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Abstract

Supporting learners in introductory programming assignments at scale is a
necessity. This support includes automated feedback on what learners did
incorrectly. Existing approaches cast the problem as automatically repairing
learners’ incorrect programs extrapolating the data from an existing correct
program from other learners. However, such approaches are limited because
they only compare programs with similar control flow and order of state-
ments. A potentially valuable set of repair feedback from flexible comparisons
is thus missing. In this paper, we present several modifications to CLARA,
a data-driven automated repair approach that is open source, to deal with
real-world introductory programs. We extend CLARA’s abstract syntax tree
processor to handle common introductory programming constructs. Addi-
tionally, we propose a flexible alignment algorithm over control flow graphs
where we enrich nodes with semantic annotations extracted from programs
using operations and calls. Using this alignment, we modify an incorrect
program’s control flow graph to match correct programs to apply CLARA’s
original repair process. We evaluate our approach against a baseline on the
twenty most popular programming problems in Codeforces. Our results indi-
cate that flexible alignment has a significantly higher percentage of successful
repairs at 46% compared to 5% for baseline CLARA. Our implementation is
available at https://github.com/towhidabsar/clara.
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Approximate Graph Alignment, Data-driven Feedback

1. Introduction

The worldwide interest in computer science has originated an unprece-
dented growth in the number of novice programming learners in both tra-
ditional and online settings [1–4]. In the latter case, the number of novices
taking programming Massive Open Online Courses and/or practicing using
programming online judges has scaled to millions [5, 6]. One of the main
challenges in the aforementioned context is supporting novice programming
learners at scale [7], which typically consists of delivering feedback explain-
ing what and why they did incorrectly in their programs [8]. Note that,
different than traditional settings, online programming settings often have a
large proportion of novice learners with a variety of backgrounds, who usually
tend to need a more direct level of feedback and assistance [9]. A common
practice to address such a challenge is to rely on functional tests; however,
feedback generated based solely on test cases does not sufficiently support
novice learners [7, 10].

Current approaches cast the problem of delivering feedback to novices
at scale as automatically repairing their incorrect programs [3, 7, 10–13].
Note that, similar to existing approaches, we consider a program to be cor-
rect if it passes a number of predefined test cases [3, 10]; otherwise, it is
incorrect. Once a repair is found, it can be used to determine pieces of
feedback to deliver to learners [7]. Non-data-driven approaches aim to find
repairs by mutating incorrect programs until they are correct, i.e., they pass
all test cases [14]. Data-driven approaches exploit the fact that repairs can
be found in existing correct programs and extrapolated to a given incorrect
program [3]. This paper focuses on the latter since, in a given programming
assignment, there is usually a variety of correct programs provided by other
learners that can be exploited to repair incorrect programs [3, 10, 12, 13].

The “search, align and repair” [3] framework consists of the following
steps: 1) Given an incorrect program pi , search for a correct program pc
that may be useful to repair pi ; 2) Align pi with respect to pc to identify
discrepancies and potential modifications in order to repair pi ; and 3) Ap-
ply those modifications to pi until the resulting program p ′

i passes all test
cases. Current approaches instantiating the “search, align and repair” frame-
work use rigid comparisons to align incorrect and correct programs, i.e., they
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require the programs to have the same or very similar control flows (con-
ditions and loops), and they are affected by the order of program state-
ments [3, 10, 12, 13]. As a result, such approaches may miss a potentially
valuable set of correct programs that can repair incorrect programs using
flexible program comparisons.

In this paper, we focus on CLARA [10], a “search, align and repair” ap-
proach that is open source. We first adapt the original implementation of
CLARA to support introductory programming assignments. This adaption
involves non-trivial modifications to the parser and interpreter to support
various constructs, such as print to and read from the console, import state-
ments, built-in Python functions, and more. After these modifications, we
also need to adapt the alignment and repair processes. Based on these foun-
dations, we propose a flexible alignment algorithm that relies on control flow
graphs. It exploits the semantic information (operations and calls) to anno-
tate the graphs, and their topology information (edges, i.e., True and False
transitions). In order to evaluate the proposed algorithm, we create a dataset
of incorrect and correct programs for the twenty most popular programming
problems in the Codeforces online platform. Then, using the dataset, we ex-
ecute CLARA’s baseline repair process and our flexible alignment repair to
compare both the quantitative and qualitative performance of the proposed
technique. Furthermore, we include another “search, align and repair” ap-
proach, Sarfgen [3], by utilizing a similar process as our flexible alignment,
but enforcing a high similarity between compared programs. This simulates
the rigidity in program comparisons applied by Sarfgen. Note that Sarfgen
is not publicly available; therefore, we needed to simulate it.

Two short versions of this paper have been published elsewhere [15, 16].
In this paper, we describe in detail all the modifications that we made to
CLARA, and how the parser and interpreter were updated. We also present
our flexible alignment algorithm as well as the changes made to the pro-
grams at hand after an alignment is computed. These changes are necessary
in order to apply CLARA’s repair process. Finally, we have significantly ex-
panded our experiments to show the performance of our modifications over
twenty real-world introductory programming assignments. We have made
the implementation of this version of CLARA and our experimental dataset
publicly available.1

1https://github.com/towhidabsar/clara The fundamental contributions of this pa-
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The paper is organized as follows: Section 2 summarizes previous ap-
proaches and ours; Section 3 introduces CLARA’s parser, interpreter, aligner
and repairer; Sections 4 and 5 describe our modifications to the parser and
interpreter, and aligner and repairer of CLARA’s original implementation,
respectively; Section 6 presents our flexible alignment approach and the nec-
essary modifications to CLARA’s repairer; Section 7 discusses our experi-
mental results; Section 8 presents the related work; and Section 9 presents
our conclusions and future work.

2. Overview

We consider CLARA [10], Refazer [13], Sarfgen [3], and sk p [12] the state
of the art in searching, aligning and repairing programs. CLARA and Sarfgen
compare variable traces between an incorrect and a correct programs that
share the same control statements like if or while. Refazer uses pairs of
incorrect/correct program samples to learn transformation rules, which aid
a program synthesizer to transform incorrect into correct programs. Finally,
sk p uses partial fragments of contiguous statements to train a neural network
to predict possible repairs.

In the alignment step, these approaches compare an incorrect program
with respect to a correct program based on rigid schemes, which limits their
repair potential. To illustrate our claim, we use the Python programs pre-
sented in Figure 1, which aim to compute the minimum value in an array
and the sum of all its elements, and print both minimum and sum values to
console. Note that the values of the input array are assumed to be always less
or equal than 100. In Sarfgen, an incorrect program will be only repaired
if its control statements match with the control statements of an existing
correct program. This is a hard constraint since: a) It requires a correct
program with the same control statements to exist, and b) Such a correct
program may not “naturally” exist. For instance, the control statements of

per are as follows: 1) Many of the modifications we made to CLARA’s parser and in-
terpreter for Python programs also apply to other programming languages like C and
Java; 2) Both our flexible alignment and model recreation algorithms can be used by any
“search, align and repair” approach based on control flow graphs and program expres-
sions; 3) Our dataset is one of the very few publicly-available datasets in the context
of real-world introductory programming assignments; 4) Our threshold-based solution to
simulate other alignment approaches is useful when existing approaches are not publicly
available.
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1 a = list(map(int ,

2 input().split(’ ’)))

3 x, m, s = 0, 101 , 0

4 while x < len(a):

5 s += a[x]

6 if m > a[x]:

7 m = a[x]

8 x+=1

9 print(s, ’,’, m)

(a) Correct program

1 a = list(map(int ,

2 input ().split(’ ’)))

3 i, m, s = 0, 101 , 9

4 while i < len(a):

5 if m < a[i]:

6 m = a[i]

7 s += a[i]

8 i+=1

9 if m == 0:

10 i-=1

11 print(s, ’,’, m)

(b) Incorrect program

while < x

len(a)

if > m

a[x]

= m

a[x]

+= s

a[x]

while<i

len(a)

if<m

a[i]

=m

a[i]

+=s

a[i]

(c) Excerpt of (simplified) abstract syntax tree edits

1 while x < len(a):

2 s += a[x]

3 if m > a[x]:

(d) Lines 4– 6 in Figure 1a

1 while x < len(a):

2 if m > a[x]:

3 m = a[x]

(e) Fragment needed to fix Figure 1b

Figure 1: Correct and incorrect programs, edits of abstract syntax trees derived from the
programs and code fragments
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the correct program in Figure 1a do not match with the incorrect program in
Figure 1b; in order to match, the correct program should “artificially” con-
tain an if statement before or after line 8, and such a statement should not
modify the final output of the program. CLARA relaxes these constraints
such that, outside loop statements, both programs can have different control
statements, but they need to have the same inside loops. This relaxation
still forces a correct program with the same loop signature to exist.

Refazer exploits the tree edit distance between two programs to find dis-
crepancies between them; however, the tree edit distance between two equiva-
lent abstract syntax trees with different order of statements implies multiple
edits. For example, Figure 1c shows an excerpt of the edits to transform
the abstract syntax tree of the correct into the incorrect program in our ex-
ample, which implies removing and adding full subtrees; however, only two
edits would be necessary, i.e., changing “<” by “>” and removing the sub-
tree formed by lines 9–10 in Figure 1b. In sk p, different order of statements
result in different partial fragments, so additional correct programs will be
required to train the program repairer. For instance, Figure 1d shows a frag-
ment extracted from the correct program; however, the incorrect program
will only be fixed by a fragment like the one in Figure 1e.

We propose an alignment step based on flexible alignment of control flow
graphs. The first step consists of transforming programs into control flow
graphs that encode the True and False transitions of the program at hand.
For instance, the while loop in Figure 1a (line 4) is encoded by three nodes
in the graph: the guard, the body and the end of the loop. There are tran-
sitions (edges) between these nodes. For example, a True transition between
the guard and the body encodes that the guard is fulfilled, so the body is
executed. These nodes are further annotated with semantic labels. For ex-
ample, the guard of the loop contains the following labels: cond , indicating
it is a Boolean condition, Lt , because there is a less than operator, and
len, which corresponds to the len call. We apply flexible graph alignment
over two (correct and incorrect) control flow graphs GC and GI . Assume
a given permutation of nodes ϕ such that every node ui ∈ GC corresponds
to a node vj ∈ GI , i.e., ϕ(ui) = vj . We compute the similarity of ϕ as the
similarity between the labels of ui and vj (semantic similarity), and the tran-
sitions (edges) outgoing from ui and vj (topology similarity). We select the
permutation with lowest similarity as the best alignment.
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Correct

program

Incorrect

program

Abstract syntax 

tree processor

Model

Model

Program 

aligner

No

Error

Yes

Interpreter

Model

Trace

Align?

Repairs 

(feedback)
Repairer

Test

case

Figure 2: CLARA’s workflow: each program is translated into a model. Both models
are aligned. If they match, the repairer and the interpreter exchange model and trace
information using a test case until the incorrect program’s model passes such test case.

3. Introduction to CLARA [10]

The automated CLustering And program RepAir tool, CLARA [10], was
first introduced in 2016. CLARA helps provide feedback to students in in-
troductory programming assignments. Even though CLARA supports C++,
Java and Python, we focus on the latter in this paper. Figure 2 presents
CLARA’s workflow. The abstract syntax tree processor receives each cor-
rect and incorrect programs as input, parses them, and creates two models,
one for each program. These models are aligned: if a match is found, the
repairer uses it as well as a test case to find potential errors and fix them.
Error detection is achieved by comparing variable traces between the correct
and incorrect programs.

3.1. Models, processing and interpreting

Before performing any repairs, CLARA creates models for every input
program. CLARA exploits Python’s ast module, which is a standard li-
brary that helps generate abstract syntax trees from Python source code and
manipulate them. An abstract syntax tree is a graphical representation of a
piece of source code containing nodes, where every node represents a language
construct or operation like If, Return and Import [17]. CLARA traverses
the returned abstract syntax tree, node by node, and creates a model. For
every part of the abstract syntax tree, such as FunctionDef (function defini-
tion), Expr (expression) or Call (function call), there is a different processing
function that has a different representation in the model.

Functions and locations. The entire model consists of one program contain-
ing multiple functions. Each function is partitioned based on its control flow
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information. Control flow information captures the order in which statements
are evaluated. An example of a control flow statement is an If statement, as
it adds a new possible path for the program to take. Locations, a construct
in CLARA’s model, represent control flow information. Each function thus
contains multiple locations. Locations contain expressions and are created
based on branching control flow statements like If, While or For statements.
Other statements like function calls or sequencing of statements are not in-
volved in location creation. As a result, if a function contains no branching
control flow statements, it will only contain a single location. Locations also
contain information about which location to go to next, called transitions.
There are two types of transitions, True and False. A True transition con-
tains the following location to go to if the conditional expression inside the
location evaluates to true. A False transition contains the location to visit
next if the expression inside the location evaluates to false.

However, it is possible to have expressions inside a location that do not
evaluate to a Boolean value, in which case, they will always go to a specific
location. For example, transitioning back to the program body after execut-
ing a Then or an Else branch within an If statement. In this case, these are
always True transitions. To maintain consistency, these locations also have
True and False transitions, but the False transition always points to None,
and the True transition always points to the next location.

Expressions. CLARA contains three types of expressions as follows, where
the names between parentheses refer to CLARA’s naming convention: vari-
ables (Var), operators (Op), and constants (Const). A Const can be a string,
byte, number, or a name constant. A Var represents variables and, therefore,
only comprises strings. An Op is the most complex type of expression as it en-
compasses all computations involving any type of operation, such as creating
a list, set or tuple, and computations involving comparisons, if conditions,
or binary operations. Every Op comprises two components, the name of the
operation and the arguments it has to operate on. Depending on the type of
operation, Op can contain a different number of arguments. For example, the
GetElement operator entails getting an element from a list, dictionary or set,
and contains two arguments: the object it needs to get the element from and
the element index. SetInit, which creates a set, has multiple arguments as
each argument is an element inside the set.

All types of control flow statements are also operators. However, while
processing those statements, CLARA makes changes to the model. As men-
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1 a = [5, 6]

2 b, c = a

3 b += 1

4 b += c

5

6 for i in a:

7 c += i

Figure 3: Sample Python source code

tioned earlier, processing control flow statements results in the addition of
new locations to the model. The number of locations is different for each
control flow statement. If the program contains an If statement, three or
four locations will be added: one for the condition of the statement, another
for the expressions inside the Then branch, one for the expressions after the
statement, and, finally, another for the expressions inside the Else branch.
The latter location is optional as we do not always have an Else branch
accompanying the Then branch. However, CLARA recursively applies the
following optimization to improve program comparison: an If statement
that has no loops within is translated into a ternary operator. As a result,
this statement is embedded in its parent and does not add any new nodes to
the control flow graph. On the other hand, loops always result in the addi-
tion of three locations, corresponding to the guard, body, and the statements
after the loop.

CLARA restricts its models by requiring a variable to appear only once on
the left side of an expression per location. This restriction entails inspecting
all the declarations of a particular variable and nesting the declarations in
the last use of the variable. Hence, during the repair step, where variable
traces are compared between models, there is only one value per location,
making the comparison deterministic.

Example of a model. Figures 3 and 4 present an example of Python source
code and its corresponding model. This model is the pretty-printed version
created by CLARA to help improve readability. Since the source code con-
tains a For loop, the model contains four locations. The True and False
transitions are shown at the bottom of each location and indicate how to
traverse the model. For example, if $cond in location 2 evaluates to true, we
transition to location 4. If it evaluates to false, we transition to location 3.
ind#0 corresponds to the index of the loop, i, and iter#0 corresponds to

9



Loc 1 (around the beginning of function main)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
a := ListInit(5, 6)
c := GetElement(a’, 1)
b := AssAdd(AssAdd(GetElement(a’, 0), 1), c’)
iter#0 := a’
ind#0 := 0

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
True −> 2, False −> None

Loc 2 (the condition of the ’for’ loop at line 6)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

$cond := Lt(ind#0, len(iter#0))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
True −> 4, False −> 3

Loc 3 (∗after∗ the ’for’ loop starting at line 6)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
True −> None, False −> None

Loc 4 (inside the body of the ’for’ loop beginning at line 7)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
i := GetElement(iter#0, ind#0)
ind#0 := Add(ind#0, 1)
c := AssAdd(c, i’)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
True −> 2, False −> None

Figure 4: Model generated by CLARA for the program in Figure 3
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the value we are iterating over, a. CLARA internally creates both variables
for every loop. As it can be seen in the source code, b appears on the left
side of an expression three times (lines 2, 3 and 4), but in the model, it only
appears once in location 1. All three uses are nested inside one expression:
b := AssAdd(AssAdd(GetElement(a′, 0), 1), c′). The other expressions corre-
spond to the other operations before the loop. Whenever CLARA uses a
variable defined earlier in an expression, it converts it to a different variable
rather than using the original variable. For example, a becomes a′. CLARA
uses this notation (prime) to determine whether a variable is being defined
or used.

Since CLARA relies on program execution and variable traces, it ex-
ploits a Python interpreter that helps execute models. The interpreter vis-
its each expression in the model and recursively executes it, since an ex-
pression can contain other nested expressions. For example, the expression
b := AssAdd(AssAdd(GetElement(a′, 0), 1), c′) evaluates from the innermost
expression, GetElement(a′, 0), until the most external expression. The inter-
preter contains functions for every type of operator, in this case, AssAdd and
GetElement, annotated with the word execute as a prefix for each function.
Therefore, while evaluating the previous expression, CLARA first executes
GetElement(a′, 0), which translates to getting the element of a at index 0, in-
voking the function execute GetElement(). It then evaluates AssAdd(..., 1)
that increments the result by 1 using execute AssAdd(), and so on.

3.2. Single function alignment and program repair

To find an alignment between two programs, CLARA creates models for
each of them. If the control flow of both models is the same, for every
variable in one model, it finds a matching with a corresponding variable in
the other model based on variable tracing. The process consists of comparing
values of variables at each location of the program trace. If the matching
variables hold the same values at every point in the trace, the two programs
are aligned. Single program repair is performed between two programs, where
one is a correct program and the other is incorrect. The repair process starts
by creating models for each program and aligning them as described above.
Additionally, CLARA requires the programs to have at least one function
and the same number of functions overall in the programs being compared.
These functions must also have the same names and cannot be nested. These
features determine the structure of the programs. If there is a difference in
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the structure of the programs, CLARA throws a structure mismatch error
and does not run.

Algorithm 1: Align

in : GC = (U ,E ) control flow graph (correct program); u ∈ U ;
GI = (V ,F ) control flow graph (incorrect program); v ∈ V

in/out: ϕ : U → V program alignment
out : Whether there is an alignment

1 // If u and/or v are in ϕ, they must be mapped to each other.
2 if u ∈ dom ϕ ∨ v ∈ ran ϕ then
3 return ϕ(u) = v

4 end
5 // Add u and v to ϕ.
6 ϕ(u)← v
7 // u ′ and u ′′ (v ′ and v ′′) are the neighbors of u (v).

8 Let {u True−−→ u ′, u
False−−−→ u ′′} ⊆ E , {v True−−→ v ′, v

False−−−→ v ′′} ⊆ F
9 // Align u and v neighbors.

10 return Align(GC , u
′,GI , v

′, ϕ) ∧ Align(GC , u
′′,GI , v

′′, ϕ)

Algorithm 1 corresponds to CLARA’s program alignment based on the
control flow graphs (locations) of the programs at hand. The algorithm
receives two control flow graphs, GC = (U ,E ) and GI = (V ,F ), where U
and V are sets of locations, and E and F are sets of transitions, and two
locations u ∈ U and v ∈ V , respectively. In the initial call, u and v are the
entry points of both programs. The algorithm receives ϕ, which determines
the current mapping of U locations into V locations, i.e., the alignment
between the graphs. It outputs whether or not there is an alignment between
the graphs. If any of the locations is present in ϕ, it returns whether they are
both mapped (lines 2–3). Note that, if they are mapped, there is a match;
otherwise, either u or v are mapped to a different location and, therefore,
there is a mismatch. If u and v are not in ϕ, they are added to ϕ (line 6),
and their neighbors are recursively inspected (line 10).

CLARA exploits ϕ during the repair process. For every variable in one
location of the correct program, CLARA aims to match such variable in the
corresponding location of the incorrect program. Due to CLARA’s modeling,
a variable can only have one expression per location, ensuring it can only
hold one value. This makes the comparison with other variables possible.
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During the repair process, a mapping of a variable only deals with its specific
expression and the expression it is mapped to. While mapping a variable from
the correct program, every variable in the incorrect program is compared,
whether or not it has already been mapped. Two variables are declared a
match if their corresponding expressions evaluate to the same values using
the same inputs, where the inputs denote the variables both the expressions
depend on. This match is evaluated based on cost. Since both expressions
depend on different variables, the cost of a match denotes the number of
changes/steps it takes to transform the incorrect program’s expression into
the correct program’s expression, where a variable from the incorrect program
replaces each variable in the correct program’s expression.

In the repair process, CLARA assumes that the number of variables in the
correct program is the minimum number of variables needed, so the number
of variables in the incorrect program needs to match the number of variables
in the correct program precisely. Therefore, if the incorrect program contains
extra variables, CLARA suggests deleting the variables it cannot match. If
the incorrect program contains fewer variables than the correct program,
CLARA suggests creating new variables. During cost calculation, all the
variables in the correct program’s expression are substituted by variables
from the incorrect program as follows: Assume s = a + 2 is a statement
in the correct program. CLARA replaces a by all other variables present
in the corresponding location in the incorrect program and evaluates the
associated cost. If the incorrect program contains three variables x, y and z

in the corresponding location, a in s = a + 2 is replaced by x, y and z,
respectively. Since it is possible that the correct program has extra variables,
CLARA also calculates the cost of the substitution using a fresh variable that
does not exist in the incorrect program. This value is initialized to the value
of a with a cost of 1. CLARA finally saves all the costs for every location
and provides the cost array to a linear programming solver, which minimizes
the overall cost and suggests matches for all the variables involved. Based
on these matches and costs, the final set of repairs are suggested, which can
be of three types: variable additions, variable deletions, or variable changes.

We use the models shown in Figure 5 to illustrate how the variable match-
ing process works. Both models contain a single location that are trivially
mapped to each other. Table 1 presents the variable matching of a in the
correct program. The table contains five columns as follows: The first col-
umn represents the variable comparison number. The second column is the
variable in the correct program we aim to match. The third column rep-
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Correct Model:

a := 1
b := 2
c := Add(a’, 1)

Incorrect Model:

x := 1
y := 2
z := Add(y’, 1)

Figure 5: Sample correct and incorrect program models

Table 1: Repair cost table for variable a in Figure 5

# Variable (C) Variable (IC) Dependency Cost

1 a * None 2

2 a x None 0

3 a y None 1

4 a z None 2

resents the possible variable match in the incorrect program. The fourth
column contains the possible substitution for the dependent variables as a
tuple (i, j), where i is the dependent variable from the correct program, and
j is its possible substitution in the incorrect program. The fifth column is the
cost for each variable match. In the first row, ∗ entails that a fresh variable
is used; the cost is 2 because we need to create a new variable and assign
its value to 1 since a’s value is one. The cost of the second row is 0 because
no changes are needed. Note that there are no variable dependencies in this
example.

Table 2 shows the cost computation for variable b. Note that the fourth
row consists of replacing b by z, which depends on y; therefore, additional
combinations of variables in the correct program are used, e.g., y and a

are matched. Finally, Table 3 presents the cost computation for variable
c in which fresh variables are also used in the dependencies. The optimal

Table 2: Repair cost table for variable b in Figure 5

# Variable (C) Variable (IC) Dependency Cost

1 b * None 2

2 b x None 1

3 b y None 0

4 b z (a, y) 0

5 b z None 3
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Table 3: Repair cost table for variable c in Figure 5

# Variable (C) Variable (IC) Dependency Cost

1 c * (a, *) 4

2 c * (a, x) 4

3 c * (a, y) 4

4 c * (a, z) 4

5 c x (a, *) 2

6 c x (a, y) 2

7 c x (a, z) 2

8 c y (a, *) 3

9 c y (a, x) 3

10 c y None 0

11 c y (a, z) 3

12 c z (a, *) 1

13 c z (a, x) 1

14 c z (a, y) 0

solution is a matching that minimizes the overall cost for all variables. All of
these possible matches for every variable are the input provided to the linear
programming solver. The best variable matching is as follows: {ϕ(a) =
x , ϕ(b) = y , ϕ(c) = z}, which corresponds to rows 2, 3 and 14 in Tables 1, 2
and 3, respectively. The overall cost is 1 and the suggested repair is as follows:
Replace z := Add(y′, 1) by z := Add(x′, 1) with cost = 1.0.

4. Parser and interpreter modifications

We analyzed introductory programming assignments to identify language
constructs commonly used like print statements, input functions and import
statements. Some of these statements were not supported by CLARA’s orig-
inal implementation. In this section, we report the language constructs we
added and the changes we performed to support them. Both abstract syntax
tree processor and interpreter were updated to include these language con-
structs, since the former builds models and the latter executes the constructs.

Print statements. Many introductory programming assignments use printing
to console to verify whether a program is correct or incorrect. The verifica-
tion of correctness determines whether a program should be repaired or not.
Similar to other programming languages, computations in Python can be
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performed using variables or inside the parentheses of a print statement,
removing the need for variables altogether. Hence, while evaluating the simi-
larity between two programs or performing a repair, it is crucial to match the
contents inside these print statements. CLARA’s authors did incorporate the
parsing of print statements. However, when Python 3.x was introduced, the
print operation switched from a statement to a function call. Furthermore,
when CLARA’s authors updated the implementation to work with Python
3.x, not all of the code was updated, leading to the loss of functionality of the
print operation. We updated the section of the abstract syntax tree processor
that checks for function calls by checking if the print function was called,
and updated the model accordingly. Once the print function was correctly
processed, the comparison of the print operation during the matching and
repair processes was handled automatically.

Import statements. Certain introductory programming assignments require
the use of external libraries, such as math, re or string. These libraries
provide access to functions like sqrt, ceil, search (regular expressions),
or format (a string). Hence, for CLARA to execute these functions while
performing a repair or a match, it is essential to have the functionality to
parse and record the data within these import statements. The original
implementation of CLARA ignored import statements, causing the program
to crash during the repair or alignment processes, as their corresponding
functions cannot be found while executing the function trace.

Since CLARA has its own version of an abstract syntax tree processor
and interpreter for Python, after parsing and processing import statements,
we represent and store them in a way such that a function call is successfully
recognized during execution by the interpreter. We created a section in the
abstract syntax tree processor to deal with import statements and stored
them in a nested global dictionary, which is provided to the interpreter to be
accessed during execution.

Variable assignment. In Python 3.x, a programmer can use a variable assign-
ment based on list deconstruction or unpacking. For instance, the statement
a, b, c = [1, 2, 3] is convenient to assign the values 1, 2, and 3 to variables
a, b and c, respectively. These types of assignments are commonly used
in introductory programming assignments. We updated the abstract syntax
tree processor to recognize and process multiple assignments from a single
statement. We separated the assignments with their corresponding expres-
sions and added each assignment as an individual expression to the model.
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Without these changes, CLARA’s original implementation produces an er-
ror stating that multiple assignments within a single line are not supported,
halting the repair and alignment processes.

Built-in Python functions. CLARA’s interpreter helps recognize functions in
the model and execute them in Python. Therefore, common built-in func-
tions like max, sum or len are individually defined in the interpreter using
auxiliary functions like execute max, execute sum or execute len, respec-
tively. These auxiliary functions implement the expected functionality. Since
Python has a substantial collection of built-in functions, manual addition of
every function was not included in the interpreter, causing CLARA to fail
during the alignment and repair processes. Our approach to circumvent the
need for manual addition of every function is to use Python’s internal dic-
tionary named builtins. Every time a function is called, we verify whether
it is a built-in Python function using such dictionary. If this is the case, we
proceed to execute the function. As a result, all auxiliary functions of the
type execute XYZ are not needed anymore.

Variable additions and deletions. CLARA expects all variable declarations
to have a definition in the first location of the program. In other words,
the beginning of the program contains assignments for every variable, and
the rest of the program makes use of those variables. Hence, a new variable
cannot be declared later in the program. If this happens, CLARA outputs
unnecessary repairs and the final mapping of variables may be inaccurate.
We modified the abstract syntax tree processor by removing the restriction of
requiring variables to be declared in the first location, that is, new variables
can be declared at any point in the program. Additionally, we modified the
list of repairs generated by CLARA such that repairs suggesting to create
and assign the same variable are no longer output.

During the repair process, CLARA creates a mapping of variables from
the correct program to an incorrect program. This mapping is based on the
variable tracing performed throughout the process. A dictionary is used to
store the mapping. It uses variables from the correct program as keys and
incorrect program variables as values. While updating the source code to
include our modifications, we noticed that, if more than one extra variable is
declared, CLARA does not suggest deleting more than one variable, resulting
in an incorrect final variable mapping. Figure 6 illustrates this issue with two
programs such that the incorrect program contains two extra variables, g and
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1 def cap():

2 a = [1, 2, 3]

3 s = 0

4 for x in a:

5 s += a

6 return a

(a) Correct program

1 def cap():

2 a = [1, 2, 3]

3 s = 0

4 for x in a:

5 s += a

6 f = 2

7 g = 3

8 return a

(b) Incorrect program

1) Delete ’g := 3’ ∗after∗ the ’for’ loop (cost=1.0)

(c) Suggested repair

Figure 6: Correct and incorrect programs and the corresponding suggested repair that
indicates to delete a single variable rather than two variables (g and f)

f, that must be deleted; however, the suggested repair does not mention f.
The internal dictionary is as follows: {a : a, s : 0, x : x,− : g}, where variable
f has been omitted. In this dictionary, variable addition and deletion are
represented by the ∗ and − keys, respectively. Since it is a dictionary, one of
the deletions is overwritten as the key is the same. Note that, if the variables
f and g were in the correct program, CLARA would suggest to add two new
variables. This never results in an incorrect mapping problem because, in the
dictionary, they are represented as {f : ∗, g : ∗}. On the contrary, deletions
do not work as expected since {− : g,− : f} is not allowed and, therefore,
we only get the suggestion to remove one variable. We thus adjusted the
internal dictionary to save an array of values in the case of deletions, i.e.,
{− : ⟨f, g⟩} in our example.

Input statements. One of the commonalities of introductory programming
assignments is that they evaluate the correctness of a program based on
test cases using console input and output. The original implementation of
CLARA, however, does not support standard input. All inputs have to be
provided via the command line as function arguments. This is not always
possible since input arguments can be multiple lines long and do not have
the same length. Therefore, we updated CLARA to read all of the inputs
using an argument file and store them in an internal list accessible by the
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interpreter. We updated the interpreter to handle calls to the input function
separately. So a call like x = input() is handled as follows: we extract the
first element from the internal list and assign it to variable x. If there are
subsequent calls to input, we keep extracting elements from the internal list.
As a result, this modification allows us to repair programs that had inputs
of different length.

However, while adding this feature, we encountered another problem.
Since CLARA nests the expressions of variables while creating its model, it
creates copies of the input function when there should only be a single call.
For example, consider the following Python statement:

1 a, b, c = input().split()

It becomes the following statements in the model:

a = GetElement(split(input()), 0)
b = GetElement(split(input()), 1)
c = GetElement(split(input()), 2)

This change results in input being called three times, where it should have
been called just once. Since it is possible for this problem to occur with other
function calls as well, we updated the abstract syntax tree processor to create
a new variable to store the result of calling the input function. Additionally,
the expression referencing the function references the new variable instead.
Therefore, using the above example, the statements in the model are as
follows:

input val = input()
a = GetElement(split(input val), 0)
b = GetElement(split(input val), 1)
c = GetElement(split(input val), 2)

Repetition of expressions is expected if we have multiple variable decla-
rations in a single line during model creation. If these expressions include
side-effecting functions, we can have a similar problem as we had with the
input function. It is challenging to automatically detect whether a func-
tion is side-effecting, and creating new variables for every single function call
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in a program is also challenging to handle due to the addition of multiple
variables. Furthermore, it can cause a mismatch in the number of variables
between the correct program and the incorrect program, resulting in unex-
pected repairs. However, this is not a problem for the input function, as
we expect both the programs to have the same number of calls to the input
function. We adjusted the source code to address this issue to receive an
optional list of the side-effecting functions via command line. New variables
will be created for each of these functions similar to input, aiding us in
solving the problem and limiting the addition of extra variables. In practice,
one can apply a preprocessing step detecting side-effecting functions and add
them to this command-line list.

5. Alignment and repair modifications

Before performing the modifications described above, CLARA’s original
implementation did not output any model when processing a program con-
taining any unsupported statements. Since both the alignment and repair
processes depend on models, both processes were thus not executed. After
performing the modifications described above, the alignment and repair pro-
cesses worked properly for many programs. However, some programs still
failed. In this section, we report our modifications to the alignment and
repair processes of CLARA’s original implementation. Note that these mod-
ifications were necessary because of the modifications made to the parser and
interpreter presented above.

Nested functions. The original implementation of CLARA is not able to parse
nested functions as functions cannot store other functions in the model. A
function is thus only allowed to store expressions. We updated the model to
support nested functions by creating a link between two or more functions.
After adding it to the model, we updated the processes to align and repair
these functions successfully. Both processes involve creating a one-to-one
mapping between variables. Therefore, we need to ensure that the variables
inside the nested functions are not involved in the mapping as those exist in
a different environment. We treat each nested function as a variable, which
is evaluated during trace execution, and its return value is substituted by the
variable calling the function. If the function is called on its own and does not
have a return value, we check if it is printing to standard output. If that is
the case, the expression being printed is added to the standard output of the
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outer function. Since CLARA performs variable tracing and tracks the values
a variable holds throughout the program, CLARA places more importance
on the variable’s values than its expression. This helps eliminate the need for
function inlining. Our aim while updating the alignment and repair processes
was to avoid the suggestion of creating/deleting nested functions if the other
program is performing the exact computation without using nested functions.

Applying repairs. CLARA’s repair process is sound and complete for the test
case provided as input [10]. However, it is typically the case that introduc-
tory programming assignments are evaluated with a variety of test cases.
Therefore, we aim to determine whether the incorrect program provided as
input is repaired for only that particular test case or for all test cases avail-
able. To accomplish this, we need to convert CLARA’s output into actual
repairs and, then, apply these repairs to the model of the program. Note
that the repair process focuses solely on models and not the original source
code; therefore, we decided to repair the program’s model rather than the
source code.

Every statement output by CLARA contains the variables involved in the
repair for both the correct and incorrect programs, the associated location
in the correct program, and the associated expression from the correct pro-
gram. Hence, we must extract the rest of the necessary information, i.e., the
location in the incorrect program and the expression. Every function in a
program groups and stores its variables and their associated expressions by
location. There are three types of repairs: variable deletion, variable addi-
tion, and changing the variable definition. In the case of variable deletion, we
access its corresponding location expressions and remove the variable from
the list. Similarly, we add the variable and the new expression to its corre-
sponding location expressions for variable additions. Finally, we substitute
the variable’s expression in its corresponding location for variable changes.

However, CLARA’s output is not sorted; therefore, for variable additions
and changes, we must ensure expressions are added in such an order that the
variables being used exist. For example, if we have the following output:

1) Change ’a = x + 5’ to ’a = m + 5’
2) Add ’m = 3’

We must ensure that m is defined before a; otherwise, an error is thrown
during program execution. As mentioned earlier, CLARA differentiates be-
tween variable definition and variable usage. An example of this can be seen
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1 a = 3

2 b = a + 1

3 for x in range(0, 2):

4 b += x

5 b += a

Figure 7: Sample program to illustrate how CLARA differentiates between variable defi-
nition and usage

in Figures 7 and 8, where location 1 defines variable a and uses it, denoted
as a′. Note that location 3 uses the same variable; however, in this case,
location 3 does not (re)define variable a; therefore, it does not use a′. As a
result, we need to deal with an additional problem involving variable defini-
tion. For variable usage, we must ensure that variables exist and are defined
earlier in the location. If we add a new variable definition within a location,
we need to make sure that usages of that variable are updated. For instance,
if we add a definition of a into location 3, we must change a to a′ when it is
used to update b. Therefore, every time a new variable is added or deleted,
we execute a trace of the function to help us determine which variables we
have access to before adding a repair. If all of the variables used in that
expression are defined, we add the repair. Otherwise, we continue adding
the rest of the repairs and come back to the ones we skipped earlier until no
more repairs are available.

Once all the repairs have been applied, we rerun the repair process to
determine if any additional repairs are suggested for the same test case. If
this happens, we halt and conclude that the program is not successfully
repaired. Otherwise, we conclude that the incorrect program is repaired
for that particular test case, run the repair process for all other available
test cases, and record if any repairs are suggested. If no other repairs are
suggested overall, we can successfully conclude that the incorrect program
has been fully repaired for all test cases.

6. Flexible program alignment

One of CLARA’s main limitations is that it requires both the correct
and the incorrect programs to have similar control flows in order to proceed
with the repair process. It is uncommon to find many programs containing
the same control flow, which reduces the number of programs CLARA can
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Loc 1 (around the beginning of function)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
a := 3
b := Add(a’, 1)
iter#0 := range(0, 2)
ind#0 := 0

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
True −> 2 False −> None

Loc 2 (the condition of the ’for’ loop at line 3)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

$cond := Lt(ind#0, len(iter#0))
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
True −> 4 False −> 3

Loc 3 (∗after∗ the ’for’ loop starting at line 3)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
b := AssAdd(b, a)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
True −> None False −> None

Loc 4 (inside the body of the ’for’ loop beginning at line 4)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
x := GetElement(iter#0, ind#0)
ind#0 := Add(ind#0, 1)
b := AssAdd(b, x’)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
True −> 2 False −> None

Figure 8: Model of the program in Figure 7 that differentiates between variable definition
and usage, e.g., a and a′
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1 def f(a):

2 x, m, s = 0, 101 , 0

3 while x < len(a):

4 s += a[x]

5 if m > a[x]:

6 m = a[x]

7 x += 1

8 print(s + "," + m)

(a) Correct Program

1 def g(a):

2 i, m, s = 0, 101 , 0

3 while i < len(a):

4 s += a[i]

5 if m < a[i]:

6 m = a[i]

7 i += 1

8 if m == 0:

9 i -= 1

10 print(s + "," + m)

(b) Incorrect Program

Figure 9: Correct and incorrect programs used to illustrate flexible alignment

repair in practice. Hu et al. [18] reported that CLARA’s repair process did not
work for 35.5% of incorrect programs using several introductory programming
assignments. Our experiments below also confirm these findings.

We propose an algorithm that creates a flexible alignment between the
control flow graphs of the correct and incorrect programs. This flexible align-
ment takes into consideration both semantic and topological information of
the graphs. Our main goal is to reduce mismatches in the alignment process;
however, this comes with a penalty: since it is approximate, it is possible
to obtain an alignment that makes the repair process fail. We discuss these
issues in this section.

Figure 9 presents a simplified version of the programs presented in Sec-
tion 2. We use these two programs to illustrate our discussions in this section.
Note that, in this section, we assume CLARA’s optimization of replacing if
statements containing no loops by ternary operators is disabled.

6.1. Creation of the control flow graph

Each model created by CLARA is based on the program’s control flow.
Hence, we decided to utilize the information available to us in the model to
create control flow graphs for both the correct and incorrect programs. Each
location is a node in the control flow graph, and the location’s transitions are
the edges in the graph. Since many transitions pointed to None, indicating
that no transition exists, we decided to create a special node for None.

Each node in the control flow graph contains a location number, the cor-
responding location’s expressions, the starting line number of that location, a
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description, and a multiset of labels. This multiset contains all the semantic
information we can extract from the (nested) expressions of the location at
hand. Each expression contains semantic information in terms of constants
and operation semantics. Operation semantics allow us to identify the type
of statement, e.g., addition or subtraction. Unlike expressions, which can
hold different values due to variables, we want the elements of a label to al-
ways remain constant for a particular expression. Therefore, variable names
are not added to the multiset of labels. For example, consider the following
Python statements:

1 a = [1, 5, 6]

2 b = a[0]

3 c = b + 1

We extract a multiset of labels for each statement. Note that these labels
correspond to expressions in the model derived from the Python statements.
Since a is a list formed by the elements 1, 5 and 6, it contains the labels
{ListInit, 1, 5, 6}. Also, b is initialized with the first element of a, so it has
the labels {GetElement, 0}; similarly, c is initialized with b+ 1, so it has
the labels, {Add, 1}. Therefore, the labels assigned to the node is the union
of all of these multisets, i.e, {ListInit, 1, 5, 6, GetElement, 0, Add, 1} (note
that 1 appears twice). Recall that we exclude the variable names a, b and
c from the labels of the node as the variables do not necessarily evaluate to
the same value at every point in the program.

We iterate through the model of a function to create the nodes of the
control flow graph with the information mentioned above. After the nodes
have been created, we connect the nodes with edges representing the transi-
tions between the model locations. Each edge is annotated with a True or
False label based on the type of the transition. Figure 10 shows the control
flow graphs obtained from the programs in Figure 9. Each node in the fig-
ure contains the location number and its corresponding multiset of labels.
The expressions, line numbers, and descriptions have been omitted from the
figure to improve readability. The dotted arrows represent False transitions,
and the solid arrows represent True transitions. The node with the label
Empty represents a location in the program model that does not contain any
expressions, which corresponds to the end of the loop.
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Algorithm 2: FlexAlign

input : GC = (U ,E ) control flow graph of the correct
program; GI = (V ,F ) control flow graph of the
incorrect program

input/output: ϕbest : U → V
1 // Initialize best alignment and similarity.
2 ϕbest ← {}, sbest ← 0
3 // Check every permutation.
4 for ϕ ∈ Permutations(U ,V ) do
5 // s is the similarity of ϕ.
6 s ← 0
7 for u ∈ dom ϕ do
8 v ← ϕ(u)
9 // Jaccard similarity between the labels of u and v .

10 slabel ← Jaccard(L(u),L(v))
11 // u ′ and u ′′ (v ′ and v ′′) are the neighbors of u (v).

12 Let {u True−−→ u ′, u
False−−−→ u ′′} ⊆ E , {v True−−→ v ′, v

False−−−→ v ′′} ⊆ F
13 // Edge similarity is 0.5 by default.
14 sedge ← 0.5
15 // Check if the neighbors match.
16 if v ′ = ϕ(u ′) ∧ v ′′ = ϕ(u ′′) then
17 sedge ← 1
18 else if v ′ ̸= ϕ(u ′) ∧ v ′′ ̸= ϕ(u ′′) then
19 sedge ← 0
20 end
21 // Aggregate both similarities (same importance).
22 s ← s + (slabel + sedge)/2

23 end
24 // Update the best alignment found.
25 if s > sbest then
26 sbest ← s , ϕbest ← ϕ

27 end

28 end
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Figure 10: Control flow graphs derived from the programs in Figure 9

6.2. Alignment algorithm

Our graph alignment process aims to find a mapping between the nodes
of the control flow graphs of the correct and incorrect programs. Algorithm 2
aims to compute such mapping taking into consideration both the semantic
and topological information of the graph, i.e., labels and edges, respectively.
The algorithms takes the two control flow graphs of the incorrect and correct
programs as input, denoted as GC = (U ,E ) and GI = (V ,F ), respectively,
where U and V are sets of nodes, and E and F are sets of edges. The
algorithm aims to find a mapping ϕbest from U to V . To accomplish this, it
explores all possible permutations of these mappings, that is, all combinations
of nodes in U mapped to nodes in V , which is performed by the Permutations
function (line 4). Let ϕ be one of these permutations. The similarity of ϕ,
denoted by s , is computed by considering label and edge similarities. For each
node u present in ϕ (line 7) and its corresponding v (line 8), the algorithm
computes the Jaccard similarity between the multisets of labels of both nodes
(line 10). The formula for the multisets L(u) and L(v) is as follows [19]:

Jaccard(L(u),L(v)) =

∑
x∈L(u)∩L(v)min(W (x ,L(u)),W (x ,L(v)))∑
x∈L(u)∪L(v) max (W (x ,L(u)),W (x ,L(v)))
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Table 4: Multisets of labels and their corresponding Jaccard similarities

Multiset L(u) Multiset L(v) Jaccard

GetElement, 0, 0 GetElement, 0 0.667
GetElement, 0 GetElement, 0 1

cond, Lt, ind#0, len, iter#0 cond, Gt, ind#1, len, iter#1 0.25
ListInit, 5, 6 ListInit, 8, 9 0.2

where W (x , S ) is the number of times x appears in the multiset S . Note that
0 ≤ Jaccard(L(u),L(v)) ≤ 1, where zero indicates no similarity and one indi-
cates both multisets are equal. Table 4 presents several examples of multisets
of labels and their corresponding Jaccard similarities. We rely on Jaccard
similarity because it penalizes dissimilarities between the multisets compared,
intersection divided by union, more than others like Sørensen–Dice.

Once Jaccard similarity is computed, the algorithm computes edge simi-
larity (lines 12–19). It considers both neighbors of u and v that correspond
to the False and True transitions in each control flow graph. If both sets of
neighbors are mapped in ϕ, the edge similarity is one; if none of them are
mapped in ϕ, the edge similarity is zero; otherwise, the edge similarity is 0.5
(one but not the other is mapped).

Both similarities are combined using the same importance and added to
the current similarity of ϕ (line 22). Finally, the graph alignment that is
output is the one with highest similarity (lines 25–26).

Note that, even though we expect to deal with small programs, the num-
ber of nodes in a program in an introductory programming assignment typ-
ically ranges between 10 and 20; therefore, it is possible to have more than
3 million permutations. In practice, we aim to find permutations with high
similarities first. To accomplish this, we use a heuristic in which we explore
the permutations in ascending order by semantic similarity. Furthermore, we
only explore the top-k permutations found using this approach.

Figure 11 presents an alignment between the control flow graphs discussed
above. The control flow graph of the correct program is on the left side, and
the graph of the incorrect program is on the right side. The solid red lines
indicate the mapping ϕ between the nodes. As it can be observed, nodes
v8, v9 and v10 are not mapped to any nodes in the correct program. These
locations correspond to the second if statement in the incorrect program.

Algorithm 2 always produces an alignment between the input programs.
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Figure 11: Alignment between the control flow graphs from Figure 10

One can use s , the similarity of an alignment, to decide whether or not to
proceed with the repair process. In our experiments below, we use a threshold
over s to proceed to repair the programs.

6.3. Recreating the model

Once we have computed an alignment ϕ between the control flow graphs
of the correct and the incorrect programs, we have to recreate the input that
CLARA’s repair process requires. Since the process receives models for each
program, we rely on ϕ and the model of the correct program to recreate the
new model. There are three possibilities. First, the control flow graph of the
correct program has less nodes than the graph of the incorrect program. In
this case, nodes need to be removed from the new model. Second, the control
flow graph of the correct program has more nodes, which implies that new
nodes need to be added to the new model. Third, both graphs have the same
size, so no nodes need to be added or removed. In all of the three cases, edges
or nodes might need rearrangement in the new model after an alignment has
been determined.

Algorithm 3 takes as input both control flow graphs (GC and GI ) as well
as the alignment between them (ϕ). It outputs MI , the recreated model of
the incorrect program. If there are more nodes in the incorrect program

29



Algorithm 3: RecreateModel

input : GC = (U ,E ) control flow graph of the correct program;
GI = (V ,F ) control flow graph of the incorrect program;
ϕ : U → V alignment

output: MI = (W , J ) recreated model of the incorrect program
1 // Initialize MI with the nodes in GI and empty edges.
2 W ← V , J ← ∅
3 // Correct is smaller than incorrect; remove extra nodes.
4 if |U | < |V | then
5 // If v is not in ϕ, remove from W .
6 for v ∈ V such that v /∈ ran ϕ do
7 W ←W \ {v}
8 end

9 end
10 // Incorrect is smaller than correct; add extra nodes.
11 if |U | > |V | then
12 // If u is not in ϕ, add new node to W and ϕ.
13 for u ∈ U such that u /∈ dom ϕ do
14 v ′ ← CreateNode()
15 W ←W ∪ {v ′}
16 ϕ(u)← v ′

17 end

18 end
19 // Update J to reflect the edges in GC .
20 for u ∈ dom ϕ do
21 v ← ϕ(u)

22 Let {u True−−→ u ′, u
False−−−→ u ′′} ⊆ E

23 J ← J ∪ {v True−−→ ϕ(u ′), v
False−−−→ ϕ(u ′′)}

24 end
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than in the correct program, the algorithm removes the extra nodes from
the new model (lines 4–7). Note that, for every node that is deleted, its
corresponding expressions and edges (transitions) are deleted too. If there
are less nodes, it generates new, fresh nodes using the CreateNode function,
which are added to both the new model and ϕ (lines 11–16). Note that these
new nodes do not contain any expressions because we do not know yet the
corresponding variables associated with those expressions. During the repair
process, additions of new expressions will be suggested for these new nodes.
Finally, the algorithm updates the edges of the new model based on the edges
of the correct program (lines 20–23).

7. Evaluation

To evaluate the performance of CLARA and the improvements of our flex-
ible alignment scheme, we built a dataset of correct and incorrect programs
from the online programming website Codeforces (https://codeforces.
com). It is an online platform that hosts competitive programming contests
and programming problems divided into multiple difficulty ratings. Submis-
sions by users, both correct and incorrect, are publicly available. To evaluate
the correctness of a program, the platform executes it on several test cases.
Codeforces programming problems follow the same structure: each test case
must be read from the console by a given program, and such a test case
consists of line-delimited parameters. The first line indicates the number of
arguments, and the following lines include arguments as a single block of
text that requires parsing before performing any computations to solve the
problem at hand. A variety of methods can be used for such parsing, but the
most common is Python’s input function for reading console input.

If a program does not pass a particular test case, the testing stops and
the program is declared incorrect. The test case on which the program failed
is provided by the platform. Therefore, we only have access to the first test
case that is not passed for every incorrect program. Furthermore, because
CLARA uses variable tracing to find repairs in the program, we only need
the test case input, not the output it is supposed to produce. The platform
does not display test cases that are longer than 50 lines; instead, it displays
the initial 50 lines followed by “. . . ” characters. As a result, these test cases
are incomplete, inaccessible, and therefore, invalid for our purposes.

Taking these factors into account, in our experiments, we utilized valid
submissions for twenty programming problems with the highest number of
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Python submissions, and fulfilled the condition of having at least one of the
following: (1) a loop, (2) an if statement, (3) a call to read from standard
input, and (4) a call to print to standard output.

7.1. Dataset and Experimental Setup

Since CLARA analyzes an incorrect program based on correct programs,
we selected thirty correct programs to be compared with the pool of all
incorrect programs for each of the twenty programming problems. The subset
of thirty correct programs for each problem was selected as follows: select
the top-10 programs when sorted by date and they are from different users.
Then, select the top-10 programs when sorted by size ascending and they
are from different users. Repeat the same operation using descending order.
All of the incorrect programs taken into account failed valid test cases as
recorded by the platform. These programs were all unique and made by
different users. We evaluated five techniques as follows:

1. Baseline CLARA with No Alignment (CNA): The original implemen-
tation of CLARA with no modifications and no flexible alignment.

2. SARFGEN: Sarfgen [3] is not publicly available; therefore, we simu-
lated its alignment step. We used our proposed flexible alignment (see
Algorithm 2), considering both semantic and topological similarities
(label and edge), and model recreation (see Algorithm 3). However, we
set a threshold: only similarities greater or equal than 0.95 are kept.
This simulates Sarfgen’s rigid program comparison in which both con-
trol flow graphs must perfectly match.

3. Baseline CLARA: The original implementation with the modifications
described in Section 4. The alignment process is the one originally
implemented (see Algorithm 1).

4. FA(L): It uses our proposed flexible alignment (FA) (see Algorithm 2)
and model recreation (see Algorithm 3). However, it only exploits se-
mantic information (label) for alignments, i.e., edge similarity is always
equal to one (sedge = 1).

5. FA(L+E): Similar to FA(L) but it considers both semantic and topo-
logical similarities (label and edge) as described in Algorithm 2.

Note that the five techniques rely on the same repair process, i.e., the pro-
cess of CLARA’s original implementation. Furthermore, we noted that the
number of nodes in each program’s control flow graph ranges between 1 and
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Table 5: Program comparisons available in our dataset and summary of invalidity reasons.
SGEN refers to SARFGEN while CNA refers to CLARA with no flexible alignment.

Reasons CNA SGEN CLARA FA(L) FA(L+E)
Unavailable Test Cases 25,485 25,498 25,485 25,498 25,498
Unsupported Constructs 26,152 26,152 26,152 26,152 26,152
Unsupported Class Attributes 7,868 7,868 7,868 7,868 7,868
Keyword Arguments 5,148 5,148 5,148 5,148 5,148
Timeout 9 172 9 191 172
Total Invalid 64,838 64,838 64,662 64,857 64,838
Total Valid 15,925 15,749 15,925 15,730 15,749
Total Comparisons 80,587 80,587 80,587 80,587 80,587

70. This implies that, in many cases, we can have millions of permutations
to be evaluated to compute an alignment. Therefore, for SARFGEN, FA(L)
and FA(L+E), we set a limit of 1,000 permutations. The best alignment is
thus chosen from these permutations. Recall that we sort the node candi-
dates by semantic similarity (labels) with the expectation that an alignment
with a high similarity will be computed. We also set a time limit of one
minute for SARFGEN, FA(L), and FA(L+E), and an overall time limit of
five minutes. If any of these limits is reached, we report a timeout error.

Table 5 presents a summary of the program comparisons available in our
dataset. The total number of program comparisons is 80,587, which cor-
responds to the Cartesian product between the total number of incorrect
programs and the subset of correct programs selected as explained above. A
significant portion of the comparisons was filtered out because of the following
reasons: (1) The test cases were not available, (2) Contained unsupported
language constructs like lambda expressions or try-catch blocks, (3) Con-
tained class attributes, (4) Contained functions with keyword arguments,
and (5) There were timeout errors. Note that there were only 191 timeout
errors in the worst case among the comparisons, which amounts to less than
1.25% of the total valid comparisons. Therefore, timeout errors were sig-
nificantly mitigated thanks to the time thresholds we established. Due to
the difference in the number of timeouts for each technique, the total valid
comparisons are different between them. As a result, we further filter the
remaining valid comparisons to only pick the comparisons with common per-
mutations of valid and invalid programs. This results in 15,688 common valid
program comparisons available for all the techniques.
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Table 6: Dataset statistics for valid programs, where LOC and Exprs. respectively indicate
total lines of code and number of expressions, and Diff. is the problem’s difficulty

Problem Total Correct Incorrect LOC Exprs. Diff.
4A 1,059 10 43 6.94± 0.43 5.02± 0.14 800
50A 567 5 60 2.38± 1.31 4.90± 1.26 800
214A 717 7 66 11.8± 5.21 21.0± 7.87 800
255A 1,856 12 96 12.5± 7.77 13.1± 7.14 800
265A 300 6 25 4.95± 0.22 11.6± 1.75 800
510A 1,001 7 78 17.7± 5.14 18.4± 8.68 800
1097A 1,329 10 72 16.1± 15.6 17.6± 13.13 800
1360B 544 4 85 8.61± 1.20 18.1± 2.71 800
1370A 3,012 6 249 4.53± 1.09 10.0± 3.06 800
1385A 4,779 6 428 26.8± 3.45 24.9± 4.52 800
1391A 9,033 25 148 5.83± 2.27 9.23± 4.35 800
1391B 318 6 51 9.91± 2.80 23.1± 5.19 800
208A 447 5 65 8.64± 10.9 8.44± 10.16 900
1A 877 5 125 2.00± 0.00 5.73± 1.03 1000
1382B 1,532 5 145 15.5± 4.31 21.2± 2.59 1100
492B 1,147 9 90 9.03± 8.15 18.7± 11.41 1200
1363A 2,788 7 295 17.0± 9.96 27.5± 5.96 1200
1364A 12,581 11 679 8.63± 5.74 14.5± 4.65 1200
1369B 2,410 7 211 8.00± 5.72 14.4± 5.63 1200
4C 1,107 10 66 10.3± 1.57 16.9± 2.53 1300
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The summary statistics of the dataset are shown in Table 6. The Total
column indicates the number of valid comparisons each programming prob-
lem comprises, while the Correct and Incorrect columns display the number
of unique programs that are part of the total valid comparisons. The LOC
and Exprs. columns highlight the mean and standard deviation of the number
of lines of code and expressions (nodes in the control flow graph) respectively
across all programs, both correct and incorrect. The Diff. column displays
the number assigned by Codeforces to indicate the difficulty of the problem.
However, the ranking and reasoning behind the assignment of the number are
not officially documented. The closest explanation we found was through a
Codeforces blogpost [20], where difficulty is assigned such that the expected
probability of solving the problem is 0.5 for coders of that rating. Since
we are looking at introductory assignments, we limit our ratings from 800
to 1300. We consider the difficulty rating of 800 to be low difficulty (it is
the lowest available in Codeforces). We selected the range of 900-1300 as
hard difficulty problem as there are 11,841 data points for 800, and 9,518 for
900-1300, allowing for as close to equal binning between the two as possible.
Analyzing the table, we observe lower lines of code with greater variance for
low-difficulty problems while higher-difficulty problems on average have more
lines of code but less variance. This is indicative that low-difficulty problems
comprise a combination of one-line and longer solutions, depending on the
capability of the programmers. In contrast, the number of expressions at
higher difficulty is higher with higher variance, indicating the increase in
complexity of the solution to the problems. This is also confirmed by Fig-
ure 12, which displays boxplots of the number of lines of code and expressions
in the programs grouped by difficulty.

7.2. Quantitative Analysis

Successful repairs. In Figure 13, we present the percentage of successful re-
pairs, which was computed as follows: the number of unique incorrect pro-
grams fully repaired divided by the total number of incorrect programs. In
Figure 13a, we present the macro success rate for the five techniques under
evaluation. It can be observed that flexible alignment in both flavors sig-
nificantly outperforms CLARA (5%) and CNA (0.3%) with FA(L) at 45%
and FA(L+E) at 46% success rates, respectively. We can also observe that
baseline CLARA performs slightly better than SARFGEN and significantly
better than CNA. This macro result highlights the major improvement in
repair capability that flexible alignment can achieve. Figure 13b aggregates
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Figure 12: Number of lines of code and expressions of programs grouped by difficulty
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Figure 13: Percentage of incorrect programs fully repaired grouped by technique and
difficulty
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Figure 14: Percentage of incorrect programs fully repaired grouped by lines of code and
expressions. Cases that failed before model creation are ignored.

Table 7: Number of samples in each bin when grouped by LOC (lines of code) and Ex-
prs. (expressions). Failed indicates failures before model creation.

LOC # Exprs. #
0–4 1,072 0–4 464
5 2,301 5–10 1,597
6–15 2,661 11–20 3,398
16–40 1,712 21–40 2,230
41–80 209 41–80 266
Failed 7,733 Failed 7,733

results by problem difficulty. We observe that the five techniques achieve
better success rates in low-difficulty problems. We also observe that success
rates decrease in high-difficulty problems compared to low-difficulty ones.
In low-difficulty problems, FA(L+E) at 48.2% outperforms FA(L) at 47.5%
by 0.7%. However, this gain is not as evident in the other problems. Our
hypothesis to explain this behavior is that, on one hand, low-difficulty prob-
lems contain similar statements that cannot be easily differentiated based
solely on labels. On the other hand, high-difficulty problems contain many
specialized statements that are almost unique, so labels are helpful to align
statements without the use of edges. We can conclude that using both label
and edge similarities in the alignment process is beneficial.

As lines of code increase for programs as shown in Figure 14a, the per-
formance of all the techniques decreases, but baseline CLARA fails to find
repairs for programs with 41 lines of code or higher. Note that these bins
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Figure 15: Number of repairs necessary to repair incorrect programs and change percentage
(the proportion of the incorrect program that was changed) grouped by difficulty

are not balanced as presented in Table 7. In 7,733 of these comparisons, the
techniques failed to produce a model to compute lines of code and expres-
sions, which are reported in the table. In Figure 14, once model creation has
been completed, flexible alignment has a success percentage over 80% for all
LOC and Exprs. except for those above 41. In Figure 14a, FA(L+E) with its
additional topological information and flexibility performs better compared
to more rigid alignment schemes. In addition to lines of code, if we analyze
successful repairs in terms of expressions in programs, FA(L+E) with both
semantic and topological information outperforms FA(L), even as the number
of expressions – by proxy complexity – increases, as seen in Figure 14b.

Number of repairs and percentage changes. We also evaluate the performance
considering the number of repairs. Note that, for a given incorrect program,
there is typically the case that several correct programs can be used to re-
pair it. We measure, for each incorrect program, the minimum number of
repairs among all correct programs, and the change percentage, that is, the
percentage of the incorrect program that was altered in order to repair it.
As shown in Figure 15a, flexible alignment has a higher minimum number
of repairs than baseline CLARA, and the range of repairs is significantly
higher. This happens in both bins of low- and high-difficulty problems. We
observe that the number of repairs in the high-difficulty problems is similar
for both FA(L) and FA(L+E); however, for low-difficulty problems, FA(L)
has a slightly reduced number of repairs compared to FA(L+E) when they
both achieve very similar performance. CNA and SARFGEN achieve less
number of repairs than any of the other techniques, and their performances
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Figure 16: Average number of repairs necessary to repair incorrect programs and change
percentage (the proportion of the incorrect program that was changed) grouped by lines
of code

are quite poor for high-difficulty problems.
Figure 15b presents the change percentage, i.e., the percentage of the

incorrect program that was replaced with the correct program. As expected,
for low-difficulty problems, our flexible alignment techniques change a higher
percentage of the incorrect programs than baseline CLARA. Surprisingly,
this is not the case in the high-difficulty problems, in which we observe a
higher mean of change percentages for baseline CLARA. This implies that
our flexible scheme finds smaller repairs than baseline CLARA. The behavior
of both FA(L) and FA(L+E) are very similar. This highlights the benefit of
using both label and edge flexible alignments for high-difficulty problems. In
contrast, SARFGEN significantly reduces the number of changes, but this
comes with the penalty of very low repair rates. For CNA, without any
flexible alignment or parser modifications, the median number of changes
is lower than SARFGEN but at a penalty of even lower repair rates than
SARFGEN due to the rigidity of the approach i.e. it will fix only similar
programs.

Figure 16 presents the average number of repairs and change percentage
achieved by each technique when grouped by lines of code. We observe that,
as lines of code increase, the average change percentage of baseline CLARA
decreases, while the same average for our flexible schemes increases. It is
surprising though that, for the small bin (0–4), baseline CLARA’s and SAR-
FGEN’s means are higher than those of our flexible schemes while CNA has
the highest mean. The presence of labels and edges allows our flexible ap-
proach to reduce the change percentage by identifying key labels and edges,
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Figure 17: Percentage of programs fully repaired grouped by programming problem

while also maintaining a high degree of repairs at higher lines of code. This
suggests that by using flexible alignment, one can find a correct–incorrect
program comparison that is more efficient than using a rigid program com-
parison scheme.

7.3. Qualitative Analysis

We conducted a fine-grained analysis of the repairs within the program-
ming problems selected in our dataset. Figure 17 shows the percentage of pro-
grams successfully repaired for each technique grouped by problem. The re-
sults achieved by baseline CLARA, CNA, SARFGEN, FA(L), and FA(L+E)
across the twenty problems are consistent with the macro results in the pre-
vious section. Flexible alignment consistently outperforms baseline CLARA
and CNA: in four problems (50A, 1360B, 1A, 1363A), FA(L) and FA(L+E)
achieve more than 80% of successful repairs, while baseline CLARA achieves
less than 20% success rate. CLARA outperforms SARFGEN except in prob-
lems 1385A and 208A. In these two problems, FA(L), and FA(L+E) are far
superior. CNA fails to find solutions in most problems with no flexibility or
alignment except for 4A and 1A.
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We observe several problems in which baseline CLARA achieves poor
performance of 5% or less success rate. In the worst cases, FA(L) and
FA(L+E) achieve approximately 20% success rate (problems 214A, 1097A,
and 1364A), still outperforming the rest. Comparing the performance of
FA(L) vs. FA(L+E), we observe that, in problem 510A, FA(L+E) signifi-
cantly outperforms FA(L). In the rest of the problems, both techniques per-
form similarly.

7.4. Threats to validity

We built our dataset of correct and incorrect programs from Codeforces
and utilized their assignment of difficulty as a metric for our comparisons.
However, the reasoning and ranking behind the difficulty assignment from
Codeforces for each of the problems are not well documented (see discussion
above). We present an analysis to check correlations between difficulty, lines
of code, and expressions (code complexity) in Figure 12 to get a better un-
derstanding of the dataset. Due to the addition of the graph alignment step,
we need to process the feedback returned by CLARA before it is provided to
students. Based on the locations added or deleted and the edges modified,
we need to be able to inform the learner to add/delete the corresponding
expressions.

Another limitation of the flexible alignment step is that, while removing
locations from the incorrect program model, it is possible to remove a variable
with no other definition in the rest of the program. Therefore, causing the
program to crash if it is used. We hope to address this issue in the future
by checking if deleting a variable can cause the program to crash and, if so,
adding that variable and its expression to a different location.

Recent advances in large language models like ChatGPT2 and Codex [21]
have raised the question of whether they can be used for program repairs such
as the one we discuss in this paper. While such language models are good at
providing suggestions during coding or to generate introductory code from
scratch, they are not yet developed enough to identify and repair incorrect
programs given a correct program and test cases as a reference. For example,
we prompted ChatGPT with the following request: Fix the issues in the
incorrect code to match the correct code. The result of ChatGPT was to
replace the entire incorrect program with the correct program instead of

2https://chat.openai.com/
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identifying exactly the issues of the incorrect program. Our future work
will focus on adapting our flexible alignment scheme utilizing the semantic
strength of such large language models.

8. Related work

There are many approaches to automatically repair programs in different
areas [14]. We categorize these into data- and non-data-driven. We also
discuss program comparison approaches.

Data-driven feedback. CLARA [10] clusters correct programs based on test
cases and variable traces. Each incorrect program is compared to the rep-
resentative of each cluster to find minimal repairs. The repairs consist of
adding new variables and modifying existing statements without changing
the control flow of the incorrect program. Sarfgen [3] searches for correct
programs that share the same control flow structure as the incorrect pro-
gram. Incorrect and correct programs are fragmented based on their control
flows, and, for each fragment pair that is matched, potential repairs are com-
puted using abstract syntax tree edits. CLARA and Sarfgen only consider
pairs of programs whose control flow match, which is a hard constraint since
such a pair may not currently be present in the set of correct programs or,
when the incorrect program significantly deviates from a correct program,
a correct program with such a control flow may not even be possible. Hu
et al. [18] addressed CLARA’s drawback of rigid program comparisons by
refactoring the correct program at hand using a set of predefined transfor-
mations, such that its control flow matches the incorrect program at hand.
Using program refactoring, it is possible to modify a program so thoroughly
that it no longer resembles the original version, and can potentially cause a
correct program to become incorrect. Furthermore, the repairs suggested to
change the incorrect program into a correct one need to be backtraced to the
original program before refactoring.

Refazer [13] proposes “if-then” rules to match and transform abstract syn-
tax subtrees of a program. Such rules are synthesized from sample pairs of
correct/incorrect programs, in which tree edit distance comparisons between
correct and incorrect programs help identify individual transformations. Re-
fazer has been extended to propagate feedback based on learned transforma-
tions [22]. sk p [12] relies on neural networks to repair incorrect programs.
It constructs partial fragments of three consecutive statements using these
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renamed tokens. The middle statements are removed and fed to the repairer
for training. The order of statements is one of the main drawbacks of Refazer,
Sarfgen, and sk p: Refazer and Sarfgen rely on edit distances of abstract syn-
tax trees, while sk p treats programs as documents. Our flexible alignment
allows to account for more implementation variability and increases the num-
ber of valid program comparisons. Piech et al. [11] select a subset of existing
programs to annotate with feedback. Each annotation is used individually
to learn a binary classifier to propagate feedback to unseen programs. These
binary classifiers are applied to each incorrect program to decide whether it
should be annotated with a piece of feedback. This approach requires the
number of variables in programs to be fixed beforehand and a large number
of existing programs [11].

Non-data-driven feedback. AutoGrader [7] allows to define rules using an er-
ror model language to describe potential repairs to be applied to incorrect
programs, e.g., a condition x < y can be mistaken by x ≤ y . Based on
these rules, AutoGrader generates a “sketch” of the program, i.e., a pro-
gram that contains multiple choices for those statements that matched the
given rules [23]. A correct program is then assembled by ensuring functional
equivalence with respect to a single, reference program. Repairs are com-
puted as the changes to transform from an incorrect to a correct program.
There are several approaches that rely on program sketching to compute re-
pairs [24–26]. Codewebs [27] allows to search for code snippets by exploiting
probabilistic semantic equivalence between abstract syntax trees to perform
the matching, which is based on functional tests over the trees. Feedback can
be propagated to identified code snippets that are similar. Marin et al. [28]
encode correct and incorrect feedback in subgraph patterns over program de-
pendence graphs. Feedback is propagated based on exact subgraph matching
with approximations at the statement level defined by regular expressions.
Verifix [29] uses satisfiability modulo theories solvers to find verified repairs
between incorrect and correct programs. Edmison and Edwards [30], Nguyen
et al. [31] and Li et al. [32] applied fault localization techniques to detect
defects in student programs and suggest repairs.

Many approaches have focused on discovering repairs by mutating pro-
grams until repairing them [14, 33]. These mutations can be predefined and
explored using genetic algorithms [34]. Yi et al. [35] analyzed the usage of
some of these approaches to repair student programs, and concluded that
they are better suited for programs that fail a small number of tests, while
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student programs are typically significantly incorrect. Mutations can also be
retrieved from existing software repositories [36–38]. While these approaches
can be seen as data-driven, they aim to find repairs based on programs that
are generally not related to the incorrect program at hand to be repaired;
therefore, this is a more difficult problem than the one we aim to tackle.

Program comparison. There is a large body of knowledge of program com-
parison in the context of code clones and code plagiarism, i.e., copied-and-
pasted pieces of code with some possible modifications. Successful code clone
detectors have focused on comparing program tokens and (features of) ab-
stract syntax trees [39]. These detectors find blocks of lines of code that are
similar, but they usually fail to detect correspondences between statements.
Program dependence graphs are believed to achieve the best accuracy when
detecting Type 4 clones, i.e., two pieces of code that perform the same com-
putation but are implemented by different syntactic variants [39]. Existing
approaches have mainly focused on comparing programs based on subgraph
isomorphism [40–43]; however, they are generally not flexible enough to cope
with implementation variability, and they only provide binary comparisons
(Are graphs isomorphic? Is a graph contained in the other graph?).

The approach by Li et al. [44], the most related to our approximate align-
ment, compares the kernel representations of data-flow and API-call graphs.
In this case, a kernel is the histogram of node colors that result after the
Weisfeiler-Leman algorithm is applied for several rounds. This algorithm
computes an initial coloring for each node based on its immediate neigh-
bors, which is later refined in subsequent rounds. It only computes graph
topological similarity while our approach aims to combine both topological
and semantic similarities of nodes. Also, this approach does not compute
similarities between mapped nodes that can be later exploited.

9. Conclusions

Nowadays, programming is perceived as a must-have skill. It is thus not
surprising that the number of learners have scaled to millions, especially
in online settings. Delivering feedback is addressed by repairing learners’
incorrect programs. The trend in data-driven approaches is to perform a
rigid matching between correct and incorrect programs to discover snippets
of code with mending capabilities. The downside is that potential repairs
that could be captured by looser alignments may be missed.
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This paper explores using a flexible alignment between statements in pairs
of programs to discover potential repairs. We extend an existing data-driven
automated repair approach that is open source, CLARA, with our flexible
alignment approach to deal with such real-world problems. We utilize the
abstract syntax tree parser in Python to build control flow graphs, and assign
a similarity to aligning a node in a correct program to a node in an incorrect
program. In our evaluation, we compare flexible alignment with respect to
rigid program comparisons. The former is capable of repairing more programs
than rigid schemes, which supports our hypothesis that rigid approaches
might be missing valuable code snippets for repairs that could be discovered
by an approximate method otherwise. Furthermore, our analysis reveals that
flexible alignment also decreases the changes required to fix more difficult
problems. For shorter programs, less number of changes are necessary than
when using rigid schemes. As a result, we claim that “search, align, and
repair” approaches should rely on flexible alignments to improve their repair
capabilities. Our analysis comparing both semantic and topological (labels
and edges) similarities of our flexible alignment approach indicates that using
both types of similarities is beneficial compared to only using labels.

In future work, we plan to integrate our flexible alignment schemes with
repairs based on variable traces or program sketches. We will use other node
semantic similarities rather than the Jaccard distance between multisets of
labels, such as graph representation of statements. We also plan to study
how large language models can be leveraged to improve our flexible alignment
approach.
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