
Graduate School ETD Form 9 
(Revised 12/07)       

PURDUE UNIVERSITY 
GRADUATE SCHOOL 

Thesis/Dissertation Acceptance 

This is to certify that the thesis/dissertation prepared 

By  

Entitled

For the degree of   

Is approved by the final examining committee: 

       
                                              Chair 

       

       

       

To the best of my knowledge and as understood by the student in the Research Integrity and 
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of 
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.  

      

Approved by Major Professor(s): ____________________________________

                                                      ____________________________________ 

Approved by:   
     Head of the Graduate Program     Date 

Hongyuan Cai

Locating Key Views for Image Indexing of Spaces

Master of Science

Jiang Yu Zheng

Shiaofen Fang

Mihran Tuceryan

Jiang Yu Zheng

Shiaofen Fang 4/16/2010



Graduate School Form 20 
(Revised 1/10)

PURDUE UNIVERSITY 
GRADUATE SCHOOL 

Research Integrity and Copyright Disclaimer 

Title of Thesis/Dissertation: 

For the degree of ________________________________________________________________ 

I certify that in the preparation of this thesis, I have observed the provisions of Purdue University 
Teaching, Research, and Outreach Policy on Research Misconduct (VIII.3.1), October 1, 2008.*
   
Further, I certify that this work is free of plagiarism and all materials appearing in this 
thesis/dissertation have been properly quoted and attributed. 

I certify that all copyrighted material incorporated into this thesis/dissertation is in compliance with 
the United States’ copyright law and that I have received written permission from the copyright 
owners for my use of their work, which is beyond the scope of the law.  I agree to indemnify and save 
harmless Purdue University from any and all claims that may be asserted or that may arise from any 
copyright violation. 

______________________________________ 
Printed Name and Signature of Candidate 

______________________________________ 
Date (month/day/year) 

*Located at http://www.purdue.edu/policies/pages/teach_res_outreach/viii_3_1.html

Locating Key Views for Image Indexing of Spaces

Master of Science

Hongyuan Cai

4/16/2010



LOCATING KEY VIEWS

FOR IMAGE INDEXING OF SPACES

A Thesis

Submitted to the Faculty

of

Purdue University

by

Hongyuan Cai

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

May 2010

Purdue University

Indianapolis, Indiana



ii

ACKNOWLEDGMENTS

This study and graduate thesis could not be completed without the kind attention

and careful guidance from my advisor Dr. Jiang Yu Zheng. His serious scientific

attitude, the spririt of rigorous scholarship and his work style of always pursuing

improvement deeply influenced and inspired me. From the topics selection to the

final completion of the thesis, Dr. Jiang Yu Zheng was always careful to give me

guidance and tireless support. Over these three years, Dr. Jiang Yu Zheng not only

carefully guided me on academic field, but also took great caHre and be concerned

about my life here, here I would like to extend my sincere thanks and great respect

to my advisor Dr. Jiang Yu Zheng. I also need to thank him for providing me the

opportunity to study in the US, which extended my vision of the world and will

benefit all my life. I would remember his kindness to me in my heart.

Here, I would also like to thank my committee members Dr. Shiaofen Fang and

Dr. Mihran Tuceryan, for their academic assistance and expertise. It is precisely

because of their help and support; I can overcome the difficulties one by one until the

successful completion of the paper.

Thesis will be completed in time, now I feel unable to calm down. From the

beginning of this thesis subject to the successful completion, many honorable teachers,

classmates, friends and department staff gave me speechless help, here please accept

my sincere thanks! Finally, I would also like to thank my family who educated me to

be strong in my life.



iii

TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 View Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1 Panorama Images for Scene Archiving . . . . . . . . . . . . . . . . . 5
2.2 View Significance Based on Scene Coverage . . . . . . . . . . . . . . 7
2.3 A Lighting Model for View Significances . . . . . . . . . . . . . . . 11

3 Key View Based Spatial Indexing . . . . . . . . . . . . . . . . . . . . . . 14
3.1 Selecting Representative Views . . . . . . . . . . . . . . . . . . . . 14
3.2 Searching Key Views for Scene Display . . . . . . . . . . . . . . . . 16

4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



iv

LIST OF TABLES

Table Page

2.1 An example of assigning weights to scene units . . . . . . . . . . . . . . 11

3.1 Number of viewpoints selected from 1165 peaks of the view significance
for maximum scene overlap allowed. . . . . . . . . . . . . . . . . . . . . 15



v

LIST OF FIGURES

Figure Page

1.1 Elevation maps of an urban area (a) from LiDAR data and a town struck
by a recent earthquake (b), where wireless surveillance cameras were set
for monitoring collapse of mountains and runoff of a dangerous standby
reservoir. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Depth maps of viewpoints generated from LiDAR Data. (a) Satellite im-
age of an area about 600× 700m2. (b) LiDAR elevation map of 360× 300
pixels: intensity represents building height. (c) A hemisphere view at a
point, where φ ∈ [0◦, 360◦] and ϕ ∈ [−5◦, 90◦]. (d,e) Depth of panora-
mas generated from viewpoints at a street corner and a parking lot. The
intensity represents the depth from a viewpoint. . . . . . . . . . . . . . 6

2.2 Two real images captured from street view of google map. The first one
is in a narrow alley, while the second one is in a large square seeing more
scenes for location understanding. . . . . . . . . . . . . . . . . . . . . 7

2.3 View significances at all possible positions in an area are displayed in
leveled intensity (with contours more distinguishable than original distri-
bution). The brighter the intensity, the higher the significance value is.
Black regions are unreachable locations occupied by buildings and trees.
(a) Reachable positions and their view significances evaluated with spheri-
cal views. (b) View significance evaluated with cylindrical panoramas. (c)
Color display of (b) for the continuous distribution of view significance. 9

2.4 Curves of two formulas in calculating view significance. In presenting a real
space, images are usually chosen to cover landmarks, cultural and historic
sites, beautiful architecture, decorations, etc. To take these factors into
account, we assign different weights to 3D surfaces for the view significance
evaluation, in addition to the visibility evaluation. The weights can be
assigned manually in the map. . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 View significances from weighted scenes. Cyan intensity shows distribu-
tion and red intensity indicates the weight of importance. (a) Several
landmarks weighted high and view significance distribution is dominated
by these strong light sources; (b) Leveled distribution of view significance
calculated from landmarks, public facilities, and a commercial street. (c)
Pseudo color display of the distribution in (b). . . . . . . . . . . . . . . 13



vi

Figure Page

3.1 Relation of viewpoints with scene overlaps less than 10%, 30%, 50%, re-
spectively. Selected key views are marked with circles and their radii are
proportional to the view significances. Blue points (at ends of red lines)
are peak candidates but not selected as key views, because of their large
scene overlaps with the selected ones. The amount of overlap is illustrated
in red intensity of line connecting peak candidates. . . . . . . . . . . . 17

3.2 One possible framework of visual retrieval. . . . . . . . . . . . . . . . . 18

4.1 Calculated 16 key panoramas in depth map and captured real color im-
ages. The overlapped parts in each view with other selected key views
are indicated in red in the depth maps. The real panoramas have vertical
FOV ϕ ∈ [−5◦, 45◦] degree to avoid major ground area, cars and people.
Clickable regions are embedded in the key views for visual indexing (blue
regions for transition to other panoramas and yellow regions to websites
of buildings and facilities). . . . . . . . . . . . . . . . . . . . . . . . . . 21



vii

ABSTRACT

Cai, Hongyuan M.S., Purdue University, May 2010. Locating Key Views for Image
Indexing of Spaces . Major Professor: Jiang Yu Zheng.

Image is a dominant medium among video, 3D model, and other media for vi-

sualizing environment and creating virtual access on the Internet. The location of

image capture is, however, subjective and has relied on the esthetic sense of pho-

tographers up until this point. In this paper, we will not only visualize areas with

images, but also propose a general framework to determine where the most distinct

viewpoints should be located. Starting from elevation data, we present spatial and

content information in ground based images such that (1) a given number of images

can have maximum coverage on informative scenes; (2) a set of key views can be

selected with certain continuity for representing the most distinct views. According

to the scene visibility, continuity, and data redundancy, we evaluate viewpoints nu-

merically with an object-emitting illumination model. Our key view exploration may

eventually reduce the visual data to transmit, facilitate image acquisition, indexing

and interaction, and enhance perception of spaces. Real sample images are captured

based on planned positions to form a visual network to index the area.
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1 INTRODUCTION

Although numerous 3D approaches have been developed for spatial visualization,

huge numbers of 2D images have been taken recent years for increased number of digi-

tal cameras, image quality, capacity of storage, and speed for transmission and display

rate. Community images uploaded in many photo service sites have been tagged in

maps for exploration of spaces [4,20]. However, where to take landmark images is

empirical and it relies on scenes of interest and the esthetic sense of photographers.

In addition, efforts to archive large spaces systematically and completely with images

have also been made [24,26]. Visual spaces can thus be retrieved pervasively, which

has a great value for disaster management, virtual navigation, Geo-referencing, etc.

However, setting observation points pervasively in a space is not always possible for

the infinite number of viewpoints and is sometimes unnecessary for redundant scene

coverage between images to be transmitted and displayed. The view selection prob-

lem thus becomes critical for image acquisition, indexing, and retrieval. Our views

are not distributed in spaces at an equal interval for two important observations:

(1) different viewpoints have different scopes of scene coverage; (2) a shift of view-

point yields different motion parallax and overlaps in the images on the scenes with

different depths. These effects indicate that the total scene coverage is not simply

proportional to the number of viewpoints, which allows us to select less redundant

yet more representative views.

We investigate the viewpoint allocation problem in a large area for archiving scenes

and setting live surveillance cameras. We select key views that can effectively present

similar scenes in surrounding regions for virtual access to the area. The key views

should be planned systematically to guide camera work so as to achieve a proper

data size of image-base in designing a virtual tour and setting surveillance cameras.

In a graphics interface, more clickable regions thus can be embedded in the images
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for indexing detailed information [22]; users can click or select a part of the image to

“zoom” or “go” there. Moreover, if cameras are mounted there, dynamic events can

be monitored remotely via wireless transmission.

Because millions of images may be taken at infinitively dense positions and fine

orientations in an area, it is necessary to assess the redundancy of pixels in present-

ing spaces. Images taken on the same scene can have similarity and difference at

many levels, such as (a) signal level described by color [12] and camera parameters,

(b) event level that scenes are affected by dynamic objects, (c) temporal level where

scenes vary in time, day and night, season, (d) FOV (field of view) level in terms

of camera orientation and image frame, (e) viewpoint level that generates motion,

disparity, and varied 2D shape, (f) visibility level that varies in scene coverage due to

occlusion, and (g) semantic level with functional, symbolic and artistic descriptions.

This work analyzes the relation of images at visibility level so as to achieve a proper

data size of image-base and the continuity in a virtual tour. We estimate view sig-

nificance in a large area and select key views for distinct scenes. Such planned views

can deliver spatial information effectively with less redundant data. Related works

include a sea of images proposed by Aliaga et al. [10] in an indoor environment and

data compressed at a signal level. In establishing an urban model [5,6,7], viewpoints

were selected more for the purpose of texture mapping and rendering than for data

reduction. Other approaches also tackled environments with various image projec-

tions and sensors: panoramas [1,2], omni-directional images [8,13,17], and spherical

views [3,9,16] well fit a virtual environment framework and uniform the variation

in FOV or camera direction. Along transitional spaces, parallel-perspective route

panoramas [15,18,26], X-slit images [23], and multi-perspective views [19] provide

continuous scenes of linear paths, which are viewpoint invariant. Snavely et al. [20]

has associated a collection of sightseeing images and recovered the 3D structures for

photo tour, which is at viewpoint and disparity level. Google Streetview has recorded

panoramas in major US cities [24], organized by map coordinates at semantic and

symbolic level. Different from previous work, our key view planning may find where
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the most distinct viewpoints are. The criteria for selecting key views are: (i) each

view should cover as large 3D surfaces as possible such that viewers can understand

more on his/her location by referring to the scene layout; (ii) the key view selection

should reflect spots of interest to facilitate visual indexing of objects via clickable

regions and embedded links in the images.

We start from a coarse elevation map [25] obtained from LiDAR data or map

services (Figure 1.1), and compute a view significance measure at all reachable po-

sitions, e.g., streets of an urban area. This measure also takes semantic information

into consideration if weights of importance are specified on 3D scenes. Based on

this local measure, we further investigate global relations of viewpoints to guaran-

tee the novelty of added key views. To verify the planned viewpoints, we capture

real panoramas to form a virtual traversing system on the web. In the following,

we discuss the view significance measure in Section 2 and propose an illumination

model from planar light sources. Section 3 discusses the key view selection obtaining

representative views, which produces discrete viewpoints from infinitely dense field.

Section 4 introduces a trial to capture real panorama images in the experiments, and

concludes with a discussion of these results.



4

(a)

(b)

Figure 1.1.: Elevation maps of an urban area (a) from LiDAR data and a town

struck by a recent earthquake (b), where wireless surveillance cameras were set for

monitoring collapse of mountains and runoff of a dangerous standby reservoir.
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2 VIEW EVALUATION

2.1 Panorama Images for Scene Archiving

There are many parameters such as location, viewing angle, focal length, and

resolution that can be taken into consideration in shooting photographs. Modeling

all these parameters and optimizing them has a high order of complexity. In fact,

the parameter selection is not only related to the Field of View (FOV) of a camera,

but also related to targets of interest. For a particular scene, the direction of a photo

is more important than the shooting distance and position, because the distance

can be compensated with a zoom lens or high image resolution. Although a local

perspective image can record shapes and colors and can highlight details, it usually

does not show real sizes and spatial locations of objects in the environment, which

makes virtual navigation much more difficult than real navigation.

In this paper, we simplify the factors for image acquisition to basic ones - the

viewpoint and FOV. High resolution panoramas are taken at evaluated locations

instead since the panoramas achieve the scene continuity in camera orientation as

compared to normal discrete images. Low-resolution discrete images facing various

directions can be generated in a multimedia window from these panoramas. To obtain

panoramas, fish-eye cameras capturing hemispherical images can be used [14]. The

images can be converted to cylindrical panoramas or discrete images easily. Other

sensors such as omni-directional sensors [13] and LadyBug cameras [11] are also good

choices for obtaining spherical and cylindrical images.
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(a) (b) (c)

(d)

(e)

Figure 2.1.: Depth maps of viewpoints generated from LiDAR Data. (a) Satellite

image of an area about 600× 700m2. (b) LiDAR elevation map of 360× 300 pixels:

intensity represents building height. (c) A hemisphere view at a point, where φ ∈

[0◦, 360◦] and ϕ ∈ [−5◦, 90◦]. (d,e) Depth of panoramas generated from viewpoints at

a street corner and a parking lot. The intensity represents the depth from a viewpoint.
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(a) (b)

Figure 2.2.: Two real images captured from street view of google map. The first one

is in a narrow alley, while the second one is in a large square seeing more scenes for

location understanding.

2.2 View Significance Based on Scene Coverage

The criteria for evaluating a viewpoint at a reachable place at eye-level are to

cover large 3D surfaces roughly. Compared to an overhead image, ground-based

images capture more vertical surfaces and details in an area. Intuitively, a view with

horizon only is not as visually significant as a view with full of objects in conveying

location information. Similarly, as shown in Figure 2.2, a view with a large sight from

an overlook is more significant than a view from a narrow street in ascertaining one’s

global location.

Our view significance is based on how large 3D surfaces an image can cover, which

is measured at every reachable position in an area (for example, in Figure 2.1a) using

its elevation data (Figure 2.1b). We compute the area of 3D surfaces covered by a

panorama for the view significance. Let P(X, Y, Z) donate a position in a space and

H(P)=Y is its height in the elevation map. Denoting 3D surface patches visible from

P as Si, i = 1, 2, 3...m, and Si /∈ sky, we calculate the visible point set from P as the

union of Si
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S(P ) =
m⋃
i=1

Si(P ) (2.1)

Their formed 3D area is accumulated for the view significance σ(P ).

To compute σ(P ), a ray r(φ, ϕ) is stretched from P in orientation φ ∈ [0, 2π]

and azimuth angle ϕ ∈ [ϕ0, ϕ1] (also see Figure 2.1c). If r hits a surface at distance

D(φ, ϕ), a 0-1 function, λ(φ, ϕ), takes value 1 and otherwise 0. A viewpoint thus can

have a depth map as in Figure 2.1d,e. The small 3D area covered by a ray is then

D2(φ, ϕ)cosϕdφdϕ. In a real lighting model, the irradiance of a ray is deducted by

1/D2 in quadric manner as the viewing distance increases. The image sharpness has

a larger decay on distance scenes. We can thus model the degradation of the image

contrast on a ray by D2(φ, ϕ) cosϕdφdϕ/(D2(φ, ϕ) + C), where C is a constant. To

balance the accuracy and computational cost, we simplify the formula by replacing

D2 with D. As shown in Figure 2.4, we can obtain similar results by toggling constants

C and D0 properly. In that sense, We define view significance σ(P ) to be the area of

S accumulated by

σ(P ) =

∫ 2π

0

∫ ϕ1

ϕ0

λ(φ, ϕ)
D(φ, ϕ)

D(φ, ϕ) +D0

cosϕdφdϕ (2.2)

where D0 is a large constant (e.g., 100m) and the denominator counts for the

degradation of image contrast on distant scenes due to atmospheric haze. It discounts

a close-to-infinity scene to be integrated into σ(P ). ϕ0 is a lower bound of ϕ and ϕ1is

an upper bound (−5◦ ≤ ϕ0 < ϕ1 ≤ 90◦). The calculation here treats all visible

surfaces equally; the result of σ(P ) is purely based on shapes and layouts of scenes.

Figure 2.3 shows the view significance fields evaluated from structures in the urban

area of Figure 2.1. One can notice the influence from streets, high-rise buildings and

open spaces. In general, σ(P ) is high at a wide site surrounded with rich scenes. We

can also notice that, in σ(P ) field from cylindrical views (Figure 2.3b), local maxima

are at locations slightly away from buildings as compared to that in σ(P ) field from

spherical views (Figure 2.3a). This is because a cylindrical panorama with a limited

vertical FOV may cut off high buildings as the viewpoint moves too close to buildings.
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(a) (b)

(c)

Figure 2.3.: View significances at all possible positions in an area are displayed in

leveled intensity (with contours more distinguishable than original distribution). The

brighter the intensity, the higher the significance value is. Black regions are unreach-

able locations occupied by buildings and trees. (a) Reachable positions and their

view significances evaluated with spherical views. (b) View significance evaluated

with cylindrical panoramas. (c) Color display of (b) for the continuous distribution

of view significance.
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Figure 2.4.: Curves of two formulas in calculating view significance. In presenting a

real space, images are usually chosen to cover landmarks, cultural and historic sites,

beautiful architecture, decorations, etc. To take these factors into account, we assign

different weights to 3D surfaces for the view significance evaluation, in addition to

the visibility evaluation. The weights can be assigned manually in the map.
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Table 2.1: An example of assigning weights to scene units

Type of scenes Weight

Landmarks (monument, highest building in town, etc.) 200

Cultural / sightseeing spots (museum, concert hall, etc.) 150

Commercial buildings (hotel, store, restaurant, etc.) 100

Office buildings 50

Park, green area 30

Ground, road, parking lot 1

Although a spherical view covers an entire high-rise even it is placed at bottom of

building, the captured view can be severely distorted for its steep viewing angle.

2.3 A Lighting Model for View Significances

In presenting a real space, images are usually chosen to cover landmarks, cultural

and historic sites, beautiful architecture, decorations, etc. To take these factors into

account, we assign different weights to surfaces for the view significance evaluation,

in addition to the visibility evaluation. The weights can be assigned manually in the

map.

As shown in Table 2.1, monuments, museums, and stations can receive higher

weights than storage houses or office buildings. The weight is assigned building-wise

in the space, unless some important facades or landmarks need to be emphasized

particularly. Alternatively, we can assign high weights on trees and lawns if we are

capturing images to archive (record) green areas or ecology trails. Further, we can

assign a river with a high value for setting surveillance cameras to monitor flood (Fig-

ure 1.1b). The weight of importance thus incorporates scene functions and semantic

information into the view evaluation and selection framework.
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We propose a computing model to modify the view significance measure by giving

the following setting. Scenes have different irradiances that can illuminate ground-

based viewpoints. Each building plane can be taken as a planar light source with

the intensity corresponding to its weight of importance. View significance σ(P ) at

viewpoint P is the accumulation of light from all visible points on the scene surfaces.

Assume building i, i = 1...n, has illuminant intensity wi on all of its surfaces. The

computation of is then

σ(P ) =

∫∫
S(P )

wS(P )λ(φ, ϕ)
D(φ, ϕ)

D(φ, ϕ) +D0

cosϕdφdϕ

=
n∑
i=1

∫∫
Si

wSi
λ(φ, ϕ)

D(φ, ϕ)

D(φ, ϕ) +D0

cosϕdφdϕ =
n∑
i=1

σi(P ) (2.3)

The computation of σ(P ) from different buildings is additive; changing wi on

building i only varies σi(P ), which can be generated locally and then added to the

σ(P ) distribution. This allows the update of σ(P ) field locally in an inexpensive

way. As shown in Figure 2.5a, important landmarks with high weights emit strong

light to their surroundings. The ground regions in the view significance map are

illuminated by such strong “light sources”; lower buildings and trees even produce

“shadows” behind. Figure 2.5b shows another example that assigns weights to sight-

seeing attractions and buildings along a commercial street. The view significance,

then, is changed in the resulting distribution. This approach provides the possibil-

ity of treating scenes differently in a computational frame for view planning. The

weight assignment is flexible and interactive, and the resulting view significance is a

continuous function of the weight.
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(a) (b)

(c)

Figure 2.5.: View significances from weighted scenes. Cyan intensity shows distri-

bution and red intensity indicates the weight of importance. (a) Several landmarks

weighted high and view significance distribution is dominated by these strong light

sources; (b) Leveled distribution of view significance calculated from landmarks, pub-

lic facilities, and a commercial street. (c) Pseudo color display of the distribution in

(b).
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3 KEY VIEW BASED SPATIAL INDEXING

3.1 Selecting Representative Views

For visual access of spaces on the web, two approaches are routinely employed.

One is traversing across neighboring spaces in a network of linked images with a

similar resolution (e.g., map access), and another is in-depth exploration with coarse-

to-fine resolution. Different from a spatial map with a fixed resolution and Google

Streetviews with a constant interval [24], our view network is constructed with non-

uniformed intervals according to the scene coverage of views. Our viewpoints are

ranked according to the view significance to form a hierarchy. A set of key views

will be extracted as representative views of many similar ones available at nearby

positions, while keep roughly the equivalent scene coverage as those distributed views

with a constant interval.

The view significance measure can lead to proper allocation of key views for dis-

tinct scenes. In addition, another important parameter to consider is the scene overlap

between neighboring key viewpoints, which can control the viewpoint intervals and

the density of the viewpoint network. Although the motion parallax or disparity is

an even finer property in an image sequence or video, we only measure the scene

overlap briefly because our static views are largely separated and are not as redun-

dant as video frames. A proper amount of scene overlap can maintain the continuity

of virtual travel in the view network and prevent spending data on nearly identical

scenes.

The algorithm to select viewpoints V = {P1, P2, ..., Pk, ..., Pm} for key views is as

follows. To avoid examining vast number of candidates and ensure a good visibility

of key views, we extract peaks in σ(P ) distribution in order of its value, starting
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Table 3.1: Number of viewpoints selected from 1165 peaks of the view significance

for maximum scene overlap allowed.

α 10% 30% 50% 70% 90%

Num of images 31 41 50 61 67

from the maximum σ(P ). As a level δ decreases, more peaks in σ(P ) emerge and

some nearby peaks may share a large portion of scenes. Therefore, we enforce a new

viewpoint to have proper portion of novel scenes included, i.e., scene overlap with

selected viewpoints should be less than threshold α. Peak Pk+1 is selected as a key

view if it has more than (1 − α)% new scenes. Assuming the projected image area

from 3D surface set S to panorama P is A(S), the condition to select a new key view

is then

E(Pk+1) =
A(

⋃k
j=1 S(Pj) ∩ S(Pk+1))

A(S(Pk+1))
< α (3.1)

in the panorama. With known σ(P ) distribution and maximum allowance α, the

algorithm to select key views is

Set V as an empty set

For δ decrease from max(σ) to min(σ)

For every point P satisfying σ(P ) = δ and P /∈ V

If P is a local maximum in σ(P ) and satisfies E(P ) < α then V = P ∪ V ;

Mark P as an examined peak

The computation of overlapping area of views uses a ray reflecting and stretching

strategy. After ray r initiated from P hits a surface, reflecting rays ri, i = 1, ...k, are

extended from the surface point towards all viewpoints already selected. If such a ray

is blocked by an obstacle, no overlap with the corresponding viewpoint is counted in

S(Pi) ∩ S(Pk+1).
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One can choose different values of α to restrict the view overlaps. A small α may

yield dispersed viewpoints with relatively smaller σ(P ) in a large area, while a large

α may yield concentrating viewpoints with high σ(P ) in order to highlight a crowded

area. Table 3.1 gives experiments where different α yield numbers of panoramas. The

selected key viewpoints are shown in Figure 3.1, where candidate peaks of σ(P ) and

selected key viewpoints are examined (connected with red lines). The intensity of a

red line is proportional to the amount of scene overlap between a pair of σ(P ) peaks.

Viewpoints occluded by intermediate buildings may still have weak links because they

can view common buildings at a distance. A peak connected with a cluster of bright

lines can be summarized as a key viewpoint.

3.2 Searching Key Views for Scene Display

The framework of visual indexing of spaces begins with a map clicking (at lower

plane in Figure 3.2). Any point clicked will lead to a key view that hosts an area

that the clicked point belongs to. The key view is then transmitted and displayed to

briefly represent the scenes around the clicked position. Because the view significance

distribution is a smooth function at all reachable positions, there should always have

a peak of σ(P ) near a clicked point. The peak point is either a selected key viewpoint,

or has a large scene overlap with a key view (for being rejected as a key view). We

choose a key view sharing the maximum scene with the peak.

Because the computed links from peaks to key views, all the points can be asso-

ciated to proper key views. Presenting key views allows navigating to neighboring

spaces or subspaces. Furthermore, the view at the clicked point can even be generated

roughly by transforming images from multiple key views nearby.
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(a) (b)

(c)

Figure 3.1.: Relation of viewpoints with scene overlaps less than 10%, 30%, 50%,

respectively. Selected key views are marked with circles and their radii are propor-

tional to the view significances. Blue points (at ends of red lines) are peak candidates

but not selected as key views, because of their large scene overlaps with the selected

ones. The amount of overlap is illustrated in red intensity of line connecting peak

candidates.
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Figure 3.2.: One possible framework of visual retrieval.
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4 EXPERIMENTS

The cost computation of the method is in estimating depth and view overlaps

by stretching and reflecting rays. However, the total time to select key views is

approximately 10 minutes with a normal desktop PC. Because our algorithms work

on close-to-raw sensor data, there is no surface patch needed to be formed. Although

modeling buildings with graphics patches may reduce the ray computation, no depth

is provided directly in such a graphics rendering method. This makes the computation

for scene overlap difficult.

We calculate a continuous σ(P ) field using elevation map H(X,Z). LiDAR data

are reduced in resolution to such a map first. At each small grid region (e.g., 5m2),

non-zero elevation points are median-filtered to yield an integer value in metrics H(X,

Z). Second, all reachable points at eye-level are marked, if 0 < Y < 2m. Third, we

compute rays in all orientations from P(X,Y,Z), until they hit obstacles. The front tip

P1(X1, Y1, Z1) of the ray satisfies Y1 < H(X1, Z1) as it hits an object. The distance

D(φ, ϕ) is then determined for the view significance. Due to the local computation

of the view significance based on the view stretching method, our method can work

in both crowded and sparse areas.

To compute view overlaps, the algorithm emits hemispherical rays from each peak

of σ(P ), and each ray is advanced at a fixed interval. When hitting a surface point,

rays are further bounced back towards the previously selected viewpoints to measure

the visibility from them.

The algorithm for view significance is implemented in local areas because σ(P ) is

related to the viewing distance in terms of 1/(D+D0). Beyond a range of D0 = 700m

to 1km, the visibility in the image decays significantly and the scenes are ignored in

our view significance evaluation accumulation. The algorithm thus can be extended

to a larger area in the same order of complexity.
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To verify the effectiveness of key view selection, real panoramas are taken at the

planned positions to constructing a visual network of the area as shown in Figure

4.1. The panoramas are consistent with the predicted depth maps from H(X,Z) ex-

cept on trees and vehicles, while the real images have much higher resolutions than

depth images. The key views are selected from ranked peaks in the view significance

distribution. The scene overlap of each key view with previously selected ones is

calculated and displayed in red. Because key panoramas have large scene coverage,

many clickable regions can be embedded into panoramas for links and view transi-

tion. A visual index can be established from key panoramas to detailed spaces and

neighboring spaces.

As shown in Table 3.1, the change of overlap threshold does not affect the number

of panoramas dramatically in our results; meaning that the distinct views are stable

and a significant reduction of image numbers has been achieved. Users can decide

the number of key views in the visualization. Users can decided the number of key

views properly for visualizing an area.
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Figure 4.1.: Calculated 16 key panoramas in depth map and captured real color

images. The overlapped parts in each view with other selected key views are indicated

in red in the depth maps. The real panoramas have vertical FOV ϕ ∈ [−5◦, 45◦] degree

to avoid major ground area, cars and people. Clickable regions are embedded in the

key views for visual indexing (blue regions for transition to other panoramas and

yellow regions to websites of buildings and facilities).
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5 DISCUSSION

Our key view planning is different from taking artistic photos based on appear-

ances, which is hard to parameterize numerically. The key views selection emphasizes

visibility, spatial layout, and functionality of scenes. The employed panoramas also

deliver more continuous spatial information as compared to discrete landmark photos

with single orientation. Therefore, discrete landmark photos should not be evaluated

equally as panoramas for the space perception and navigation purposes. However,

this approach does not prevent adding discrete images on special spots of interest.

The key views can be considered as a type of landmark views but viewer centered.

On the contrary, our key view selection yields a much smaller data set than a

video, sea of images, and Google Streetview at pervasively distributed viewpoints.

Those approaches are compressed at a signal level based on the motion parallax or

spatial frequency, or are not compressed. For virtual space perception using static

images, the view coverage and scene overlap are at a reasonable level to enforce the

view continuity.

Compared to satellite images, our planned key views provide a brief synopsis of an

area observable from the ground. Also, increasing the weight on a scene can attract

viewpoints closer. If a scene is weighted high for art or architecture appreciation

rather than for location finding, our algorithm may place a key view close to it in

order to gain resolution. Extending from LiDAR data, the framework here can also

be applied to web based graphics [27] to show high quality 3D data on the web. The

key views evaluated in this work can help to cache frequently viewed images for direct

transmission.
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6 SUMMARY

In this paper, we have explored a view planning scheme for scene visualization

with images and surveillance cameras. Viewer centered key views, which has a func-

tion of landmark, are selected according to elevation data of a large area. This allows

us to find limited representative views with the maximum scene coverage, and main-

tain scene novelty or continuity in a view network. We first model the scene visibility,

functions, and distinctiveness numerically by the view significance. Then view over-

laps at significant positions are examined for locating key views. The results may

guide image acquisition for spatial perception, help camera setting for surveillance,

and improve image indexing for virtual tours.
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