme summarization of source code, in: International conference
on machine learning, PMLR, 2016, pp. 2091–2100.

[10] S. Liu, Y. Chen, X. Xie, J. Siow, Y. Liu, Retrieval-augmented generation for code summarization via hybrid gnn, in: International Conference
on Learning Representations, 2021.

[11] M. Allamanis, E. T. Barr, C. Bird, C. Sutton, Suggesting accurate method and class names, in: Proceedings of the 2015 10th joint meeting on
foundations of software engineering, 2015, pp. 38–49.

[12] X. Gu, H. Zhang, S. Kim, Deep code search, in: 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE), IEEE,
2018, pp. 933–944.

18



[13] X. Ling, L. Wu, S. Wang, G. Pan, T. Ma, F. Xu, A. X. Liu, C. Wu, S. Ji, Deep graph matching and searching for semantic code retrieval,
ACM Transactions on Knowledge Discovery from Data (TKDD) 15 (5) (2021) 1–21.

[14] J. Zhang, X. Wang, H. Zhang, H. Sun, K. Wang, X. Liu, A novel neural source code representation based on abstract syntax tree, in: 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE), IEEE, 2019, pp. 783–794.

[15] M. Allamanis, E. T. Barr, P. Devanbu, C. Sutton, A survey of machine learning for big code and naturalness, ACM Computing Surveys
(CSUR) 51 (4) (2018) 1–37.

[16] W. Wang, K. Zhang, G. Li, Z. Jin, Learning to represent programs with heterogeneous graphs, arXiv preprint arXiv:2012.04188 (2020).
[17] W. Wang, G. Li, S. Shen, X. Xia, Z. Jin, Modular tree network for source code representation learning, ACM Transactions on Software

Engineering and Methodology (TOSEM) 29 (4) (2020) 1–23.
[18] N. D. Bui, Y. Yu, L. Jiang, Infercode: Self-supervised learning of code representations by predicting subtrees, in: 2021 IEEE/ACM 43rd

International Conference on Software Engineering (ICSE), IEEE, 2021, pp. 1186–1197.
[19] Y. Li, S. Wang, T. N. Nguyen, Fault localization with code coverage representation learning, in: 2021 IEEE/ACM 43rd International Confer-

ence on Software Engineering (ICSE), IEEE, 2021, pp. 661–673.
[20] S. Kim, J. Zhao, Y. Tian, S. Chandra, Code prediction by feeding trees to transformers, in: 2021 IEEE/ACM 43rd International Conference

on Software Engineering (ICSE), IEEE, 2021, pp. 150–162.
[21] X. Sun, Y. Zhongyang, Z. Xin, B. Mao, L. Xie, Detecting code reuse in android applications using component-based control flow graph, in:

IFIP international information security conference, Springer, 2014, pp. 142–155.
[22] A. V. Phan, M. Le Nguyen, L. T. Bui, Convolutional neural networks over control flow graphs for software defect prediction, in: 2017 IEEE

29th International Conference on Tools with Artificial Intelligence (ICTAI), IEEE, 2017, pp. 45–52.
[23] Y. Li, S. Wang, T. N. Nguyen, S. Van Nguyen, Improving bug detection via context-based code representation learning and attention-based

neural networks, Proceedings of the ACM on Programming Languages 3 (OOPSLA) (2019) 1–30.
[24] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna, L. Bier, Clone detection using abstract syntax trees, in: Proceedings. International Conference

on Software Maintenance (Cat. No. 98CB36272), IEEE, 1998, pp. 368–377.
[25] F. Yamaguchi, N. Golde, D. Arp, K. Rieck, Modeling and discovering vulnerabilities with code property graphs, in: 2014 IEEE Symposium

on Security and Privacy, IEEE, 2014, pp. 590–604.
[26] H. Wei, M. Li, Supervised deep features for software functional clone detection by exploiting lexical and syntactical information in source

code., in: IJCAI, 2017, pp. 3034–3040.
[27] U. Alon, M. Zilberstein, O. Levy, E. Yahav, code2vec: Learning distributed representations of code, Proceedings of the ACM on Programming

Languages 3 (POPL) (2019) 1–29.
[28] U. Alon, S. Brody, O. Levy, E. Yahav, code2seq: Generating sequences from structured representations of code, arXiv preprint

arXiv:1808.01400 (2018).
[29] M. Allamanis, M. Brockschmidt, M. Khademi, Learning to represent programs with graphs, arXiv preprint arXiv:1711.00740 (2017).
[30] T. Long, Y. Xie, X. Chen, W. Zhang, Q. Cao, Y. Yu, Multi-view graph representation for programming language processing: An investigation

into algorithm detection, arXiv preprint arXiv:2202.12481 (2022).
[31] H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi, K. Rieck, S. Fahl, Y. Acar, Vccfinder: Finding potential vulnerabilities in open-source

projects to assist code audits, in: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, 2015, pp.
426–437.

[32] R. Compton, E. Frank, P. Patros, A. Koay, Embedding java classes with code2vec: Improvements from variable obfuscation, in: Proceedings
of the 17th International Conference on Mining Software Repositories, 2020, pp. 243–253.

[33] K. Shi, Y. Lu, J. Chang, Z. Wei, Pathpair2vec: An ast path pair-based code representation method for defect prediction, Journal of Computer
Languages 59 (2020) 100979.

[34] Y. Shi, K. Shah, W. Wang, S. Marwan, P. Penmetsa, T. Price, Toward semi-automatic misconception discovery using code embeddings, in:
LAK21: 11th International Learning Analytics and Knowledge Conference, 2021, pp. 606–612.

[35] D. Vagavolu, K. C. Swarna, S. Chimalakonda, A mocktail of source code representations, in: 2021 36th IEEE/ACM International Conference
on Automated Software Engineering (ASE), IEEE, 2021, pp. 1296–1300.

[36] J. Ferrante, K. J. Ottenstein, J. D. Warren, The program dependence graph and its use in optimization, ACM Transactions on Programming
Languages and Systems (TOPLAS) 9 (3) (1987) 319–349.

[37] J. K. Siow, S. Liu, X. Xie, G. Meng, Y. Liu, Learning program semantics with code representations: An empirical study, arXiv preprint
arXiv:2203.11790 (2022).

[38] U. Alon, M. Zilberstein, O. Levy, E. Yahav, A general path-based representation for predicting program properties, ACM SIGPLAN Notices
53 (4) (2018) 404–419.

[39] M.-T. Luong, H. Pham, C. D. Manning, Effective approaches to attention-based neural machine translation, arXiv preprint arXiv:1508.04025
(2015).

[40] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, Y. Bengio, End-to-end attention-based large vocabulary speech recognition, in: 2016
IEEE international conference on acoustics, speech and signal processing (ICASSP), IEEE, 2016, pp. 4945–4949.

[41] M. Tufano, C. Watson, G. Bavota, M. Di Penta, M. White, D. Poshyvanyk, Deep learning similarities from different representations of source
code, in: 2018 IEEE/ACM 15th International Conference on Mining Software Repositories (MSR), IEEE, 2018, pp. 542–553.

[42] S. Omari, G. Martinez, Enabling empirical research: A corpus of large-scale python systems, in: Proceedings of the Future Technologies
Conference (FTC) 2019: Volume 2, Springer, 2020, pp. 661–669.

[43] M. Linares-Vásquez, C. McMillan, D. Poshyvanyk, M. Grechanik, On using machine learning to automatically classify software applications
into domain categories, Empirical Software Engineering 19 (3) (2014) 582–618.

[44] C. K. Roy, J. R. Cordy, A survey on software clone detection research, Queen’s School of Computing TR 541 (115) (2007) 64–68.
[45] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, C. V. Lopes, Sourcerercc: Scaling code clone detection to big-code, in: Proceedings of the 38th

International Conference on Software Engineering, 2016, pp. 1157–1168.
[46] T. Kamiya, S. Kusumoto, K. Inoue, Ccfinder: a multilinguistic token-based code clone detection system for large scale source code, IEEE

19



Transactions on Software Engineering 28 (7) (2002) 654–670.
[47] J. Zhou, H. Zhang, D. Lo, Where should the bugs be fixed? more accurate information retrieval-based bug localization based on bug reports,

in: 2012 34th International Conference on Software Engineering (ICSE), IEEE, 2012, pp. 14–24.
[48] D. Xiao, D. Hang, L. Ai, S. Li, H. Liang, Path context augmented statement and network for learning programs, Empirical Software Engi-

neering 27 (2) (2022) 1–26.
[49] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan, A. Svyatkovskiy, S. Fu, et al., Graphcodebert: Pre-training code

representations with data flow, arXiv preprint arXiv:2009.08366 (2020).
[50] P. Vytovtov, K. Chuvilin, Unsupervised classifying of software source code using graph neural networks, in: 2019 24th Conference of Open

Innovations Association (FRUCT), IEEE, 2019, pp. 518–524.
[51] J. Zhang, R. Xie, W. Ye, Y. Zhang, S. Zhang, Exploiting code knowledge graph for bug localization via bi-directional attention, in: Proceed-

ings of the 28th International Conference on Program Comprehension, 2020, pp. 219–229.
[52] J. K. Van Dam, V. Zaytsev, Software language identification with natural language classifiers, in: 2016 IEEE 23rd International Conference

on Software Analysis, Evolution, and Reengineering (SANER), Vol. 1, IEEE, 2016, pp. 624–628.
[53] S. Gilda, Source code classification using neural networks, in: 2017 14th International Joint Conference on Computer Science and Software

Engineering (JCSSE), IEEE, 2017, pp. 1–6.
[54] G. Frantzeskou, S. MacDonell, E. Stamatatos, S. Gritzalis, Examining the significance of high-level programming features in source code

author classification, Journal of Systems and Software 81 (3) (2008) 447–460.
[55] V. Saini, F. Farmahinifarahani, Y. Lu, P. Baldi, C. V. Lopes, Oreo: Detection of clones in the twilight zone, in: Proceedings of the 2018 26th

ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2018, pp.
354–365.

[56] C. Fang, Z. Liu, Y. Shi, J. Huang, Q. Shi, Functional code clone detection with syntax and semantics fusion learning, in: Proceedings of the
29th ACM SIGSOFT International Symposium on Software Testing and Analysis, 2020, pp. 516–527.

20


	Introduction
	Background
	Intermediate Code Representations
	Path-based Code Representation
	Attention Mechanism

	Approach
	Defining Semantic Path Contexts
	Extracting Path Contexts
	Parallel Attention Pipeline

	Use Cases
	Method Naming
	Dataset Preparation
	Training, Evaluation, and Results

	Program Classification
	Dataset Preparation
	Training, Evaluation, and Results

	Code Clone Detection
	Dataset Preparation
	Training, Evaluation, and Results


	Discussion
	Threats to Validity
	External Validity
	Internal Validity
	Construct Validity

	Related Work
	Source Code Representation
	Method Naming
	Program Classification
	Code Clone Detection

	Conclusion and Future Work

