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Abstract

Vision can be consideredas a feature mining problem. Visually meaningfulfeaturesare often geometrical,e.qg.,
boundariegor edges)corners;T-junctions,andsymmetriesMirror symmetryor nearmirror symmetryis very commonand
usefulin imageandvisionanalysis.Thecurrentpapemproposeseveraldifferentapproachew extractthesymmetrymirrors
of 2-dimensional(2-D) mirror symmetricshapes. Propermirror symmetrymetrics are introducedbasedon Lebesgue
measuresHausdorf distance,and lower-dimensionalfeaturesets. Theory and computationof theseapproachesand
measuresrestudied.

1 Intr oduction and Moti vation

Vision, a multi-level procesof perceptiongeneratiorfrom obsened 2-D imagesor imagesequencess first of all, a data
mining problem. At the mostfundamentalevel, it is to minethe basicgeometric topological,material,andchromatic(or
painting)featuresrom theinput (intensityor range)imagedata. Thesebasicfeaturesor patternsarethenfurtherencoded,
correlated,and re-oganized(typically in a tree-code€form [5]), leadingto the perceptionof our evolving but stationary
generic,andspatiallywell ordered3-D world, whichis certainlynot merelya collectionof molecularor atomicclutters.

The currentpaperis intendedto make contributionsto the mining of mirror symmetnof 2-D shapesperhapghe most
commonandaccessiblsymmetrytypein imageandvision analysis.Figurel demonstratethreefamiliar exampleswhich
aremirror symmetricor closeto be.

Figurel: Examplesof (nearly)mirrorsymmetricshapes.

In manufcturingindustries(e.g., automobiles) mirror symmetry offers great corveniencein merchandisedesign
and production. In life science,it is so astonishingthat geneticDNA codesat the molecularlevel could lead to such
universal(near)mirror symmetryin the global appearancef humanbeingsand mostanimals. Finally, in the psychology
of architecturadesign,the ancientmysterystill remainswhy mirror symmetrylooks so pleasingto humanbeings(seefor
example the Eiffel Tower, Paris,andthe Big Domeof MIT, Boston,USA).

In this paperwe shallcall any compactset4 C R™ with positive Lebesgueneasure

|A|=/ ldzy---dzy >0,
A

a (Lebesguexompactpositive shape. In imageand vision analysis,most shapesare Lipschitz domains(exceptfractal
coastlines)Let ! denoteary affine hyperplaneof co-dimensiorl in R™, n oneof its two unit normals,andq € [ afixed
referencepoint. ThereflectionR; aboutmirror [ is definedto be,for ary p € R™,

Rip=p—-2p—-q,n)n.
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A shaped is saidto be mirror symmetricaboutl, or I-symmetricif
RA=A, a.e,

andthen! is calledthe symmetrymirror of A.

We shall work with m = 2 only, as motivatedby imageand vision analysis. All the resultsare valid for higher
dimensionsexceptwherethe oppositeis explicitly stated.

The currentpaperstrivesto make boththeoreticaland computationatontributionsto the mining of mirror symmetry
We intendto answetthefollowing two key questions:

1) Supposehata genericshapeA is mirror symmetricor closeto be (ascommonin imageandvision analysis).How to
extractthe symmetrymirror [ in a computationallyefficient way, which is alsostableandinsensitve to theinaccurayg
of shapeextractionalgorithmsandvarioustypesof perturbations?

2) Insteadof abinary decisionlike “ A is eithermirror symmetricor not;” canwe developmeaningfulmetricsto beableto
saythat” A is 0.618mirror symmetricin a scaleof [0, 1] ?”

Themaincontentis almostexplicit from thetitles of thefive majorsections:
§2. Mirror identificationandcomputationmethod=f cut-and-weightandPCA (principle componengnalysis).
§3. Mirror symmetryvia lower-dimensionafeatures.
84. Metricsof mirror symmetry:the symmetryindex, andHausdorf distancefor featuresets.
§5. Mirror symmetryof corvex shapegvia supportfunctions).
§6. Mirror symmetryof C! shapewia normalpairs.

Finally, we wantto emphasizehat, in orderto clearly understandvhich mechanism&iumanobsenerstruly employ,
all the modelsand algorithmsdevelopedhere should be further validatedby psychologyexperimentsin humanvision
research.For the oppositedirection,i.e., mathematicamodelingdirectly motivatedby laws from vision psychologyand
psychophysicyleaseseetheauthorsworkin [8].

Generougolerancerom our readeron the clumsyEnglishis secretlybut deeplyappreciated.

2 Mirr or Identification and Computation

In this section,we proposetwo approacheso identify the mirror of a shapewhich is mirror symmetricor closeto be.
(§ 4 clarifiessuchcloseness.The algorithmsmustbe stable, meaningthatwhena perfectly mirror symmetricshapeA is
perturbedio A¢, the identifiednew mirror I, shouldundego a minor changeaswell. In imageandvision analysis,such
perturbations very commonsinceshapesareoftenapproximatelysggmentedandextractedfrom intensityimagesby some
othernumericalalgorithms(e.g.,suchastheimplementatiorof the celebratedlumford-Shahmodel[6]).

2.1 Method of cut-and-weight Denoteby B, (a) theunitdiskof radiusr, centeredita. Definethemasscente{4] € R?
of acompacthapeA by

(2.1) (4] = @ /A pdzdy,  p = (o.y).

Foreachr > 0: |A — B.([A])| > 0, similarly define
m, =[A— B.([4])],

which representshe masscenterof A with a disk hole cut out. It is in this sensehatwe have namedour approactafter
“cut-and-weight.

PROPOSITION 2.1. Let A bea positivecompacishape Thenthere existsa uniquer 4 > 0, sothat

|A=B-([AD[ >0, re[0,ra); |A=B.,([A)]=0.



Proof. Definem(r) = |A — B,.([4])|. It canbeeasilyestablishedhat

a) m(0) > 0 andm(r) > 0 is non-increasing;

b) m(r) is acontinuousunction;and

c) m(r) = 0 whenr is largeenough.

Thenit follows from thethreepropertieshatwe musthaver 4 = min m=1(0) > 0. O

Thereforefor ary r < r4, m, € R? iswell-defined.m ,. givesa one-parameterontinuouscurvein R?. (Moreover,

examplescanbeconstructedn which lim m , doesnotexist.)
TT,

THEOREM 2.1. If Ais mirror symmetriaboutmirror I: R;A = A. Thenforanyr <r4,m, €l.

Proof. It sufficesto shav thatR;m , = m ... First
1 1

(2.2) Ri[A] = —/ Rypdzdy = —/ pdxdy = [A].
[A] Ja |Al Jr,a

By Euclidearninvariance,
RIBT([A]) = BT(Rl[A]) = Br([A])

Therefore,
Ri(A - B.([4])) = A — B, ([4]).

In (2.2),having A replacecby A — B,.([A]), we obtain
Rm, = Rj[A - B,([A])] = [A - B, ([A])] = m,.
This completeghe proof. d

Notice that for genericshapesyn -(r < ra) is a continuouscurve containingmore thanone points. We shall call
it themasscentercurve. The above theoremimplies whena genericshapeA is [-symmetric,the mirror [ is completely
determinedby the masscenterine. This nourisheour first algorithmfor mirror identification.

In practice dueto bothimperfectshapeextractionandboundaryperturbation, A canonly be nearly mirror symmetric.
As a result, the masscentercurve is only nearly straight. Thus, insteadof the ideal algorithm basedon the Euclidean
principle “two pointsdeterminea straightline,” we turn to the techniqueof weightedeastsquae fitting [9] to extractthe
mirror [.

Definition. (Generalizedirror) Let A be a genericcompactshapewith positve mass|A|. A straightline [y is saidto be
its mirror if

(2.3) lo= argminl/ d*(m ., )m(r)dr = argmin, e[l],
0

whered(p , 1) denoteghe Euclideanpoint-linedistanceandm(r) is definedasin Propositior2.1.

This notion of generalizedmirrors appliesmeaningfullyto nearly mirror symmetricshapesmeaningthat it well
approximatefiumanperceptuaestimation.Lateronin § 4, amoregeneraldefinitionfor genericshapewill beintroduced.

In this weightedfitting model, the weight m(r) hasbeenmotivated by the following consideration:larger mass
m(r) = |A — Br([A])| makesthe masscenterm , = [A — B,.([A])] morereliable, sincefrom the statisticalpoint of
view, averagingis takenoveralargerpool of samples.

We now discusshow to computationallysearchfor the mirror [y of a nearlymirror symmetriccompactshapeA. Fix
ary referencepoint g, for example,g = (0,0). For ary straightline /, let p denotethe orthogonalprojectionof ¢ onl.
Define

s=d(g,)=1Ip—q|, n=(@p—q)s



Noticethatgenericallys > 0 andn is indeedwell-defined.Moreover, ! +» (s,n) € RL x S* isacompleterepresentation.
Thuswe shallsimply identify [ with the pair (s, n ), andtheweightedsquareditting errorin (2.3)is now givenby

e[l] = e[s,n] = /OTA((mT —q)-n — ) m(r)dr.

To minimizeit, we solve theequilibriumequationsn s € R} andn € S*. Firstfor s,

_ Oe[s,n |

0 0s

- _Q/OTA((mT —q)-n —s)m(r)dr,

whichgives
s= n_/ m,m(r)dr—mn -q, M:/ m(r)dr.
M 0 0
It shaws thatin equilibrium, s is completelydeterminedoy the normaln of the mirror. Now for ary n € S', definethe

tangentiaprojectionr,, (u) = v — (u - n)n . Takingthe partialderivative de[s, n ] /On alongtheuniquecircle S* (i.e.,
manifold differentiation)leadsto the nonlinearequilibriumequationfor 7 :

0= /TA((mT —q)-n —8)w, (m, —q)m(r)dr.
0

Generically thesetwo equation®n (s, n ) canbe solvedby suitableiterative schemegsy, ) — (Skr1,7 k41) (Se€for
example,ChanandShen[2] for similar enegy minimizationproblemsinvolving unit normals).
We mustpoint outthatin practice the continuousntegral fo” is computedby a Monte-Carlotype schemeBothm ,.

andm(r) arerandomlysampledandcomputecatsomery, ro, - - - , 7. Thediscreteversionfor theweightedsquarecerror
becomes
K
eals,n] = ((mr, —q)-n —s)*m(ry).
k=1

Notethateventheintegrationweight|r,41 — | hasbeendroppedsinceour intrinsic focusis merelyon the optimalmirror
l. K shouldbelargeenoughsothat{m,,,--- ,m,, } containsatleasttwo distinguishabldaccordingto somethreshold)
points.Larger K alsohelpsstabilizethe solutionby averagingoutthe effectsof noiseandperturbations.

2.2 Method of principle componentanalysis (PCA) The secondapproachfor mirror identificationis basedon PCA
or singularvaluedecompositionsandthus carriesa more genuinetasteof datamining. It is fundamentallystochastidn
treatinga shapeasa collectionof randomsamplefrom a Gaussiardistribution:

p(p) = Wexp <—%(P -po)'S ' (p —Po)> .

Thenmirror identificationis simply to computethe principle directionsof the distribution, i.e., the eigervectorsof the
correlationmatrix X.

Let A beagivencompactshapewith positve Lebesguemass|A|. The expectationtype functional E 4 is definedfor
ary locally squarantegrablefunction (scalaror vectorial) f(p) = f(x,y):

1
Baf = oy [ $®)dsdy.
1Al Ja
Masscenter[A] = (zo, yo) in the previoussectionis simply E4[p]. Furthermoredefinethe auto-correlatiommatrix to be

EA(IL'—.Z'())2 EA(-T_xO)(y_yO) )

A= By —-20)w—w0)  Faly— o)

Thefoundationof this pseudo-probabilistiapproactis solidified by thefollowing theorem.

THEOREM 2.2. If A isl-symmetricthenthemirror's normaln mustbetheeigenvectorof ¥ 4.



Proof. Noticethatthe auto-correlatiommatrix ¥ 4 is both rotationandtranslationinvariantwith respecto A (in the sense
of orthonormalkimilarity). Thus,withoutlossof generality assumehat[A] = (zg,y0) = (0, 0) andl is thez-axis. Then
theoff-diagonalin X 4 is

1 1
m /Awydxdy = M /A(a:y + z(—y))dzdy = 0.

ThusX 4 is diagonalandthe x andy axesare preciselyits principle directions. In particulat the y axisis the normal
directionof the mirror. O

The proof hasbeengreatly simplified by rotationalinvariance.In practice,this is alsoexactly the main virtue of the
PCA approactsincethe unknowvn rotation(i.e. the mirror direction)is foundby solvinga spectralanalysisproblem.

But the correlationmatrix X 4 hastwo principle directions:oneis normalto the mirror andthe othertangential. The
magnitudenf theassociate@igervaluesdoesnot provide valuableinformationfor identifyingwhich oneis thenormal(since
theshapecanbeeither“fat” or “slim” with respecto the mirror). Thusanextravalidationstepis requiredto furthersingle
out the normalfrom the two independentigervectors. The computationis straightforvard by comparingthe symmetry
indices(§ 4) of thetwo hypotheses.

We concludethe sectionby a stability theorem.

THEOREM 2.3. (LEBESGUE STABILITY) Supposehat A is a positivecompacishapesymmetriavith respecto themirror
I = ([4],n), and the two eigervalues); and A\, of X4 are distinct. Let A° be a perturbedcompactshapeso that
|A® & A| = O(e) ase — 0, andi® = ([A%], n ©) theidentifiedmirror fromthe PCAalgorithm. Then

[A] = [A%][ + [n —n®[ = O(e).
Proof. We only sketchtheproof by pointingoutthatwhen); # A2, the spectradecompositiorof symmetricmatrices®
Y=AN1®n1+Xno2Rno

is a local diffeomorphismbetweensymmetricmatricesandthe productspaceO(R?) x R2. Here O(R?) representshe
orthogonagroupandR? for theeigervaluepair. It is alsostraightforwardto shawv that

[[A] - [4°]| = O(e), Tae =Xa+0(e).

3 Mirr or Symmetry via Lower-Dimensional Features

In image analysisand visual perception,mary deterministicshapefeaturesare invariant under diffeomorphisms. Let
F(A) c R? denotethe spatiallocationsof sucha classof featurege.g.,edgescorners,T-junctions),andH : R*> — R? a
givendiffeomorphismThen,

F(H(A)) = H(F(A)).

Two visually importantclasse®f lower-dimensionafeaturesareedgesandcorners.We shalldenotethemby 8 A and
/ A separatelyTheir Hausdorf dimensionsareoneandzerofor genericLipschitz shapes(In imageandyvision analysis,
cornersmostly belongto compactshapeswith piecavise C! boundaries.A corneris wherethe tangentspacecannotbe
defined.)lt is easyto seethatindeedthey areinvariantunderdiffeomorphisms:

OH(A) = H(DA), LH(A) = H(LA).

Euclidian transforms(i.e. translation,rotation, and reflection) are specialexamplesof (linear) diffeomorphisms.
Especiallyfor mirror reflectionR;, wehave F(R;A) = R, F(A). Thus,

ProOPOSITION 3.1. If Aisl-symmetricsomustbe F'(A) : R F(A) = F(A).

This providesthe foundationfor mirror detectionvia featuresets. The advantageof going from shapego featuresets
is the dimensionalityreductionandthe resultingefficient computationabpproach.lt is believedin cognitive sciencethat
humanvisual perceptioroftencleverly relieson featureandpatternextractionandprocessingWaveletstheoryis the most
well known examplefor nicely encodingandprocessingingularfeaturessuchasedgeq1, 4].



Suchdimensionalityreductiondoescome at a potentialcost. Featuresare often only necessanjput not suficient,
meaningthatif A = B, thenF(A) = F(B), but the oppositeis generallyunguaranteedA possibleway to improveis to
further quantify the features.Take the classof cornerfeaturedor example,onemay enricha cornerpositionp by adding
theassociatedhteriorangled: p — (p,0) (referenceo Figure2).

Let du be a suitablemeasureon F(A), for example, the 1-D Hausdorf measuredH! for A, and the atomic
(or counting) measurdgor ZA. Thenboth the cut-and-weightand the PCA approachegan be similarly developedon
(F(A), dy) for mirror detectionwith integration [, dxdy substitutecby fF(A) dp. Figure2illustratesthe cut-and-weight
approachor the cornerfeatureset/Z A.
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Figure2: Methodof cut-and-weighfor the cornerfeatureset.

4 Metrics of Mirr or Symmetry

The previous sectiondealswith mirror symmetricor nearlymirror symmetricshapegor which the extractedmirrors well
approximatehumanperception.In this section,we intendto quantitatvely measurehe degreeof mirror symmetry and
developpropermetricswhich allow usto saythat“the degreeof mirror symmetryof shapeA is 0.618from ascaleof [0,1].
We call 0.618the symmetryindex of A.

4.1 Symmetry index Let Lﬁr = LEF(R2) denoteall non-n@ative Lebesgueintegrablefunctions. The spaceof 2-D
compactshapesanbe naturallyembeddednto L by the characteristienap:

A—=14(p)=1, p € A;0, otherwise
Thenit is easyto seethat
A6 B| = / 14 — 1p|dedy = [1a — 15|,
RZ

The notion of mirror symmetryappliesto L}r aswell. f € L}r is saidto be mirror symmetricabouta straightline I, if
f = f o Ry. It is obviousthata compactshapeA is mirror symmetricabout! if andonlyif 14(p) is.
For ary straightline , and f € L% (R?), definethel-symmetriccomponent f|I) andl-asymmetricomponenf f|{] of
[ by
f(p)+ f(Rip f(p) — f(Rip
(1) () = LRIEIER) gy )  T2) = SFap)

Then
ProPOSITION 4.1. f isl-symmetridf andonlyif (f|I) = f, or equivalently[f|I] = 0.
Definition. (Symmetryindex) Assumethatf € L, andl is agivenstraightline.

1) Thesymmetryndex of f with respecto! is definedto be

alf] =1 ML

INCAUNE
Herethenormsarebothin L. Also defines;[0] = 1.




2) The(overall) symmetryndex of f is definedto be

ﬂf]=83psdfk

We definethe symmetryindicesof a compacishapeby settings;[A] = s;[14] ands[A] = s[14]. The proof of the next
list of propertieds left to thereaders.

PROPOSITION 4.2. Supposed is a compactshape f € Li(Rz), andl amirror. Then,
(@) 0 < s[f] £ 1, andbothequalitiesare achievable

(b) fisl-symmetric= s;[f] = 1.

©) si[f]|=0& fx foR =0,ae;sla]=0& |[RRANA| =0.

(d) For acompactshapeA,
|[AN R A

A] = .
A= TR R A T Ao RA2

Thusthe notion of symmetryindex doescoincidewith our commonintuition in visual perception.What seemamore
interestingis the following theoremwhich claims,roughly speakingthatif you addmoresymmetry the symmetryindex
doesincrease.

THEOREM 4.1. Supposg € L} (R?) isl-symmetridi.e. s;[g] = 1). Then
silf +9] > silf], V€Ll
Theequalityholdsonlywheng = 0 or s;[f] = 1.
Proof. By linearityand[g|!] = 0, (g|l) = g,
[f +gll] = [fII] + [gll] = [£11); (f +gll) = (fII) + 9.

Therefore Ll (IFiL]
silf+g]=1—- e >1— :
if+ ] DN+ Ngll DI
Theequalityholdsif andonly if ||g]| = 0 or ||[f]!]|] = 0, which completeghe proof. O

As for compacishapesa similar but independentheoremcanbe established.
THEOREM 4.2. If acompacthapeB is [-symmetricthenfor anycompacishapeA,
sif[AU B] > si[A].
Thetechnicalindependencef thetwo theoremss dueto thatgenerally
lau #1a +15.

Proof. Firstif A C C,thenle > 14,and(1¢|l) > (14|1). In particular (1 4us|l) > (14]1). Nowthatl gy = 1+14-5
andB is [-symmetric we musthave
[Lausll] = [La-pll]-

Thustheproofwill becompleteif we areableto show
| La-sll]| < [[Lal]].

Supposé[14_g|l](p) | # 0. By definitionwe musthave [1 4_g|!{] = +1/2, andoneandonly onefrom {p , R;p } belongs
to A — B. Then{p, R;p } N B mustbeemptysinceB is [-symmetricwhichimpliesthatoneandonly oneof {p , R;p } is
in A. Thus,[14|!](p) = £1/2. This concludeghe proof. O



The conceptbof symmetryindex bringstwo new degreesof freedom:
1) arny compactshapecanhave certaindegreeof mirror symmetry;and,
2) mirror identificationbecomesnoptimizationproblem:sup; s;[A].

For ageneralcompactshapeA, it seemdo the authorthatthereis no direct efficient optimizationalgorithm. When A is a
smoothshape,S;[A] is smoothin [ aswell, andgradientdescentmarchingin ! works. Still uniquenesss not guaranteed,
but existencecanbe established.

THEOREM 4.3. (EXISTENCE OF OPTIMAL MIRRORS) There existsa mirror Iy sothat s;,[A] = max; s;[A].

Proof. Letl, = (p,,n ) beamaximizingmirror sequence(l = (p,n ) meanghatl goesthroughp with normaln .)
Withoutlossof generalityassumehats;, [4] > 0,k =1,2,---. Let h(A) denotethecorvex hull of A. Thenl; N A cannot
beempty Otherwisethesetof innerproducts{(h(A) —p ,, n ) mustbeeithersimultaneouslyon-positve or non-ngyative.
It impliesthath(A) andthus A mustlie ononesinglesideof [. In particular R;, A N A is empty andby Propositior4.2,
s1,.[A] = 0, contradictingto our assumptionTherefore we canassumehatp ,, € h(A4), k =1,2,---. Wefinally wrapup
the proof by applyingthe compactnessf both h(A) andtheunit circle S* to thesequencép ,, n ). O

4.2 Hausdorff distance for feature sets The abose approachonly appliesto 2-D shapesand functions. For lower-
dimensionafeaturesetsF'(A) suchasdA andZ A (see§ 3), we turnto Hausdorf distance.
For any compactsetF C R?, its §-neighborhoods definedas

Fs={pld(p,F) < é}.
Thenthe Hausdorf distancebetweertwo compacisetsE and F' is definedby
dy(E,F)=inf{6|E C Fs and F C Es}.
Let F' = F'(A) denoteafeaturesetof A. For ary mirror [, we definethe symmetryindex of F' with respecto [ by
si1[F] = exp(—du(F, R F)).
As in the previous section the overall mirror symmetryindex is definedto be
s[F] = s111p si[F).

NoticethatHausdorf doesweigheachindividual featurepoint, which is differentfrom Lebesgueneasures.

Lik e the symmetryindex for shapesandfunctions,we have
(@) 0 < s[F(A)] < 1 for ary featuresetF'(A).
(b) A featuresetF'(A) is l-symmetricif andonly if s;[F(A4)] = 1.
(c) Theoptimalmirror for F[A] exists.

Many propertiesn the previoussectioncanbe similarly studied.

5 Mirr or Symmetry of Convex Shapes

In this section,we proposea new approactfor studyingmirror symmetryof compactcorvex shapeshasedon thetool of
supportfunctions
Let A beacompactcorvex shapen R2. Its supportfunctionh 4 (u ) is definedfor ary vectoru € R2 by:

hA(’LL) = maX<A7u> = ?g}(pa/l‘L)

Recallthebasicpropertiesof the supportfunction(e.g.,[7]):

(a) Forary scalarA > 0, ha(Au) = Aha(u).



(b) Foranyu,v € R?, ha(u +v) < ha(u) + ha(v).

(c) For ary two corvex compactshapesd and B, let di (A, B) betheir Hausdorf distanceandrestricth 4 on the unit
circle S'. Then
du(A,B) = [|ha — hg||L=(s1)-

In fact, (@) and(b) completelycharacterize supportfunction[7]. Thatis, a function f(u ) is the supportfunctionfor
somecorvex shapef andonly if it carriesthepropertieqa) and(b). Moreover, the correspondencd <« h 4 is one-to-one
andevenisomorphicin somesuitablesensébasedn thelastproperty

The supportfunctionis nottranslationinvariantin A since

hatp(u) =ha(u) + (p,u).

We proposeo homogenizeh 4 by
HA(’U,) = hA(u) + hA(—'U,).

We shallcall H 4 thehomogenizedupportfunction. By designit is translationinvariantin A4, and
HA(_u) = HA(U’ )7

whichmakesH 4 (u ) well definedontherealprojective line RP!. Letu = exp(if) berestrictedontheunit circle S and
defineH 4(0) = Ha(u). ThenH 4(6) is w-periodic:

HA(6 +m) = Hu(6).
Now let] beary givenmirror. It is easyto seethat
HR,A(U) = HA(RIU).

In particular if A is I-symmetric,sois H4(-). SinceH 4 is translationinvariantin A, we canassumehatthe masscenter
of A istheorigin: [A] = (0,0). Thenl passeshroughtheorigin. Let zo = exp(ify) bethetraceof I ontheunitcircle (ary
onefrom thetwo tracepoints). Thenthemirror reflectionu = exp(i#) — R;u is equialentto

0 — 20y — 0.
Thereforewe have provedthat
ProOPOSITION 5.1. If a corvex compacishapeA with masscenter[A] = 0 is I-mirror symmetricthen
H4(0) = Ha (200 — 6).
Here exp(ify) is thetraceof! ontheunit circle.

This theoremprovidesthe foundationfor mirror mining basedon the homogenizegupportfunction H 4 restrictedon
theunit circle. We shall seethatmirror identificationnow becomes phasddentificationproblem.
SinceH 4 (0) is w-periodic,it Fourierseriesarein theform of

Hy(0) = Z ane= 20,

a_n, = a, becaused 4 isreal. Thus

o0
HA(290 — 0) = Z(ane4in90)€_2in9,
—0o0
andwe musthavea, = a,e'™”,n = 1,2,-- . Definezo = €' andz, = an/a, € S' (possiblyhaving thosevanishing

a,'sdropped).Then

(5.4) 2 =2n, n=1,2,---.



In practice for nearsymmetricconvex shapes(5.4) only holdsapproximately Thuswe applytheleastsquarditting to
extractzg. Firsttruncatethe Fourierseriesto finite NV terms,andthensolve the minimizationproblem
N
min Wo |28 — 2a|?,
z0:|z0|=1 1
with a suitablesetof positive weights(w,,), often largerfor lower frequeng modes.Finally, noticethata single optimal
2o canproducefour anglesfy, 8o + 7/2, 8¢ + 7,600 + 37/2, correspondingdo the optimal mirror andthe dual mirror I+
perpendiculato it.

6 Mirr or Symmetry of C! Shapesvia Normal Pairs

In thissectionwe giveanew characterizatiofor mirror symmetryof 2-D compactC? shapesi.e.,shapesvith C! boundary
manifolds.

Definition. (NormalPairs)Let A beacompactC! shapewith boundarydA. A pair of distinctpointsp,q € dA is saidto
beanormalpair if

p—q LT,0A and p —q L T,0A,
WhereT, A denoteghetangentspaceatp .

PROPOSITION 6.1. (2-D ONLY) Supposed is [-symmetric. Thenany pair of distinctpointsp,q € dA Nl is anormal
pair.

Proof. Simply noticethatif p € A N1, thenT, d A mustbeperpendiculato I.

This propositionis generallyfalsein higherdimensions.
If all normalpairsarealongthe mirror, thenmirror identificationcertainlybecomeghe detectionof normalpairs. But
thetruthis thatgenerically thereindeedexistsatleastonenormalpair off the mirror.

THEOREM 6.1. (2-D ONLY) Let A bea compactC! shapethatis I-symmetriclf, in addition, A is connectedthen A has
at leasttwo distinctnormalpairs.

Proof. SinceA is connectedandl-symmetric,it is not difficult to shawv thatd A N[ is non-emptyandcontainsat leasttwo
points,which contrituteatleastonenormalpairaccordingo the previousproposition.(Pay attentionto theassumptiorthat
0A isaC' submanifoldof B2, which prohibitssingularcontactingooundarypointsshapedike a softz.)

Now we look for anothemormalpair which is perpendiculato the mirror. For simplicity, assumehat! goesthrough
theorigin (0,0). Let n denoteary oneof thetwo unit normalsof [. Definethe normalprojectionfunction

9(p) =(p,n), pE€R
Sinceg is continuousand A is compactthereexistssomeq € A sothat

q = argmax,c, 9(P)-
By mirror symmetry we musthave
Riq = argmin, c4 9(p).
It is thennotdifficult to shaw that(1) ¢, Rig € 0A; (2)Tq0A,Tgr,q0A L n;and(3)q — Riq L 1. Thusq andR;q isa
new normalpair. This concludeghe proof. O

For anidealdisk, thereareinfinitely mary normalpairs. For agenericellipse,therearetwo andonly two normalpairs
correspondingxactly to thetwo symmetrymirrors. For genericshapesnormalpair is still a powerful tool to extracteither
thetangentialor normaldirectionsof the symmetrymirrors, eventhoughsuccesss not 100%guaranteed.

We concludethis sectionby statinganalgorithmfor computationallyidentifying normalpairs.

Normal Shooting Algorithm (NSA). Startwith ary initial guessp, € 9A, anddo the following iterationp,,, =
NSA(p,). Let N, denotethenormalline of the currenttangentspacely,, 0A. Thentakeary p, ., € (N, — {p;}) NOA
(which mustbe non-empty).

It is notdifficult to establishthefollowing theorem.

THEOREM 6.2. Supposehat(p ;) corvergesto p*, and(p,,, 1) tog*, ask — oco. Thep* andq * is a normalpair.
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Figure3: The Normal ShootingAlgorithm (NSA) andits corvergence.

7 Conclusion

The currentpaperproposeseveral differentapproache$o extractsymmetrymirrors from 2-D compactmirror symmetric
shapes. Visually meaningfulsymmetrymeasuresre introducedbasedon Lebesguemeasure Hausdorf distance,and
lower-dimensionafeaturesets.Theoryandcomputatiorof theseapproacheandmeasuresredeveloped.

Importantapplicationscanbe found for humanandobjectdetectiontemplatebasedbjecttracking,datacompression,
andhigh-level inpaintingalgorithmsbasedn globalfeatureq3].

The presentwork also setsan example for studying more complex symmetrytypessuch as affine and projective
symmetrieswhich arealsoveryimportantin mathematicaimageandvision analysis.

To understandvhich mechanism$&iumanobsenerstruly employ, however, all the modelsandalgorithmsdeveloped
heremustbe furthervalidatedby psychologyexperimentsn humanvision research.

Acknowledgments

The authorwould like to thank Tony Chanfor his integrity anddignity asa scholar advisor anddearfriend. Thanksalso
mustgo to the Programof Applied Mathematics National ScienceFoundation.for her generoussupportto the authors
research.

References

[1] E.J.CandesandD. L. Donoho.Cuneletsandreconstructiorof imagesfrom noisyradondata. WaveletApplicationsin Signaland
Image ProcessingVIll, A. Aldroubi, A. F. Laine,M. A. Unsereds.,Proc.SPIE4119,2000.

[2] T.F ChanandJ.Shen.Variationalrestoratiorof non-flatimagefeaturesmodelsandalgorithms.SIAMJ. Appl.Math.,, 61(4):1338—
1361,2000.

[3] T.F ChanandJ.Shen.Mathematicamodelsfor local nontetureinpaintings.SIAMJ. Appl. Math,, 62(3):1019-10432001.

[4] 1. DaubechiesTenlecturesonwavelets SIAM, Philadelphia1992.

[5] U. GrenanderLectuiesin PatternTheory . Il. andlll. Springer1976-1981.

[6] D. Mumford andJ. Shah. Optimal approximationsby piecavise smoothfunctionsand associatedvariationalproblems. Comm.
Pure Applied.Math,, 42:577-6851989.

[7] R.T.Rockafellar Corvex Analysis PrincetonUniversity PressPrincetonNJ, 1970.

[8] J.Shen.Onthefoundationsof vision modeling.l. Weberslaw andWeberizedTV restoration.PhysicaD, to appear2002.

[9] G. Strang.Introductionto AppliedMathematics Wellesle/-CambridgePressMA, 1993.



