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Abstract

Magnetic resonance imaging (MRI) is a principal modality of modern medical imaging, which provides a wide

spectrum of useful diagnostic contrasts, both anatomical and functional in nature. Like many alternative imaging

modalities, however, some specific realizations of MRI offer a trade-off in terms of acquisition time, spatial/temporal

resolution and signal-to-noise ratio (SNR). Thus, for instance, increasing the time efficiency of MRI often comes at the

expense of reduced SNR. This, in turn, necessitates the use of post-processing tools for noise rejection, which makes

image de-noising an indispensable component of computer assistance diagnosis. In the field of MRI, a multitude

of image de-noising methods have been proposed hitherto. In this paper, the application of a particular class of

de-noising algorithms – known as non-local mean (NLM) filters – is investigated. Such filters have been recently

applied for MRI data enhancement and they have been shown to provide more accurate results as compared to many

alternative de-noising algorithms. Unfortunately, virtually all existing methods for NLM filtering have been derived

under the assumption of additive white Gaussian (AWG) noise contamination. Since this assumption is known to fail

at low values of SNR, an alternative formulation of NLM filtering is required, which would take into consideration

the correct Rician statistics of MRI noise. Accordingly, the contribution of the present paper is two-fold. First, it

points out some principal disadvantages of the earlier methods of NLM filtering of MRI images and suggests means

to rectify them. Second, the paper introduces a new similarity measure for NLM filtering of MRI Images, which is

derived under bona fide statistical assumptions and results in more accurate reconstruction of MR scans as compared

to alternative NLM approaches. Finally, the utility and viability of the proposed method is demonstrated through a

series of numerical experiments using both in silico and in vivo MRI data.

Index Terms

MRI Denoising, non-local means, Rician distribution, non-central chi square distribution

All authors are with the Department of Electrical and Computer Engineering at the University of Waterloo (Ontario, Canada). This research

was supported by a Discovery grant from NSERC – The Natural Sciences and Engineering Research Council of Canada. Information on various

NSERC activities and programs can be obtained from http://www.nserc.ca.

May 25, 2018 DRAFT

ar
X

iv
:1

11
0.

59
45

v1
  [

cs
.C

V
] 

 2
6 

O
ct

 2
01

1

http://www.nserc.ca


1

A New Similarity Measure for Non-Local

Means Filtering of MRI Images

I. INTRODUCTION

Magnetic resonance imaging (MRI) is considered to be one of the most advanced modalities of modern medical

imaging, which excels in providing a wide spectrum of useful diagnostic contrasts [1]. Since the latter constitute an

intensity-coded representation of biological properties of studied tissues/organs, the precision with which a contrast

represents its associated biological property plays a decisive role in tissue characterization and early diagnosis. This

fact establishes the value of post-processing techniques which aim at improving the signal-to-noise ratio (SNR) of

diagnostic MR images, while preserving the integrity and consistency of their anatomical content.

Unfortunately, in virtually all realizations of MRI, attaining higher spatial resolution entails using longer acqui-

sition times. Apart from being highly undesirable from the perspective of patients’ comfort and compliance, longer

acquisition times lead to motion-related artifacts, which are the main foe of cardiac and diffusion MRI [2]–[5].

On the other hand, the reduction of acquisition time results in a loss of the spatial resolution as well as in an

amplification of measurement noises. The latter tend to obscure and mask diagnostically relevant details of MR

scans, thereby necessitating the application of efficient and reliable tools of image de-noising [6].

The current arsenal of image de-noising methods used in MRI is immense, which makes their fair classification

a non-trivial task. For this reason, only three groups of de-noising methods which are germane to the present

developments are mentioned below, while the reader is referred to the references therein for a more comprehensive

literature review. In particular, the first group of de-noising algorithms for MRI encompasses variational methods,

which are implemented through the solution of partial differential equations (PDE) [7]–[10]. Thus, for example,

[7] suggests an adaptation of the classical anisotropic diffusion filter of [11] for noise reduction and enhancement

of object boundaries in MRI. On the other hand, the de-noising method of [8] is based on minimization of an

original cost functional, whose associated gradient flow has the form of a fourth-order PDE. In [9], information

from both the body coil image and surface coil image are incorporated in the form of data fidelity constraints.

Finally, [10] introduces a maximum-a-posteriori (MAP) technique using a Rician noise model in combination with

spatial regularization.

A different group of de-noising methods takes advantage of the sparsifying properties of certain linear transforms

[12]–[21] (for a comprehensive review of such methods, the reader is also referred to [22]). Thus, for instance,

the method of [16] is based on wavelet thresholding applied to squared-amplitude MR images, supplemented by

“unbiasing” of the scaling coefficients to account for the non-central chi-square distribution statistics. A different

(robust) shrinkage scheme in the domain of a wavelet transform is proposed in [19]. Using a different line of

arguments, the wavelet de-noising method of [18] is applied to complex-valued MR images. Finally, in [21], the

MR images are enhanced by means of a wavelet-domain bilateral filter.
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A third group of image de-noising algorithms is based on the concept of non-local means (NLM) filtering, which

was originally proposed in [23]–[25], with its later improvements reported in [26], [27]. As a general rule, NLM

filters estimate a noise-free intensity of a given pixel (source pixel) as a weighted (linear) combination of the rest

of the image pixels (target pixels). Here, the weights of the linear combination are determined based on a similarity

measure (SM) between the neighbourhoods of the target and source pixels. As a result, the performance of an

NLM filter is largely determined by the optimality of a chosen SM with respect to the properties of the image

to be enhanced as well as those of the measurement noise. Thus, for example, under the conditions of additive

white Gaussian (AWG) noise contamination, the above-referred NLM filters have been shown to outperform many

variational and wavelet-based filters in terms of noise removal and the quality of edge preservation.

Motivated by the success of NLM filtering in general image processing, the works in [28], [29] have extended

the Gaussian-mode NLM filters to MR imagery. Additional reports on the subject also include [30]–[32], where

the filters are applied to MR images, followed by subtracting an estimation bias from the results thus obtained.

Central to the main subject of the present work is the fact that the Rician statistics of MR images converges to

Gaussian as the SNR of the images goes to infinity [3]. For sufficiently high values of SNR, therefore, applying the

Gaussian-mode NLM filters seem to be well justified [31]. However, for relatively low values of SNR (as in the

case with, e.g., diffusion weighted imaging), the Gaussian model ceases to be legitimate, and as a result, the NLM

weights optimal for the Gaussian setting become sub-optimal. This fact suggests a need for an SM which remains

optimal for a wide range of the SNR values. Accordingly, deriving such an SM constitutes the main objective of the

present paper. To this end, we start with an analysis of the NLM filters recently proposed in [33], [34] and underline

some of their properties which should be avoided in the case of MR image de-noising. Subsequently, based on

the results of [33], [34], we propose a new formulation of the SM and its associated weights, and demonstrate its

usefulness and viability through a series of experiments using both in silico and in vivo MRI data.

Table I summarizes the main abbreviations and notations used in the paper, whose remainder is organized as

follows. Section II provides some necessary details on the image formation model of MR images and their noise

statistics. Sections III and IV describe a number of principal approaches to NLM filtering and point out some of

their problematic aspects in relation to an MRI setting. A new SM and the closed-form expressions for its associated

weights are derived in Section V, while Section VI details a method for applying these proposed weights to the

noisy pixels of data images. Section VII compares the performance of the proposed algorithm with that of some

alternative methods using both in silico and in vivo MRI data. Finally, the main results and conclusions of the paper

are recapitulated in Section VIII.

II. IMAGE FORMATION MODEL AND NOISE STATISTICS

MR images are standardly acquired in the Fourier domain (i.e., the k-space), followed by the procedures of

frequency demodulation and inverse transformation, which result in corresponding complex-valued images, whose

magnitude is subsequently displayed [4]. In this case, if the frequency-domain data is contaminated by zero-mean
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TABLE I

LIST OF NOTATIONS AND ABBREVIATIONS

Notations and Abbreviations Meaning Formula (if applicable)

NLM Non-local means -

NCCS Non-central chi square -

SM Similarity measure -

SNL Similarity measure for NLM -

SSM Subtractive similarity measure (16)

RSM Rational similarity measure (22)

CSM Correlation similarity measure -

SNL
(1)
s,t,k Subtractive SM for NCCS distribution (14)

SNL
(2)
s,t,k Rational SM for Rician distribution (15)

SNL
(3)
s,t,k Subtractive CSM for NCCS distribution (21)

SNL
(4)
s,t,k Rational CSM for Rician distribution (25)

AWG noise, the complex amplitude M of the noisy observation A exp{ıα}+N , with N = Nr + ıNi , is given by

M =
√

(A cosα+Nr)2 + (A sinα+Ni)2, (1)

where A stands for the true image amplitude, while Nr and Ni are mutually independent AWG noises of standard

deviation σ, and α ∈ [0, 2π) is an arbitrary phase shift. In this case, M can be shown to follow the Rician conditional

distribution model that is given by1 [3], [4]

pM |A(m|a) =


m
σ2 exp

{
−a

2+m2

2σ2

}
I0
(
am
σ2

)
, m ≥ 0

0, otherwise.
(2)

where I0 denotes the 0th-order modified Bessel function of the first kind. Figure 1(a) depicts several typical shapes

of pM |A(m|a) corresponding to a range of the values of A and σ = 1. As can be seen from the figure, for A > 3σ,

the Rician probability density function starts closely resembling that of a Gaussian random variable [3]). However,

for lower values of A, the density pM |A(m|a) becomes more asymmetric and protrudently heavy-tailed. Specifically,

for A = 0, M follows a Rayleigh distribution model.

The Rician nature of pM |A in (2) renders impractical a straightforward application of many filtering strategies.

This is because of the highly-nonlinear relation between the expectation E{M} of M and A. Specifically,

E{M} = σ
√
π/2L1/2(−A2/2σ2), (3)

where Lv(x) denotes a Laguerre polynomial which, for v = 1/2, is given by

L1/2(x) = ex/2
[
(1− x)I0

(
−x

2

)
− xI1

(
−x

2

)]
. (4)

1Here and hereafter, we use the standard statistical formalism for denoting random variables and their associated realizations by capital letters

and their lower-case counterparts, respectively.
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(a) (b)

Fig. 1. (a) Rician pdf’s corresponding to different values of A and σ = 1 in (2); (b) Non-central chi square distribution corresponding to

different values of F in (5).

At the same time, a normalized version G = (M/σ)2 of the squared magnitude M2 can be shown to be distributed

according to a non-central chi square (NCCS) distribution with two degrees of freedom and parameter F = (A/σ)2,

whose conditional density is given by

pG|F (g|f) =


1
2e
−(g+f)/2I0(

√
fg), g ≥ 0

0, otherwise,
(5)

where f ∈ R+. Figure 1(b) shows a number of typical shapes of pG|F corresponding to a set of different values

of F . A better understanding of this figure can be derived from the fact that (1) suggests

G = F + 2
√
Fξ + η, (6)

where ξ := (Nr cosα + Ni sinα)/σ and η := (N2
r + N2

i )/σ2. Thus G can be viewed as a noisy version of F ,

where the noise has both additive and multiplicative components. Specifically, it should be noted that ξ obeys a

normal distribution with zero mean and unit variance, while η follows an exponential distribution with its mean

and variance equal to 2 and 4, respectively. Moreover, the expectation of G now has a very simple relation to F ,

which is given by

E{G} = F + 2. (7)

It is the simplicity of (7) which has been a principal impetus for the development of various de-noising methods,

which have been applied to the squared magnitude G, rather than to its original value M . In one way or another, all

these methods aim at recovering a close approximation of the average value E{G}, followed by the estimation of

F through the subtraction of the global bias of 2. Note that, once an estimate of F has been obtained, its associated

amplitude A in (1) can be recovered through taking the square root and re-normalization. These facts will be useful

in the sections below.
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III. NON-LOCAL MEANS FILTER

The concept of NLM filtering was first proposed in [23] for the case of zero-mean AWG noise contamination.

Let Xs and Ys denote the intensities of the original (X) and observed (Y ) image, respectively, corresponding to

pixel s ∈ I ≡ {0, 1, . . . , N − 1}, where N denotes the total number of pixels in the image. Then, the filter of [23]

assumes Ys to be a realization of a mixture of ergodic processes, in which case the value of Xs can be estimated

by averaging {Yt}t∈Js , where Js ⊆ I denotes the set of pixel indices whose associated intensities are distributed

identically to Ys. It goes without saying that, in a real-life scenario, one might not be given an oracle who would

provide us with all possible sets {Js}s∈I . In this case, it makes sense to replace the binary (hard) weighting by a

fuzzy (soft) one, and compute an estimate X̂s of Xs according to

X̂s =
1

Cs

∑
t∈I

ws,t Yt, with Cs =
∑
t∈I

ws,t, (8)

where ws,t ≥ 0 quantifies the “contribution” of a target pixel t ∈ I to the estimate of the source pixel s. Note that,

ideally, the weights ws,t should reflect a degree of similarity between the image intensities in the vicinity of pixels

s and t of the original image. Thus, for example, the original choice of [23] was

ws,t = exp

(
− 1

h

∑
k∈Ω

βk |Ys−k − Yt−k|2
)
, (9)

where Ω is the index set representing a symmetric neighbourhood of the centre of image coordinates. (Thus, for

example, with s corresponding to two spatial coordinates s ↔ (x, y), Ω could be defined as Ω = {(x, y) : |x| ≤

Lx, |y| ≤ Ly} for some positive integers Lx and Ly .) The “fine-tuning” parameters {βk}k∈Ω in (9) are intended

to weight the domain of summation and they should be chosen to satisfy
∑
k∈Ω βk = 1, while h > 0 controls

the overall amount of smoothing imposed by the filter. Specifically, the higher values of h tend to result in overly

smoothed output images, whereas smaller values produce rather milder filtering effects. As a general rule, an optimal

value of h should be chosen adaptively according to the level of noise in Y .

To facilitate our considerations, we note that the NLM weights in (9) can be alternately expressed as [33], [34]

ws,t =
∏
k∈Ω

(SNLs,t,k)
βk
h , (10)

with SNLs,t,k being a Gaussian SM defined as

SNLs,t,k = exp
(
−|Ys−k − Yt−k|2

)
. (11)

It is important to note that the value of SNLs,t,k is always bounded between 0 and 1, and it can be shown (see

[33], [35] for more details) that its choice in (10) and (11) is optimal in the case of AWG noise contamination.

It should be noted that the use of weights {ws,t} for linearly weighting the noise samples Yt is not the only way

in which the weights can be “intermingled” with noisy data to yield an NLM estimate X̂s similar to (8). Thus, for

instance, an alternative way of weighting is used in [33], [34] based on the maximum likelihood (ML) framework.

Apart from the ML-based weighting scheme, the works in [33], [34] suggest a unified approach to computation of

the optimal weights based on the formal (and, in general, non-Gaussian) statistical properties of the original image
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as well as of measurement noise. Despite the generality of the above formulation, however, its application to the

case of MR imagery results in SMs which possess a number of undesirable properties. In the section that follows,

these properties are brought under consideration, followed by the derivation of an original methodology that allows

one to fix them.

IV. STATISTICAL APPROACHES TO COMPUTATION OF SM FOR MRI

In [33], it was suggested to set the SM SNLs,t,k to be equal to the posterior probability of Xs−k = Xt−k

conditioned on observations of Ys−k and Yt−k. Formally,

SNLs,t,k = P (Xs−k = Xt−k|Ys−k, Yt−k), (12)

which, for the case βk/h = 1,∀k ∈ Ω, leads to following definition of the NLM weights

ws,t =
∏
k∈Ω

P (Xs−k = Xt−k|Ys−k, Yt−k). (13)

It is worthwhile noting that, under the assumption of statistical independence of the intensities of the original image

X , the weights in (13) can be viewed as the posterior probability of the image patches {Xs−k}k∈Ω and {Xt−k}k∈Ω

to consist of the same intensities, conditioned on the observation of their corresponding noisy values {Ys−k}k∈Ω and

{Yt−k}k∈Ω, respectively [33]. Although the assumption of statistical independence is an obvious oversimplification,

it is often employed in NLM filtering to render the final estimation scheme computationally feasible.

It should be noted that the SM in (12) seems to have a serious theoretical flaw in the case of continuous

random variables Xs−k and Xt−k, in which case the SM is always equal to zero [36, p. 111]. To overcome this

difficulty, it was suggested in [34] to introduce an auxiliary random variable Uk ≡ Xs−k −Xt−k and set the SM

SNLs,t,k to the value of the conditional density pUk|Ys−k,Yt−k(uk|ys−k, yt−k) at uk = 0. Alternatively, one can

use a different auxiliary variable Vk = Xs−k/Xt−k, in which case the SM can be set to be equal to the value of

pVk|Ys,k,Yt,k(vk|ys−k, yt−k) at vk = 1 [34]. For the convenience of referencing, the above SMs will be referred

below to as the subtractive and the rational SMs, respectively. Note that, although similar in their underlying

philosophy, these measures lead to substantially different de-noising schemes, as it is detailed below.

In the present work, we explore both the subtractive and rational SMs for two different types of input data,

namely for the measured magnitude M and its squared normalized version G. The main contribution of the next

propositions is to provide closed-form expressions for the SMs which result from using a subtractive Uk on G

images, and a rational Vk on M images. Unfortunately, for the remaining two combinations (viz., “rational” G

and “subtractive” M ) it does not seem to be possible to derive closed-form expressions as well. In these cases,

the measures need to be computed numerically – the approach which should be avoided in practice due to its low

computational efficiency.

Proposition 4.1: Let G = (M/σ)2 be a squared and normalized version of the MR magnitude image M as given

by (1). Moreover, let F = (A/σ)2, where A denotes the true signal amplitude. Then, the subtractive SM SNL
(1)
s,t,k
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is given by

SNL
(1)
s,t,k = pFs−k−Ft−k|Gs−k,Gt−k(0 | gs−k, gt−k) =

1

4
e−(gs−k+gt−k)/4I0

(√
gs−k gt−k

2

)
. (14)

The proof of Proposition 4.1 is provided in Appendix A, while Fig. 2(a) shows a number of SNL
(1)
s,t,k curves

corresponding to various values of gt−k and some fixed values of gs−k.

(a) (b)

Fig. 2. (a) Subtractive similarity measure SNL
(1)
s,t,k; (b) Rational similarity measure SNL

(2)
s,t,k .

Observing Fig. 2(a), a number of critical remarks are in order.

1) The smaller the value of gs−k is, the narrower is the effective support of SNL
(1)
s,t,k. This effect is due to the

signal-dependent Gaussian noise 2
√
Fξ in (6). Indeed, smaller values of gs−k suggest smaller values of their

related fs−k, and therefore smaller values of the above mentioned Gaussian noise component. In such a case,

SNL
(1)
s,t,k becomes more sensitive to the value of gs−k− gt−k (fast decay), which indicates that the difference

fs−k − ft−k is likely to be small as well. On the other hand, the contribution of the (signal-dependent)

Gaussian noise component becomes stronger for relatively large values of gs−k (and hence of fs−k). In this

case, SNL
(1)
s,t,k has a slower convergence rate, since larger values of gs−k − gt−k no longer imply a larger

discrepancy between fs−k and ft−k.

2) The smaller the value of gs−k is, the more heavy-tailed is the behaviour of SNL
(1)
s,t,k. This effect can be

attributed to the dominance of the exponential noise component η in (6). Moreover, when gs−k is large

(which implies the dominance of the Gaussian noise), the SNL
(1)
s,t,k curves appear to be more symmetric.

The proposition that follows extends the previous results to the case of magnitude signals and a rational SM.

Proposition 4.2: Let M be the MR magnitude image as given by (1). Moreover, let A be the original signal

amplitude. Then, the rational SM SNL
(2)
s,t,k is given by

SNL
(2)
s,t,k = pAs−k/At−k|Ms−k,Mt−k(1 | ms−k,mt−k) =

ms−kmt−k

2σ2
e−(m2

s−k+m2
t−k)/4σ2

I0

(ms−kmt−k

2σ2

)
. (15)
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The proof of Proposition 4.2 can be found in Appendix B. The plot of SNL
(2)
s,t,k is shown in Fig. 2(b), where each

curve is drawn with a fixed ms−k and varying mt−k, while σ is set to be equal to 1.

The main observations in the above case are:

1) As the value of ms−k increases, the noise distribution tends towards Gaussian, and as a result, the similarity

measure SNL
(2)
s,t,k becomes more symmetric and appears to have the shape of a Gaussian SM.

2) For relatively small values of ms−k, on the other hand, the shape of SNL
(2)
s,t,k is noticeably asymmetric, being

heavy-tailed towards the right.

Although SNL
(1)
s,t,k and SNL

(2)
s,t,k appear to reflect the main properties of their corresponding noise distributions,

they share a number of critical drawbacks which we point out below.

1) Neither SNL
(1)
s,t,k nor SNL

(2)
s,t,k (as given by (14) and (15), respectively) attain their maxima values at the

point when the two arguments received by the measures are equal. Particularly, for a fixed value of gs−k

(resp. ms−k), the SNL
(1)
s,t,k measure (resp. the SNL

(2)
s,t,k measure) is maximal at some gt−k < gs−k (resp.

mt−k < ms−k).

2) The maximal values SNL
(1)
s,t,k and SNL

(2)
s,t,k can attain depend on the values of the “source” intensities gs−k

and ms−k, respectively. In other words, the value of SNL
(1)
s,t,k(α, α) (resp. SNL

(2)
s,t,k(β, β)) depends on the

value of α (resp. β). From a purely applicational point of view, this fact suggests that the measures are not

scale invariant, and as a result, the weights ws,t in (8) are defined not only by how dissimilar compared

intensities are, but also by their absolute values.

3) As can be seen from Figure 2(b), SNL
(2)
s,t,k can become unbounded which is not a favourable property of the

similarity measure.

Some of the above mentioned limitations of SNL
(1)
s,t,k and SNL

(2)
s,t,k have already been pointed out in [34], where

the authors apply the method of [33] to multiplicative noise. The main conclusion which one can immediately draw

from the discussion above as well as based on [34] is that neither SNL
(2)
s,t,k nor SNL

(1)
s,t,k is optimal to deal with

the cases of Rician and/or NCCS noises, which are the most relevant types of noises in MRI. In the next section,

we propose a new SM, which is free of the limitations of SNL
(1)
s,t,k and SNL

(2)
s,t,k mentioned above.

V. PROPOSED APPROACH

A. Subtractive SM for NCCS noise

To derive the proposed SM in a consistent and intuitive way, we start with the case of the subtractive SM (SSM),

which is defined as [34]

SSM = pFs−k−Ft−k|Gs−k,Gt−k(0 | gs−k, gt−k) =

=

∫ ∞
0

pFs−k|Gs−k,Gt−k(f | gs−k, gt−k) pFt−k|Gs−k,Gt−k(f |gs−k, gt−k) df. (16)
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For the case of a NCCS distribution, one alternatively has (see Appendix A for the details of derivation)

SSM ≡ SNL
(1)
s,t,k = pFs−k−Ft−k|Gs−k,Gt−k(0 | gs−k, gt−k) =

=

∫ ∞
0

pGs−k|Fs−k(gs−k | f) pGt−k|Ft−k(gt−k | f) df. (17)

In the above equation, it has been assumed that the prior probability pFz−k (where z ∈ {s, t} and k ∈ Ω) is uniform.

Moreover, it has also been assumed that, given the noisy intensity value at a particular location, its original (i.e.,

noise-free) value is conditionally independent of noisy intensities at different locations (viz., pFz1−k|Gz1−k,Gz2−k =

pFz1−k|Gz1−k ). Finally, it also deserves noting that, for a general noise distribution, it can be shown that the relation

in (17) holds with the proportionality rather than the equality sign [33], [34]. Specifically,

SSM = pFs−k−Ft−k|Gs−k,Gt−k(0 | gs−k, gt−k) ∝
∫ ∞

0

pGs−k|Fs−k(gs−k | f) pGt−k|Ft−k(gt−k | f) df. (18)

To overcome the limitations of SNL
(1)
s,t,k and SNL

(2)
s,t,k as per the discussion in the previous section, we interpret

the right-hand side of (18) as an inner product between the likelihood functions Lgs−k(·) and Lgt−k(·), with Lg(f)

given by

Lg(f) = pG|F (g | f). (19)

In other words, the SM derived from the probabilistic point of view has the form of the inner product of likelihood

functions, where each of the likelihood functions is indexed by its corresponding noisy observation. Note that, in

general, the likelihood functions Lgs−k(·) and Lgt−k(·) have unequal norms, and as a result their inner product

is not maximized when gs−k = gt−k (which would be a natural and desirable property of an SM to have). To

overcome this shortcoming, we suggest to normalize the inner product, thereby converting it into a correlation

similarity measure (CSM) according to

CSM
(1)
s,t,k =

〈Lgs−k , Lgt−k〉
‖Lgs−k‖2 ‖Lgt−k‖2

, (20)

where 〈x, y〉 =
∫∞

0
x(f)y(f) df and ‖x‖2 =

√
〈x, x〉. It is interesting to observe that CSM

(1)
s,t,k can be also viewed

as an inner product of two functions lying on the unit sphere in L2(R+). Therefore, CSMs,t,k has an interpretation

of the cosine of the angle between the two functions.

The CSM in (20) turns out to be particularly advantageous in the case of MR imagery. First, it is free of all

the major limitations of SNL
(1)
s,t,k and SNL

(2)
s,t,k as previously discussed. In particular, CSMs,t,k is always smaller

or equal to 1, and it achieves its maximum value when gs−k = gt−k. Secondly, for the case of NCCS noises, the

CSM measure can be shown to have a neat closed-form expression which is given by

SNL
(3)
s,t,k =

I0
(√

ĝs−k ĝt−k
)√

I0(ĝs−k) I0(ĝt−k)
, where ĝ = g/2. (21)

A number of graphs of SNL
(3)
s,t,k are shown in Fig. 3(a), where each curve is drawn with a fixed gs−k and varying

gt−k. It can be seen from the graphs that the shape of each curve is similar to those in Fig. 2(a). However, unlike

the plots in Fig. 2(a), each curve in Fig. 3(a) is maximized when gt−k = gs−k and the maximum value is the same

for all the curves and is equal to 1.
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(a) (b)

Fig. 3. (a) Proposed CSM SNL
(3)
s,t,k for the case of NCCS noise distribution; (b) Proposed CSM SNL

(4)
s,t,k for the case of Rician noise

distribution.

B. Rational SM for Rician noise

To derive an expression for a CSM for the case of Rician noise, we first recall that the rational SM (RSM) is

given by [34]

RSM = pAs−k/At−k|Ms−k,Mt−k(1 | ms−k,mt−k)

=

∫ ∞
0

a pAs−k|Ms−k,Mt−k(a | ms−k,mt−k) pAt−k|Ms−k,Mt−k(a | ms−k,mt−k) da. (22)

Using a method similar to the one discussed in the previous subsection, one can obtain

RSM =

∫ ∞
0

a pMs−k|As−k(ms−k | a) pMt−k|At−k(mt−k | a) da, (23)

where the equality sign can be replaced by a proportionality sign for general noise distributions, as it was done

in the previous subsection. Moreover, similar to the case with SNL
(3)
s,t,k, the integral in (23) can be interpreted

as a weighted inner product 〈x, y〉a =
∫∞

0
x(a)y(a) a da , where a da can be viewed as a “modified” integration

measure. Using this notation, we have

RSM ≡
〈
Lms−k , Lmt−k

〉
a
. (24)

As the final step, one can normalize the inner product in (24) in a way similar to (20), which leads to a different

CSM for Rician noises, which is given by

SNL
(4)
s,t,k =

I0
(ms−kmt−k

2σ2

)√
I0

(
m2
s−k

2σ2

)
I0

(
m2
t−k

2σ2

) (25)

A number of SNL
(4)
s,t,k curves are shown in Fig. 3(b) for different (fixed) values of ms−k and a range of varying

mt−k. Once again, one can observe that the curves are similar in shape as those of Fig. 2(b). However, unlike Fig.
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2(b), each SNL
(4)
s,t,k curve is maximized when mt−k = ms−k and the maximum value is equal to 1 in each case.

There are two important facts about SNL
(3)
s,t,k and SNL

(4)
s,t,k that deserve to be paid special attention. In particular:

1) The values of SNL
(3)
s,t,k and SNL

(4)
s,t,k (as given by (21) and (25), respectively) are equal under the substitution

gz−k = (mz−k/σ)2. In other words, the value of SNL
(3)
s,t,k for some arbitrary gs,k and gt,k will be equal to the

value of SNL
(4)
s,t,k for ms,k and mt,k, whenever gs,k = (ms,k/σ)2 and gt,k = (mt,k/σ)2, which is precisely

the case at hand. In other words, the proposed SMs are equivalent under reparametrization G = (M/σ)2.

This fact suggests that, in terms of SNL
(3)
s,t,k and SNL

(4)
s,t,k values, two patches of an original MR image and

their corresponding squared and normalized versions are equally similar.

2) Using the fact that, for sufficiently large x, it holds that

I0(x) ≈ exp(x)√
2πx

, (26)

and plugging (26) into (25) instead of the original Bessel functions, we obtain

SNL
(4)
s,t,k ≈ exp

{
−|ms−k −mt−k|2

4σ2

}
. (27)

The above approximation holds with a high precision for relatively large values of SNR (i.e., for mkσ ,
ml
σ � 1).

This is an exceptional property of SNL
(4)
s,t,k, since it is known that Rician noise in MRI converges to Gaussian

noise, when SNR increases. In such a case, the proposed SNL
(4)
s,t,k measure converges to the form of (11),

whose optimality for Gaussian noises was proven in [33].

VI. BIAS REMOVAL

The original NLM filter of [23] employs the adaptive local averaging scheme of (8), in which the output intensity is

computed as a weighted linear combination of the measured intensities, while the weights are determined adaptively,

based on an SM in use. Unfortunately, the filter in (8) has some optimality properties in the case of additive Gaussian

noises alone, while the efficiency of the filter is known to deteriorate for some more general types of measurement

noise. In the latter case, one can adopt the more general filtering procedure that was used in [33], [34], according

to which an estimated value X̂s of some unknown Xs is given by

X̂s = arg max
Xs

∑
t∈I

ws,t log p(Yt | Xs), (28)

where Yt denotes the measured intensities and {ws,t} are some predefined weights. The estimate in (28) has been

motivated by the work in [37] where it has been referred to as a weighted maximum likelihood (WML) estimate.

Unfortunately, in the case when Yt in (28) follows either a Rician or an NCCS distribution, (28) does not seem

to have a close-form analytical form, which necessitates the use of numerical optimization. Alternatively, one can

take advantage of the relation in (7) to estimate E{Gs} as

E{Gs} ≈
∑
t∈I

ws,t gt, (29)
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followed by estimating the related original amplitude As = σ
√
E{Gs} − 2 as

As ≈ σ
[

max
{[∑

t∈I
ws,t gt

]
− 2, 0

}]1/2

≡ Â(1)
s . (30)

where the max(·) operator is used to avoid complex estimates. Note that, even though applying the max(·) operator

may seem like a purely ad-hoc procedure, it has been shown to be optimal in the ML sense in [38]. This estimate

has also been used previously in [31] in the context of non-local means.

Yet another option to estimate As is to apply averaging to M (as opposed to G). Although the square of the

average value is, in general, not equal to the average of the squared values, a common method of estimating As is

[30]

As ≈
[

max
{[∑

t∈I
ws,tmt

]2
− 2σ2, 0

}]1/2

≡ Â(2)
s . (31)

Despite the fact that
[∑

t∈I ws,tmt

]2
/σ2 does not seem to be a legitimate estimate of E{Gs}, the estimate Â(2)

s

in (31) often produce more accurate reconstruction results in terms of the mean-squared error (MSE) as compared

to the estimate Â(1)
s in (30). To understand the reasons which underpin the above phenomenon, it is instructive

to consider the following numerical experiment. Fig. 4(a) and Fig. 4(b) show the histograms of the estimates in

(30) and (31), respectively, which have been computed without applying the square root and the max(·) operator.

With a slight abuse of notations, these estimates are referred to below as (Â
(1)
s )2 and (Â

(2)
s )2 (which, despite the

square in their superscripts, are allowed to have an arbitrary sign). In both cases, the original amplitude A was set

to be equal to zero (i.e. A = 0), the noise variance σ was normalized to have the value of σ = 1, the weights ws,t

were chosen to correspond to uniformly averaging 25 random realizations of gt and mt, respectively2, and both

histograms have been computed based on the results of 106 independent trials. Observing Fig. 4 one can see that

both estimates provide outputs in the vicinity of the true squared amplitude A2 = 0. However, while the histogram

of (Â
(1)
s )2 is shaped more or less symmetrically around the origin, the histogram of (Â

(2)
s )2 is noticeably biased to

the left, which suggests that the estimate in (31) tends to underestimate the true squared magnitude of A2 = 0. In

terms of the probabilities P ((Â
(1)
s )2 ≤ 0) and P ((Â

(2)
s )2 ≤ 0) with which the estimates yield non-positive outputs,

one can therefore conclude that P ((Â
(1)
s )2 ≤ 0) < P ((Â

(2)
s )2 ≤ 0). (Thus, for example, in the case of Fig. 4,

P ((Â
(1)
s )2 ≤ 0) ≈ 0.54, while P ((Â

(2)
s )2 ≤ 0) ≈ 0.89.) This fact, in turn, implies that, after applying the max(·)

operator, the estimation in (31) is much more likely to produce the exact reconstruction of A = 0 as compared to

the estimation in (30).

In MRI, zero-valued amplitudes A are predominant at the background areas of MR images, which are normally

devoid of water content. At such areas, therefore, the estimation in (30) should be expected to produce larger values

of MSE as compared to the case of (31). We will have more to add to the subject in the following sections of the

paper.

2In practice, 25 appears to be a typical size of the neighbourhood I used for NLM filtering.
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(a) (b)

Fig. 4. (a) Histogram of (Â(1)
s )2; (b) Histogram of (Â(2)

s )2.

VII. RESULTS

A. Reference Methods

The performance of the proposed method has been compared with several standard and established algorithms.

Specifically, as the first reference method, the total-variation filter of [39], implemented by means of the fast fixed-

point algorithm of [40], has been used. The algorithm (which is referred to below as TVDN, an acronym of total

variation denoising) has been applied to the magnitude MR data, followed by the bias-removal procedure specified

by (31). As the second reference method, the wavelet-based method of [19] has been used3. In what follows, this

method is referred to as wavelet de-noising (WDN). As the final method used for numerical comparison, the NLM

filter of [30] has been employed. Since the filter uses Gaussian weights to compute the similarity measure, we refer

to this method as GNLM, an acronym for Gaussian NLM. In the case of all reference methods under comparison,

their respective parameters have been set based on the guidelines specified in their associated papers.

Two new approaches to NLM filtering of MR images are proposed in this paper. Specifically, the first approach is

applied to squared-magnitude MR data using the subtractive CSM of (21), followed by the bias-correction procedure

given in (30). For the convenience of referencing, this filtering approach is referred below to as NLMS (with “S”

standing for “subtractive”). The second approach, on the other hand, is applied to magnitude data using the rational

CSM of (25), followed by the bias-correction procedure of (31). In what follows, this filtering approach is referred

to as NLMR (with “R” standing for “rational”). All the acronyms of the proposed and reference algorithms are

summarized in Table II.

3The method was implemented using the code available at the author’s webpage at http://telin.ugent.be/˜sanja/Sanja_files/

Software/MRIprogram.zip.
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TABLE II

ACRONYMS OF THE PROPOSED AND REFERENCE ALGORITHMS

Algorithm name Reference Input image type

TVDN [39] M

WDN [19] G

GNLM [30] M

NLMS Proposed G

NLMR Proposed M

B. Simulated Data

In this subsection, the MRI images from the built-in MRI dataset available in the MATLAB R© toolbox have been

used as test subjects. Specifically, the denosing algorithms have been tested using the axial slices number 4, 7 and

16 (shown in Figures 5(a), 5(b) and 5(c), respectively), which represent a spectrum of different cerebral structures.

For quantitative comparison, simulated data have been obtained by subjecting the original test images to various

levels of Rician noise.

(a) (b) (c)

Fig. 5. (a) Test slice #4, (b) Test slice #7 and (c) Test slice #16 of the MATLAB R© MRI database.

1) Data Generation: For the current test setup, given a noise-free intensity Ak of the original image A, its noisy

counterpart Mk can be simulated according to

Mk =
√

(Ak + nr)2 + n2
i (32)

where nr, ni ∼ N (0, σ2) are independent Gaussian random variables, which are also assumed to be independent

across the image domain. In our simulation study, the standard deviation σ was set to 10 percent of the maximum

value of the original images, thereby resulting in a (peak) signal-to-noise ratio of SNR = Amax/σ = 10.

2) Performance Metrics: Evaluating the quality of denoising in medical imaging is of subjective nature, as it is

often based on the particular requirements of a medical expert. For this reason, in many cases a noisy version of an

image is given preference over a de-noised version, as denoising procedures have an inherent risk of removing small
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structures from images. Hence, it is difficult to define an objective criterion for evaluating the quality of medical

images. Nevertheless, there is a number of standard evaluation metrics used in the literature, some of which we

adopt in the present study. Specifically, one of such metrics is the root mean square error (RMSE), which can be

expressed in dB as given by

RMSE = 20 log10

[
1

N

N∑
k=1

|ek|2
]1/2

, (33)

where ek = Ak−Âk denotes the difference between the original intensity Ak and its estimated value Âk at position

k, and N stands for the total number of image pixels.

When estimate Âk is biased, the mean value of ek may not be equal to zero, in general. In this case, it makes

sense to replace ek in (33) by its centred version ek − ē, with ē being the sample mean of ek given by

ē =
1

N

N∑
k=1

ek. (34)

The resulting metric is called the centred RMSE (cRMSE), and it is formally defined as

cRMSE = 20 log10

[
1

N

N∑
k=1

|ek − ē|2
]1/2

. (35)

It should be noted that, while structurally similar, the RMSE and cRMSE metrics provide different quantitative

assessment in the case of biased estimation. Consequently, the analysis and comparison of both these metrics can

be helpful in evaluating the performance of the de-biasing procedures detailed in Section VI.

Despite the relatively straightforward interpretation offered by the RMSE and cRMSE metrics in (33) and (35), it

has been argued in [41] that these metrics may not always adequately represent the effect/size of certain estimation

artifacts/noises. As an alternative, a different performance metric – called the structural similarity index (SSIM) –

has been proposed. This metric has also been used in our comparative study.

3) Details on the choice of parameters: In order to facilitate the reproducibility of the proposed algorithms and

their results, some principal details on the choice of algorithms’ parameters are specified next. In particular, all the

NLM algorithms have been implemented using a square 5 × 5 neighbourhood Ω and an 11 × 11 search window.

(Note that the latter suggests that the averaging in (8) was carried out only over pixels t which were located within

an 11× 11 window centred at pixel s.) The weights βk in (10) were defined to correspond to a separable binomial

mask of the third order4, while the tuning parameter h was set to be equal to 0.4. Note that, in general, it has been

found empirically that the proposed algorithms performed the best for h ∈ [1/3, 1/2].

4) Comparative analysis of algorithm performance: Table III summarizes the values of the performance metrics

of Section VII-B2 obtained for various tested images and different denoising algorithms (with the best results being

accentuated with bold characters). Furthermore, for the sake of visual comparison, the image restoration results are

shown in Fig. 6, Fig. 7 and Fig. 8, which have the same composition. Namely, Subplots (a) of the figures show

4In practice, this mask can be computed as vvT , with v = 2−4 · [1 4 6 4 1]T .
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TABLE III

PERFORMANCE METRICS OF THE RESULT OF DENOISING USING DIFFERENT ALGORITHMS

Image MRI Slice 4 MRI Slice 7 MRI Slice 16

RMSE cRMSE SSIM RMSE cRMSE SSIM RMSE cRMSE SSIM

Noisy 21.06 18.6175 0.4187 20.8266 18.6651 0.4193 20.8274 18.7672 0.3732

TVDN 13.8097 13. 8094 0.9028 13.1824 13.1777 0.8974 13.4104 13.4078 0.8878

WDN 16.0125 14.9681 0.4849 15.3424 14.4047 0.5158 14.9729 13.9367 0.4890

GNLM 13.4437 13.4261 0. 9128 12.4910 12.4715 0.9104 11.3428 11.3431 0.8920

NLMS 13.3571 13.1606 0.7066 12.5003 12.3805 0.7543 11.9151 11.6872 0.7163

NLMR 12.6287 12.6115 0.9270 11.8773 11.8554 0.9204 10.6613 10.6534 0.9110

the noisy data images, while Subplots (b)-(f) show the recovered images obtained using the TVDN, WDN, GNLM,

NLMS and NLMR algorithms, respectively.

As can be seen from Table III as well as from its related figures, the NLM algorithms produce better reconstruction

results as compared to TVDN and WDN. Moreover, among the NLM algorithms, NLMR provides better performance

than NLMS and GNLM in terms of all the performance measures. It is worthwhile noting that the performance of

NLMS is comparable to that of NLMR and GNLM in terms of the RMSE and cRMSE measures, while the former

presents significantly lower values of SSIM as compared to the other two. To further explore this phenomenon,

Fig. 9 shows the SSIM maps [41] computed for the images of Fig. 6. The SSIM maps represent the local values

of SSIM (with their brighter intensities indicating stronger resemblance between the reconstructed and original

MRI images), and hence they are particularly suitable for analyzing the spatial distribution of reconstruction errors.

Thus, for example, Subplot (a) of Fig. 9 corresponds to the noisy data image, in which case the SSIM values

at the image background are negligibly small, indicating little resemblance between the original (monotone) and

measured (noisy) data. Similarly, the SSIM map corresponding to the NLMS reconstruction (as shown in Subplot

(e) of Fig. 6) has considerably darker background values in comparison to the GNLM and NLMR maps (shown

in Subplots (d) and (f), respectively). The NLMS reconstruction’s reduced background resemblance is mainly due

to the bias subtraction (thresholding) procedure discussed in Section VI. Even through a visual inspection fails to

find a difference between the original and the reconstructed background, the accumulation of small errors over a

relatively large number of background pixels adversely affects the average value of the SSIM metric, as indicated

by Table III.

An additional important observation can be made through comparing the values of RMSE and cRMSE metrics

obtained using different reconstruction algorithms. In particular, we first note that the values of RMSE and cRMSE

corresponding to the noisy data are not identical – the fact which indicates the presence of a non-zero bias in

the measurement noise. At the same time, these metrics have approximately equal values for the case of TVDN,

GNLM, NLMS and NLMR reconstructions, while being noticeably different in the case of WDN. This fact suggests

that the latter method is inefficient in removing the constant bias in the reconstruction error.
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(a) (b) (c)

(d) (e) (f)

Fig. 6. (a) Noisy version of slice #4; (b)-(f) Reconstruction results obtained using TVDN, WDN, GNLM, NLMS and NLMR, respectively.

C. Experiments with real-life data

Reconstruction of real-life MRI images has been the next step in our comparative study. To this end, the data set

of [19] have been used herein. The data were obtained at the University Hospital of Ghent and it is publicly available

at http://telin.ugent.be/˜sanja/Sanja_files/Software/MRIprogram.zip. The data contains

a sagittal and an axial scan of a human brain, which are shown in Fig. 10(a) and Fig. 11(a), respectively.

The reconstruction results obtained for each of the tested images using the proposed and reference methods are

shown in Subplots (b)-(f) of Fig. 10 and Fig. 11, respectively. From these figures, it can be seen that the proposed

algorithms result in higher-contrast reconstructions of better visual clarity as compared to the reference approaches.

The difference is particularly evident for the case of Fig. 11, where the proposed algorithms result in less noisy

images, while exhibiting higher effective resolution and contrast.

VIII. CONCLUSION

The present paper has proposed two novel NLM-based methods for enhancement of MR images. More specifically,

the paper introduced a new definition of the NLM weights, which takes into consideration the true Rician statistics

of measurement noises. The proposed definition has been shown to overcome some unfavourable characteristics of

the weights previously proposed in the MRI denoising literature. Subsequently, the current paper provided closed
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(a) (b) (c)

(d) (e) (f)

Fig. 7. (a) Noisy version of slice #7; (b)-(f) Reconstruction results obtained using TVDN, WDN, GNLM, NLMS and NLMR, respectively.

form expressions for the weights corresponding to both subtractive and rational similarity measures. The utility of

the proposed algorithm has been demonstrated through a series of computer simulations and real-life experiments.

Based on the obtained results, one can find that the proposed algorithm has been able to provide better reconstruction

results as compared to a number of established reference approaches.

APPENDIX A

SUBTRACTIVE SM FOR NON-CENTRAL CHI SQUARE STATISTICS

We are interested to evaluate SSM = pFs−k−Ft−k|Gs−k,Gt−k(0 | gs−k, gt−k), which is defined as [34]

SSM =

∫ ∞
0

pFs−k|Gs−k,Gt−k(f | gs−k, gt−k) pFt−k|Gs−k,Gt−k(f | gs−k, gt−k) df, (36)

where it has been assumed that Fs−k and Ft−k are conditionally independent, given the noisy data Gs−k and Gt−k.

Moreover, assuming

pFz1−k|Gz1−k,Gz2−k(f |gz1−k, gz2−k) = pFz1−k|Gz1−k(f |gz1−k), z1, z2 ∈ {s, t} (37)

and using Bayes theorem, one obtains

SSM =

∫∞
0
pFs−k(f) pFt−k(f) pGs−k|Fs−k(gs−k | f) pGt−k|Ft−k(gt−k | f) df

pGs−k(gs−k) pGt−k(gt−k)
. (38)
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(a) (b) (c)

(d) (e) (f)

Fig. 8. (a) Noisy version of slice #16; (b)-(f) Reconstruction results obtained using TVDN, WDN, GNLM, NLMS and NLMR, respectively.

If no prior information about the original intensities is known, one can assume that Fs−k and Ft−k follow a uniform

distribution [33], [34]. Also, for the case of an NCCS distribution, pGz−k(gz−k), where z ∈ {s, t}, can be written

as

pGz−k(gz−k) =

∫ ∞
0

pGz−k|Fz−k(gz−k | fz−k) pFz−k(f) df =

= pFz−k(f)

∫ ∞
0

1

2
e−(gz−k+f)/2I0(

√
fgz−k) df = (39)

= pFz−k(f),

where the second line in (39) follows from the uniform density assumption of Fz−k and the integration result is

obtained by noting that pGz−k|Fz−k can also be looked upon as a probability density function of Fz−k with gz−k

as its parameter. Hence, in the case of NCCS noise distribution, the expression for SSM is given by

SSM = SNL
(1)
s,t,k =

∫ ∞
0

pGs−k|Fs−k(gs−k | f) pGt−k|Ft−k(gt−k | f) df

=
1

4
e−(gs−k+gt−k)/2

∫ ∞
0

e−fI0(
√
gs−kf) I0(

√
gt−kf) df. (40)

Substituting y =
√
f results in

SNL
(1)
s,t,k =

1

2
e−(gs−k+gt−k)/2

∫ ∞
0

y e−y
2

I0(
√
gs−ky) I0(

√
gt−ky) dy =

May 25, 2018 DRAFT



20

(a) (b) (c)

(d) (e) (f)

Fig. 9. SSIM maps of (a) noisy version of slice #4 and (b)-(f) reconstruction results obtained using TVDN, WDN, GNLM, NLMS and NLMR,

respectively.

=
1

2
e−(gs−k+gt−k)/2

∫ ∞
0

y e−y
2

J0(ı
√
gs−ky) J0(ı

√
gt−ky) dy, (41)

where J0 is the zero-order Bessel function of the first kind, and ı =
√
−1. Subsequently, using equation (2.32) of

[42], we have

SNL
(1)
s,t,k =

1

4
e−(gs−k+gt−k)/4I0

(
−
√
gs−kgt−k

2

)
=

=
1

4
e−(gs−k+gt−k)/4I0

(√
gs−kgt−k

2

)
, (42)

where the last line stems from the fact that I0(−x) = I0(x).

APPENDIX B

RATIONAL SM FOR RICIAN STATISTICS

In the case of Rician statistics, the rational similarity measure is given by

SNL
(2)
s,t,k = pAs−k/At−k|Ms−k,Mt−k(1 | ms−k,mt−k) =

=

∫ ∞
0

a pAs−k|Ms−k(a | ms−k) pAt−k|Mt−k(a | mt−k) da. (43)
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(a) (b) (c)

(d) (e) (f)

Fig. 10. (a) Sagittal MRI scan; (b)-(f) Reconstruction results obtained using TVDN, WDN, GNLM, NLMS and NLMR, respectively.

Proceeding with a similar derivation as in Appendix A, we obtain

SNL
(2)
s,t,k =

∫ ∞
0

a pMs−k|As−k(ms−k | a) pMt−k|At−k(mt−k | a) da =

=
ms−kmt−k

σ4
e−(m2

s−k+m2
t−k)/2σ2

∫ ∞
0

a e−a
2/σ2

I0

(ms−ka

σ2

)
I0

(mt−ka

σ2

)
da. (44)

Substituting y = a/σ in (44) results in

SNL
(2)
s,t,k =

ms−kmt−k

σ2
e−(m2

s−k+m2
t−k)/2σ2

∫ ∞
0

y e−y
2

I0

(ms−k

σ
y
)
I0

(mt−k

σ
y
)
dy. (45)

Finally, using formula (2.32) of [42], we have

SNL
(2)
s,t,k =

ms−kmt−k

2σ2
e−(m2

s−k+m2
t−k)/4σ2

I0

(ms−kmt−k

2σ2

)
. (46)
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