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Image indeterminacy has been neglected in most traditional filtering algorithms. This paper proposes a
pixel-wise adaptive neutrosophic filter based on neutrosophic indeterminacy feature to remove
high-level Salt-and-Pepper noise. In the proposed algorithm, the indeterminacy of a pixel is quantified
by a Neutrosophic Set and innovatively exploited as an efficient characteristic of measuring the similarity
of pixels. In order to adjust the smoothing parameter of the weight function pixel-wise adaptively, the
uncertainty of a pixel is utilized as an indicator of image contents. Extensive experiments on numerous
images demonstrate that with a 3 � 3 window, our method outperforms many existing denoising
methods in terms of noise suppression and detail preservation.

� 2016 Elsevier Inc. All rights reserved.
1. Introduction

Noise is an unwanted signal that corrupts the original image in
various processes such as image acquisition, transmission and stor-
age. The aim of image denoising is to remove noise while retaining
useful details as much as possible. One of the most destructive
noises is Salt-and-Pepper noise (SPN) that replaces the original pix-
els with the maximum or minimum gray level of the image. Qual-
ity of the original image is deteriorated significantly, so it is
imperative to eliminate noise before subsequent image processing,
such as object recognition and image segmentation.

Numerous methods have been proposed to remove SPN. The
most popular nonlinear filter is the median filter (MF) [1], but
strong, undesired contouring effect is produced by MF. It performs
well only in low-density noise and under high-density (>70%) envi-
ronment [2], a larger window size can improve the performance of
noise removal; however, it makes a looser correlation between the
median value and the corrupted pixel, which leads to the blurring of
image details [2,3]. Furthermore, themost appropriate window size
varies with the density of noise, so it is rather difficult to choose the
optimal one. To automatically adjust the window size, an adaptive
median filter (AMF) has been put forward in [4,5], but at high noise
density (HND), the biggest template size has reached 39 � 39, and
the computation is exceedingly heavy. Another drawback of MF is
that it executes identically on all pixels in the image, yet an ideal fil-
ter should be applied only to noisy pixels while leaving noise-free
pixels intact. Hence, a switching median filter (SMF) [6] was intro-
duced to avoid the injuring of uncontaminated pixels. In SMF, noisy
pixels are firstly identified by certain strategies and then removed
by specialized regularizations. There are some well-known meth-
ods with the switching scheme, such as decision-based algorithm
(DBA) [7], switching-based adaptive weighted median (SAWM)
[8], modified decision based unsymmetrical trimmed median filter
(MDBUTM) [9], fuzzy-based decision algorithm (FBDA) [10], and
decision-based trimmed median filter (DBTMF) [11]. In DBA, if a
pixel has a gray value of 0 or 255 in 8-bit image, it is considered
to be a noise candidate. In noise reduction stage, the noise candi-
date is replaced by the median value as long as at least one noise-
free pixel exists in the 3 � 3 window, otherwise it will be replaced
by its neighborhood pixels. Nevertheless, this kind of repetitive
replacement results in annoying artifacts in HND. To overcome this
problem, when all pixels are contaminated, MDBUTMF substitutes
the mean value of all noisy elements in the filtering template for
the center pixel, which generates artificial spots in the restored
image. It is clear that the drawback common to DBA andMDBUTMF
is that they all ignore the correlation between pixels. In FBDA, the
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maximum and minimum of window gray value are regarded as
noisy points, and the pixels similar to these polluted ones are all
eliminated by a fuzzy mechanism. Then the median of the remain-
ing elements is exploited to refresh the center pixel. The strategy of
DBTMF is similar to that of FBDA and the only difference between
them is that the median value is computed after eliminating pixels
with the value of 0 or 255. The major disadvantage of these
extreme-compression methods is that only the high reliability of
the median is considered while the local information of pixels has
been neglected. Consequently, details and edges cannot be recov-
ered satisfactorily. In order to overcome this shortcoming, the the-
ory of image inpainting has been introduced to preserve edges. In
[12,13], a three-stage filter (TSF) and an adaptive iterative convolu-
tions filter (ACIF) have been proposed, respectively. They can not
only suppress noise, but also preserve edge information efficiently.
However, on account of iterative inpainting, the phenomenon of
undue blurring or over-smoothing is obvious in the restored image
at HND. In non-local means (NLM) [14,15] filter, a weighting
scheme is applied, where theweight is determined by the similarity
of local patches. NLM is powerful against Gaussian noise, but per-
forms poor in SPN. Besides, in the weight functions of most NLM fil-
ters, the value of the smoothing parameter h is usually set
manually. Methods for adaptive h have been studied [15,16], but
on account of having not taken image contents into consideration,
most algorithms still use a globally constant value of h.

Due to the complexity of noise sources and the imperfection of
certain definitions, such factors as ambiguity, vagueness and
imprecision are widespread in image processing. Nevertheless,
algorithms above-mentioned have not taken them into account.
Unlike conventional algorithms, in [17], the indeterminacy infor-
mation is introduced to image denoising and a Neutrosophic
entropy filter (NEF) has been presented. In NEF, the contaminated
image is transformed into Neutrosophic Set (NS) domain at first,
then an iterative c-median filtering is applied to reduce the inde-
termination degree evaluated by neutrosophic entropy. It can
remove different kinds of noises effectively, but the iterative oper-
ation of c-median generates undue blurring of images. At present,
Neutrosophy has been used not only in image denoising but also in
image segmentation [18,19]. Consequently, how to further maxi-
mize the potential of indeterminacy in image restoration is a
meaningful task.

In this paper, by exploiting the indeterminacy information
based on NS, a new powerful neutrosophic filter is presented for
the reduction of high density SPN. On one hand, the uncertainty
of a pixel is regarded as a feature of measuring pixel similarity;
on the other hand, by using the indeterminate information to dis-
tinguish the regional type to which a pixel belongs, a pixel-wise
adaptive smoothing function is put forward to minimize the nega-
tive influence resulting from a globally fixed h. Experimental
results on a series of images have demonstrated that the proposed
adaptive neutrosophic weighted filter (ANWF) outperforms the
counterparts in terms of visual quality and objective performance.

The outline of the paper is organized as follows. NS and the
quantification of uncertainty are briefly introduced in Section 2.
Section 3 describes ANWF in detail. Results of the proposed algo-
rithm are described and discussed in Section 4. Section 5 concludes
the paper.

2. Quantification of indeterminacy

2.1. Neutrosophic Set

Proposed by Florentine Smarandache, Neutrosophy is the foun-
dation of neutrosophic logic, neutrosophic statistics, Neutrosophic
Set and neutrosophic probability [20,21]. In neutrosophic logic,
hAi is a theory, entity or event, and hAnti-Ai is the opposite of hAi.
A new concept hNeut-Ai is introduced to express the case of neither
hAi nor hAnti-Ai and used to describe the indeterminacy of an event
[21]. For example, if hAi = black, then hAnti-Ai = white, hNeut-
Ai = red, green, purple, cyan, blue, yellow, etc. (any color except
white and black). In the contaminated image, sometimes it is diffi-
cult to distinguish whether a pixel is noisy or noise-free due to the
existing of textures or boundaries. In this paper, we denote the
background of image as hAi, the edge or texture as hNeut-Ai, and
noise as hAnti-Ai. Three neutrosophic components denoted by T, I
and F are applied to estimate the degrees of truth, indeterminacy
and false, respectively. Let T, I and F be non-standard or standard
real subsets of ]�0,1+[ with sup T ¼ t sup; inf T ¼ t inf ;
sup I ¼ i sup; inf I ¼ i inf ; sup F ¼ f sup; inf F ¼ f inf, and n sup
¼ t supþ i supþ f sup;n inf ¼ t inf þ i inf þ f inf [29]. Where
x_sup and x_inf are the superior and inferior limits of subset x. There
are no restriction on n_sup and n_inf, so �0 6 n sup 6 3þ and
�0 6 n inf 6 3þ. T, I and F can be any real sub-unitary subsets and
are not necessarily intervals. Besides, the three sets may overlap
or be converted from one to the other [30]. An element A (t, i, f)
belongs to the set in the following way: it is t true (t 2 T), i indeter-
minate (i 2 I), and f false (f 2 F). In Neutrosophy, if an event hAi is t %
true, it does not necessarily mean it is (1 � t) % false, but can be f %
false and i % indeterminate simultaneously. However, in traditional
logic, if an event hAi is t % true, it must be (1 � t) % false.

2.2. Neutrosophic image

In neutrosophic domain, a neutrosophic image PNS is repre-
sented by three sets I, T and F [19], and a neutrosophic pixel is
denoted as Pðt; i; f Þ. The expression of neutrosophic pixel signifies
the point is t % true (background), i % indeterminate (texture or
edge) and f % false (noise), where i varies in I, t varies in T, and f var-
ies in F, respectively. A pixel Pði; jÞ in traditional image can be
transformed into neutrosophic domain in the following way:
PNSði; jÞ ¼ fTði; jÞ; Iði; jÞ; Fði; jÞg. In order to make full use of the
uncertain information to restore the corrupted image, an efficient
estimation of I is critical. It is well known that the median value
has stronger immunity to SPN, so it can be used to construct the
function of I. Besides, the maximum absolute luminance difference
defined as Eqs. (1) and (2) can reflect the distinction between the
center pixel and its neighboring pixels, hence it can be utilized to
evaluate the degree of current pixel being noise-free.

Dif ði; jÞ ¼ maxfdif ðiþ k; jþ lÞg; ð1Þ

dif ðiþ k; jþ lÞ ¼ jpðiþ k; jþ lÞ � pði; jÞj with ðiþ k; j

þ lÞ–ði; jÞ; ð2Þ
Motivated by Ref. [17], Iði; jÞ; Tði; jÞ and Fði; jÞ are formulated as

Iði; jÞ ¼ dði; jÞ � dmin

dmax � dmin
; ð3Þ

dði; jÞ ¼ jPði; jÞ �mði; jÞj; ð4Þ

mði; jÞ ¼ median
pði� 1; j� 1Þ pði� 1; jÞ pði� 1; jþ 1Þ
pði; j� 1Þ pði; jÞ pði; jþ 1Þ
pðiþ 1; j� 1Þ pðiþ 1; jÞ pðiþ 1; jþ 1Þ

2
64

3
75; ð5Þ

Tði; jÞ ¼ Difmax � Dif ði; jÞ
Difmax � Difmin

; ð6Þ

Fði; jÞ ¼ 1� Tði; jÞ: ð7Þ
where mði; jÞ is the local median value of the w � w window
ðw ¼ 2nþ 1 ðn P 1ÞÞ centered at ði; jÞ, and in a 3 � 3 window, it



Fig. 1. Images of indeterminacy in NS. (a) Original image. (b) Indeterminacy image of original Babala. (c) Indeterminacy of noisy image (r = 1%). (d) Indeterminacy of noisy
image (r = 10%).

Fig. 2. Standard images used for searching optimal K. (a) Lena. (b) Peppers. (c) Tree-hill. (d) Cat. (e) Buildings.
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can be presented as Eq. (5). dði; jÞ denotes the absolute difference
between Pði; jÞ and mði; jÞ and Dif ði; jÞ is the maximum absolute
luminance difference in working window. For an image with a size
of M � N, dmax, dmin, Difmax and Difmin are described as

dmax ¼ maxfdðs; tÞg; dmin ¼ minfdðs; tÞgðs 2 M; t 2 NÞ: ð8Þ
Difmax ¼ maxfDif ðs; tÞg; Difmin ¼ minfDif ðs; tÞgðs 2 M; t 2 NÞ: ð9Þ
From above formulas, we can conclude that if dði; jÞ is larger,

Pði; jÞ will has a lower reliability, and vice versa. So normalized
by the factor of dmax � dmin, dði; jÞ can estimate the indeterminacy
degree of Pði; jÞ. Likewise, a lager Dif ði; jÞ signifies Pði; jÞ has a looser
relation with surrounding pixels; hence, after normalized by
Difmax � Difmin, it has the capability to calculate the truth degree
of Pði; jÞ being signal pixel. In this paper, the introductions of
Fig. 3. The relation between K and the PSNR at diffe
Tði; jÞ and Fði; jÞ are just to illustrate the process of transforming
an image from traditional field to NS domain, but they have not
been used in noise reduction.

2.3. Properties of neutrosophic indeterminacy

From Eqs. (3–5), we can deduce that if Pði; jÞ has a similar value
with the median of a squared window, its Iði; jÞ will be lower;
therefore pixels in smooth area will have a lower indeterminacy.
While in edge zones, due to the stronger gray fluctuation, pixels
will have a slightly larger indeterminacy. Nonetheless, compared
with the vibration intensity of SPN, the gray variation on edge is
comparatively moderate. This is because there are certain correla-
tions between pixels in edge zones and their intensity variation are
relatively continuous. Yet SPN has no relevancy with their neigh-
borhoods and they only take the maximum or the minimum value
rent noise levels. (a) Lena image. (b) Cat image.



Fig. 4. The relation between K and the PSNR at certain noise level. (a) r = 10%. (b) r = 60%. (c) r = 70%. (d) r = 90%.

Table 1
The optimal values of K at every peak for different images with various noise density.

Images Optimal values of K

10% 20% 30% 40% 50% 60% 70% 80% 90%

Building 0.0653 0.0718 0.0790 0.0790 0.0790 0.0956 0.0956 0.0956 0.1399
Cat 0.0593 0.0653 0.0718 0.0790 0.0790 0.0869 0.0956 0.0956 0.1156
Tree-hill 0.0593 0.0653 0.0718 0.0790 0.0790 0.0869 0.0956 0.0956 0.1156
Pepper 0.0593 0.0653 0.0718 0.0790 0.0869 0.1051 0.1051 0.1051 0.1399
Lena 0.0653 0.0718 0.0718 0.0790 0.0869 0.1051 0.1051 0.1051 0.1399
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abruptly. Accordingly, noisy point will has a much higher indeter-
minacy in comparison with points in boundary areas.

Taking the Babala image as an example, we observe the valu-
able properties of neutrosophic indeterminacy. With a 3 � 3 filter-
ing widow, the original and contaminated images are transformed
into NS domain by using Eqs. (3–7), and their indeterminacy
images are shown in Fig. 1. In weak texture or edge area such as
the ellipse region in Fig. 1(b), pixels’ uncertainty are slightly stron-
ger, while in flat region such as the rectangle area, they are
decreased even down to zero. However, as shown in Fig. 1
(c) and (d), the indeterminacy of noisy pixels in images corrupted
with 1% and 10% noise density has been significantly enhanced.

Consequently, from above-descriptions, a conclusion can be
drawn that indeterminacy information has the capability to distin-
guish the type of the area that the current pixel locates in.
3. Adaptive neutrosophic weight function

The powerful Gaussian kernel function described by Eq. (10) has
been widely exploited in spatial filtering [25]. In the proposed fil-
ter, the weight of every pixel in the filtering window is modeled by
this function, too.

FðxÞ ¼ exp � x2

2h2

� �
: ð10Þ

In Eq. (10), h controls the degree of decay and affects the denois-
ing performances, and it is related not only to the density of noise
but also to the contents of images. The bigger the value of the
parameter is, the smoother the restored image is, and vice versa.
In [31], B. Smolka has proposed that image structure can be used
to acquire the optimal h. Since neutrosophic indeterminacy can



Fig. 5. Local zones in tested images. (a) Baboon. (b) Lena.
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accurately discern the property of areas, it can be exploited to
design the function for an adaptive h, and this will be discussed
in Section 3.2.

The basic idea of image filtering is to update the detected noise
by using its neighborhood information, and the restored value of
the current pixel can be estimated as
Fig. 6. Results of different filters for Baboon image. (a) Noisy image with 60% Salt and Pe
AICF. (j) TSF. (k) ANWF. (l) Original image.
gðxÞ0 ¼
P

y2DðxÞwðyÞ � gðyÞP
y2DðxÞwðyÞ : ð11Þ

where gðxÞ0 is the denoising result of gðxÞ, wðyÞ denotes the weight
of the pixel at the location y, and D(x) is the filtering window cen-
tered at x.
3.1. Similarity measurement

The weight function w(�) is determined by the similarity of pix-
els in D(x) and plays a crucial role in noise removal. The fundamen-
tal difference of various filters is the strategy of designing weight
function, in which a suitable and efficient feature used to measure
pixel similarity is pretty critical. Spatial distance has been used in
Gaussian filters and intensity distance has been taken into account
in Yaroslavsky neighborhood filter [22]. While Bilateral Filter con-
siders both Euclidean distance and gray-level of the neighboring
pixels without smoothing edges [23]. In addition, gradient infor-
mation has been adopted in [24]. In this paper, the feature of neu-
trosophic indeterminacy is innovatively regarded as a criterion of
measuring similarity. Just as mentioned above, if a pixel has a
lower indeterminacy, it signifies the current pixel has a reasonably
higher similarity and closer correlation with surrounding pixels.
Therefore, it should be allocated a larger weight in denoising. By
contrast, if the uncertainty value is much stronger, this implies
the current pixel has a much lower homogeneity and similarity
pper noise. (b) MF. (c) AMF. (d) DBA. (e) NEF. (f) MDBUTM. (g) FBDA. (h) DBTMF. (i)



Fig. 7. Results of different filters for Lena image. (a) Noisy image with 90% Salt and Pepper noise. (b) MF. (c) AMF. (d) DBA. (e) NEF. (f) MDBUTM. (g) FBDA. (h) DBTMF. (i) AICF.
(j) TSF. (k) ANWF. (l) Original image.
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with neighboring pixels, so it should be distributed a weaker
weight. In conclusion, indeterminacy can be selected as a robust
characteristic of measuring similarity.

Modeled by Gaussian kernel function, an adaptive neutrosophic
weight function based on indeterminacy can be considered as
below,

wðyÞ ¼ 1
C1

exp
�IðyÞ2
2h2

 !
; ð12Þ

C1 ¼
X
y2DðxÞ

exp
�IðyÞ2
2h2

 !
: ð13Þ

where I(y) is the indeterminacy of the pixel locating at y and calcu-
lated by Eqs. (3)–(5). h is the smoothing parameter of Gaussian ker-
nel function and determines the approximate threshold above
which to penalize high indeterminacy value. C1 is the normalization
constant described as Eq. (13). Since I(y) varies from point to point,
the value of w(y) can be adaptively regulated with the variation of
pixel’s indeterminacy.

3.2. Pixel-wise adaptive smoothing parameter

In most denoising methods, h is selected by trial and error and
kept constant in the whole image. For example, in [14], Buades
et al. suggested h = K ⁄ b for Gaussian noise reduction, where b is
the standard deviation and the recommended value of K is
between 10 and l5. In [7,16,26,27], methods of adaptive h have
been studied deeply, but its value is maintained the same for all
pixels in the whole image. However, in different parts of the image,
it is rather difficult to find a globally fixed optimal parameter that
can simultaneously ensure perfect denoising result and effective
protection of details [28].

In detailed area, a smaller h is conducive to preserve the edges
and textures, while in a flat region, a larger one can make all neigh-
boring pixels almost have the equal weight and can enhance the
smoothness of the restored area. That is to say, the value of h
should be modified in different type of regions. Since pixel’s inde-
terminacy has the faulty to distinguish the type of a region, it can
be used to adjust the value of h, so a pixel-wise adaptive decay
function on base of indeterminacy can be expressed as

hðyÞ ¼ expð�2IðyÞ=ImaxÞ=K: ð14Þ
where h(y) is the smoothing parameter of the pixel locating at y,
and I(y) is the pixel’s indeterminacy. Imax is the maximum in uncer-
tain map of the corrupted image, and the coefficient 2 before I(y) is
used to reinforce the role of indeterminacy on h(y).

Combining formulas (12–14), the weight of every pixel in the
filtering window can be obtained as

wðyÞ ¼ 1
C2

exp �IðyÞ2=2 exp �2IðyÞ=Imaxð Þ=Kð Þ2
� �

; ð15Þ



Fig. 9. Partial enlarged details of DBTMF and ANWF. (a) Partial enlarged detail of Lena image with DBTMF. (b) Partial enlarged detail of Lena image with ANWF. (c) Partial
enlarged detail of Man image with DBTMF. (d) Partial enlarged detail of Man image with ANWF.

Fig. 8. Results of different filters for Man image. (a) Noisy image with 90% Salt and Pepper noise. (b) MF. (c) AMF. (d) DBA. (e) NEF. (f) MDBUTM. (g) FBDA. (h) DBTMF. (i) AICF.
(j) TSF. (k) ANWF. (l) Original image.
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C2 ¼
X
y2DðxÞ

exp �IðyÞ2=2ðexpð�2IðyÞ=ImaxÞ=KÞ2
� �

: ð16Þ

As an automatic way of adjusting h(y) pixel by pixel, our object
is to let K play the dominant role while I(y) acts as an auxiliary fac-
tor. In other words, K keeps constant while h(y) varies in accor-
dance with I(y). To achieve this objective, it is necessary to
research the laws between the optimal K and a perfect denoising
performance. The performance criterions applied in this paper
are PSNR (Peak Signal to Noise Ratio) and MAE (Mean Absolute
Error) defined by
PSNR ¼ 10 log
2552

MSE
; ð17Þ

MAE ¼
PM�1

i¼0

PN�1
j¼0 jYði; jÞ � Zði; jÞj

MN
; ð18Þ

where MSE is expressed as

MSE ¼
PM�1

i¼0

PN�1
j¼0 ðYði; jÞ � Zði; jÞÞ2

MN
: ð19Þ



Table 3
Comparisons of different filters for Lena image at different noise levels.

Noise density (%) Criterion PSNR and MAE of different filters for restored images (Lena)

MF [1] AMF [4] DBA [7] NEF [17] MDBU TMF [9] FBDA [10] DBTMF [11] AICF [13] TSF [12] ANWF Ours

10 PSNR 34.47 35.02 42.23 32.84 43.83 37.51 39.95 42.04 43.91 43.23
MAE 2.20 1.88 0.34 3.42 0.29 0.89 0.41 0.38 0.18 0.31

20 PSNR 30.63 32.80 37.97 31.92 39.87 36.20 36.97 39.06 40.21 38.98
MAE 3.92 2.49 0.76 3.73 0.63 1.15 0.83 0.68 0.41 0.67

30 PSNR 29.76 31.01 35.06 30.47 37.37 35.29 34.80 36.89 37.32 36.97
MAE 4.28 3.16 1.28 4.83 1.02 1.40 1.33 1.16 0.86 1.03

40 PSNR 27.79 29.44 32.32 28.38 34.95 34.15 33.11 34.02 34.89 34.75
MAE 5.44 3.91 1.96 6.61 1.52 1.77 1.89 1.91 1.22 1.51

50 PSNR 26.87 28.28 30.42 27.90 32.34 33.02 31.75 32.24 32.86 33.36
MAE 5.90 4.62 2.72 6.50 2.09 2.17 2.47 2.70 1.79 1.97

60 PSNR 25.48 26.94 28.13 26.22 28.65 31.02 30.50 30.98 31.24 31.66
MAE 7.04 5.44 3.79 7.32 3.06 3.12 3.13 3.39 2.41 2.58

70 PSNR 22.53 23.81 25.57 24.32 24.04 29.93 28.92 28.53 29.21 29.97
MAE 8.84 7.02 5.04 8.79 5.43 3.48 4.03 4.97 3.26 3.41

80 PSNR 15.82 18.29 23.12 19.35 19.36 27.75 27.13 26.43 27.40 28.19
MAE 17.79 12.08 7.08 17.79 11.21 4.61 5.23 6.91 4.73 4.50

90 PSNR 9.42 11.52 19.58 11.38 15.06 24.52 24.12 23.89 24.96 25.43
MAE 53.79 35.32 13.07 41.74 25.34 7.05 7.74 11.08 6.93 6.64

Table 2
Comparisons of different filters for Baboon image at different noise levels.

Noise density (%) Criterion PSNR and MAE of different filters for restored images (Baboon)

MF [1] AMF [4] DBA [7] NEF [17] MDBU TMF [9] FBDA [10] DBTMF [11] AICF [13] TSF [12] ANWF Ours

10 PSNR 23.06 23.09 31.64 25.41 32.15 26.57 24.81 32.35 32.78 31.69
MAE 10.73 10.23 1.39 8.33 1.31 3.85 4.95 1.36 1.35 1.38

20 PSNR 21.05 22.32 28.12 24.85 28.79 26.05 24.31 29.06 29.95 28.35
MAE 14.83 11.38 2.93 9.01 2.71 4.49 5.92 2.83 2.51 2.85

30 PSNR 20.80 21.50 25.93 24.02 26.75 25.38 23.72 27.29 27.87 26.46
MAE 15.21 12.72 4.62 10.59 4.21 5.38 7.05 4.27 3.85 4.34

40 PSNR 20.27 20.81 24.32 24.88 25.30 24.61 23.21 24.83 25.09 25.10
MAE 16.71 14.04 6.47 9.90 5.75 6.50 8.17 6.92 6.78 5.85

50 PSNR 19.94 20.16 22.81 24.11 23.82 23.65 22.58 22.94 23.87 23.84
MAE 17.29 15.38 8.63 10.33 7.55 7.93 9.46 9.84 8.50 7.59

60 PSNR 19.57 19.49 21.44 23.18 22.49 22.69 21.96 22.10 22.30 22.94
MAE 18.31 16.89 11.11 11.36 9.65 9.63 10.87 11.39 10.27 9.04

70 PSNR 18.65 18.60 20.05 21.34 20.77 21.20 21.17 21.10 21.64 21.90
MAE 19.96 18.86 14.14 13.89 12.65 11.18 12.62 13.69 12.72 11.44

80 PSNR 14.79 16.09 18.77 15.77 18.44 20.28 20.24 19.42 20.04 20.43
MAE 28.70 24.15 17.88 33.77 17.84 14.65 14.90 19.18 15.34 14.32

90 PSNR 9.47 11.28 17.15 8.44 15.67 19.11 18.91 18.62 19.32 19.53
MAE 61.55 45.15 23.24 74.58 27.84 18.02 18.48 22.50 17.93 17.24
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where Y denotes the original image with a resolution ofM � N and Z
is the reconstructed one.

Tested images used in this paper are listed in Fig. 2. Taking Lena
and Cat images as examples, Fig. 3 indicates the relation between K
and PSNR performance at various noise level (r = 10–80%). It is can
be noted that When K <= 0.002, PSNR values are almost stable, and
around K = 0.07, a distinct peak of PSNR appears. But with the
increasing of K, PSNR values descent sharply. When the value of
K is near to 1.4, the results remain stable again. When r >= 60%,
two peaks appear in these curves. The first peak is around
K = 0.002 and the other is near to 0.07, but the corresponding PSNR
of the second peak is much higher than that of the first one.
To further verify the persuasiveness and universality of above
conclusions, extensive experiments on a large number of images
have been implemented repeatedly. Fig. 4(a)–(d) are the typical
results of the contaminated images with the noise density of
10%, 60%, 70% and 90%, respectively. From these results, it is can
be seen that the law between PSNR and K almost remains the same
as the rule shown in Fig. 3. To diverse images, the optimum values
of K under various noise level are shown in Table 1.

As can be seen from Table 1, to a same image with a varying
noise density from 10% to 90%, the values of K are not precisely
the same. Likewise, to diverse images with the same noise density,
the values of K are not fully identical, either. In a sense, these data



Table 4
Comparisons of different filters for Man image at different noise levels.

Noise density (%) Criterion PSNR and MAE of different filters for restored images (Man)

MF [1] AMF [4] DBA [7] NEF [17] MDBU TMF [9] FBDA [10] DBTMF [11] AICF [13] TSF [12] ANWF Ours

10 PSNR 28.77 29.28 36.69 26.65 36.17 31.20 31.77 37.06 38.12 36.23
MAE 4.84 4.37 0.73 8.69 0.80 2.10 1.32 0.71 0.64 0.84

20 PSNR 25.78 27.83 33.24 23.60 32.90 30.22 30.45 34.03 34.53 33.03
MAE 7.29 5.19 1.48 8.34 1.53 2.58 2.08 1.43 1.39 1.56

30 PSNR 25.32 26.51 30.66 25.76 30.27 29.29 29.28 29.31 32.45 31.25
MAE 7.65 6.08 2.36 9.09 2.40 3.17 2.86 3.39 2.06 2.22

40 PSNR 23.85 25.28 28.46 25.74 28.07 28.23 28.12 28.91 30.86 29.47
MAE 9.28 7.11 3.46 7.83 3.42 3.94 3.79 3.91 2.82 3.15

50 PSNR 23.32 24.27 26.59 25.09 25.92 27.05 27.15 27.62 29.32 28.15
MAE 9.80 8.12 4.75 8.05 4.67 4.86 4.72 5.06 3.66 4.04

60 PSNR 22.27 23.12 24.84 24.03 23.21 26.02 26.20 26.00 27.08 26.89
MAE 11.22 9.33 6.37 7.90 6.59 5.90 5.76 6.78 5.28 5.09

70 PSNR 20.38 21.31 22.87 22.00 20.05 24.90 25.07 24.59 25.49 25.70
MAE 12.99 11.05 8.56 11.53 10.16 7.25 7.08 8.65 6.70 6.32

80 PSNR 14.99 16.90 20.68 17.71 16.53 23.22 23.52 23.02 23.59 24.07
MAE 21.83 16.47 11.90 21.55 17.71 9.26 8.85 11.15 9.10 8.12

90 PSNR 8.82 10.61 17.89 10.40 12.84 20.84 21.17 20.88 21.90 22.04
MAE 56.73 39.88 18.26 46.40 34.88 13.28 12.30 15.43 11.14 11.22
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can explain the reason why a globally constant smoothing param-
eter is inadvisable. In addition, it is clear that when r >= 60%, the
values of K are relatively larger than those of r < 60%. In order to
simplify the assigning of K, when r < 60%, as the median of all val-
ues, 0.0718 is selected as the most optimal value of K, and 0.0956 is
regarded as the optimum in other cases. On the whole, the con-
stant K can be assigned as follows
K ¼ 0:0718; r < 60%
K ¼ 0:0956; others

�
ð20Þ

After replacing K with 0.0718 or 0.0956 in Eq. (14), the value of
h(y) will be different from point to point on account of a pixel-wise
I(y). For example, in Fig. 5, Baboon and Lena are contaminated by
the noise with density of 90%, and two local zones in these two
images are selected, respectively. In a 3 � 3 filleting window, the
smoothing parameter matrixes hB1 and hB2 of Baboon and hL1 and
hL2 of Lena are indicated below.
hB1 ¼
40:3627 1:8849 4:0974
13:9276 13:9276 13:9276
3:1879 13:9276 8:2349

2
64

3
75

hB2 ¼
12:9783 13:3920 5:3495
6:1125 5:9704 10:5842
5:3495 5:2251 5:1438

2
64

3
75
hL1 ¼
1:8849 1:8849 1:8849
3:7587 3:5025 13:9726
3:7587 13:9276 13:9726

2
64

3
75

hL2 ¼
5:3077 13:8188 5:0242
5:3916 4:9460 5:2663
1:8849 5:4341 4:9460

2
64

3
75

It is obvious that in hB1, hB2, hL1 and hL2, the value of every pixel’s
smoothing parameter is adaptively regulated from point to point.
So far, the object that the decay parameter can be pixel-wise
adjusted according to the specific contents of images has been
achieved.
4. Experimental results

In ANWF, if a pixel has a gray value of 0 or 255 in 8-bit images, it
is labeled as noise candidate and its location is recorded in the
noise matrix BNM. To a noisy pixel, the corresponding value in
BNM is 0, otherwise, it is 1. In Eq. (20), r is used to determine
the value of K, but from Figs. 3 and 4 and Table 1, it is can be
deduced that in a certain smaller range, noise density has small
impact on K. Accordingly, a rough estimation of r can meet our
requirements. Hence it can be roughly estimated as follows

r ¼ number of 00s in BNM
total number of pixels in the image

: ð21Þ

In filtering stage, noise candidates are disposed while noise-free
points are kept intact. What is more, only the uncontaminated pix-
els are exploited to replace the corrupted one.

The proposed ANWF is compared with some state-of-the-art
methods, such as MF [1], AMF [4], DBA [7], NEF [17], MDBUTMF
[9], FDBA [10], DBTMF [11], TSF [12] and AICF [13]. In order to com-
pare fairly, MF, NEF, AMF and TSF are operated with their most suit-
able window sizes changing from 3 � 3 to 9 � 9, while ANWF and
the left algorithms are implemented with a fixed 3 � 3 window.
Extensive experiments have been performed on various images cor-
rupted by SPN with varying noise density from 10% to 90% with
increment of 10%. All experiments are executed in MATLAB
R2013a and run on a PC with Intel Core i7-4700MQ 2.4 GHz CPU.
4.1. Visual quality evaluation

Visual comparisons of the recovered images such as Lena,
Baboon and Man are shown in Figs. 6–9, respectively. In Fig. 6,
when r = 60%, all filters can eliminate noise efficiently, but image
details are blurred slightly by MF and NEF. Moreover, it may be
the iterative operation of c-median that makes the blurring of
image is much heavier in Fig. 6(e) than in Fig. 6(b). When noise
level soars to 90%, the performances of MF, AMF, NEF, DBA and
MDBUTMF are all influenced badly, and as shown in Figs. 7 and
8, noise blocks increase considerably in their restored images. In
the images recovered by FBDA, noisy points have not been elimi-
nate completely and a lot of stains are still remained. In addition,
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images restored by ACIF look fairly hazy. The visual qualities of
DBTMF and TSF are as excellent as ANWF; however, as it seen from
the partially enlarged details in Fig. 9(a)–(d), the jagged edges of
DBTMF are more evident than that of ANWF. Although edges are
preserved satisfactorily by TSF, unfortunately, the over-
smoothing phenomenon is pretty apparent, which leads to a bad
visual effect. For example, the textures of Lena hat and the man’s
hair cannot be clearly identified in Figs. 7(j) and 8(j). In a word,
ANWF performs significantly better than many other existing tech-
niques in term of visual quality.

4.2. Quantitative evaluation

To further demonstrate the effectiveness of ANWF, the compar-
ative results of PSNR and MAE of the ten methods are shown in
Tables 2–4. When noise level is less than 40%, the most competitive
PSNR and MAE performances are produced by TSF. In Table 2, when
noise level approximately rise to 50–60%, the PSNR value of NEF
excels ANWF, but from Fig. 6(e) and (j), it is can be detected that
ANWF has more prominent visual effect than the former. Espe-
cially when noise level amounts to 70–90%, the proposed algo-
rithm shows its superior performances in PSNR and MAE.

5. Conclusion

In this paper, an adaptive neutrosophic filter based on pixel’s
indeterminate information has been presented to remove high-
density SPN. In order to accurately measure pixel similarity, a
novel and effective criterion based on Neutrosophic indeterminacy
is utilized in the weight function. Meanwhile, for the purpose of
adjusting the smooth parameter according to the contents of
image, the Neutrosophic indeterminacy is exploited to distinguish
the area type to which a pixel belongs, and as a regulatory factor, it
controls the variation of smoothing parameter in cooperation with
a constant K. With a fixed 3 � 3 window, the proposed method can
obtain remarkable performances in terms of visual quality and
quantitative evaluation especially for high-level SPN.
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